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Microscopic description of hexadecapole collectivity in even-even rare-earth nuclei near N = 90
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We present an extensive study of hexadecapole correlations in the rare-earth region near N = 90 and the effects
these correlations have on various nuclear properties, such as the low-energy spectra, as well as quadrupole,
hexadecapole, and monopole transition strengths. In order to examine hexadecapole correlations, we employ
a mapped sdg interacting boson model, with parameters derived from a self-consistent mean-field calculations
with a relativistic energy density functional. We apply this model to even-even isotopes of Nd, Sm, Gd, Dy,
and Er (Z = 60–68) with neutron numbers N = 84–96. The obtained results show a good agreement with the
experiment. By comparing the results with the ones obtained from a simpler mapped sd interacting boson model,
we show that the inclusion of the hexadecapole degree of freedom via the g boson is necessary to improve the
results of the Jπ � 6+ yrast energies in the nuclei with N = 84 and 86, being near the neutron shell closure. The
sdg interacting boson model increases the quadrupole transition strengths between yrast states in the N = 90
and 92 well deformed nuclei, which is in good agreement with the experiment for most of those isotopes. The
presence of g bosons does have an important effect on hexadecapole transition strengths, although experimental
data for such transitions are limited. The obtained monopole transition strengths do not differ significantly from
the ones obtained from the simpler sd model.
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I. INTRODUCTION

Nuclear deformations play an important role in describing
various nuclear properties [1,2], e.g., excitation energies and
decays. The dominant deformations in nuclei, the quadrupole
ones, have been extensively studied. More and more at-
tention is recently being paid to higher-order deformations,
such as the octupole and hexadecapole ones. The effects of
hexadecapole correlations are often overshadowed by large
quadrupole effects. Nevertheless, they have been found to
exist in a wide spectrum of nuclei, ranging from light nuclei
[3] to heavy nuclei [4]. The main effect of hexadecapole corre-
lations on the low-lying energy spectrum of the nucleus is the
appearance of the low-lying K = 4+ band with an enhanced
B(E4; 4+ → 0+) transition strength. Another effect can be
observed in even-even rare-earth nuclei near the N = 82 shell
closure, where the ratio of the ground-state band energies
R4/2 = Ex(4+)/Ex(2+) becomes less than 2. Besides that, hex-
adecapole deformations were shown to play a significant role
in heavy ion collisions [4] and fission [5], and are predicted
to have an influence on the neutrinoless double beta decay
matrix elements in open shell nuclei [6]. All of this provides
us with a good reason to study hexadecapole correlations in
nuclei and their effects on the low-lying excitation spectra and
transitions.
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A useful framework for studying the effects of nuclear
deformations is the interacting boson model (IBM) [7]. In
the simplest version of the IBM, the nucleus can be viewed
as a system composed of a doubly magic core nucleus, and
valence nucleons grouped into s (Lπ = 0+) and d (Lπ = 2+)
bosons. The main assumption of the model is that the main
contribution to the low-lying excitation energy spectra comes
from the pairing correlations between aforementioned bosons.
In the version of the model called IBM-1, it is assumed that the
neutron and proton bosons are identical [7]. This model has
been successfully used to study the effects of deformations
in nuclei [8]. Since the IBM is a phenomenological model,
in recent times, a method was developed that derives the
parameters of the IBM Hamiltonian from a self-consistent
mean-field (SCMF) model with energy density functionals
(EDFs) [9]. This method has been successfully applied in
studying quadrupole [9–12] and octupole correlations [13,14]
in nuclei. The inclusion of the hexadecapole degree of free-
dom in the IBM is done by the inclusion of the g boson with
Lπ = 4+, whose importance in the IBM has been extensively
studied [8,15–21]. While the sdg-IBM has been extensively
studied as a phenomenological model, it is useful to study the
model through a more microscopic picture, e.g., the aforemen-
tioned mapping method, since that could lead us to a better
understanding of the microscopic origin of the hexadecapole
collectivity in nuclei.

In the preceding article [22], we explored the hexadecapole
collectivity in 148–160Gd isotopes by using the sdg-IBM-1 with
the Hamiltonian parameters being derived by the mapping
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method of Ref. [9], and showed the validity and usefulness
of such approach. The aim of the present article is to extend
the study to a wider range of even-even rare-earth isotopes,
144–156Nd, 146–158Sm, 148–160Gd, 150–162Dy, and 152–164Er. We
choose the rare-earth isotopes for our study due to the fact that
hexadecapole correlations were observed in that region [1,23–
27], as well as due to the fact that triaxiality does not play
a significant role in these isotopes, as is evident from SCMF
calculations with the Skyrme force [10] and Gogny force [28].
By comparing our model with a simpler mapped sd-IBM-1,
we explore the effects of hexadecapole correlations on the
low-lying excitation energy spectra of these isotopes, and also
on the monopole, quadrupole, and hexadecapole transition
strengths.

The paper is organized as follows. In Sec. II we describe
our model. Section III gives the quadrupole-hexadecapole
potential energy surfaces for the studied nuclei. Results of
the spectroscopic properties, including the excitation spectra
of low-lying states and the electric quadrupole, hexadecapole,
and monopole transition properties, are discussed in Sec. IV.
A summary of the main results and some perspectives for
future work are given in Sec. V.

II. MODEL DESCRIPTION

We begin our analysis with the SCMF calculations. The
model employed for SCMF calculations is the multidi-
mensionally constrained relativistic mean-field (MDC-RMF)
model [29–31], which allows one to set constraints on var-
ious deformation parameters. For our analysis, we carried
out the SCMF calculations for axially symmetric shapes in
the (β2, β4) plane, by setting the constraints on the mass
quadrupole Q20 and hexadecapole Q40 moments. The di-
mensionless quadrupole β2 and hexadecapole β4 deformation
parameters are related to the mass moments through the
relation

βλ = 4π

3ARλ
〈Q̂λ0〉 (1)

with R = 1.2A1/3 fm. The quadrupole-hexadecapole con-
strained potential energy surfaces (PESs) are calculated
within the relativistic Hartree-Bogoliubov (RHB) framework
[32,33], with the chosen energy density functional being
the density-dependent point-coupling (DD-PC1) interaction
[33,34], combined with the separable pairing interaction of
finite range developed in Ref. [35]. A detailed description of
the MDC-RMF model can be found in Refs. [30,31].

Due to the fact that SCMF calculations necessarily break
several symmetries, these calculations alone cannot be used
to study excited states and transitions in the nucleus. To study
those properties of the nucleus, we use the sdg-IBM-1 model.
A simple version of the sdg-IBM-1 Hamiltonian is given by
the following relation, similar to the one from [20]:

Ĥsdg = εd n̂d + εgn̂g + κ2Q̂(2) · Q̂(2) + κ4Q̂(4) · Q̂(4). (2)

The first two terms represent the d and g boson number oper-
ators, n̂d = d† · d̃ and n̂g = g† · g̃. The second term represents
the quadrupole-quadrupole interaction with the quadrupole

operator, defined as

Q̂(2) = (s†d̃ + d†s) + χ
(2)
dd (d† × d̃ )(2)

+ χ
(2)
dg (d† × g̃ + g† × d̃ )(2) + χ (2)

gg (g† × g̃)(2), (3)

while the last term represents the hexadecapole-hexadecapole
interaction, with the hexadecapole operator defined as

Q̂(4) = (s†g̃ + g†s) + χ
(4)
dd (d† × d̃ )(4)

+ χ
(4)
dg (d† × g̃ + g† × d̃ )(4) + χ (4)

gg (g† × g̃)(4). (4)

Since this Hamiltonian is too complex, due to the number
of parameters it contains, a simplification can be made by
assuming three symmetry limits, U(5) ⊗ U(9), SU(3), and
SO(15), which leads to a Hamiltonian [21]

Ĥsdg = εd n̂d + εgn̂g + κQ̂(2) · Q̂(2) + κ (1 − χ2)Q̂(4) · Q̂(4)

(5)

with

Q̂(2) = (s†d̃ + d†s) + χ

[
11

√
10

28
(d† × d̃ )(2)

− 9

7
(d† × g̃ + g† × g̃)(2) + 3

√
55

14
(g† × g̃)(2)

]
(6)

and

Q̂(4) = s†g̃ + g†s (7)

being the quadrupole and hexadecapole operators,
respectively.

The parameters εd , εg, κ , and χ are determined by the
mapping procedure [9]. The first step is connecting the IBM
to the geometric model by calculating the expectation value
of the Hamiltonian in a coherent state |φ〉 ∝ (1 + β̃2d†

0 +
β̃4g†

0)NB |0〉, with NB representing the number of bosons, i.e.,
the number of pairs of valence nucleons, and |0〉 representing
the boson vacuum [21]. For Nd, Sm, Gd, and Dy isotopes,
the boson vacuum corresponds to the double shell closures
(N, Z ) = (82, 50), i.e., the doubly magic nucleus 132Sn, while
for the Er isotopes, since the valence neutrons are consid-
ered hole-like, the corresponding boson vacuum is taken to
be (N, Z ) = (82, 82). The expectation value, 〈φ|Ĥ |φ〉/〈φ|φ〉,
gives us the PES of the IBM, and is denoted EIBM(β̃2, β̃4),
with β̃2 and β̃4 being boson analogs of the quadrupole β2

and β4 deformations, respectively. The parameters of the
Hamiltonian are fitted so that the energy surface of the IBM
approximates the PES obtained from the SCMF calculations,
ESCMF(β2, β4), in the vicinity of the minimum:

ESCMF(β2, β4) ≈ EIBM(β̃2, β̃4). (8)

Following the method of Refs. [9,14], the relation between
bosonic and fermionic deformation parameters is assumed
to be linear, β̃2 = C2β2, β̃4 = C4β4. This leaves us with six
parameters in total to be determined. In the case of lighter
rare-earth isotopes, Nd and Sm, the Hamiltonian from Eq. (6)
is shown to be inadequate to reproduce the SCMF PES, due
to the obtained ratios βmin

4 /βmin
2 being larger than in heavier

rare-earth isotopes. To solve this problem, an independent
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parameter σ was introduced in the quadrupole operator of
Eq. (6) as

Q̂(2) = (s†d̃ + d†s) + χ

[
11

√
10

28
(d† × d̃ )(2)

− 9

7
σ (d† × g̃ + g† × g̃)(2) + 3

√
55

14
(g† × g̃)(2)

]
,

(9)

with constraint −1 � χσ � +1. If χ = σ = +1, the
quadrupole operator corresponds to the generator of the
SU(3) algebra [36]. It should be noted that, while the
hexadecapole terms and the (g† × g̃)(2) are included in the
Hamiltonian, their contribution to the IBM PES, as well as
to the excitation energies, is minimal, and they could, in
principle, be omitted from the Hamiltonian.

In order to study the effects of hexadecapole correlations
in nuclei, the sdg IBM has to be compared with a simpler sd
IBM, with a Hamiltonian given by the relation [7]

Ĥsd = εd n̂d + κQ̂(2) · Q̂(2), (10)

with

Q̂(2) = s†d̃ + d†s + χ (d† × d̃ )(2) (11)

being the quadrupole operator. The mapping is performed so
that the energy of the sd-IBM approximates the SCMF PES
along the β4 = 0 line in the vicinity of the minimum [22]:

ESCMF(β2, β4 = 0) ≈ EIBM(β̃2), (12)

while the relation between the bosonic and fermionic
quadrupole deformation parameters is again assumed to be
linear, β̃2 = Csd

2 β2.
The transition strengths are defined as

B(Eλ; J → J ′) = 1

2J + 1
|〈J ′||T̂ (Eλ)||J〉|2, (13)

with |J〉 and 〈J ′| being the wave functions of the initial and
final states, respectively. The operators considered are the
quadrupole operator

T̂ (E2) = esdg,sd
2 Q̂(2), (14)

with Q̂(2) corresponding to the quadrupole operator of the sdg-
or sd-IBM [Eqs. (2), (6), and (10)]; the hexadecapole operator,
defined as

T̂ (E4) = esdg
4 [s†g̃ + g†s + (d† × d̃ )(4)] (15)

for the sdg-IBM and

T̂ (E4) = esd
4 (d† × d̃ )(4) (16)

for the sd-IBM; and the monopole operator, defined as [37]

T̂ (E0) = (enN + epZ )

(
η

n̂d

NB
+ γ

n̂g

NB

)
(17)

for the sdg-IBM and

T̂ (E0) = (enN + epZ )η
n̂d

NB
(18)

for the sd-IBM. The esdg,sd
2 coefficients are fitted for each iso-

tope so that the experimentally measured transition strength
B(E2; 2+

1 → 0+
1 ) from the first 2+ state to the ground state

should be reproduced. Similarly, the esdg,sd
4 coefficients are

fitted to the B(E4; 4+
1 → 0+

1 ) transition strength. In the
case of monopole transitions, following Ref. [37], monopole
strengths are defined as

ρ(E0) = 〈J ′|T̂ (E0)|J〉
eR2

, (19)

with R = 1.2A1/3 fm being the nuclear radius. The parameters
ep,n are chosen to be en = 0.50e, ep = e, following Ref. [37].
However, a different choice from the one in Ref. [37] is made
for these parameters, η = γ = 0.75 fm2. This is due to the
fact that the Hamiltonians used in this paper are different
from ones used in the aforementioned paper. Most of the
experimental data are taken from the National Nuclear Data
Center (NNDC) database [38].

III. MAPPING THE SCMF RESULTS
ONTO THE IBM SPACE

Figures 1–5 show the PESs of the even-even Nd, Sm,
Gd, Dy, and Er isotopes with the neutron number within
the range N = 84–94, up to 2.7 MeV in energy. The PESs
for the N = 96 nuclei are not shown due to their similarity
to those of the N = 94 ones. In addition, the PESs for the
Gd isotopes, have already been presented in Ref. [22], but
are depicted in Fig. 3 for completeness. From the figures,
one can notice that both the quadrupole and hexadecapole
deformation parameters increase with the neutron number.
The saddle point in the oblate (β2 < 0) area is lower in en-
ergy for the N � 90 nuclei and can be seen in the PES. For
heavier isotopes, the saddle point becomes higher in energy
and cannot be seen in the figures. Quadrupole deformations
have a similar structural evolution in all isotopes, starting from
βmin

2 = 0.1 at N = 84, except for the oblate deformed 148Gd
(βmin

2 = −0.05), with the maximum βmin
2 = 0.35 calculated

for those nuclei with N = 94 and 96. It should be noted that,
while 148Gd is predicted to be oblate deformed in the ground
state, the PES of this nucleus shows a significant softness with
respect to both quadrupole and hexadecapole deformation.
The structural evolution of hexadecapole deformations is also
similar in all isotopes. Larger hexadecapole deformations in
the minimum are obtained for lighter nuclei, Nd and Sm,
the largest being βmin

4 = 0.25 (142,154Nd, 154Sm). In Gd, Dy,
and Er isotopes, the largest hexadecapole deformation in the
minimum is βmin

4 = 0.15, present in the N � 90 region. In
Dy and Er isotopes, it can be seen that the energy minima
for the nuclei in the deformed region (with N � 90) become
softer in the β4 direction compared to those for the N = 86
and 88 nuclei. Earlier mean-field-type studies—e.g., those
based on the axially deformed Woods-Saxon potential with
the hexadecapole degree of freedom [39], the total Routhian
surface calculation [40], and a more recent generator co-
ordinate method employing the Gogny EDF to deal with
the axial quadrupole-hexadecapole coupling [41]—have also
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FIG. 1. Axially symmetric quadrupole (β20) and hexadecapole (β40) constrained energy surfaces for the 144–154Nd isotopes calculated within
the relativistic Hartree-Bogoliubov method using the DD-PC1 energy density functional and the pairing force of finite range. Energy difference
between neighboring contours is 0.3 MeV, and the absolute minimum is indicated by an open triangle.

found nonzero β40 deformations in some rare-earth nuclei
near N = 90.

The corresponding sdg-IBM PESs are shown in Figs. 6–10.
One can see that the mapping procedure reproduces some
of the basic properties of the SCMF PES, such as the po-
sition of the absolute minimum and the saddle point in the

N = 84–90 nuclei. The IBM surface is significantly larger
than the SCMF surface, which is a general feature of the
IBM due to the restricted boson space of the model. This
was already discussed in the case of quadrupole-octupole
mapping [14]. The “tail-like” structure that can be seen in
the SCMF PES at N = 88 in each isotopic chain is also not

FIG. 2. Same as the caption for Fig. 1, but for 146–156Sm.
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FIG. 3. Same as the caption for Fig. 1, but for 148–158Gd.

reproduced by the IBM due to the complexities of the SCMF
model, which cannot be reproduced by a simple Hamiltonian.
While three-body terms would provide an improvement to the
IBM PES, such terms are rarely included in the Hamiltonian
and are beyond the scope of this study. In the case of the
sd-IBM mapping, the goal was to approximately reproduce
the energy as a function of the β2 parameter, with the focus on
reproducing the position of the energy minimum, the energy

at β2 = 0, and the saddle point in the oblate region. The
parameters of the sdg- and sd-IBM are shown in Figs. 11
and 12. The value of parameter σ from Eq. (9), not shown
in Fig. 11, is set to σ = 3.5 for 144,146Nd and 146,148Sm, and
σ = 2.8 for other Nd and Sm isotopes, while for Gd, Dy, and
Er isotopes it is set to σ = 1.0 [see the quadrupole operator
in Eq. (6)]. In both the sdg- and sd-IBM, the parameter εd

has a maximum value in the near shell-closure region, and

FIG. 4. Same as the caption for Fig. 1, but for 150–160Dy.
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FIG. 5. Same as the caption for Fig. 1, but for 152–162Er.

its value decreases as we move towards the deformed region.
The same happens with the parameter χ . In the sd-IBM, on
the other hand, the parameter starts from a positive value in
the near shell-closure region and decreases more sharply as
we move into the deformed region, achieving significantly
lower values from the χ parameter in the sdg-IBM. The C2

parameter also shows similar evolution in both models. The κ

parameter in the sdg-IBM tends to decrease when moving to

the deformed region and increase at the end of the deformed
region. This is also the case in the sd-IBM, except in the case
of Gd and Dy isotopes, for which κ increases when moving
into the deformed region. As for the parameters only present
in the sdg-IBM, g boson energy εg values fluctuate between
εg = 1.0 and εg = 1.3 MeV, while the C4 parameter behaves
similarly to the C2 parameter, the difference being that the C4

parameter values tend to be smaller than the C2 values for the

FIG. 6. Same as the caption for Fig. 1, but for the mapped sdg-IBM energy surfaces of 144–154Nd.
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FIG. 7. Same as the caption for Fig. 1, but for the mapped sdg-IBM energy surfaces of 146–156Sm.

same boson number NB. Previous phenomenological sdg-IBM
calculations on 152,154Sm have set the g boson energy to be
εg = 1.4 and 1.5 MeV, respectively [42], We note, however,
that with those values we are not able to reproduce the desired
βmin

4 obtained through the SCMF calculations.

IV. RESULTS OF THE SPECTROSCOPIC CALCULATIONS

In this section, we show the excitation energies and tran-
sition strengths. The computer program ARBMODEL [43] is
employed to obtain these quantities. The results of the sdg-
IBM are compared with the results of the sd-IBM to show the
effects of g bosons. The results obtained from both models

FIG. 8. Same as the caption for Fig. 1, but for the mapped sdg-IBM energy surfaces of 148–158Gd.
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FIG. 9. Same as the caption for Fig. 1, but for the mapped sdg-IBM energy surfaces of 150–160Dy.

are also compared with the experimental data available in the
NNDC database [38].

A. Excitation energies

Figure 13 shows the calculated excitation energies of the
yrast band states with spin Jπ = 2+–14+. As can be seen
from the figure, the sdg-IBM significantly improves the de-

scription of the Jπ � 6+ states in the N � 88 nuclei. This
can be explained by looking at the expectation value of the
g boson number operator, which is for those states calculated
to be 〈n̂g〉 � 1. The energies of the yrast band states in the
near shell-closure region are lowered due to the presence of g
bosons.

We also summarize the energy ratios R4/2 for the N = 84
and 86 nuclei in Table I. In the N = 84 nuclei, the sdg-IBM

FIG. 10. Same as the caption for Fig. 1, but for the mapped sdg-IBM energy surfaces of 152–162Er.
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FIG. 11. Parameters of the sdg-IBM Hamiltonian (5) as functions of the boson number NB.

predicts the ratios to be R4/2 < 2, which is in agreement
with the experiment. This is also an effect of the g boson
presence, since this cannot be obtained with sd-IBM calcula-
tions. A significantly low ratio, R4/2 = 1.54, is obtained for
152Er, compared to the experimental value of R4/2 = 1.83.
This is due to the fact that the sdg-IBM predicts the 4+

1
state somewhat lower in energy than the experimental value.
This could be improved by considering the values of the
parameter σ to be σ > 1.0 for this nucleus. The calculated
R4/2 ratio that is lower than 2; nevertheless it agrees with
experiment qualitatively, which, however, cannot be realized
in the sd-IBM, giving R4/2 = 2.14 > 2. In the N = 86 nuclei,
there is no significant difference between ratios obtained with

FIG. 12. Parameters of the sd-IBM Hamiltonian (10) as func-
tions of the boson number NB.

the sdg- and sd-IBM. The two exceptions are 146Nd, where
the sdg-IBM predicts a lower ratio, which is closer to the
experimental value, and 148Sm, where the sdg-IBM predicts
a R4/2 < 2 value, which does not agree with the experiment.

Figure 14 compares the calculated and experimental ex-
citation energies of the 0+

2 , 2+
3 , and 4+

3 states, which may
be associated with the Kπ = 0+ band usually present in the
deformed region. Note that for 160Dy the observed 0+ level
at 1280 keV, which is suggested to be the bandhead of the
first excited K = 0+ band, is shown in the plot [Figs. 14(g)
and 14(h)], while there are two additional excited 0+ levels
at 681 and 703 keV, but with spin and parity not firmly
established. As one sees in Fig. 14, the sdg-IBM does not
provide an improved description of the 0+

2 states compared
to the sd-IBM, since the expectation value of the g boson
number operator for the 0+

2 state is calculated to be 〈n̂g〉 ≈ 0.
On the other hand, the sdg-IBM predicts significantly lower

TABLE I. Energy ratios R4/2 = Ex (4+
1 )/Ex (2+

1 ) for the nearly
spherical nuclei with N = 84 and 86, calculated with the mapped
sd- and sdg-IBM, as compared to the experimental values [38].

Nucleus sd-IBM sdg-IBM Experiment

144Nd 2.11 1.78 1.89
146Nd 2.25 2.05 2.02
146Sm 2.12 1.83 1.85
148Sm 2.20 1.98 2.14
148Gd 2.13 1.86 1.81
150Gd 2.18 2.15 2.02
150Dy 2.15 1.71 1.81
152Dy 2.21 2.16 2.05
152Er 2.14 1.54 1.83
152Er 2.24 2.17 2.07
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FIG. 13. Calculated excitation energies of the yrast band states
up to spin Jπ = 14+ as functions of the neutron number N within
the mapped sdg-IBM (left column) and sd-IBM (right column),
represented by solid symbols connected by solid lines. Experimental
data are taken from Ref. [38], and are depicted as open symbols
connected by dotted lines.

2+
3 and 4+

3 states for N � 88, which is in agreement with
the experiment. However, in the nuclei with N = 84 and 86
the two states are almost equal in energy, and in the N = 88
nuclei the 4+

3 state becomes lower in energy than the 2+
3

state, which contradicts the experiment. In the N � 90 de-
formed region, both sdg- and sd-IBM yield similar results.
Overall, the 2+

3 and 4+
3 states, calculated by the sdg-IBM,

are closer in energies to the corresponding experimental val-
ues in the near shell-closure region. The sdg-IBM, however,
predicts the 4+

3 energy level to be so low as to be close to

FIG. 14. Same as Fig. 13, but for the 0+
2 , 2+

3 , and 4+
3 states.

or even below the 2+
3 one, which does not agree with the

experiment. The description of 0+
2 states is not improved in

the sdg-IBM.
Figure 15 shows the excitation energies of the 2+

2 , 3+
1 , and

4+
2 states, associated with the γ vibrational band. The effect

of including g bosons on the states 2+
2 and 3+

1 is minor, with
only some small improvements in the N � 88 Nd and Sm. The
4+

2 energy level is, however, significantly low compared to the
one obtained with the sd-IBM and to the observed level. In
the N = 84 nuclei, the 4+

2 state is predicted to be almost equal
in energy to the 2+

2 state, contrary to the experiment. In the
N � 90 deformed region, there are no significant differences
between the sdg- and sd-IBM. The fact that the sdg-IBM pre-
dicts a significantly lower 4+

2 state compared to the experiment
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FIG. 15. Same as Fig. 13, but for the 2+
2 , 3+

1 , and 4+
2 states.

points to the fact that the chosen Hamiltonian may not be suit-
able for the description of such states in the region near shell
closures. A Hamiltonian with more independent parameters
could potentially solve this problem. However, the inclusion
of more independent parameters would make the mapping
procedure more involved. We also note that the choice of the
EDF, as well as the choice of the pairing interaction, affects
the calculated spectrum. We leave those two problems for a
separate study.

B. Transition strengths

1. Quadrupole transitions

Figure 16 shows the B(E2; J → J − 2) transition strengths
in the ground state bands of the well deformed N = 90 and

FIG. 16. B(E2) transition strengths in the ground state band of
the well-deformed N = 90 (left) and N = 92 (right) nuclei as func-
tions of spin J , calculated with the mapped sdg-IBM (solid curves)
and sd-IBM (dotted curves). The experimental data, represented by
solid circles, are adopted from Ref. [38].

92 isotopes. We consider these isotopes due to the fact that
most of the data on E2 transitions are available for these
isotopes, which makes them the ideal cases to examine when
comparing the E2 transition strengths between the sdg- and
sd-IBM. The effective charges esdg,sd

2 are fitted to reproduce
the experimental data on the first B(E2; 2+ → 0+) transition
[38]. One can notice a significant difference between the
behavior of the ground state band E2 transitions in Nd and
Sm isotopes, compared to heavier ones. In Nd and Sm, the
predicted transition strengths for states Jπ � 6+ are signif-
icantly larger than the sd-IBM calculated transitions, which
is not the case in other isotopes. This can be explained by

044324-11



L. LOTINA AND K. NOMURA PHYSICAL REVIEW C 109, 044324 (2024)

the fact that in those isotopes the (d† × g̃ + g† × d̃ )(2) term
of the quadrupole operator Q̂(2) contributes more to the cal-
culated transitions due to the larger values of the parameter
σ > 1.0. The calculated transition strengths, especially in
152,154Sm, seem to correspond to the axial rotor calculations
[20,42]. It can be seen that the sdg-IBM in the shown Nd
and Sm isotopes improves the results of the B(E2; J → J − 2)
strengths for J = 6+, 8+, 10+. In Gd, Dy, and Er isotopes, the
sdg-IBM only slightly increases the E2 transition strengths
from Jπ � 6+ states compared to the sd-IBM, which can
be attributed to the fact that the value of the parameter σ =
1.0 is chosen. At N = 90, both models underestimate the
measured transition strengths, while at N = 92, both models
reproduce the measured strengths well. Due to the fact that
the margins of error are quite large in N = 92 Dy and Er iso-
topes, it cannot be concluded whether the sdg-IBM improves
the description of higher E2 transition strengths in those
isotopes.

2. Hexadecapole transitions

Figure 17 shows the B(E4; 4+
n → 0+

1 ) (n = 1, 2, 3, 4)
transition strengths. The esdg,sd

4 effective charges are fitted
to experimental data on the B(E4; 4+

1 → 0+
1 ) from the first

4+ state to the ground state [25–27,38]. For isotopes with
no available experimental data, effective charge values are
chosen so that they start from lower values, peak near
N = 92, and then decrease again. These transition strengths
are shown in Figs. 17(a) and 17(b). In Figs. 17(c)–17(h),
E4 transition strengths from higher 4+ states are shown.
The sdg-IBM predicts several large E4 transition strengths
from these states in certain isotopes, which is expected in
the case of hexadecapole deformed nuclei with a K = 4+
band. The sd-IBM predicts all of these transition strengths
to vanish, which points to the necessity of considering the
g boson in the description of E4 transitions from higher 4+
states. Unfortunately, due to the lack of experimental data
on these E4 transitions, it is not possible to see how well
the mapped sdg-IBM predicts the values of these transition
strengths.

3. Monopole transitions

Figure 18 shows the monopole strengths ρ2(E0; 0+
i →

0+
j ), with i = 2, 3 and j = 1, 2, for isotopes of Sm and Gd.

We choose to show these isotopes since the experimental
data on monopole strengths is only available for these
isotopes [38,44]. The choice of η = γ = 0.75 fm2 is
made to reproduce most of the available experimental
data. The sdg-IBM does not significantly improve the
calculated monopole strengths compared to the sd-IBM. Both
models overestimate the strengths of 0+

2 → 0+
1 transitions in

150,152Sm and underestimate the same strength in 154Gd. The
calculated strengths of 154Sm and 152,156Gd are within the
margins of error of the measured strengths. The sdg-IBM does
slightly improve the description of the 0+

3 → 0+
2 transition

in 154Sm and the 0+
3 → 0+

1 transition in the 158Gd. Overall,
the sdg-IBM does not differ significantly from the sd-IBM in
the description of the monopole strengths, which is expected,

FIG. 17. B(E4) strengths in W.u. for the transitions of the first
[panels (a) and (b)], second [panels (c) and (d)], third [panels (e) and
(f)], and fourth [panels (g) and (h)] 4+ states to the 0+

1 ground state
as functions of the mass number A, calculated with the mapped sdg-
IBM (left column) and sd-IBM (right column). Experimental data
are taken from Refs. [25–27,38], and are indicated by solid circles in
the plots.

since the sdg-IBM calculations do not predict a presence of g
bosons in 0+ states up to 0+

3 . For example, in 154Sm, the lowest
0+ state that contains one g boson, with the expectation value
〈n̂g〉 ≈ 1, is the 0+

5 state. In principle, it is possible to fit η and
γ separately for each isotope. However, since our goal was to
see the effect of g bosons in monopole transitions, we follow
the method of [37] and set fixed values of η and γ parameters.

V. SUMMARY

We have shown an extended analysis of the impact of
hexadecapole deformations on the excitation energy spectra
and transition strengths in even-even rare-earth nuclei, rang-
ing from the near spherical to the well deformed ones. The
quadrupole-hexadecapole constrained SCMF PES has been
mapped onto the corresponding PES of the IBM, and this
procedure completely determines the parameters of the sdg-
IBM Hamiltonian, based on the microscopic calculations. The
inclusion of g bosons has a significant effect on Jπ � 6+
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FIG. 18. ρ2(E0; 0+
i → 0+

j ) values as functions of the neutron
number N for Sm and Gd isotopes, calculated with the mapped
sdg-IBM (left column) and sd-IBM (right column). Experimental
values are adopted from Refs. [38,44], and are plotted as solid circles.

yrast states in the N � 88 nuclei near neutron magic number
N = 82. The mapped sdg-IBM lowers the energies of afore-
mentioned states to agree with the observed spectra. In the
case of non-yrast states and corresponding bands, the sd-IBM
seems to be sufficient in the description of such states, with the
sdg-IBM making only a minor contribution, e.g., 2+

3 and 4+
3

states of the Kπ = 0+ band in the N = 84 and 86 nuclei. As
for the transitions, in the well deformed nuclei with N = 90
and 92, the sdg-IBM calculation yields higher B(E2; J → J −
2) values for Jπ � 6+ yrast states, which does seem to be an
improvement of the results, especially in the case of 150,152Nd
and 152,154Sm. In the case of monopole transitions between 0+
states, the effect of the g boson seems to be minor. In the well
deformed region, the sdg-IBM predicts the existence of the
Kπ = 4+ band with an enhanced B(E4; 4+ → 0+) hexade-
capole transition to the ground states. The fact that the sd-IBM
cannot predict larger hexadecapole transition strengths from
higher 4+ states points to a necessity of including the g boson
in the description of the hexadecapole transitions. Unfortu-
nately, due to the lack of experimental data on such transitions,
it is not possible to see how well the sdg-IBM reproduces such
transitions. Now that we have shown the usefulness of the
mapped sdg-IBM, we can expand our study to the even-odd
and odd-odd rare-earth nuclei, as well as extend our model
to the more complex sdg-IBM-2 to study properties such as
scissors modes in rare-earth nuclei. It could also be interesting
to systematically study how sensitive the parameters are to the
choice of the EDF in the SCMF calculations.
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