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Quantum simulation approach to implementing nuclear density functional
theory via imaginary time evolution
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The quantum imaginary time evolution (QITE) algorithm is a direct implementation of the classical imaginary
time evolution algorithm on quantum computer. We implement the QITE algorithm for the case of nuclear
Hartree-Fock equations in a formalism equivalent to nuclear density functional theory. We demonstrate the
algorithm in the case of the helium-4 nucleus with a simplified effective interaction of the Skyrme kind and
demonstrate that the QITE, as implemented on simulated quantum computer, gives identical results to the
classical algorithm.
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I. INTRODUCTION

Quantum computers have developed from hypothetical
devices to real systems capable of harnessing quantum en-
tanglement and the efficient representation of information to
bring a new paradigm to computation and information pro-
cessing. One major area of application of quantum computers
is in the simulation of other quantum systems, where qubit
encoding of wave functions of many-particle systems can be
enacted particularly efficiently. These ideas have been used
in quantum fermionic systems such as quantum chemistry
[1–4], materials [5,6], and nuclear physics [7–10]. In nuclear
physics, general quantum algorithms such as the variational
quantum eigensolver (VQE) and its extensions [11] have been
widely used to find energy eigenvalues in systems such as
the deuteron, as represented through an effective field theory
[12,13], the Lipkin-Meshkov-Glick model [14–19], and the
nuclear shell-model [17,20–23].

In the present work, we are concerned with the devel-
opment and implementation of a quantum computational
algorithm of the imaginary time evolution type to solve the
nuclear Hartree-Fock equations. We use a simplified but typi-
cal nuclear effective interaction of the Skyrme form that gives
rise to the usual nonlinear Schrödinger equation, which can
also be cast as a density functional theory problem. Although
Hartree-Fock solutions are achievable on classical computers,
implementation on quantum computer is a kind of benchmark
[4], and we intend that our algorithm can serve as a start-
ing point for much more sophisticated models with highly
correlated states, where quantum algorithms should be more
useful. The procedure can be considered as a kind of state
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preparation algorithm for deeper quantum simulation, itself
a topic of general interest [24], or as the starting point for
quantum algorithms such as symmetry restoration as proposed
for use with nuclear-like systems [25,26]. We also note that
the solution, on quantum computer, of the type of nonlinear
Schrödinger equation presented here is of interest beyond
nuclear physics [27].

In what follows, we give a brief summary of the nuclear
physics problem, a description of the imaginary time evolu-
tion algorithm with our particular quantum implementation,
and follow with results in the simplest case—a spherical
4He nucleus in the absence of a Coulomb interaction and
where there is a single (s1/2) single-particle wave function to
determine.

II. NUCLEAR MODEL

For a nucleus consisting of N strongly interacting nucleons,
the time-independent Schrödinger equation governing the N-
body wave function �({xi}) is[

− h̄2

2m

N∑
i=1

∇2
i + V ({xi})

]
� = E�, (1)

where x = {�r, S, I3} includes all of space, spin, and isospin
coordinates. This equation cannot be solved exactly in gen-
eral and reasonable approximations are usually required. One
common method for describing the nuclear structure and low
energy dynamics [28,29] is the mean field approximation.
By treating each of the N interacting particles as a single
particle in the field created by the remaining N − 1 particles,
the N-body problem is essentially reduced to a self-consistent
one-body problem. Accompanying the mean-field approxima-
tion is the form of the nuclear interaction, which needs to be
appropriate for use in the mean-field limit; either in the form
of a renormalized realistic interaction, or a phenomenological
one. We use here the latter form, of the Skyrme kind [30,31].
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The Skyrme interaction starts with a potential consisting of
a two-body term and a three-body term

V ({xi}) = 1

2

N∑
i �= j=1

v(2)(xi, x j )

+ 1

6

N∑
i �= j �=k=1

v(3)(xi, x j, xk ). (2)

The three-body term is assumed to be a zero-range force

v
(3)
i jk = t3δ

3(�ri − �r j )δ
3(�r j − �rk ), (3)

while the two-body term is assumed to be short ranged, with
matrix elements in momentum space given by

〈�k|v(2)
i j |�k′〉 = t0(1 + x0Pσ )

+ 1
2 t1(k2 + k′2) + t2�k · �k′

+ iW0(�σi + �σ j ) · �k × �k′, (4)

where Pσ , �σ , and �k are the spin-exchange operator, Pauli
spin matrices, and relative wave vector, respectively [denoting
v(2)(xi, x j ) as v

(2)
i j and v(3)(xi, x j, xk ) as v

(3)
i jk ]. In configuration

space Eq. (4) becomes

v
(2)
i j = t0(1 + x0Pσ )δ3(�ri − �r j )

+ 1
2 t1
[
δ3(�ri − �r j )k

2
R + k2

Lδ3(�ri − �r j )
]

+ t2�kL · δ3(�ri − �r j )�kR

+ iW0(�σi + �σ j ) · �kL × δ3(�ri − �r j )�kR, (5)

where �kL,R = 1
2 i( �∇i − �∇ j ) are relative wave vector operators,

with the subscripts L, R denoting left-multiplying and right-
multiplying, respectively.

It can be shown that [31], for Hartree-Fock calculations,
in which the nuclear wave function is assumed to be a Slater
determinant of single particle states, the three-body term is
equivalent to the density-dependent two-body interaction

v
(3)
i j = 1

6
t3(1 + Pσ )δ3(�ri − �r j )ρ

( �ri + �r j

2

)
, (6)

where ρ(�r) is the single-particle density.
Considering the case of a nucleus with A = 2Z (e.g., 4He,

16O), the further simplifications of the absence of a Coulomb
field, and with a simplified Skyrme force in which the t1, t2,
and W0 terms are neglected, we have a simplified model often
used for exploratory studies [32,33]. The potential is then
reduced to an effective two-body interaction

v(xi, x j ) = v
(2)
i j + v

(3)
i j

= 3

8
t0δ

3(�ri − �r j )

+ 1

16
t3δ

3
(
�ri − �r j

)
ρ

( �ri + �r j

2

)
. (7)

With a Slater determinant wave function, the expectation
value of the Hamiltonian (i.e., the energy) is

E = − h̄2

2m

N∑
i=1

∫
d3�r
[
ϕ∗

i (�r)∇2
i ϕi(�r)

]

+
∫

d3�r
[

3

8
t0ρ

2(�r) + 1

16
t3ρ

3(�r)

]
. (8)

By minimizing E via the variational principle, while re-
quiring that the single particle (SP) states are normalized,

δ

δϕ∗
i

⎡
⎣E −

∑
j

ε j

∫
ϕ∗

j (�r)ϕ j (�r)d3�r
⎤
⎦ = 0, (9)

we obtain the Hartree-Fock equations [32][
− h̄2

2m
∇2 + 3

4
t0ρ(�r) + 3

16
t3ρ

2(�r)

]
ϕ j (�r) = ε jϕ j (�r). (10)

The Lagrange multipliers ε j can be identified as the SP
energies.

For spherically symmetric nuclei in the absence of spin-
orbit interaction, the SP wave functions ϕnlmmsq(�r, s, I3) can
be factorized into radial, angular, spin, and isospin parts, in
which the angular and spin parts remain uncoupled:

ϕnlmmsq(�r, s, I3) = unl (r)

r
Ylm(θ, φ)χms (s)χq(I3). (11)

The spherical harmonics Ylm(θ, φ) form an orthonormal basis
and describe the angular behavior of ϕnlmmsq(�r, s, I3), while
the spinors χms (s) and χq(I3) represent the spin and isospin
dependencies of ϕnlmmsq(�r, s, I3), respectively.

Equation (10) is then reduced to the radial equation

Ĥ l
HFunl (r) = εnlunl (r), (12)

where

Ĥ l
hf = − h̄2

2m

[
d2

dr2
− l (l + 1)

r2

]

+
[

3

4
t0ρ(r) + 3

16
t3ρ

2(r)

]
(13)

is the Hartree-Fock Hamiltonian. The density ρ(r) is now
given by

ρ(r) = 4

r2

∑
n,l

|unl |2
l∑

m=−l

|Ylm|2

= 1

πr2

∑
n,l

(2l + 1)|unl |2 (14)

with the factor of 4 in the first line arising from spin and
isospin degeneracies.

III. IMAGINARY TIME EVOLUTION

In order to solve the nonlinear Schrödinger equation (10),
an iterative method is usually employed. Here, we make use
of the imaginary time evolution method.
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The time-dependent Schrödinger equation (TDSE) of the
Hartree-Fock Hamiltonian Ĥ l

HF,

Ĥ l
h f |ψ (r, t )〉 = ih̄

∂

∂t
|ψ (r, t )〉, (15)

has the formal solution

|ψ (r, t )〉 = exp

(
− iĤ l

h f t

h̄

)
|ψ (r, 0)〉. (16)

Under imaginary time (t → −iτ ), Eq. (16) becomes

|ψ (r, τ )〉 = N exp

(
− Ĥ l

h f

h̄
τ

)
|ψ (r, 0)〉, (17)

where N is a normalization operator to renormalize the state
after the application of the nonunitary imaginary time evolu-
tion operator. When τ → ∞, |ψ (r, τ )〉 converges to |u0l〉, the
ground state of Ĥ l

HF provided that the initial state |ψ (r, 0)〉 is
not orthogonal to it [34].

In principle, the imaginary time evolution (ITE) operator
Û (τ ) = exp(−Ĥ l

HFτ/h̄) could be applied once, with a large
enough imaginary time τ , for a good approximation of the
ground state. However, the true form of Ĥ l

HF is unknown due
to its density dependence, and the ITE has to be separated into
ktotal steps, each with an imaginary time step of �τ = τ

ktotal
.

This is equivalent to writing Eq. (17) as

|ψ (r, τ )〉 = [Û (�τ )]ktotal |ψ (r, 0)〉, (18)

where Û is updated after each step using a newly obtained
|ψ (r)〉. Providing the imaginary time step �τ � 1 is small
enough, Û can be approximated by

Û (�τ ) ≈ 1 − �τ

h̄
Ĥ l

HF. (19)

A. Quantum imaginary time algorithm

There have been multiple attempts at implementing ITE on
quantum devices [35–39]. One of the main obstacles is the
nonunitarity of the operator Û as quantum circuits can only
handle unitary operators. In the original QITE [40] algorithm,
this is overcome by sectioning the qubit chain and performing
approximated Trotter evolution [41–43] section by section.
A later proposal [44] makes use of a randomized qDRIFT
algorithm [45] which significantly reduces the circuit depth.
In this paper, we use the idea of a duality computer [46,47] to
implement nonunitary Hermitian gates, with the aid of some
auxiliary qubits.

In order to encode the unknown wave function solution to
the HF equation, we have chosen the three-dimensional (3D)
isotropic oscillator basis (with oscillator length 1

b ) [48–51]

unl (r) =
∑

n′
αnln′Rb,l+ 3

2
n′ (r), αnln′ ∈ R ∀ n, l, n′, (20)

as our computational basis, where αnln′ are the expansion coef-

ficients and Rb,l+ 3
2

n′ (r) are the oscillator radial wave functions.
In this basis, the matrix elements of the density are given
by the sum of integrals of the product of four basis wave

functions,

ρ ∼
∑∫

dr

r2
RRRR. (21)

These integrals are computed and tabulated classically at the
beginning of the calculation, for evaluation of the density at
each step of ITE, and a matrix representation of the time-
evolution operator (19) is constructed.

Using N qubits, the first n′ = 2N coefficients of expansion
α0ln′ can be represented as a state vector |ψl〉 such that

|ψl〉 =
2N −1∑
n′=0

α0ln′ |n′〉, (22)

where |0〉 = |00 . . . 00〉, |1〉 = |00 . . . 01〉, |2〉 = |00 . . . 10〉,
etc.

The ITE operator Û , previously obtained classically, is a
2N × 2N Hermitian matrix and can be decomposed into a sum
of products of Pauli matrices (and identity matrices) acting on
individual qubits [52]

Û =
22N −1∑
i′=0

βi′Pi′ , (23)

Pi′ =
N⊗

q=1

σi′4[q], (24)

where i′4[q] is the qth digit from the right of i′ when expressed
in quaternary and

σ0 = I, σ1 = Z, σ2 = X, σ3 = Y (25)

are the identity and Pauli matrices acting on the (q − 1)th
qubit. Using i′ = 45 as an example, since 4510 = 2314, the
corresponding gate is X2 ⊗ Y1 ⊗ Z0. The coefficients βi′ can
then be stored in an ancillary state |φa〉 using 2N ancillary
qubits such that

|φa〉 = 1

B

22N −1∑
i′=0

βi′ |i′〉, (26)

where B =
√∑22N −1

i′=0 β2
i′ .

In the larger Hilbert space spanned by |φa〉and |ψl〉,

|ψl〉 → |φa〉|ψl〉 = 1

B

22N −1∑
i′=0

βi′ |i′〉|ψl〉, (27)

the outcome of the nonunitary Û can be obtained in a par-
ticular subspace. This is achieved by applying a series of
controlled Pauli gates

ÔP =
22N −1∑
i′=0

|i′〉〈i′| ⊗ Pi′ (28)

and 2N Hadamard gates

ÔH =
2N−1⊗
qa=0

Hqa . (29)
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FIG. 1. Quantum circuit performing one iteration of ITE in the N = 1 case.

The result of the operations is given by

ÔH ÔP|φa〉|ψl〉

= 1

2N B

⎛
⎝|0〉

22N −1∑
i′=0

βi′Pi′ |ψl〉

+ |1〉
22N −1∑
i′=0

(−1)i′βi′Pi′ |ψl〉 + · · ·
⎞
⎠

= 1

2N B
(|0〉Û |ψl〉 + · · · ). (30)

Thus we obtain our expected value and result state in the first
2N entries of the state vector.

B. N = 1 case

The details of the N = 1 case help clarify the general
algorithm. We thus write out in full the N = 1 case using three
(one target and two ancillary) qubits, in which the ground state
|ψl〉 is expanded in the two lowest oscillator states.

The ITE operator, Û , is then a 2 × 2 Hermitian matrix and
its Pauli decomposition is

Û =
(

U00 U01

U10 U11

)

= U00 + U11

2
I + U00 − U11

2
Z

+ U01 + U10

2
X + i

U01 − U10

2
Y. (31)

Comparing with Eq. (23), we see that

β0 = U00 + U11

2
, β1 = U00 − U11

2
,

β2 = U01 + U10

2
, β3 = i

U01 − U10

2
, (32)

and

B =
√

1

2

(
U 2

00 + U 2
11

)+ U01U10. (33)

Hence,

|φa〉 = 1

B
(β0|00〉 + β1|01〉 + β2|10〉 + β3|11〉). (34)

For a general target state

|ψl〉 =
(

α0l0

α0l1

)
, (35)

the expected output is

Û |ψl〉 =
(

U00α0l0 + U01α0l1

U10α0l0 + U11α0l1

)

=
(

(β0 + β1)α0l0 + (β2 − iβ3)α0l1

(β2 + iβ3)α0l0 + (β0 − β1)α0l1

)
. (36)
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FIG. 2. Quantum circuit performing one iteration of ITE in the N = 2 case.

Applying ÔP from Eq. (28), we obtain

ÔP|φa〉|ψl〉 =

⎛
⎜⎜⎝

I
Z

X
Y

⎞
⎟⎟⎠ 1

B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

(
α0l0

α0l1

)

β1

(
α0l0

α0l1

)

β2

(
α0l0

α0l1

)

β3

(
α0l0

α0l1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

(
α0l0

α0l1

)

β1

(
α0l0

−α0l1

)

β2

(
α0l1

α0l0

)

iβ3

(−α0l1

α0l0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Combining the contribution using the Hadamard gates

H1 ⊗ H2 = 1

2

⎛
⎜⎜⎝

I I I I
I −I I −I
I I −I −I
I −I −I I

⎞
⎟⎟⎠ (38)

on the ancillary qubits as described in Eq. (30), the qubits will
be in the final state

H1 ⊗ H2ÔP|φa〉|ψl〉

= 1

2

⎛
⎜⎜⎝

I I I I
I −I I −I
I I −I −I
I −I −I I

⎞
⎟⎟⎠ 1

B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

(
α0l0

α0l1

)

β1

(
α0l0

−α0l1

)

β2

(
α0l1

α0l0

)

−iβ3

(
α0l1

−α0l0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(β0 + β1)α0l0 + (β2 − iβ3)α0l1

(β2 + iβ3)α0l0 + (β0 − β1)α0l1

(β0 − β1)α0l0 + (β2 + iβ3)α0l1

(β2 − iβ3)α0l0 + (β0 + β1)α0l1

(β0 + β1)α0l0 − (β2 − iβ3)α0l1

−(β2 + iβ3)α0l0 + (β0 − β1)α0l1

(β0 − β1)α0l0 − (β2 + iβ3)α0l1

−(β2 − iβ3)α0l0 + (β0 + β1)α0l1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where the coefficients of the states |000〉 and |001〉 return the
required results from Eq. (36), up to a normalization constant
1

2B .
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FIG. 3. Quantum subcircuit SP(N) performing N-qubit real state preparation.

C. Quantum circuits

For a state |ψl〉 expanded in the first 2N basis states, the
QITE algorithm can be performed by a 3N qubit circuit.
The N = 1 and N = 2 quantum circuits, which perform one
iteration of imaginary time evolution, are shown in Figs. 1
and 2, respectively.

Here, the open circles and filled circles indicate control
activation if the control qubit is in the state |0〉 and |1〉,
respectively. Figure 3 shows the subcircuit SP(N) for a N-
qubit real state preparation, where the one-qubit (N = 1) state
preparation subcircuit SP(1) is given by Fig. 4.

In a N-qubit real state there are 2N coefficients (2N − 1
independent ones), denoted {ci}, i = 0, 1, . . . , 2N − 1. For
the target state |ψl〉 preparation subcircuits SP(N ), cn′ = α0ln′

(as in equation 22). For the ancillary state |φa〉 preparation
subcircuits SP(2N ), ci = βi [as in Eq. (23)]. The angles of
rotation, ϑi j , for the state preparation, are given by

tan
ϑi j

2
=
√√√√∑2 j−i−1

i′= j c2
i′∑ j−1

i′=i c2
i′

. (40)

For N = 2, SP(2) is shown in Fig. 5, with the angles given
by

tan
ϑ02

2
=
√

c2
2 + c2

3

c2
0 + c2

1

,

tan
ϑ01

2
= c1

c0
,

tan
ϑ23

2
= c3

c2
. (41)

In general the state vector is not accessible through mea-
surements as only the relative amplitudes can be obtained
through the probabilities. In our algorithm we exploit the fact
that all of our components are real and the relative phases
can either be 0 or π . After direct measurements for deduc-
ing the relative amplitudes of the states, N more circuits are
composed by appending a Hadamard gate to the N th target
qubit. This mixes the amplitudes. An increase in probability

FIG. 4. Quantum subcircuit SP(1) performing one-qubit real
state preparation.

indicates a relative phase of 0 between the two states, and a
decrease indicates a relative phase of π .

IV. RESULTS

A. N = 1 case

We applied the approach above on a three qubit sim-
ulator (N = 1, 2 expansion states) to calculate the ground
state energy of 4He [53,54], where all the nucleons are in
the s state (l = 0) with spin and isospin degeneracy = 4,
using the parameter values t0 = −1090.0 MeV fm3 and t3 =
17288.0 MeV fm6 [55].

We choose a time step of �τ
h̄ = 0.005 MeV fm−1 and use

an optimized oscillator length of 1
b = 1.5284 MeV fm. Then

we perform an ITE, using a classical algorithm, from an initial
trial state with equal amplitudes of the first two oscillator
states,

u(0)
00 = 1√

2
R

1
b , 3

2
0 + 1√

2
R

1
b , 3

2
1 . (42)

The wave function starts achieving self-consistency (up to
three significant figures) after 20 iterations. Further evolution
(40 iterations) of the state gives a 4He ground state energy
of −29.1567 MeV. The precision of the energy here indicates
the self-consistency of the value over the last three iterations.
In this case further iteration only changes digits from the
fifth decimal place. Figure 6 shows the evolution of the wave
function and the potential as a function of iteration. Even
iteration numbers only are shown for clarity.

The quantum imaginary time evolution procedure was
coded in Qiskit [56] and simulated on a classical computer
using the QASM backend with 10000 shots per measure-
ment. The same starting wave function, oscillator length, and
number of time steps were used as in the classical state
for comparison. Figure 7 shows the evolution of the wave
function and potential as a function of iteration for this

FIG. 5. Quantum subcircuit SP(2) performing two-qubit real
state preparation.
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FIG. 6. Classical imaginary time evolution for N = 1. (a) Wave
function as a function of iteration. (b) Potential as a function of
iteration.

implementation of the quantum imaginary time evolution
algorithm. The final ground state energy obtained was
−29.14 MeV. Self-consistency is only achieved up to 2 deci-
mal places after 40 iterations.

Figure 8 shows the final ground state wave functions
after 40 iterations from classical and quantum ITE. The
per-iteration results and the final energy are thus in close
agreement with the classical implementation, as expected.

B. N = 2 case

We repeated the above procedures on a six qubit simulator
(N = 2, 4 expansion states), without changing any parameters
apart from the oscillator lengths and the initial trial state. The
initial state is chosen to have equal amplitudes of the first four
oscillator states,

u(0)
00 = 1

2R
1
b , 3

2
0 + 1

2R
1
b , 3

2
1 + 1

2R
1
b , 3

2
2 + 1

2R
1
b , 3

2
3 , (43)

while the oscillator lengths are optimized to get the lowest
ground state energies. The values we use is 1

b = 2.0635 fm.
Compared to the N = 1 case, more iterations are needed

for the wave function to achieve self-consistency. Under
the classical algorithm, the wave function achieves self-
consistency (up to three significant figures) after 35 iterations.
We evolved the state for an addition of 25 iterations to obtain
a 4He ground state energy of −34.8215 MeV.

FIG. 7. Quantum imaginary time evolution for N = 1 carried
out using a quantum simulator. (a) Wave function as a function of
iteration. (b) Potential as a function of iteration.

The wave function evolved under the QITE implementa-
tion achieved self-consistency (up to three significant figures)
after 50 iterations. The final (60 iterations) 4He ground state
energy obtained was −34.8 MeV. The evolution is showed in
Fig. 9.

Figure 10 shows the final ground state wave functions after
60 iterations from classical and quantum ITE in the N = 2
case. Compared to the N = 1 case, the precision of the ground

FIG. 8. Imaginary time evolution for N = 1 case after 40
iterations.
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FIG. 9. Quantum imaginary time evolution for N = 2 carried
out using a quantum simulator. (a) Wave function as a function of
iteration. (b) Potential as a function of iteration.

state energy is lower. Improvement of this can be done by
using more number of shots per measurement and evolving
the states for more iterations.

C. Pauli coefficients

To gain some understanding of the operation of the quan-
tum imaginary time algorithm, we examine the coefficients, βi

FIG. 10. Imaginary time evolution for N = 2 case after 60
iterations.

FIG. 11. Per-iteration development of the β coefficients for the
terms in the Pauli expansion of the unitary operator in the quantum
imaginary time evolution algorithm for N = 1 case. (a) Full view.
(b) Zoomed in view.

of the Pauli operators in the expansion of the unitary operator
Û (23). The results are shown in Figs. 11 and 12.

The N = 2 case shows a similar behavior as the N = 1
case, where the identity operator has an unperturbed contri-
bution near 1.0 while the other operators have much lower

FIG. 12. Per-iteration development of the β coefficients for the
terms in the Pauli expansion of the unitary operator in the quantum
imaginary time evolution algorithm for N = 2 case.
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FIG. 13. Quantum circuit for one time step in the N = 3 case.

contributions. The identity operator II is not shown in the
N = 2 case (Fig. 12) for clarity.

We see the changing over iteration number of the structure
of the imaginary time operator as the effective density-
dependent Hamiltonian changes, until the operator converges
to a fixed form. The relative importance of different terms may
allow for a future optimized implementation which eliminates
the smallest contributions, but we have not attempted that
here.

D. Quantum scaling

The present work uses a small basis expansion as a proof of
concept, where the quantum advantage is not apparent. In this
section we compare the computational cost in two different
aspects, the number of bits/qubits used (circuit width) and the
number of operations/gates used.

With 2N expansion states, the classical algorithm requires
2N bits to set up, whereas its quantum counterpart uses only
3N qubits for the presented implementation of QITE. This
improvement is exponential and allows one to carry out calcu-
lations with a much larger basis expansion size in the eventual

availability of larger quantum computers. In our case, we have
used a technique in which general nonunitary operators can
be used. In theory only one ancillary qubit is needed to imple-
ment the circuit. In our algorithm the extra ancillary qubits are
traded for a reduced circuit depth. The linear growth in circuit
depth is demonstrated in Figs. 13 and 14, which contain the
quantum circuits for larger basis expansions. Specialization to
the QITE operator can reduce the ancillary qubit cost further.

In terms of the size of the algorithm, the classical ITE
algorithm requires O(22N ) operations per time step. One com-
mon measure of the complexity of a quantum circuit is the
number of multi-qubit gates in it. As all quantum gates can
be decomposed into one-qubit gates and the two-qubit CNOT
gates, this is equivalent to counting the number of CNOT
gates.

Our quantum circuit (Figs. 1, and 2, 13, and 14) for carry-
ing out an imaginary time step can be decomposed into four
parts, the state preparation subcircuits SP(N ) and SP(2N ),
the ITE operator ÔP, the contribution combiner ÔH , and the
measurement subcircuits.

ÔP consists of 3N doubly controlled Pauli gates (CCX,
CCY, and CCZ), each of which contains five CNOT gates in
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FIG. 14. Quantum circuit for one time step in the N = 4 case.

their respective decomposition [57]. Hence, ÔP contributes
O(N ) CNOT gates to the circuit, while previous work im-
plementing nonunitary operators using one ancillary qubit
requires from O(2N ) [58] to O(4N ) [59] CNOT gates. ÔH

and measurement subcircuits consist only of the one-qubit
Hadamard gate H and do not add any CNOT gate to the
circuit.

On the other hand, the extra ancillary qubits with our
method compared to some other methods comes with the dis-
advantage of a higher rate of discounted measurements when
the ancilla qubits are not all 0. Though this can be mitigated by
increasing the shot count, it should be taken into account along
with, e.g., circuit depth when choosing between algorithms.

The state preparation subcircuit SP(2N ) is where the bot-
tleneck of the algorithm lies. In our algorithm, we adopt a
simple but inefficient way to perform quantum state prepara-
tion. In this implementation, the number of CNOT gates scales
as O(22N ). This is acceptable in the small basis expansion we
showed. In general this amount of CNOT gates is required, as
it corresponds to the 22N+1 − 2 independent coefficients of the

2N-qubit state vector [60]. There has been attempts to prepare
states more efficiently via different approaches [24,61,62]. A
recent work using tensor networks proved to achieve linear
efficiency for up to 250 qubits [63]. With improved state
preparation algorithms, our work will prove to be an expo-
nential improvement of its classical counterpart.

V. CONCLUSION

We have presented an implementation of the quantum
imaginary time evolution method to solve the Hartree-Fock
equations in the case of the helium-4 nucleus. The method
is demonstrated to be equivalent to the classical imaginary
time evolution algorithm with a resource scaling superior to
the classical case.

We point out that the method will only work where the
desired wave function, as represented in our work in oscillator
expansion coefficients, is real. This should cover many prob-
lems of interest, but, e.g., seeking generally time-dependent
states, or those resulting from correlated HF states would
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need a further algorithm to build upon the states found in our
work. Indeed, the Hartree-Fock technique finds approximate
solutions of the nuclear many-body problem that are nearly
uncorrelated (except for Pauli exclusion), while much of the
promise of quantum computing lies in its ability to simulate
highly correlated states. Hence, the utility of the quantum
computation method here is limited to the scaling of the
Hilbert space size with the number of qubits. On the other
hand, the Hartree-Fock solution is the standard starting point
for building correlated wave functions through, e.g., density-
matrix methods [64], or as basis for shell model calculations

where classically obtained HF calculations have been used to
start a quantum algorithm [20]. Our algorithm can thus serve
as the starting point for studies in which the ability of quan-
tum computers to efficiently access highly correlated states is
exploited. Work along these lines is under investigation.
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