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An extension of the Barcelona Catania Paris Madrid (BCPM) energy density functional is proposed to deal
with odd-mass systems as well as multiquasiparticle excitations. The extension is based on the assumption
that the equal filling approximation (EFA) is a valid alternative to the traditional full blocking procedure of
the Hartree-Fock-Bogoliubov method. The assumption is supported by the excellent agreement between full
blocking and EFA calculations obtained with different parametrizations of the Gogny interaction. The EFA
augmented BCPM functional is used to compute low energy excitation spectra of selected nuclei in different
regions of the nuclear chart, and high-K isomers in 178Hf. We show that BCPM predictions are in good agreement
with Gogny D1M results and experimental data.
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I. INTRODUCTION

Nuclei with an odd number of protons or neutrons are
an archetypical example of spin-polarized fermionic systems.
Due to the presence of an unpaired nucleon, their theoretical
description using mean-field models poses additional chal-
lenges compared to even-even systems. This is because the
short-range nature of pairing interaction couples the nucleons
in Cooper pairs in order to maximize their spatial overlap,
simplifying the description of nuclei with an even number of
protons and neutrons. Conversely, odd-A nuclei break time-
reversal symmetry, hence removing Kramers degeneracy in
single-particle levels and requiring the inclusion of energy
density functional (EDF) time-odd fields. This results in an
increased computational cost, which has traditionally limited
the number of calculations devoted to odd-A nuclei as well as
EDFs employed in such studies [1–18].

The Barcelona Catania Paris Madrid (BCPM) energy den-
sity functional [19] represents a fruitful alternative to more
traditional phenomenological approaches like the Skyrme or
Gogny family of forces. It delivers low energy nuclear struc-
ture results for even-even nuclei of the same quality as those
obtained with the well-known Gogny D1M. The relatively
low computational effort required by mean field calculations
with BCPM has fostered a number of applications of BCPM,
including large-scale calculations of finite nuclei proper-
ties [20,21] and applications to r-process nucleosynthesis
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calculations [22] and neutron star physics [23] (see [24] for
a recent review on BCPM). However, time-odd fields are
not considered in the functional, preventing the description
of odd-mass systems as well as single-particle excitations
using the traditional blocking method of the Hartree-Fock-
Bogoliubov (HFB) method. BCPM is built on polynomial fits
to realistic nuclear matter equations of state for symmetric
and pure neutron systems given as a function of the density.
The same polynomial form is used to define an energy den-
sity functional for finite nuclei just by replacing the nuclear
matter density with the density of finite nuclei. A Gaussian
potential is introduced in the direct channel to simulate sur-
face effects and, finally, the traditional zero-range spin-orbit
plus Coulomb potentials are added to define the particle-hole
component of the functional. A density-dependent pairing
term [25] completes the functional. In the original formula-
tion of BCPM, polarization effects at the nuclear matter level
were not considered and, therefore, the functional is only
valid for time-reversal symmetry-preserving physical cases,
such as the ground state of even-even nuclei. This limitation
prevents the use of BCPM to describe properties of odd-A
and odd-odd nuclei as well as multiquasiparticle excitations
by means of the traditional HFB blocking method. On the
other hand, by comparing different theoretical approaches
describing odd-A nuclei [12], it has been argued that the
time-reversal symmetry-preserving equal filling approxima-
tion (EFA) [8] is a valid approximation to full quasiparticle
blocking. This empirical conclusion is based on calculations
using zero-range Skyrme forces and therefore its range of
validity is somehow limited. The main effect of blocking is to
quench pairing correlations, reducing thereby the pairing gap
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and the typical excitation energy of one-quasiparticle states.
The EFA leads to the same quenching of pairing correlations
even at the quantitative level. On the other hand, the EFA can
be viewed as a full blocking calculation in which time-odd
fields in the Hartree-Fock and pairing fields generated by the
unpaired nucleon are neglected [12]. The good performance
of the EFA in describing odd-A nuclei with Skyrme forces,
and the absence of time-odd fields in its formulation, suggests
that EFA could be used to extend the realm of the BCPM
functional to describe odd-A nuclei and quasiparticle exci-
tations. The motivation for this paper is threefold: First, we
show how the approximate equivalence between EFA and full
blocking is also valid with Gogny forces, in order to reinforce
the empirical conclusion extracted from Skyrme calculations
[12]. Second, we show how to implement multiquasiparticle
excitation in the standard variational EFA framework. Fi-
nally, we assess the accuracy of BCPM-EFA predictions by
comparing against both Gogny D1M predictions and experi-
mental data of spin and parity of ground and low-lying excited
states, in a set of selected nuclei scattered across the nuclear
chart. Multiquasiparticle excitations are also considered in the
paradigmatic case of high-K isomeric states in 178Hf.

The paper is organized as follows. The theoretical EFA
framework and the BCPM interaction are outlined in Sec. II.
Section III is devoted to a comparison between full blocking
and EFA calculations. In Sec. IV, the EFA results of low-
energy spectra and high-K states are presented. Conclusions
and perspectives for future studies are summarized in Sec. V.

II. THEORETICAL METHODOLOGY

The self-consistent mean field description of odd-A nuclei,
as well as that of multiquasiparticle excitation, is based on
the HFB method with blocking. In the standard HFB method
[26], the concept of quasiparticle is introduced by means of
the Bogoliubov transformation

(
β

β†

)
=

(
U † V †

V T U T

)(
c
c†

)
≡ W +

(
c
c†

)
. (1)

The associated HFB state |�〉 is defined as the vacuum
state for all the annihilation quasiparticle operators βμ, i.e.,
βμ|�〉 = 0 for labels μ indexing all the quasiparticle config-
urations. An important concept in the HFB theory is “number
parity”, which is nothing but the parity (even or odd) of the
number of particles in |�〉 and its excitations. Number parity
is a symmetry of the system, and wave functions with opposite
values cannot be mixed together. An even-even nucleus has to
be described by a HFB state with even number parity for both
protons and neutrons. The quasiparticle operators carry num-
ber parity 1 and therefore β†

μ|�〉 has opposite number parity
to that of |�〉. Therefore, genuine excitations of a given sys-
tem |�〉 are given by two, four, etc. quasiparticle excitations
whereas one, three, etc. quasiparticle excitations correspond
to a neighbor odd-mass system if |�〉 contains an even number
of particles (and vice versa). As a consequence, odd-A nuclei
have to be treated with a “blocked” wave function β†

μB
|�〉

breaking time-reversal invariance because of its dependence
on the quantum number μB.

For fully paired configurations |�〉 (i.e., no blocking), Bo-
goliubov amplitudes U and V are determined by using the
variational principle on the HFB energy EHFB = 〈�|Ĥ |�〉
leading to the well know HFB equation (see [26] for a gen-
tle description of the HFB method). Conversely, the U and
V for a blocked state are obtained by minimizing E (μB )

HFB =
〈�|βμB Ĥβ†

μB
|�〉. The blocking procedure introduces an ad-

ditional level of complexity in the minimization process due
to the dependence of the energy on μB. One must consider
the variational principle for U and V considering all possible
values of the quantum numbers μB of the blocked levels and
choosing for the ground state the value of μB leading to the
lowest energy. Taking into account that E (μB )

HFB = 〈�|Ĥ |�〉 +
EμB + · · · , where EμB is the quasiparticle energy of level μB

and the ellipses represent residual interaction corrections, one
can expect that a search limited to those blocking quasiparti-
cles β†

μB
with small values of the quasiparticle energies Eμ will

end up in the lowest energy solution. Typically, considering
the ten lowest quasiparticle energies leads with confidence
to the ground state of the odd-A system. On the other hand,
the advantage of the above procedure is that one obtains not
only the ground state but also the lowest energy single-particle
spectrum.

Wick’s theorem also holds for blocked HFB states, and
therefore the blocked energy E (μB )

HFB = 〈�|βμB Ĥβ†
μB

|�〉 can be
expressed in the usual form in terms of the blocked density
matrix ρμB and pairing tensor κμB given by

ρ
(μB )
kk′ = 〈�|βμB c†

k′ckβ
†
μB

|�〉
= (V ∗V T )kk′ + (

U ∗
k′μB

UkμB − Vk′μBV ∗
kμB

)
(2)

and

κ
(μB )
kk′ = 〈�|βμB ck′ckβ

†
μB

|�〉
= (V ∗U T )kk′ + (

UkμBV ∗
k′μB

− Uk′μBV ∗
kμB

)
. (3)

Owing to their dependence on the quantum number μB, these
two matrices are not time-reversal invariant. In order to restore
time-reversal symmetry, the EFA [8] postulates the use of the
“averaged” density

ρEFA
kk′ = (V ∗V T )kk′ + 1

2

(
Uk′μBU ∗

kμB
− V ∗

k′μB
VkμB

+Uk′μB
U ∗

kμB
− V ∗

k′μB
VkμB

)
(4)

and “average” pairing tensor

κEFA
kk′ = (V ∗U T )kk′ + 1

2

(
UkμBV ∗

k′μB
− Uk′μBV ∗

kμB

+UkμB
V ∗

k′μB
− Uk′μB

V ∗
kμB

)
(5)

instead. The EFA energy is obtained by replacing ρ
(μB )
kk′ and

κ
(μB )
kk′ with their EFA equivalents in the expression of the

blocked energy E (μB )
HFB . It was shown in Ref. [8] that this pro-

cedure can be justified by using quantum statistical mechanic
concepts. The EFA corresponds to a statistical admixture of
the states β†

μB
|�〉 and β

†
μ̄B

|�〉 with equal probability 1/2. Tra-
ditionally, quantum statistical admixtures are better described
by using a density matrix operator given by the statistical en-
semble considered. However, arbitrary statistical distributions
can also be handled by introducing a density matrix operator

044321-2



ODD NUCLEI AND QUASIPARTICLE EXCITATIONS … PHYSICAL REVIEW C 109, 044321 (2024)

D̂ chosen in such a way that D̂|�〉 = |�〉 and D̂β†
μ = pμβ†

μD̂,
pμ being the probability of the one-quasiparticle excitation
β†

μ|�〉 [8]. In this formalism, the statistical mean value of an
arbitrary operator is given by

〈Ô〉S = Tr[ÔD̂]

Tr[D̂]
= 1

Z

(
〈�|Ô|�〉 +

∑
μ

pμ〈�|βμÔβ†
μ|�〉

+ 1

2!

∑
νμ

pμ pν〈�|βμβνÔβ†
ν β

†
μ|�〉 · · ·

)
(6)

with

Tr[D̂] = Z = 1 +
∑

μ

pμ +
∑
ν<μ

pμ pν · · · =
∏
μ

(1 + pμ)

(7)
It is worthwhile to remark that in the statistical framework
there are contributions from terms with different number
parity. However, it has been shown by using number parity
projection techniques that the contamination is not relevant
for describing the physics [27–29]. Thanks to the existence
of a statistical Wick’s theorem (see for instance the proof
given by Gaudin [30] or Perez-Martin and Robledo [31] for a
more recent account), it is possible to compute any statistical
mean value of a product of creation and annihilation operators
in terms of the corresponding contractions. Therefore, it is
possible to express the statistical mean value of the energy
〈Ĥ〉S = Tr[ĤD̂]/Tr[D̂] by using the standard expression

〈Ĥ〉S = Tr[tρ] + 1
2 Tr[�ρ] − 1

2 Tr[�κ∗], (8)

where � is the mean-field potential, � the pairing field,
and the density matrix and pairing tensor are given by the
contractions

ρkk′ = Tr(c†
k′ckD̂)

Tr(D̂)
, κkk′ = Tr(ck′ckD̂)

Tr(D̂)
. (9)

In the EFA case, the probabilities are given by

pμ =
{

1 if μ = μB or μB,
0 otherwise. (10)

Inserting these probabilities into the contractions of Eq. (9)
and taking into account the definition of the statistical average
Eq. (6), one comes to the conclusion that the probabilities of
Eq. (10) lead to the density matrix and pairing tensors of the
EFA Eqs. (4) and (5). As a consequence, the statistical average
of the energy with the probabilities of Eq. (10) is nothing but
the EFA energy

EEFA = Tr[ĤD̂EFA]/Tr[D̂EFA]. (11)

This result justifies the otherwise ad hoc expression of the
EFA energy and provides its interpretation as the statistical
mean value of the Hamiltonian taken with the EFA density
operator. By using Eq. (6) together with Eq. (10), the EFA
energy EEFA can also be written in a more transparent way as

EEFA = 1
4

(〈�|Ĥ |�〉 + 〈�|βμB Ĥβ†
μB

|�〉 + 〈�|βμB
Ĥβ

†
μB

|�〉
+ 〈�|βμBβμB

Ĥβ
†
μB

β†
μB

|�〉). (12)

This expression shows that the EFA energy is simply an
average with equal weights of the energy of the reference

even-even wave function |�〉, the energies of one-
quasiparticle excitations with quantum numbers μB and
μB, and the energy of the two-quasiparticle excitation with
the same quantum numbers. This result is very illustrative of
the nature of the EFA as a statistical theory. The same kind
of arguments can be applied to compute mean values of any
kind of operators in the EFA framework. An important result
that can be easily derived is that the EFA mean values of any
one-body operator, which according to the general result can
be written as

〈Ô〉EFA = 1
4

(〈�|Ô|�〉 + 〈�|αμB Ôα†
μB

|�〉 + 〈�|αμB
Ôα

†
μB

|�〉
+ 〈�|αμBαμB

Ôα
†
μB

α†
μB

|�〉), (13)

can also be written in a more compact form as

〈Ô〉EFA = 1
2

(〈�|αμB Ôα†
μB

|�〉 + 〈�|αμB
Ôα

†
μB

|�〉)
= 1

2

(〈�|Ô|�〉 + 〈�|αμBαμB
Ôα

†
μB

α†
μB

|�〉). (14)

This allows us to write the density matrix and pairing tensor
as an average over one-quasiparticle excitations,

ρEFA
kk′ = 1

2

(〈�|αμB c†
k′ckα

†
μB

|�〉 + 〈�|αμ̄B c†
k′ckα

†
μ̄B

|�〉) (15)

and

κEFA
kk′ = 1

2

(〈�|αμB ck′ckα
†
μB

|�〉 + 〈�|αμ̄B ck′ckα
†
μ̄B

|�〉), (16)

which is a very intuitive result according to the expressions of
Eqs. (4) and (5). This result, however, does by no means imply
that the energy, which is the average of a two-body operator,
could be written as 1

2 (〈�|αμB Hα†
μB

|�〉 + 〈�|αμ̄B Hα
†
μ̄B

|�〉).
Once the EFA energy is defined in terms of the density

matrix and the pairing tensor, and those objects in terms of
the Bogoliubov U and V amplitudes of Eq. (1), the application
of the variational principle is straightforward, and it has been
discussed at length in [8]. As in the case of other density func-
tionals (Gogny, Skyrme, etc.) the rearrangement terms coming
from the derivatives of the density are taken into account in the
HFB equation. This is also the case for the BCPM calculations
for even-even nuclei.

For higher order excitations including two, three, etc.
quasiparticle excitations, one can proceed along the same
lines as discussed above. For multiquasiparticle excitations
the density matrix of Eq. (2) becomes

ρ
(μB1 ,...,μBN )
kk′ = 〈�|

(∏
σ

βσ

)
c†

k′ck

( ∏
σ

β†
σ

)
|�〉

= (V ∗V T )kk′ +
∑

σ

(U ∗
k′σUkσ − Vk′σV ∗

kσ ), (17)

where the index σ runs over the set μB1 , . . . , μBN for a N-
quasiparticle excitation. With respect to the one-quasiparticle
case, it amounts to replacing the term in parenthesis on the
right-hand side of Eq. (2) by the sum on the right-hand side
of Eq. (17). The corresponding expression for the κ pairing
tensor can be easily obtained from Eq. (3).

The EFA expression for the multiquasiparticle excitation
density is obtained from Eq. (17) by multiplying the sum on
the right-hand side by one-half and extending the sum on the
label σ to include the time-reverse quantum numbers of the
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set μB1 , . . . , μBN . The same consideration applies straightfor-
wardly to the EFA pairing tensor. The EFA density matrix and
pairing tensors can be obtained from Eq. (9) by introducing
the statistical probabilities

pσ =
{

1 σ ∈ μB1 , . . . , μBN or ∈ μB1
, . . . , μBN

,
0 otherwise. (18)

For instance, in the two-quasiparticle case, and according to
Eq. (13) the EFA energy is the sum of multiple terms, most of
them differing by mere permutations of the labels. Once this
multiplicity is taken into account, one obtains

EEFA = 1
16 (• + μ • μ + ν • ν + μ • μ + ν • ν

+μν • νμ + μμ • μμ + νν • νν

+μν • νμ + νμ • μν + μν • νμ

+μμν • νμμ + μμν • νμμ + μνν • ννμ

+μνν • ννμ + μμνν • ννμμ), (19)

where, in order to simplify the expression, we have introduced
an obvious notation. For instance, the term ν • ν represents
the overlap 〈�|βνB Ĥβ†

νB
|�〉. The average contains 16 terms.

Moreover, the average is manifestly invariant under time re-
versal. As in the one-quasiparticle case, the average contains
contributions from even and odd number parity states. In
order to understand the contents of the previous average,
it is convenient to use the quasiparticle representation of
the Hamiltonian (see Appendix E of [26]) with the quasi-
particle operators defined in such a way as to render the
H11 = ∑

σ Eσ β†
σ βσ term diagonal. Using this representation,

Eq. (19) becomes

EEFA = 〈�|Ĥ |�〉 + 1
2

(
EμB + EμB

+ EνB + EνB

) + · · · ,

(20)
where the missing terms are contractions of the H22 part of
the Hamiltonian.

A. The BCPM functional

The BCPM functional was proposed in Ref. [19] as an
evolution of the BCP functional [32,33] to include several im-
provements aimed to reduce the original number of adjustable
parameters. The idea was to use state-of-the-art microscopic
nuclear matter calculations with realistic nuclear forces to
obtain a realistic equation of state as a function of the density.
To convert the numerical tables into some analytical form, a
polynomial fit up to fifth order was used to fit the equation of
state up to six times saturation density [32]. The same two
polynomials (one for pure nuclear matter, the other for neu-
tron matter) are used in finite nuclei replacing nuclear matter
densities by the densities of finite nuclei. The functional is
supplemented with a Gaussian term in the direct channel
to simulate surface effects, a spin-orbit term with the same
functional form as the Skyrme or Gogny interactions, the
Coulomb potential among protons, and a density-dependent
pairing term; see the recent review [24] for a more detailed
explanation of the properties of BCPM and its application
to nuclear structure problems [20,21,34–36] and astrophysics
[22,23]. As mentioned in the introduction, the main defi-
ciency of BCPM is the lack of time-odd densities, preventing

its use in those situations requiring the breaking of time-
reversal invariance. Therefore, high spin physics, odd-mass
systems, or multiquasiparticle excitations cannot be treated
in the framework of BCPM. However, the fact that the EFA
and full blocking provide similar results in calculations with
Skyrme interactions suggests that the EFA can be used along
with BCPM to define a functional for odd-mass systems or
quasiparticle excitations. Based on the results with Skyrme
and a comparison with Gogny forces described below, one can
expect that the differences between the results obtained in the
present approach and those obtained in a full blown blocking
procedure are not going to be relevant in terms of the physics
to be described.

B. Orthogonality

The variational character of the EFA is advantageous in
many instances, but it also presents disadvantages in other
aspects of the calculation. It is usually found in real cal-
culations that most of the blocked configurations end up
converging to the lowest energy configuration with the same
set of quantum numbers. The only situation when this is no
longer the case is when the initial blocked configuration has
deformation parameters very different from the ones of the
lowest energy solution, and therefore the iterative process
starts in the neighborhood of a local minimum that cannot
be avoided by the gradient method. This unwanted property
implies that in a calculation breaking all symmetries it is
very likely that only one blocked configuration is going to be
reached, irrespective of the initial blocking configuration. This
drawback of the method can be circumvented by introducing
orthogonality constraints in the calculation [37]. However, it
is easier and usually provides more physics insight to preserve
axial symmetry in order to have K (the component of angular
momentum along the third axis) as a good quantum number. In
this way, orthogonality among different K values is automatic
and therefore one is guaranteed at least one solution for each
possible value of K . Additionally, if octupole deformation is
not relevant, it is very likely that parity is also going to be
preserved, giving two states for each K value.

In the results discussed below, axial symmetry is preserved
and K is a good quantum number. Reflection symmetry is
allowed to break but in many instances the solution preserves
this symmetry to a large extent and therefore parity can be
used as an “approximate” quantum number (the mean value
of parity is computed and taking as a good quantum num-
ber if its absolute value is above 0.9). On the other hand,
the orthogonality constraint is well defined in full blocking
calculations and it has been implemented in all the examples
considered. This is not the case with the EFA as the concept
of orthogonality in a statistical ensemble is not well defined.

III. EFA VERSUS FULL BLOCKING

The equivalence between EFA and full blocking calcula-
tions has been empirically tested only in Skyrme forces [12].
It is the purpose of this section to extend the validity of the
equivalence also to Gogny forces by presenting results ob-
tained in both approaches with Gogny D1M for some selected
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FIG. 1. The lowest energy excitation spectra for several ruther-
fordium isotopes computed with the Gogny D1M force, using full
blocking and the EFA method. Each state is represented by a symbol
according to its parity and the method employed for its calculation.
Symbols are placed along the horizontal axis according to the value
of 2K . Filled (empty) black circles represent full blocking results
with positive (negative) parity. States with octupole deformation and
no definite parity are depicted with a black × symbol. Filled (empty)
red squares are used for positive (negative) states obtained with EFA.
States with octupole deformation and no definite parity are depicted
with a red + symbol. All symbols are slightly displaced along the
horizontal axis to improve legibility.

set of nuclei, the same used in the next section to empirically
demonstrate the convenience of using EFA to describe odd-
mass nuclei in BCPM. The choice of the Gogny force is not
accidental and is based on its good pairing properties as well
as its good description of high-spin physics [38], that critically
relies on appropriate time-odd component of the force and
pairing properties. For the full blocking calculation with the
Gogny force, we use the results of Refs. [39,40]. For auxiliary
HFB calculations for even-even systems we follow [41]. For
other examples of EFA calculations with the Gogny force see
[9,13,14,17,42,43].

In Fig. 1 a comparison of the results obtained with the
Gogny D1M using full blocking and the EFA is shown for
253–259Rf isotopes. As can be clearly noticed, the correspon-
dence between the EFA and full blocking results is one to one
and remarkable. These results go along the conclusions of [12]
for Skyrme forces and confirm the nearly perfect equivalence
between EFA and full blocking in terms of excitation energies.
All the levels have prolate quadrupole deformation with β2 ≈
0.28 and negligible (except in some specific levels) octupole
deformation. Please note that some levels obtained with full
blocking do not have their counterpart in the EFA calculation.
This is because in the EFA the orthogonality constraint has
not been imposed.

It is also interesting to consider the different results ob-
tained with different parametrizations of the Gogny force. It
is well known in the literature that the excitation energy of
different excited states in odd-mass nuclei is spread over a
broad range of values depending on the force/functional used
[14,15,42–44]. In Fig. 2 we compare our results with full
blocking for D1S and D1M and the rutherfordium isotopes
discussed above. In line with previous findings, we observe
some dispersion in the excitation energies that is most likely

FIG. 2. A comparison of results obtained for Rf isotopes with full
blocking and the Gogny force with D1S and D1M parametrizations.
For an interpretation of the plot, see caption of Fig. 1. In the present
case, black circles (red squares) represent D1S (D1M) calculations.

caused by slight changes in the position of the underlying
single-particle levels or slightly different pairing correlations.
It is clear that reaching the so-called spectroscopic accuracy
(in the present context meaning perfect matching of spectra
using different interactions) with forces containing 14 pa-
rameters, most of them adjusted to nuclear matter properties
and aimed to be valid across the nuclear chart, is unfeasible.
Spectroscopic accuracy can only be achieved by means of
interactions fitted to very specific regions of the nuclear chart,
as is customary in shell model calculations.

In Fig. 3 results obtained with the Gogny D1M using
full blocking are compared to the EFA ones for plutonium,
dysprosium and lanthanum isotopes. As in the rutherfordium
case, the agreement is very good. Plutonium isotopes have a
quadrupole deformation parameter β2 ≈ 0.27 in both the full
blocking and EFA cases. Some of the levels obtained with full
blocking have octupole deformation with β3 as large as 0.1
in 239Pu. In dysprosium isotopes, the deformation goes from
β2 ≈ 0.20 in 155Dy up to β2 ≈ 0.30 in 161Dy. Octupole defor-
mation is negligible in all the instances, being slightly larger in
the EFA. In the odd-proton set of lanthanum isotopes, there is
shape coexistence in 135La with minima located at β2 ≈ 0.10
in the prolate side, and β2 ≈ −0.10 in the oblate one. The
two isotopes 137–139La are spherical, whereas β2 ≈ 0.06 in
141La. Again, octupole deformation is negligible. In the EFA
case, 135La and 141La are slightly prolate with β2 ≈ 0.12 and
β2 ≈ 0.07, respectively. As in the full blocking case, 137–139La
are spherical.

IV. BCPM EFA

When the BCPM functional was postulated [19], similitude
was noted between the results of Gogny D1M and those
of BCPM for low energy nuclear structure quantities [20].
Therefore, it seems reasonable to compare the BCPM-EFA
predictions for odd-A nuclei with Gogny D1M ones. The
choice of D1M is further justified by its good performance in
describing time-odd physics like rotational bands or odd-mass
nuclei. In the following, we consider five different isotopic
chains covering different regions of the nuclear chart: the su-
perheavy element rutherfordium, the actinide plutonium, the
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FIG. 3. A comparison of full blocking and EFA results for se-
lected Pu, Dy, and La isotopes. For an interpretation of the plot, see
caption of Fig. 1.

rare-earth elements lanthanum and dysprosium, and the light
krypton isotopes. Overall, these five isotopic chains cover a
large variety of nuclear deformations and mass numbers, pro-
viding a complete benchmark for BCPM-EFA calculations.

Regarding the comparison of the obtained spectra with
experimental data, it has to be taken into account that there
are many missing effects that could influence, to the level
of a few hundred keV, the excitation energies obtained by
the mean field, particle-vibration coupling being a common
suspect [44]. Other factors that could influence the position
of the levels are the correlation energies associated to various
symmetry restorations [45], like particle number or angular
momentum and parity, that depend on the detailed deforma-
tion and pairing properties of the levels. It is to be expected
that the large rotational energy correction (of the order of a
few MeV in the present case) can be slightly different for
different orbitals (pairing correlations are different for each

FIG. 4. The lowest energy spectrum obtained for 253–259Rf with
the BCPM functional and the D1M Gogny force. For an interpreta-
tion of the plot, see caption of Fig. 1. In the present case, black circles
(red squares) represent BCPM (D1M) calculations. Experimental
ground state J values are marked with a gray bar. The height of the
bar represents the energy window for the comparison with theoretical
results (see text for details).

orbital and, accordingly, moments of inertia would also be
different). The same argument applies to the zero-point energy
correction associated with particle number restoration. Last
but not least, correlation energies associated to fluctuations
in the collective degrees of freedom (closely related to the
particle-vibration coupling) are also expected to differ from
one orbital to another. A substantial reshuffling of orbitals
may occur after all these corrections have been implemented.
Those unaccounted effects can modify the ordering of level
with respect to the plain mean field results. Even though this
is an exciting field of research and work along these lines is
already in progress, it goes beyond the purpose of this work.
We follow therefore a more pragmatic approach in the com-
parison with experimental data, and consider that calculations
properly reproduce the experimental data if the predicted level
lies within a window centered at the experimental value. In
this work, we take an empirical width of 300 keV for such
energy window.

A. Rutherfordium isotopes

In Fig. 4, the lowest-energy spectra obtained with BCPM
and D1M for 253–259Rf isotopes are plotted. Please note that
excitation energies of D1M have been multiplied by a factor
0.75 to compare with those of BCPM due to different effective
masses (0.75 for D1M, 1.0 for BCPM). By looking at the
spectra one can easily recognize the close similitude between
the two calculations. There are some differences that can be
attributed to specific positions of single-particle levels, but
they are minor and usually do not alter the ordering of the
different states. The β2 deformation parameters of all the
levels shown belong to the interval 0.27–0.29 for 253–257Rf
and to the interval 0.26–0.28 for 259Rf. In most cases, the β3

octupole deformation parameter is zero and therefore parity is
a good quantum number.

In both cases the excitation energy reduction with respect
to the unperturbed one quasiparticle energy is a conse-
quence of the quenching of pairing correlations due to the
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FIG. 5. The lowest energy spectrum obtained for 239–245Pu with
the BCPM functional and the D1M Gogny force. For an interpreta-
tion of the plot, see caption of Fig. 1. In the present case, black circles
(red squares) represent BCPM (D1M) calculations. Experimental
ground state J values are marked with a gray bar. The height of the
bar represents the energy window for the comparison with theoretical
results (see text for details).

“pseudoblocking” effect of EFA. A measure of pairing cor-
relation strength is the particle-particle energy Tr(�κ )/2. In
the present case, while the proton p-p energy remains more or
less the same as the one of the neighbor even-even isotopes,
it is quenched by a factor of around 2 in the neutron channel.
The quenching factor can reach a value of four in some cases,
like the 7/2+ state in 253Rf. Also, pairing correlations in the
neutron channel can disappear as in the case of the 9/2−
in 255Rf. This result indicates that binding energies obtained
within the EFA framework may substantially differ from those
from perturbative schemes [5,7] often used in large scale
calculations.

Experimental data in this region is scarce [46], and all the
spin and parity assignments are tentative. The isotope 253Rf
has a tentative 7/2+ ground state that could correspond to the
predicted 7/2+ observed at around 200 keV excitation energy
in Fig. 4. 255Rf has a tentative 9/2− experimental ground
state in agreement with both predictions. For 257Rf, the lowest
states are 1/2+, 5/2+, and 11/2−. In our calculations those
levels appear at an excitation energy of 20, 1120, and 794 keV,
respectively. For the isotope 259Rf there are no experimental
data available. In light of these results we conclude that,
despite the absence of beyond mean-field effects discussed
above, the agreement with experimental data is satisfactory.

B. Plutonium isotopes

Results for plutonium isotopes corresponding to mass
numbers A = 239–245 are shown in Fig. 5 for both BCPM
and Gogny D1M. As in the previous case, we find a close
similitude in both spectra. The experimental ground-state
angular momentum and parity taken from Ref [46] are Jπ =
1/2+, Jπ = 5/2+Jπ = 7/2+, and Jπ = 9/2−, respectively.
Those values are accurately predicted by both EDFs, with the
exception of Jπ = 1/2+ in 239Pu, that appears in the calcu-
lations at an excitation energy of around 100 keV (which is
within the 300 keV window discussed above). The ground
state has a β2 deformation of 0.27 in the three cases and shows

FIG. 6. The lowest energy spectrum obtained for 155–161Dy with
the BCPM functional and the D1M Gogny force. For an interpreta-
tion of the plot, see caption of Fig. 1. In the present case, black circles
(red squares) represent BCPM (D1M) calculations. Experimental
ground state J values are marked with a gray bar. The height of the
bar represents the energy window for the comparison with theoretical
results (see text for details).

no trace of reflection asymmetry. For the lighter 229–237Pu
isotopes, all the experimental ground-state Jπ values [46] are
predicted by BCPM within the 300 keV energy window. The
only exception is for the Jπ = 7/2− ground state in 237Pu,
which lies at 0.530 MeV excitation energy with BCPM.

C. Dysprosium isotopic chain

Results for the 155–161Dy isotopes are displayed in Fig. 6.
The four isotopes are prolate, with β2 ranging from 0.23 in
155Dy to 0.32 in 161Dy. Each of the levels displayed in Fig. 6
has its own β2 deformation, that differs by ±0.04 from the
quadrupole deformation of the ground state. As in the previous
cases, the agreement between BCPM and D1M results is
remarkable. In the four isotopes 155–161Dy there is a known
isomeric state [46] with Jπ = 11/2− at excitation energies of
234, 199, 352, and 485 keV, respectively. This isomeric state
is well reproduced by the calculations. In 157Dy there is an
additional isomeric state, Jπ = 9/2+ at 162 keV, that is not
observed in our calculations. Spin and parity of the ground
state is known experimentally for the isotopes 139−171Dy [46].
Of those, BCPM reproduces the correct Jπ value in six iso-
topes (35%), and in another four (24%) the corresponding
excited state lies below 300 keV. The quadrupole deformation
of the isotopes obtained in the BCPM calculation is mostly
prolate but there is a region of oblate ground state in 141–153Dy.

D. Lanthanum isotopic chain

As an example of odd-Z isotopes, we calculate the low-
lying spectra of lanthanum isotopes. For the odd-A lanthanum
isotopes, there are known 13 values of the ground-state spin
and parity, corresponding to 125–149La [46]. The results of
our calculations agree with the experiment in four occasions
(31%). This success rate is consistent with the hit rate obtained
with other EDF approaches [7,44]. If one includes as hits
in the comparison with experiment those states which in the
calculation appear at an excitation energy lower than 300 keV,
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FIG. 7. The lowest energy spectrum obtained for 135–141La with
the BCPM functional and the D1M Gogny force using the EFA. For
an interpretation of the plot, see caption of Fig. 1. In the present case,
black circles (red squares) represent BCPM (D1M) calculations.
Experimental ground state J values are marked with a gray bar. The
height of the bar represents the energy window for the comparison
with theoretical results (see text for details).

the number of Jπ values in agreement goes up to ten (77%
success). Of the remaining three cases, two correspond to light
proton-rich isotopes, and the third to 143La. The latter case
deserves further theoretical studies considering fluctuations in
relevant collective degrees of freedom in order to understand
the discrepancy. The range of isotopes compared include pro-
late, deformed, and spherical nuclei. We point out that 145La
and 147La, with neutron numbers close to the “octupole magic
number” N = 88, are octupole deformed with β3 ≈ 0.1. The
isotope 149La is also octupole deformed, but with a slightly
smaller β3 around 0.05. However, the depths of the octupole
well are only 150, 100, and 10 keV for 145La, 147La, and
149La, respectively, which are not large enough to speak about
permanent octupole deformation. Given that octupole depth
wells tend to become deeper at high spins, it is possible for
these nuclei to develop alternating parity rotational bands.

In Fig. 7, we show the lowest-energy spectra of 135–141La
isotopes. There are a bunch of almost degenerate levels in
139La for BCPM and in 137–139La for D1M, consequence of
a low quadrupole deformation compatible with spherical nu-
clei. Those levels could be assigned to a spherical Jπ = 7/2+
ground state in agreement with experimental data. In the re-
maining isotopes deformation breaks the degeneracy but still
experimental data are reproduced.

E. Kripton isotopes

Finally, we consider two krypton isotopes as an exam-
ple of nuclei in the low mass region of the nuclear chart.
The description of these nuclei is very challenging as it is
well known that prolate-oblate (and triaxial) configurations
coexist in a narrow range of energies close to the ground state.
Therefore, one can consider this comparison as a worst case
scenario, and expect a degradation in the comparison between
BCPM and D1M with respect to the examples discussed in
the previous sections. In Fig. 8 we show the spectra of 75,77Kr
for the two considered interactions. The different levels show
different values of deformation. For instance, in 75Kr with

FIG. 8. The lowest energy spectrum obtained for 75,77Kr with
the BCPM functional (a) and the D1M Gogny force (b) using the
EFA. For an interpretation of the plot, see caption of Fig. 1. In the
present case, black circles (red squares) represent BCPM (D1M)
calculations. Experimental ground state J values are marked with a
gray bar. The height of the bar represents the energy window for the
comparison with theoretical results (see text for details).

the BCPM EDF, the β2 deformation parameters of the five
lowest states are 0.01, −0.05, 0.00, −0.15, and 0.04. This
alternation of spherical, oblate and prolate states is a clear
indication of shape coexistence. For the same nucleus but with
D1M, there is a clear dominance of oblate deformations with
deformation parameters as large as β2 = −0.2, in agreement
with the deeper oblate well obtained with D1M. For 77Kr,
the deformation obtained with BCPM is almost spherical,
whereas for D1M it is oblate (but not as large as in 75Kr).
Experimental values for the ground state are Jπ = 5/2+ in
both cases. The comparison with calculation results is not bad
for 77Kr but this is not the case for 75Kr. The differences in
deformation discussed above explain the larger discrepancies
between BCPM, D1M, and experiment found in the present
case.

F. Multiquasiparticle excitations

The study and discussion of multiquasiparticle excita-
tions in atomic nuclei is a complex issue that deserves a
separate publication. In this paper, we will just show an
example of results obtained for high-K excitations in 178Hf
with EFA-BCPM, and compare them with the homologous
results obtained with the D1S and D1M Gogny parametriza-
tions. The choice of high-K isomers is not arbitrary, as these
states are easier to identify experimentally and less prone to
orthogonality issues. In Fig. 9 the results of EFA calcula-
tions for high-K isomeric states in 178Hf are shown along
with experimental data. There are five known high-K isomers
in this nucleus. The 6+ is assigned to a two-quasiparticle
proton excitation, like one of the 8− state. The other 8− is
a two-neutron quasiparticle excitation. Finally, both the 14−
and 16+ states are four-quasiparticle excitations composed of
a two-proton excitation along with a two-neutron one. One
observes consistency among the theoretical results as well as a
good agreement with experimental data. This example shows
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FIG. 9. High-K states in 178Hf obtained with the EFA using
BCPM, Gogny D1S and Gogny D1M are compared with experimen-
tal data. The Gogny excitation energies have been compressed by a
factor 0.75 to account for the effective mass.

that the EFA-BCPM provides a suitable description of two-
and four-quasiparticle excitations.

V. CONCLUSIONS

We implement the equal filling approximation (EFA) with
the BCPM energy density functional, opening up the calcula-
tion of nuclei with an odd number of protons and/or neutrons.
We first test the equivalence between EFA and full blocking
calculations by studying the low-energy spectra predicted by
the Gogny D1S and D1M interaction. We then compare the
EFA BCPM predictions with the D1M ones along several
isotopic chains. Once the normalization due to the effective

mass is taken into account, we find that the energy spectra
predicted by the two interactions show a remarkable similar-
ity, with most of the energy levels agreeing within 200 keV.
We conclude therefore that BCPM and D1M have a similar
quality in describing nuclear low-energy spectra across the
nuclear chart. We observe a general quenching of pairing
correlations due to the EFA “pseudoblocking” effect, which
reduces the excitation energy with respect to the unperturbed
one-quasiparticle energy. This result suggests that odd-even
staggering in perturbative calculations could be sensibly re-
duced in the EFA scheme. We then performed a comparison
with experimental data for ground state Jπ values, and find
that BCPM can reproduce most of the data within an energy
window of 300 keV. Given the impact of many-body ef-
fects beyond mean-field affecting the nuclear spectrum (such
as particle-vibration coupling, symmetry restoration effects,
etc.), we consider the agreement satisfactory, also taking
into account that effective interactions with just a few (tens
of) parameters are not able to capture the full nuclear dy-
namics across the whole nuclear chart. Finally, two- and
four-quasiparticle excitations are studied by looking at high-K
isomers in 178Hf. A close resemblance between BCPM, D1S
and D1M predictions is found, with a sensible reproduction
of experimental data. These results open the door to use
BCPM for large scale calculations involving odd-A and/or
multiquasiparticle excitations.
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