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Isospin-forbidden electric dipole transition of the 9.64 MeV state of 12C
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The electric dipole transition of the 3− state at 9.64 MeV of 12C to the 2+ state at 4.44 MeV is speculated
to play a key role in the triple-α reaction at high temperatures. A theoretical prediction of its transition width
is a challenge to nuclear theory because it belongs to a class of isospin-forbidden transitions. We extend a
microscopic 3α cluster-model to include isospin-1 impurity components, and take into account both isovector
and isoscalar electric dipole operators. Several sets of 2+ and 3− wave functions are generated by solving a
radius-constrained equation of motion with the stochastic variational method, resulting in reproducing very well
the electric quadrupole and octupole transition probabilities to the ground state. The electric dipole transition
width is found to be 7–31 meV, 16 meV on the average, and more than half of the width is contributed by the
isospin mixing of α particles.
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I. INTRODUCTION

It is well known that the triple-α reaction is a key reaction
to produce the elements heavier than 12C. At low tempera-
tures, it occurs through the 0+ Hoyle state at 7.65 MeV [1,2].
Its importance is numerically confirmed [3,4], in reasonable
agreement with the R-matrix prediction [5] at T < 0.1 GK.

At higher temperatures, T > 2 GK, relevant to supernovae
and x-ray bursts, the triple-α reaction via the 3− state at
9.64 MeV of 12C is presumed to play an important role. To
estimate its impact, the radiative decay of the 3− state relative
to its total width has been measured [6,7], and an upper limit
of �rad/�total < 4.1 × 10−7 was deduced [8,9]. Recently, two
independent experiments have attempted to update the ratio,
indicating �rad/�total = 1.3+1.2

−1.1 × 10−6 [10] and 6.4 ± 5.1 ×
10−5 [11], respectively. Both of them appear to be much
larger than the previous upper limit, although the substantial
uncertainties make it difficult to determine whether or not
the 3− state really contributes to the synthesis of 12C at high
temperatures. Hence, a theoretical evaluation is necessary and
important.

It should be noted that the radiative decay width from the
3− state to the first 2+ state is the primary source of the
uncertainty, because the total width (�total = 46 ± 3 keV [9]
or 34 ± 5 keV [8]) is well constrained [12] and the electric oc-
tupole (E3) decay width to the ground state (0.31 ± 0.04 meV
[6]) is rather small. A width due to the magnetic quadrupole
transition is also expected to be small. The radiative decay
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from the 3− state to the 2+ state should therefore be dominated
by an electric dipole (E1) transition. The decay is, however,
hindered in the long-wavelength approximation, because both
states are considered to be good isospin zero states. It is thus
necessary to go beyond the long-wavelength approximation
and furthermore to take into account the breaking of isospin
symmetry, which is a challenging task to nuclear theory.

The purpose of the present study is to estimate the E1 de-
cay rate by assuming that the relevant states are all described
well by a microscopic 3α cluster model. Many calculations
have been performed in the cluster model using effective two-
nucleon central forces. See, e.g., Refs. [13–15]. The binding
energy, the spectrum of 12C, and some other observables are
reasonably well reproduced. However, describing the α clus-
ter with φ(0)

α = (0s)4 harmonic-oscillator configuration fails
in calculating the E1 transition probability because all the 3α

configurations are isospin zero states. Let us clarify the point
of the present study. Up to the leading-order term beyond the
long-wavelength approximation, the E1 operator acting on an
A-nucleon system reads as [16]

E1μ = E1μ(IV) + E1μ(IS),

E1μ(IV) = e
∑

i∈proton

Y1μ(ri − R),

E1μ(IS) = −e
k2

10
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(ri − R)2Y1μ(ri − R)

+ eh̄k

8mpc
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P
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Here, ri and pi are, respectively, the position coordinate and
the momentum of the ith nucleon, k is the wave number of the
E1 transition, mp is the proton mass, R and P are respectively
the center-of-mass coordinate and the total momentum, and
Ylm(r) is the solid spherical harmonics

Ylm(r) = rlYlm(r̂), (2)

where r̂ stands for the polar and azimuthal angles of r. E1μ(IV)
is isovector and the leading term of the long-wavelength
approximation. It has no contribution to an isospin zero nu-
cleus. Therefore, we have to evaluate the contribution of the
isoscalar term, E1μ(IS), to the E1 matrix element, provided
that we use the 3α cluster model for 12C. Though E1μ(IS) fur-
ther contains a spin-dependent term [16], we ignore it because
12C is described by the 3α cluster-model with zero total spin.
Another variant of expression for the isoscalar E1 operator is
also discussed in Ref. [16].

There is the possibility, however, that E1μ(IV) receives
nonvanishing contribution in so far as the relevant states of 12C
contain isospin impurity components. We take into account
the isospin mixing assuming that the α particle contains a
small component of isospin-1 impurity configuration, φ(1)

α ,

φα =
√

1 − ε2φ(0)
α + εφ(1)

α , (3)

as described in Ref. [17]. Contrary to E1μ(IV), E1μ(IS) gives
nonzero contributions between the main isospin zero compo-
nents of 12C. Both contributions of the isovector and isoscalar
terms may compete with each other.

Three states of 12C play a main role in the present study: the
ground state, the 2+ state at Ex = 4.44 MeV, and the 3− state
at Ex = 9.64 MeV. Since the E1 transition matrix element
is sensitive to the sizes of the relevant states, we obtain the
wave functions of those states by taking into account not
only the energies but also other physical observables sensitive
to the sizes, that is, the point proton radius of the ground state,
the electric quadrupole (E2) transition probability, B(E2),
from the 2+ state to the ground state, and the E3 transition
probability, B(E3), of the 3− state to the ground state.

Section II describes a way of constructing the relevant
states and then explains how to include the isospin impurity
components in evaluating the E1 transition matrix element.
Section III presents results of calculation for the ground state,
the 2+ state, and the 3− state and discusses the isospin-
forbidden E1 transition probability. A brief summary is drawn
in Sec. IV.

II. FORMULATION

As is well known, it is very hard to reproduce the binding
energy and the excitation energies of the three states of 12C
with effective nuclear forces such as Volkov [18] and Min-
nesota [19] potentials. Instead of minimizing the Hamiltonian
expectation value, we constrain the size or radius of the sys-
tem and study the energy as a function of the radius. This is
reasonable because the size of the system is expected to play
a vital role in the present study. We introduce a combination
of operators, the Hamiltonian, H , and the mean square radius,

R2,

S(λ) = H + λR2. (4)

Here, λ is a parameter. Given λ, we search for such a solution
that the expectation value of S(λ) becomes a minimum, de-
noted by 〈S〉λ. Using the obtained wave function, we evaluate
the expectation values, 〈H〉 and 〈R2〉. In this way we can study
both energy and size of the relevant state at the same time as
a function of λ.

Except for the point proton radius of the ground state, there
is no direct information on the sizes of the 2+ state and the 3−
resonance state. As noted above, however, we can make use
of the B(E2) value of the 2+ state and the B(E3) value of the
3− state to determine λ. We take non-negative λ in the present
study. A negative value of λ may play a role when 12C extends
to strongly deformed configurations or fragments into α + 2α

or α + α + α system. In what follows, λ is denoted by λL,
where L is the total angular momentum of 12C.

The minimization of S(λL ) is performed by taking a com-
bination of correlated Gaussian (CG) bases �LM [20]:

�LM =
K∑

k=1

C(k)�LM (k),

�LM (k) = A
{
YLM (ũkx)e− 1

2 x̃Akx
3∏

i=1

φ(0)
α (i)

}
, (5)

where A is the antisymmetrizer of 12 nucleons. The
coordinate x is a two-dimensional column vector speci-
fying the relative coordinates of three α particles: x1 =
R1 − R2, x2 = 1

2 (R1 + R2) − R3, where Ri stands for the
center-of-mass coordinate of the ith α particle. The CG ba-
sis �LM (k) is characterized by variational parameters, uk

and Ak : uk is a column vector of 2-dimension, and Ak

is a 2 × 2 real, symmetric, positive-definite matrix. The
tilde symbol ˜ stands for the transpose of a column vec-
tor, that is, ũkx = uk (1)x1 + uk (2)x2, x̃Akx = Ak (1, 1)x 2

1 +
2Ak (1, 2)x1 · x2 + Ak (2, 2)x 2

2 . No generality is lost by assum-
ing ũkuk = 1. Each CG basis thus contains three parameters
for L = 0 and 4 parameters for L = 2, 3. The matrix Ak is
conveniently defined through three relative distance parame-
ters, [dk (12), dk (13), dk (23)], by [21,22]

x̃Akx =
3∑

j>i=1

(
Ri − R j

dk (i j)

) 2

. (6)

We note the following in choosing the set {dk (i j)}:
The root-mean-square (rms) radius of the center-of-masses

of three α particles is defined by
√

1
3

∑3
i=1(Ri − R)2 =

1
3

√∑3
j>i=1(Ri − R j )2, where R = 1

3

∑3
i=1 Ri. Therefore,

D̄k = 1
3

√∑3
j>i=1 dk (i j)2 controls the global size of the 3α

system. We choose {dk (i j)} to make D̄k cover sufficiently
large values.

Calculation of all the needed matrix elements can be
done as explained in Ref. [17]. It is worthwhile to note that
the angular-momentum projection is carried out analytically,
which guarantees an accurate evaluation of all the matrix
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elements. This accuracy is a vitally important ingredient to
make a stochastic search of the basis set possible and practical.
Both uk and Ak serve to control the partial-wave contents
among α particles. The parameters, uk and Ak , are determined
by the stochastic variational method [20,22]. The previous
calculation for the 0+ case suggests that the basis dimension
K could be a small value [23]: K is set to 7 for the 0+ state
and to 20 for the 2+ and 3− states. The basis determination
consists of (i) a trial and error search of the basis set up to K
dimension, followed by (ii) a refining search that replaces the
already selected base with a new candidate base if the latter
decreases the expectation value of S(λL ). Random bases tested
in each step of (i) and (ii) are typically 15–20. A refinement
cycle is repeated more than ten times. It should be stressed that
we have to obtain a well-converged solution to draw a reliable
B(E1) value because it could be very sensitive to the details
of the relevant wave functions.

The wave function of α particle φ(0)
α is constructed from

the (0s)4 harmonic-oscillator configuration with its center-of-
mass motion excluded. Its single-particle orbit is a Gaussian
function, exp(− β

2 r2), with β = 0.52 fm−2. Since ε is on the
order of 10−3 [17], evaluating the matrix elements of S(λL ) is
carried out with φ(0)

α as defined in Eq. (5) but not with φα of
Eq. (3). The impurity component φ(1)

α is normalized and has
the same quantum numbers as φ(0)

α except for the isospin. The
spatial part of φ(1)

α is constructed from a 2h̄ω excited shell-
model configuration with its spurious center-of-mass motion
being excluded [17]. Once �LM is obtained, it is reasonable
to define a 3α wave function with isospin mixing, � ′

LM , by
replacing φ(0)

α (i) with φα (i) in Eq. (5). Since ε is sufficiently
small, � ′

LM can be very well approximated up to the first order
in ε as follows:

� ′
LM = (1 − ε2)

3
2 �LM + ε(1 − ε2)

3∑
i=1

�LM (i) + · · ·

≈ �LM + ε

3∑
i=1

�LM (i). (7)

Here, �LM (i) is defined by replacing φ(0)
α (i) with φ(1)

α (i) in
Eq. (5), whereas the rest of the α-particle wave functions is
unchanged, thus �LM (i) has isospin 1. Since the E1 operator
consists of the isovector and isoscalar terms, Eq. (1), the E1
matrix element reads as

〈� ′
L′M ′ |E1μ(IV) + E1μ(IS)|� ′

LM〉
≈ 〈�L′M ′ |E1μ(IS)|�LM〉

+ ε

3∑
i=1

{〈�L′M ′ |E1μ(IV)|�LM (i)〉

+ 〈�L′M ′ (i)|E1μ(IV)|�LM〉}. (8)

Here, the first term is the contribution of the isoscalar E1
operator between the main components of the wave functions
with isospin 0, while the second terms are the contributions of
the isovector E1 operator including the small components of
the 3α wave function with isospin 1 either in the ket or in the
bra.

It should be noted that the transition matrix ele-
ment 〈�L′M ′ |E1μ(IV)|�LM (i)〉 can be nonzero only when
E1μ(IV)|�LM (i)〉 contains the same spin-isospin functions as
that of �L′M ′ , that is, a product of three totally antisymmetric
spin-isospin functions. As was done in Ref. [17], it is conve-
nient to decompose E1μ(IV) into E1μ(IV) = ∑3

p=1 E1μ(IV, p)
with

E1μ(IV, p) = e
4∑

q=1

(
1

2
− t3(pq)

)
Y1μ(rpq − Rp), (9)

where t3 is the z component of the nucleon isospin, pq is in-
troduced to denote the nucleon label of the pth α particle, and
its center-of-mass coordinate is given by Rp = 1

4

∑4
q=1 rpq .

Only the p = i term among three sums over p satisfies the
condition, leading to

3∑
i=1

E1μ(IV)|�LM (i)〉 → E eff
1μ (IS)|�LM〉, (10)

where E eff
1μ (IS) is an effective isoscalar E1 operator given by

E eff
1μ (IS) = −e

2β

3
√

3

3∑
i=1

4∑
j=1

(ri j − Ri )
2Y1μ(ri j − Ri ). (11)

Substituting Eq. (10) into Eq. (8) enables us to evaluate the
E1 matrix element including the effect of the isospin mixing
as follows:

〈� ′
L′M ′ |E1μ(IV) + E1μ(IS)|� ′

LM〉
≈ 〈�L′M ′ |E1μ(IS)|�LM〉 + 2ε〈�L′M ′ |E eff

1μ (IS)|�LM〉. (12)

The effect of the isospin mixing is thus taken care of in the
conventional α cluster-model. What is needed is to calculate
the matrix elements of E eff

1μ (IS). It is interesting to compare
the matrix elements of different types of isoscalar operators
for the E1 transition from the 3− state to the 2+ state.

III. RESULTS OF CALCULATION

We use Volkov No. 1 two-nucleon central potential [18]
with m = 0.59, where m is the parameter responsible for the
Majorana exchange component. The value around m = 0.6
is consistent with αα scattering data [24]. The two-nucleon

TABLE I. Results for the 0+ ground state of 12C. 〈S〉λ0 and 〈H〉
are values from 3α threshold. The observed 0+ ground state is located
at −7.27 MeV below 3α threshold [8,9], and the point rms radius is
2.33 fm [25].

λ0 〈S〉λ0 〈H〉
√

〈R2〉
MeV fm−2 MeV MeV fm

0.0 −6.008 −6.008 2.456
0.4 −3.642 −5.959 2.406
0.8 −1.318 −5.835 2.376
1.2 0.903 −5.717 2.349
1.6 3.148 −5.570 2.334
2.0 5.354 −5.356 2.314
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FIG. 1. 〈S〉λ0 , 〈H〉, and 〈R2〉 as a function of λ0. Thin lines are
drawn as a guide for the eye.

Coulomb potential is included. The energy of α particle turns
out to be −27.076 MeV. Table I lists L = 0 results of con-
verged solutions as a function of λ0. The case of λ0 = 0 is
the usual energy minimization. Interestingly, the variation of
〈S〉λ0 as a function of λ0 is quite large compared to those
of 〈H〉 and 〈R2〉. See also Fig. 1. As seen from the table,
the λ0 = 0 case predicts too large point rms radius for the
ground state, which is about 2.33 fm [25]. Instead of this
usual approach, we determine the 0+ ground state to be such a
solution that reproduces the rms radius. The appropriate value
of λ0 is found to be about 1.6 MeV fm−2. In what follows,
we set up the ground state to be the solution obtained with
λ0 = 1.6 MeV fm−2. Note that the ground state energy is then
−5.57 MeV from the 3α threshold, which is about 1.7 MeV
too high compared to experiment.

Table II lists results of calculation for L = 2. An appropri-
ate value of λ2 is determined by examining both the energy
and the B(E2) value to the ground state. The experimental
values are, respectively, −2.84 MeV from the 3α threshold
and 7.77 ± 0.43 e2 fm4 [8,9]. Figure 2 shows 〈S〉λ2 , 〈H〉, and
B(E2) value as a function of λ2. The case with λ2 = 0 predicts

TABLE II. Results for the first excited 2+ state of 12C located at
−2.84 MeV below 3α threshold [8,9]. Q is the electric quadrupole
moment. The B(E2) value extracted from the radiative width �γ [8,9]
is 7.77 ± 0.43 e2 fm4.

λ2 〈S〉λ2 〈H〉
√

〈R2〉 B(E2) Q
MeV fm−2 MeV MeV fm e2 fm4 e fm2

0.0 −3.418 −3.418 2.415 5.824 −1.856
0.1 −2.643 −3.238 2.438 9.150 1.441
0.2 −1.905 −3.068 2.411 7.744 −0.255
0.3 −1.431 −3.173 2.410 8.299 1.021
0.4 −0.929 −3.228 2.397 7.475 0.569
0.6 0.147 −3.261 2.383 6.914 1.410
0.8 1.390 −3.118 2.374 6.389 1.406
1.0 2.470 −3.101 2.360 6.000 1.251
1.2 3.570 −3.048 2.348 5.438 −0.032
1.4 4.596 −3.072 2.340 5.765 1.906
1.6 5.759 −2.866 2.322 4.710 −0.309

FIG. 2. 〈S〉λ2 , 〈H〉, and B(E2) value as a function of λ2. Thin
lines are drawn as a guide for the eye.

that the 2+ energy is lower than experiment by about 0.6
MeV and the B(E2) value is smaller than experiment. With
λ2 = 0.2–0.4 MeV fm−2 both 〈H〉 and B(E2) become closer
to the experimental values. The electric quadrupole moment

Q is calculated from
√

2
35 〈�2‖Qop‖�2〉 without assuming an

intrinsic shape, where the double barred matrix element stands
for a reduced matrix element. Theory appears to give slightly
smaller value than Q = 6 ± 3 e fm2 [26].

Table III presents results of calculation for L = 3. The 3−
state of 12C is by 2.37 MeV above 3α threshold with the total
width of 46 ± 3 keV [9]. Its radiative decay width is less than
19 meV, and its partial width to the ground state decay is
(3.1 ± 0.4) × 10−4 eV [8,9], indicating B(E3 : 3− → 0+) =
107 ± 14 e2 fm6. As the total width of the 3− state is consid-
erably small, it appears reasonable to treat the state as a bound
state. The case of λ3 = 0 cannot lead to a bound-state solution
as expected: 〈H〉 tends to be zero and

√
〈R2〉 becomes larger

and larger as the basis set reaches large distances. With posi-
tive λ3, however, we obtain a positive-energy bound solution

TABLE III. Results for the 3− resonance state of 12C located 2.37
MeV above 3α threshold [8,9]. The B(E3) value extracted from the
radiative width �γ0 [9] is 107 ± 14 e2 fm6.

λ3 〈S〉λ3 〈H〉
√

〈R2〉 B(E3)
MeV fm−2 MeV MeV fm e2 fm6

0.4 4.703 1.626 2.773 378.7
0.6 6.186 1.775 2.711 636.9
0.7 6.900 1.840 2.689 6.331
0.8 7.621 1.928 2.668 22.14
0.9 8.333 2.004 2.652 78.16
1.0 9.034 2.093 2.635 126.9
1.1 9.722 2.169 2.620 104.4
1.2 10.403 2.248 2.607 92.99
1.3 11.078 2.327 2.595 95.50
1.4 11.754 2.405 2.584 85.51
1.5 12.416 2.474 2.575 44.61
1.6 13.067 2.544 2.565 44.18
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FIG. 3. 〈S〉λ3 , 〈H〉, and B(E3) value as a function of λ3. Thin
lines are drawn for a guide to the eye.

as listed in Table III. Figure 3 displays 〈S〉λ3 , 〈H〉, and B(E3)
value as a function of λ3. The observed excitation energy and
the B(E3) value are fairly well reproduced by taking λ3 in the
range of 1.0–1.4 MeV fm−2.

Using the 2+ and 3− wave functions obtained above, we
evaluate the B(E1) value. The isospin mixing parameter ε is
set to −4.2 × 10−3 [17]. The radiation width due to the E1
transition is calculated from

�rad(3− → 2+) = 1.473 × 105B(E1 : 3− → 2+), (13)

where B(E1 : 3− → 2+) is given in units of e2 fm2 and �rad is
in units of meV. The ‘best’ wave functions obtained with λ3 =
1.1 and λ2 = 0.2 MeV fm−2 predict the B(E3) and B(E2)
values closest to the respective medians of the experimental
values. In addition to this case, we test three 3− states obtained
with λ3 = 1.0, 1.2, and 1.4 MeV fm−2 together with two 2+
states calculated from λ2 = 0.2 and 0.4 MeV fm−2. The E1
radiation width calculated from a combination of these wave
functions is listed in Table IV. The largest width among 7
cases is 31 meV, the width from the ‘best’ combination is
9.5 meV, and the average of the widths is 16 meV consis-
tently with the upper limit of �rad < 19 meV [9]. The ratio of
�rad(3− → 2+)/�total(3−) with �total(3−) = 46 ± 3 keV turns
out to be 0.35 × 10−6 on the average. The corresponding ratio
of Ref. [10] is 1.3+1.2

−1.1 × 10−6. The calculated theoretical ratio
is within the error bars of that experiment, but it is much
smaller than that quoted in Ref. [11]. If the isospin mixing
of α particles is not taken into account, the �rad(3− → 2+)
value decreases to 4 meV on the average.

The average value of �rad = 16 meV corresponds to 3.2 ×
10−4 W.u. It is interesting to compare this value to the case of
16O where the E1 transition is isospin-forbidden and �rad(E1)
values are known. The �rad(E1) values in Weisskopf units are
(3.5 ± 0.4) × 10−4 for the 1− state at 7.12 MeV and (6.0 ±
0.9) × 10−5 for the 1− state at 9.63 MeV, respectively [27].
The value we obtain for 12C is in good correspondence with
the 16O case. This indicates that the approach developed in this
paper is sound and useful for evaluating the isospin-forbidden
E1 transition strength.

TABLE IV. Radiation width of the 3− resonance state of 12C to
the 2+ state due to the electric dipole transition. The width, in units
of meV, is calculated without the isospin mixing (ε = 0) or with the
isospin mixing. The upper limit of the total radiation width of the
3− resonance state is 19 meV [9]. Values in parentheses, in units
of 10−2e fm, denote the E1 reduced matrix elements contributed by
three kinds of isoscalar E1 operators. See Eq. (14).

λ2 λ3 �rad (3− → 2+)

MeV fm−2 MeV fm−2 ε = 0 ε = −0.0042

1.0 0.2 8.58 26.0
(7.41, −5.39, 1.50)

1.0 0.4 6.99 11.7
(7.21, −5.38, −4.18)

1.1 0.2 3.34 9.49
(5.01,−3.75, 0.86)

1.2 0.2 3.15 7.51
(4.83, −3.61, 0.67)

1.2 0.4 2.44 19.2
(4.70, −3.62, −4.10)

1.4 0.2 2.34 6.52
(4.86, −3.81, 0.71)

1.4 0.4 2.21 30.7
(4.85, −3.83, −4.84)

Also shown in the table is the contribution of each of three
different isoscalar operators to the B(E1) value,

B(E1 : 3− → 2+) = 1

7

∣∣∣∣∣
3∑

i=1

〈�2‖E1(IS; i)‖�3〉
∣∣∣∣∣
2

. (14)

Here, three kinds of isoscalar E1 operators are (i) the first
term of E1μ(IS) in Eq. (1), (ii) the second term of E1μ(IS) in
Eq. (1), and (iii) the effective isoscalar E1 operator, Eq. (11).
The reduced matrix element of the first type is larger in its
magnitude than that of the second type and they cancel each
other. The isospin impurity term appears to increase the B(E1)
value in most cases, but its magnitude fluctuates depending on
the choice of λ2 and λ3.

It is convenient to express the reduced matrix element as
a product of a numerical constant, CC(i), and an integral,
RME(i), as follows:

〈�2‖E1(IS; i)‖�3〉 = CC(i) RME(i), (15)

where

CC(1) = − k2

10
, CC(2) = h̄k

4mpcR2
, CC(3) = − 4βε

3
√

3
,

RME(1) = e 〈r2Y1(r)〉, RME(2) = e R2〈r · ∇Y1(r)〉,
RME(3) = e 〈r2Y1(r)〉′. (16)

Here, R is a radius introduced to make RME(2) have e
times length dimension, and the prime put for RME(3) is to
stress that the operator involved there is not the same as that
of RME(1). It is very likely that |RME(3)| is smaller than
|RME(1)|. The operators involved in RME(1) and RME(3) are
both r2Y1(r) type, but their ranges are different. In RME(1) r
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denotes the distance vector of each nucleon from the center-
of-mass of 12C, whereas it is the distance vector between the
nucleon and the α particle to which the nucleon belongs. The
latter is short-ranged and it appears that its matrix element
depends on more detailed properties of the wave function.

The importance of these three terms apparently depends
on the wave number k as well as the magnitude of RME(i).
Note that CC(3) is a constant determined by the property
of the α particle, whereas the other two depend on the
E1 transition energy, that is, the wave number k. With the
use of k = 0.0264 fm−1, β = 0.52 fm−2, ε = −0.0042, and
R = 2.52 fm, the relative ratio of CC(i)s’ is

CC(2)/CC(1) = −0.525

R2k
= −3.13,

CC(3)/CC(1) = −0.0168

k2
= −24.1. (17)

These ratios qualitatively explain the results of Table IV. With
decreasing k, the terms with i = 2, 3 become more important.

IV. SUMMARY

We have studied the electric dipole transition of the 9.64
MeV 3− state of 12C to the 4.44 MeV 2+ state. The transition
belongs to a class of isospin-forbidden transitions, demanding
a study beyond the usual long-wavelength approximation of
the electric transition operators. We have employed a micro-
scopic 3α cluster-model to generate the ground state, the 2+
state, and the 3− state. In determining the wave functions
of those states, however, we have attempted to reproduce

experimental observables sensitive to their sizes in addition
to their energies.

We have used the stochastic variational method to deter-
mine the wave functions. Among several combinations of 2+
and 3− wave functions obtained within the accuracy of the
experimental observables, we have selected several candidates
to estimate the electric dipole transition probability. We have
taken into account not only the next-order term beyond the
long-wavelength approximation but also isospin mixings in
both states of 12C. The resulting �rad(3− → 2+) value ranges
7 to 31 meV, the average of those values is 16 meV, and more
than half of the width is contributed by the isospin mixing of α

particles. The �rad value obtained here is considerably larger
than 2 meV that was assumed in Ref. [5].

This study has been motivated by a question of whether
or not the 9.64 MeV state plays an important role to triple-
α reactions at high temperatures. There is no experimental
information at present to test the �rad value reported here.
However, it is well known that the E1 transition of the 7.12
MeV 1− state of 16O to its ground state plays a crucially
important role in 12C(α, γ ) 16O radiative capture reactions
near the Gamow window. The E1 transition in that case is
again isospin-forbidden. A study similar to the present one
will be interesting and useful. Furthermore, such calculation
can directly be compared to the observed radiation width.
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