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Background: Within the energy density functional (EDF) approach, the use of mean-field wave functions
deliberately breaking (some) symmetries of the underlying Hamiltonian is an efficient and widely utilized way to
incorporate static correlations. However, the restoration of broken symmetries is eventually mandatory to recover
the corresponding quantum numbers and to achieve a more precise description of nuclear properties.
Purpose: While symmetry-restored calculations are routinely performed to study ground-state properties and
low-lying excitations, similar applications to the nuclear response are essentially limited to either formal studies
or to schematic models. In the present paper, the effect of angular momentum restoration on the monopole and
quadrupole responses of doubly open-shell nuclei is investigated.
Methods: Based on deformed Skyrme-randomphaseapproximation (RPA) calculations, the exact angular mo-
mentum projection (AMP) is implemented in the calculation of the multipole strength functions, thus defining
a projection after variation (PAV-RPA) scheme. The method is employed for the first time in a realistic study to
investigate the effect of AMP on the coupling of monopole and quadrupole modes in 24Mg resulting from its
intrinsic deformation.
Results: The monopole PAV-RPA response function shows, in addition to the giant resonance peaks, a tremen-
dous amount of strength in the low-energy part whose properties and nature are investigated and discussed. In
the quadrupole channel, the AMP leads to a suppression of all the strength but the one corresponding to the
isoscalar giant quadrupole resonance.
Conclusions: The nature of the anomalous low-lying monopole strength is interpreted as a contamination of
the excited states via the coupling to the (noninfinitesimal) rotational motion in deformed RPA phonons. Such a
spurious strength was also observed in projected generator coordinate method (PGCM) calculations based on a
similar PAV approach, but was shown to disappear in its full variation after projection (VAP) counterpart. While
the spurious strength could be properly subtracted in the present work, this work motivates the implementation
of the full VAP-RPA in the future.

DOI: 10.1103/PhysRevC.109.044315

I. INTRODUCTION

In the realms of the nuclear energy density functional
method [1–3] and of ab initio methods [4–10], allowing
simple wave functions (e.g., Slater determinants, Bogoliubov
vacua, or a superposition of those) to break symmetries
of the Hamiltonian is an efficient way to grasp so-called
static correlations in open-shell systems. The latter typically
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substantiate as broken SU(2) (i.e., rotational) and U(1) (i.e.,
global-gauge) symmetries associated with the conservation
of total angular momentum and particle number, respectively.
Still, it is mandatory to eventually restore such symmetries
when seeking a good approximation to the exact solution.
This is typically achieved by performing angular momen-
tum (AMP) and particle number (PNP) projections of the
symmetry-breaking state. The balance between symmetry
breaking and restoration is pivotal to capture the rich diversity
of nuclear phenomena, offering profound insights into the
complex nature of atomic nuclei. This question is at the heart
of various recent developments in ab initio many-body theory
[11–16].

Although symmetry-restoration techniques have been em-
ployed for a long time in EDF studies of ground-state
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properties and low-lying spectroscopy (see for example
Ref. [17] for a recent review), the same is not true for
the linear-response theory. Linear-response theory within the
single-reference EDF scheme boils down to solving Hartree-
Fock-(Bogoliubov) [HF(B)] equations for the ground state,
plus (quasiparticle) random phase approximation [(Q)RPA]
equations for the excited states [18]; i.e., excited states cor-
respond to small oscillations of the ground state, or, in other
words, to nuclear vibrations or “phonons.”

In singly (doubly) open-shell nuclei, the HFB solution
typically breaks U(1) [plus SU(2)] symmetry(ies) in order
to capture collective static correlations associated with super-
fluidity (plus deformation). When U(1) symmetry is broken
by the HFB starting point, QRPA pair transfer probabilities
were shown to overestimate the exact results in the exactly
solvable Richardson model [19], the discrepancies being the
largest close to the normal-to-superfluid phase transition [20].
The shortcoming of QRPA was traced back to the inherent
violation of good particle number associated with the breaking
of U(1) symmetry. It is thus of interest to explicitly investigate
the symmetry contamination at the (Q)RPA performed on top
of a symmetry-breaking HF(B) state.

In this context, it is often stated [21,22] that (Q)RPA
per se restores the symmetry broken by the mean-field starting
point. However, this phrasing is not free from ambiguities [23]
given that the (Q)RPA wave functions only appear implicitly
in the formulation. The only clear statement that can be made
is that the excitation induced by the generator of the symmetry
group, e.g., the infinitesimal rotation induced by the compo-
nents of the angular momentum operator, is a zero-energy
solution of a fully self-consistent (Q)RPA calculation [18,21].
As such, the infinitesimal rotational mode1 is decoupled and
orthogonal to the physical vibrational excitations of interest in
(Q)RPA. This interesting property does not, however, imply
that the (implicit) wave functions of (Q)RPA excited states
carry good symmetry quantum numbers, e.g., angular mo-
mentum, and are orthogonal to noninfinitesimal rotations. In
order to ensure this, a full and explicit symmetry restoration
is necessary.

As a matter of fact, the direct diagonalization of the
Hamiltonian in the space of particle-number-projected two-
quasiparticle states was shown to improve considerably the
description in the Richardson model [20], thus demonstrating
the importance of explicitly restoring the broken symmetry.
However, this method, which amounts to a variation after
projection (VAP) quasiparticle Tamm-Dancoff approximation
(QTDA), has not yet resulted in any realistic application. As
for the (Q)RPA, even though a full VAP-(Q)RPA formalism
was designed a long time ago [24], no realistic implementa-
tion has been performed so far. In fact, even in the context
of the easier projection after variation (PAV), practitioners
have relied so far on the so-called needle approximation
[25,26], whose validity has never been verified against actual

1This Goldstone mode is often denoted as “spurious” because it is
not a mode that can be observed in the nuclear response.

PAV-(Q)RPA calculations.2 Focusing for example on the
monopole response of doubly open-shell nuclei, which is the
main interest of the present work, the needle approximation to
the AMP PAV-RPA actually provides a trivial result such that
an exact projection is mandatory.

The only attempt to implement an exact AMP in PAV-RPA
was performed in Ref. [28] based on realistic chiral inter-
actions. However, the surprising results obtained were not
analyzed in detail. It is the objective of the present paper to
perform such a study within the EDF framework and deliver
a comprehensive analysis of the effect of AMP in PAV-RPA.
An additional motivation relates to the longstanding puzzle
regarding the link between the isoscalar giant monopole reso-
nance (ISGMR) and the nuclear matter incompressibility K∞
[29,30]. The analysis of the ISGMR of some nuclei leads to
consistent values of K∞, while some other nuclei appear to
point towards lower values. While this apparent incompatibil-
ity has been solved for semimagic (i.e., spherical) nuclei [31],
doubly open-shell (i.e., deformed) nuclei still pose a challenge
in this respect. In deformed nuclei, indeed, the coupling of
the monopole and quadrupole response is expected to further
complicate the extraction of K∞. This issue was recently stud-
ied within the deformed Skyrme-(Q)RPA approach [3,32,33].
This leads to the question of whether explicitly restoring good
angular momentum in (Q)RPA calculations is necessary to
deliver a meaningful comparison with experiment in view of
extracting K∞.

The paper is organized as follows. In Sec. II, the inclusion
of AMP to formulate PAV-TDA and PAV-RPA formalisms
is presented.3 In Sec. III specific aspects of the numerical
implementation are discussed and the stability of the RPA
results against parameters defining the truncated one-body
basis is examined. In Sec. IV, the AMP PAV-RPA results are
presented and discussed in detail. Eventually, conclusions are
drawn in Sec. V.

II. FORMALISM

A. Angular momentum projection

Due to the rotational invariance of the nuclear Hamiltonian,
physical states |JM〉 carry good total angular momentum J
and angular momentum projection M as quantum numbers.
The remaining quantum numbers necessary to fully character-
ize a given quantum state are presently omitted for simplicity
of notation. Given an arbitrary state |�〉 possibly breaking
rotational symmetry, a state |JM〉 can be obtained by acting
on it with the projection operator [18]

PJ
MK ≡ 2J + 1

8π2

∫
d�DJ∗

MK (�)R(�), (1)

2For completeness, the needle approximation to the AMP PAV-RPA
scheme is derived in the Appendix following the pioneering work of
Ref. [27].

3The restoration of U(1) symmetry in QRPA is left to a future study.
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where DJ
MK (�) denotes a Wigner matrix [34] and R(�) ≡

e−iαJz e−iβJy e−iγ Jz is the rotation operator in three-dimensional
space parametrized by the three Euler angles � ≡ (α, β, γ ).4

In the present study, all states to be projected are taken to
remain eigenstates of Jz with eigenvalue K . This is a con-
sequence of retaining the axial symmetry along the z axis.
This simplification allows one to use the reduced form of the
projection operator,

PJ
MK = 2J + 1

2

∫ +1

−1
d (cos β ) dJ

MK (β )e−iβJy , (2)

throughout, where β is the angle around the y axis and where
dJ

MK (β ) denotes a reduced Wigner matrix.

B. Projected multipole strength functions

The present work implements a PAV-RPA scheme, i.e.,
based on the solutions of a deformed Skyrme RPA calculation,

the angular momentum operator is introduced a posteriori
in the computation of the multipole strength functions.5 In
such a scheme, the positions of the peaks (i.e., the excitation
energies) in the strength function are not impacted by the
symmetry restoration whereas their heights (i.e., the transition
probabilities) can be modified.

For a given multipole operator Tλμ, the PAV-RPA strength
function thus requires the computation of transition ampli-
tudes, i.e., matrix elements, of the form

〈J1M1|Tλμ|J2M2〉 = N1N2 〈�1|PJ1†
M1K1

TλμPJ2
M2K2

|�2〉 , (3)

with the normalization constants given by

Ni ≡ [〈�i|PJi
KiKi

|�i〉
]−1/2

. (4)

Employing angular momentum algebra and Wigner-Eckart’s
theorem, the reduced matrix element can eventually be written
as [18]

〈J1||Tλ||J2〉 = (2J1 + 1)N1N2

+λ∑
μ=−λ

(−)J1−K1

(
J1 λ J2

-K1 μ K1 − μ

)
〈�1|TλμPJ2

K1−μ,K2
|�2〉

= (2J1 + 1)(2J2 + 1)

2
N1N2

+λ∑
μ=−λ

(−)J1−K1

(
J1 λ J2

-K1 μ K1 − μ

)∫ 1

−1
d (cos β ) dJ2

K1-μ,K2
(β )〈�1|TλμeiβJy |�2〉, (5)

with

Ni =
[

2Ji + 1

2

∫ 1

−1
d (cos β )dJi

Ki,Ki
(β )〈�i|eiβJy |�i〉

]−1/2

. (6)

In the present application, one of the two involved states, e.g.,
|�1〉, is the symmetry-breaking ground state of the system
carrying Kπ = Kπ0

0 , where π denotes the parity. Whenever
focusing on even-even nuclei, as is done in the following ap-
plication, one has Kπ0

0 = 0+. The final state |�2〉 is an excited
state carrying a given Kπ .

1. Tamm-Dancoff approximation

Within the TDA the ground state coincides with the HF
state, the HF one-body basis being represented by the set of
operators {a†

α, aα}. This basis separates into hole (occupied)
and particle (unoccupied) states. A TDA excited state |n〉
results from the application of a phonon operator acting on

4The angular momentum J is presently assumed to be integer, such
that the integration domain {α ∈ [0, 2π ], β ∈ [0, π ], γ ∈ [0, 2π ]}
and the normalizing factor 1/8π2 are employed. Half-integer val-
ues of J would require modifying the γ integration domain to γ ∈
[0, 4π ] and, consequently, the normalizing constant to 1/16π2.

5As opposed to the full-fledged VAP-RPA formalism [24], the pro-
jection operator does not enter the computation of the RPA matrix.
Consequently, the present computation is free from spurious results
that forbid using projection operators in conjunction with standard
EDF parametrizations [35–39].

the HF ground state via a linear combination of one-particle–
one-hole (ph) excitations:

|n〉 ≡ Q†
n|HF〉 ≡

∑
ph

X ph
n a†

pah|HF〉. (7)

In this case, the matrix element entering Eq. (5) reads explic-
itly as

〈HF|TλμPJ
K0-μ,K |n〉 = 〈HF|TλμPJ

K0-μ,K Q†
n|HF〉

=
∑

ph

X ph
n 〈HF|TλμPJ

K0-μ,K a†
pah|HF〉. (8)

2. Random phase approximation

Within the RPA, |�1〉 is the correlated RPA ground state,
hereafter indicated as |RPA〉. A RPA excited state |n〉 reads
now as

|n〉 ≡ Q†
n|RPA〉

≡
∑

ph

(
X ph

n a†
pah|RPA〉 − Y ph

n a†
hap|RPA〉), (9)

where the phonon operator now also includes a de-excitation
component associated with the Y amplitudes. The correlated
RPA ground state satisfies the vacuum condition Qn|RPA〉 =
0, for all n.

The naive application of AMP that could work for the
TDA leads here to the vanishing of the contribution from
the Y amplitudes. The PAV-RPA transition amplitudes must
rather be derived on the basis of the quasiboson approximation
(QBA) that is invoked to obtain standard RPA equations. Such
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an approximation boils down to replacing operator products
with appropriate commutators and the RPA ground-state with

the HF ground state in a second step.6 In the simple RPA case,
the procedure reads as7

〈n|Tλμ|RPA〉 = 〈RPA|TλμQ†
n|RPA〉 = 〈RPA|[Tλμ, Q†

n]|RPA〉 ≈ 〈HF|[Tλμ, Q†
n]|HF〉 =

∑
ph

{
X ph

n 〈h|Tλμ|p〉 + Y ph
n 〈p|Tλμ|h〉},

(10)

where the vacuum character of the RPA ground state was used in the second equality to add a null term. Notice that the
replacement of the RPA ground state with the HF one in Eq. (10) does not amount to a neglect of ground-state correlation,
but is instead coherent with the quasiboson approximation [40]. With the goals of avoiding the suppression of the backward
amplitudes Y in the presence of the symmetry projector and recovering Eq. (10) in the absence of it, one can write in close
similarity to the RPA case

〈RPA|TλμPJ
K0−μ,K |n〉 = 〈RPA|TλμPJ

K0−μ,K Q†
n|RPA〉 = 〈RPA|[TλμPJ

K0−μ,K , Q†
n

]|RPA〉
≈ 〈HF|TλμPJ

K0−μ,K Q†
n − Q†

nTλμPJ
K0−μ,K |HF〉

=
∑

ph

X ph
n 〈HF|TλμPJ

K0−μ,K a†
pah|HF〉 + Y ph

n 〈HF|a†
hapTλμPJ

K0−μ,K |HF〉. (11)

However, the contribution from the backward amplitudes cancels out for all K 
= K0 or μ 
= 0, which corresponds to artificially
restrictive selection rules. It is rather preferable to write

〈RPA|TλμPJ
K0−μ,K |n〉 = 〈RPA|TλμPJ

K0−μ,K Q†
n|RPA〉 = 〈RPA|TλμPJ

K0−μ,K Q†
n − Q†

nPJ
K0−μ,K Tλμ|RPA〉

≈ 〈HF|TλμPJ
K0−μ,K Q†

n − Q†
nPJ

K0−μ,K Tλμ|HF〉
=

∑
ph

X ph
n 〈HF|TλμPJ

K0−μ,K a†
pah|HF〉 + Y ph

n 〈HF|a†
hapPJ

K0−μ,K Tλμ|HF〉. (12)

The term added after the second equality, with Q†
n acting on

the RPA bra state, is null, as was the term8 added by the
commutator in the second equality of Eq. (11). Equation (12)
now delivers a nonvanishing contribution from the Y ampli-
tudes for all K . Furthermore, the result correctly reduces to
the TDA one when ignoring backward amplitudes and to the
original RPA transition amplitudes when removing the projec-
tor. Inserting Eq. (12) into Eq. (5), one eventually obtains the
PAV-RPA reduced transition matrix element under the form

〈RPA||Tλ||n〉 = (2J0 + 1)N0Nn(−1)J0−K0

×
∑

ph

∑
μ

[
X ph

n + (−1)μY ph
n

]

×
(

J0 λ J
−K0 μ K0 − μ

)

×
∫ 1

−1
d (cos β ) dJ

K0−μ,K (β )

×〈HF|TλμeiβJy a†
pah|HF〉. (13)

6The two steps do not commute.
7Here, and in the following, equalities in the QBA sense are indi-

cated by approximation signs.
8The two terms differ by the arbitrary ordering of Tλμ and PJ

K0−μ,K .

The normalization factors from Eq. (6) are derived consis-
tently and read as

N0 =
[∫ 1

−1
d (cos β ) dJ0

K0,K0
(β )〈HF|eiβJy |HF〉

]−1/2

, (14)

and

Nn =
⎡
⎣ ∑

php′h′

(
X ph

n X p′h′
n − Y ph

n Y p′h′
n

) ∫ 1

−1
d (cos β ) dJ

K,K (β )

×〈HF|a†
h′ap′eiβJy a†

pah|HF〉
⎤
⎦

−1/2

. (15)

Notice that the ground-state normalization N0 in Eq. (14)
deliberately omits ground-state correlation. This modifies the
multipole response by an overall multiplicative factor and thus
will not affect the main conclusions of the present study.
The inclusion of ground-state correlations in this ground-
state normalization is in fact nontrivial, as clearly shown in
Refs. [41,42], and goes beyond the aim of the present work.

C. Rotated RPA state

As a relevant element for the following discussion, the
RPA ground-state projected on angular momentum J = 0 is
considered. Given that d0

00(β ) = 1, this state corresponds to
the equally weighted superposition of the deformed RPA state
rotated in all possible orientations in space and is thus denoted
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TABLE I. 24Mg Hartree-Fock energy EHF, root-mean-square ra-
dius r, and axial quadrupole deformation β as a function of the HO
basis-size parameter Nsh.

Nsh EHF (MeV) r (fm) β

7 −195.65 2.991 0.378
9 −196.21 3.009 0.392
11 −196.93 3.011 0.383
13 −197.15 3.016 0.390

below as the rotated RPA state,

|ROT〉 ≡ P0
00|RPA〉 = 1

2

∫ +1

−1
d (cos β ) e−iβJy |RPA〉. (16)

The overlap with RPA excited states is eventually introduced
as

〈ROT|n〉 ≡ 〈RPA|P0
00|n〉 ≈ 〈HF|P0

00|n〉, (17)

where the approximation relates to the QBA.

III. NUMERICAL DETAILS

Results are presented in this work for 24Mg, using the
SkM∗ Skyrme EDF [43]. The QRPA code originally intro-
duced in Ref. [44] is used. This is based on the HFB solution
in axial symmetry delivered by the HFBTHO code [45] using
a spherical harmonic oscillator (sHO) basis. Without AMP,
this numerical scheme was employed in Ref. [46] to compute
monopole and quadrupole strengths in molybdenum isotopes.

The sHO basis is characterized by the value of h̄ω = 1.2 ×
41/A1/3 (MeV) and by a number of major oscillator shells Nsh.

The axial quadrupole deformation parameter, defined
as [45]

β ≡
√

π

5

〈Q20〉π + 〈Q20〉ν
〈r2〉π + 〈r2〉ν

, (18)

is employed to characterize the reference state that is presently
found to be a HF (i.e., nonsuperfluid) solution for all consid-
ered basis size values Nsh. Characteristics of this HF solution
and their dependence on Nsh can be found in Table I.

The deformed QRPA problem, which here reduces to de-
formed RPA, is solved in matrix form(

A B
−B∗ −A∗

)(
X n

Y n

)
= En

(
X n

Y n

)
, (19)

by using diagonalization techniques for sparse matrices. In
the present work, RPA equations are solved for Kπ = 0+, and
the strengths associated with standard isoscalar monopole and
quadrupole operators, i.e.,

∑
i r2

i and
∑

i r2
i Y20 respectively,

are computed. In all figures, discrete strengths are averaged
using Lorentzian functions with a width of � = 1.0 MeV.

The stability of RPA strength functions is displayed in
Fig. 1(a) against the sHO basis-size parameter Nsh and in
Fig. 1(b) against the parameter Ecut corresponding to the
maximum energy of Kπ = 0+ p-h excitations included in
the calculation. Fixing Ecut = 100 MeV, the quadrupole RPA
response displays a converging pattern as a function of Nsh

in the bottom panel of Fig. 1(a). The low-energy compo-
nents (below ≈20 MeV) of the monopole response (upper
panel) are also seen to converge for relatively small Nsh. How-
ever, the position of the higher-energy peak shows a strong

(a) (b)

FIG. 1. (a) Monopole (upper panel) and quadrupole (lower panel) RPA responses in 24Mg for different Nsh values (Ecut = 100 MeV).
(b) The same but for different Ecut values (Nsh = 11).
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FIG. 2. Angular momentum decomposition of the HF ground
state in 24Mg (Nsh = 11).

dependence on Nsh, and its fragmentation is still increasing
for the largest model-space employed. This phenomenon is
attributed to high-lying excitations involving states in the
continuum, such that details of single-particle configurations
strongly affect the global response. Fixing now the number of
shells in the sHO basis to Nsh = 11, monopole and quadrupole
RPA responses are shown to be essentially identical for Ecut =
100 MeV and Ecut = 120 MeV in Fig. 1(b). Unless otherwise
specified, results displayed below are obtained using Nsh = 11
and Ecut = 100 MeV.

In order to obtain the PAV-RPA strengths of interest,
Eqs. (13), (14), and (15) were implemented to accommodate
the RPA solutions discussed above. Such an implementation,
currently limited to K = 0, is based on a series of basis trans-
formations building on the matrix elements of the operator Jy

computed in the sHO basis. Details can be found in Ref. [47].
The implementation was validated through several steps, in-
cluding the application to a spherical system, i.e., 4He, where
the PAV-RPA and the original RPA strengths coincide up to
numerical precision.

IV. RESULTS AND DISCUSSION

A. Symmetry breaking of the Hartree-Fock state

The angular-momentum decomposition of the HF ground
state is displayed in Fig. 2 and is similar to the one obtained in
Ref. [48]. Consistently with the rather large quadrupole defor-
mation found for the HF minimum (β = 0.38), the HF wave
function spreads over several (even) J values, the dominant
components being found for J = 2, 4.

B. RPA versus PAV-RPA strengths

Based on such a starting point, RPA and PAV-RPA strength
functions are compared respectively in Figs. 3(a) and 3(b),
with the monopole response in the upper panels and the
quadrupole response in the lower panels. At 17.5 MeV, the
isoscalar giant quadrupole resonance (ISGQR) stands out in
the quadrupole RPA strength. This peak aligns closely with
the low-energy component of the ISGMR that additionally
displays a higher-energy component at 24 MeV. While the lat-
ter is the reminiscence of the ISGMR in spherical nuclei, the
former results from the coupling to the K = 0 component of
the ISGQR. Furthermore, a substantial amount of low-energy
strength below 15 MeV is also found in both channels, and
has no obvious interpretation.

Including the AMP, the ISGQR remains unchanged
whereas the low-energy part of the quadrupole strength is

(a) (b)

FIG. 3. (a) Monopole (upper panel) and quadrupole (lower panel) RPA responses in 24Mg (Nsh = 11 and Ecut = 100 MeV). (b) The same
for PAV-RPA responses. The upper-right panel additionally contains the overlap between RPA excited states and the rotated ground state
[Eq. (17)] up to a normalization factor.
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(a) (b)

(c) (d)

FIG. 4. 24Mg (a) one-body intrinsic matter density of the HF ground state, (b) intrinsic RPA transition matter density to the ISGMR phonon
at 23.9 MeV, (c) intrinsic RPA transition matter density to the ISGQR phonon at 17.5 MeV, and (d) intrinsic RPA transition matter density to
the phonon at 10.8 MeV.

suppressed. The monopole spectrum is much more substan-
tially altered (notice the the scale on the y axis) by the
symmetry restoration. Indeed, the low-energy strength is
strongly enhanced and dominates over the ISGMR peaks
whose high-energy component is also substantially increased.
A similar behavior was observed in other nuclei, e.g., 20Ne
and 28Si [47].

C. Spurious rotational coupling

The impact of the angular momentum projection on the
monopole strength seems largely anomalous. It was thor-
oughly checked that this feature is not a numerical artifact
and is stable with respect to Nsh and Ecut. Similar results were
already obtained in Ref. [28] but no explanation was given. It
is thus necessary to shed light on the nature of the anomalous
low-energy strength resulting from the symmetry restoration.

In the upper panel of Fig. 3(b), the overlap [Eq. (17)]
between each excited RPA state and the rotated RPA ground
state is displayed, up to a normalizing factor, as (blue) bars in
connection to the right axis. The overlap is large for states in
the low-energy region, exactly where the monopole strength
was anomalously enhanced by the angular-momentum pro-
jection. Large overlaps indicate that these deformed RPA
excited states are not strictly vibrational but rather display
a significant coupling to a rotational motion of the nucleus.

As reminded in the Introduction, the infinitesimal rotational
motion present in the Kπ = 1+ channel9 is properly decou-
pled from actual vibrational excitations in RPA. However, the
present analysis demonstrates that it is not the case for nonin-
finitesimal rotation that can furthermore pollute different Kπ

channels (see discussion on p. 145 of Ref. [49]).
In order to have a complementary view of the rotational

character of deformed RPA phonons, as well as a confirmation
of the expected character of the ISGMR and ISGQR, tran-
sition densities δρ associated with several excited states of
interest are displayed in Fig. 4. A representation in cylindrical
coordinates is employed, so that the vertical axis is the z axis
and the horizontal axis is one of the possible equivalent axes
in the perpendicular plane. For reference, the HF ground-state
density ρ0 is shown in Fig. 4(a), displaying the typical shape
of a quadrupole deformed system. In Fig. 4(b), the transition
density to the main peak of the ISGMR at 23.9 MeV is shown,
indeed corresponding to a typical monopole oscillation of the
ground-state shape. The transition density to the ISGQR peak
at 17.5 MeV shown in Fig. 4(c) displays a nodal line at con-
stant polar angle ±θ that is typical of an excitation induced by

9The quantum numbers of the infinitesimal rotation generated by
the rotation operator eiβJy at lowest order in β, i.e., by the linear term
in Jy, is indeed Kπ = 1+.
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(a) (b)

FIG. 5. (a) Polar coordinate representation of the intrinsic RPA transition density to the rotational phonon at 10.8 MeV in 24Mg. (b) The
same for the combination of two densities obtained by rotating the HF state by β ≈ ±24◦.

Y20 ∝ (3 cos2 θ − 1). Finally, Fig. 4(d) displays the transition
density to the low-energy peak at about 10 MeV carrying the
largest strength in the monopole PAV-RPA response.

Based on this picture, the nature of the state remains elu-
sive. Therefore, a polar coordinate representation was further
adopted to make easier the rotational character of the state.
In Fig. 5(a), the same transition density is displayed as a
function of r and θ . It is found that the overlap between
the wave function of the low-energy peak at 10.8 MeV and
the rotated RPA ground state is maximal when the rotation
angle is β ≈ ±24◦. Thus, Fig. 5(b) displays the arithmetic av-
erage of the two densities obtained by rotating the HF ground
state by β ≈ ±24◦. The comparison clearly shows that, in the
surface region (i.e., r ≈ 3 fm), the two densities have the same
maxima, minima, and nodal points, thus confirming the strong
rotational character of the RPA phonon.

D. Subtracted PAV-RPA strengths

While it is hindered in the unprojected RPA strength func-
tion, the significant rotational component of low-energy RPA
phonons is strongly enhanced in the monopole response when
restoring good angular momentum. Even though the high
component of the ISGMR is also enhanced, albeit much less
than the low-energy peaks, the ISGQR and the associated
peak of the ISGMR are essentially unaffected due to their
negligible rotational content. Eventually, the anomalous rota-
tional component of low-energy phonons hinders the physical
information of interest in the PAV-RPA strength functions.
Consequently, a procedure to subtract it is now formulated and
implemented.

Given an excited RPA state |n〉, a new state is defined by
subtracting its rotational component according to

|ñ〉 ≡ Nñ(|n〉 − an|ROT〉) (20)

with Nñ a normalization factor. The constant an is chosen to
make |ñ〉 orthogonal to |ROT〉, i.e., to ensure

〈ROT|ñ〉 = 0, (21)

which leads to

an = 〈ROT|n〉
〈ROT|ROT〉 . (22)

It is straightforward to check that

(Nñ)−2 = 1 − |an|2 〈ROT|ROT〉 . (23)

A similar procedure was already applied to deal with the
spurious translational motion [50] and to the one associated
with number-symmetry breaking and restoration in HFB plus
QRPA [51].

Subsequently, a set of projected subtracted states are intro-
duced according to

|ñJM〉 ≡ NJ
ñ PJ

MK |ñ〉 . (24)

Because of the definition of |ROT〉 in Eq. (16), |ñJ〉 differs
from the original PAV-RPA state only for J = 0, in which case
the normalizing factor reads as(

N0
ñ

)−2 = 〈n|P0
00|n〉 − |an|2 〈ROT|ROT〉 . (25)

The value of 〈ROT|ROT〉 is set to fulfill the condition
(N0

ñ )−2 = 0 for the RPA phonon that most strongly couples to
the rotational state. The corresponding phonon is eventually
removed from the spectrum, as is traditionally done when
dealing with the spurious phonon associated with the infinites-
imal rotation in the Kπ = 1+ channel.

Results obtained employing the subtraction technique
defined above are labeled as subtracted PAV-RPA in the fol-
lowing. It is worth noting that performing the AMP and
subtracting the rotational state a posteriori leads to the same
results; i.e., the subtraction and the projection commute. Fur-
thermore, it was checked that subtracted PAV-RPA strength
functions are stable against variations of Nsh and Ecut.

The subtracted monopole PAV-RPA response of 24Mg is
displayed in the upper panel of Fig. 6 and compared to the
original RPA results. The RPA and PAV-RPA quadrupole
strengths already appearing in Figs. 3(a) and 3(b) are shown
in the lower panel of Fig. 6 for reference. Once the rota-
tional component has been removed, the monopole response
becomes weakly affected by the AMP, similarly to the
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FIG. 6. 24Mg monopole (upper panel) and quadrupole (lower
panel) RPA and PAV-RPA responses (Nsh = 11 and Ecut =
100 MeV). In the monopole case the subtracted PAV-RPA response
is also shown.

quadrupole response. The only exception concerns the high-
energy component of the ISGMR, whose strength is enhanced
relative to the lower peak associated with the K = 0 com-
ponent of the ISGQR. Eventually, the low-energy response
is meaningful thanks to the subtraction procedure and is
significantly suppressed by the AMP for both multipoles. It is
worth stressing that this procedure orthogonalizes the J = 0
components of the excited states with respect to the J = 0
component of the ground state. A fully orthogonal set of
projected-RPA states would be achieved only in a full VAP
approach.

Analogous results were recently obtained based on pro-
jected generator coordinate method (PGCM) calculations in
light- and medium-mass nuclei within an ab initio scheme
[47,52]. Starting from unprojected GCM solutions, similar in
essence to symmetry-breaking RPA calculations,10 the AMP
is introduced into the strength function after having solved
the Hill-Wheeler GCM variational equation. This defines the
PAV-GCM scheme. Doing so, a spurious coupling to the
rotational motion arises as in PAV-RPA calculations, which
can be similarly removed via subtraction techniques. Fur-
thermore, differently from the present RPA frame, the full
PGCM calculation enforcing the AMP while solving the vari-
ational equation, i.e., the VAP-GCM scheme, is also currently

10It is worth remembering the (Q)RPA can be obtained as the
harmonic limit of the GCM [47,53].

accessible. This allows one to properly handle the rotation-
vibration coupling and avoid from the outset to contaminate
the symmetry-restored strength functions with spurious con-
tributions. Indeed, the PGCM monopole strength function
shows only modest differences with the unprojected GCM one
and does not display the anomalous low-energy strength vis-
ible in PAV-GCM. Interestingly, full-fledged VAP-GCM (i.e.,
PGCM) results are close but not identical to subtracted PAV-
GCM ones [47,52]. In particular, the position of the peaks
(i.e., the excitation energies) is impacted by the symmetry
restoration in the VAP-GCM whereas it is left unchanged by
construction in any (subtracted) PAV scheme. On the RPA
side, the results obtained in the present work and the com-
plementary ones obtained via the PGCM strongly motivate
the realistic implementation of the full-fledged VAP-(Q)RPA
scheme [24] in the near future.

V. CONCLUSIONS

The effects of angular momentum projection on the
strength functions originating from symmetry-breaking RPA
calculations have been studied in the case of the well-
deformed prolate nucleus 24Mg.

The appearance of anomalously large contributions in the
corresponding PAV-RPA monopole strength function at low
energy was observed and attributed to a spurious coupling of
deformed RPA phonons to the (noninfinitesimal) rotational
motion. A similar behavior was also identified recently in
PAV-GCM calculations [47,52], i.e., the coupling to the ro-
tational states related to the symmetry-breaking nature of the
reference state is not peculiar to a specific many-body method
used to compute vibrational excitations.

In deformed RPA, the spurious solution in the Kπ = 1+
channel associated with an infinitesimal rotation appears as
a zero-energy solution and can be subtracted from the spec-
trum. However, RPA is not suited to separate genuine, i.e.,
noninfinitesimal, rotations that contaminate its eigenstates and
are anomalously magnified in the monopole strength when
restoring good angular momentum.

A strategy to explicitly isolate and subtract the rotational
content of the RPA phonons was thus introduced and was
shown to restore meaningful AMP PAV-RPA strengh func-
tions. Still, correcting the problem a posteriori is not entirely
satisfactory: the proper treatment of coupling effects between
rotational and vibrational motions can only be achieved if
the AMP is considered while solving the (Q)RPA equations,
i.e., by implementing the full-fledged AMP VAP-(Q)RPA [24]
in realistic calculations. As a matter of fact, the equivalent
method within the realm of the GCM, i.e., the PGCM, is
shown to fully take care of this issue [47,52]. Work to parallel
such PGCM calculations within the frame RPA methods is
thus mandatory.
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APPENDIX: DERIVATION OF THE NEEDLE APPROXIMATION

Let us start from Eqs. (5) and (6):

〈J1||Tλ||J2〉 = (2J1 + 1)(2J2 + 1)

2
N1N2

∑
μ

(−)J1−K1

(
J1 λ J2

−K1 μ K1 − μ

)

×
∫ 1

−1
d (cos β ) dJ2

K1−μ,K2
(β )〈�1|TλμeiβJy |�2〉,

with

Ni =
[

2Ji + 1

2

∫ 1

−1
d (cos β ) dJi

Ki,Ki
(β )〈�i|eiβJy |�i〉

]−1/2

,

where eiβJy operates a rotation around one of the axis perpendicular to the symmetry axis. If the nucleus is well deformed, a first
approximation assumes that the wave function |�〉 has zero overlap with its rotated counterpart for not too small angles. Given
the property

eiπJy |�K〉 = |�−K〉, (A1)

rotating the state by an angle close to π delivers a state that a strong overlap with the original state for K = 0.
Based on the above, the normalization factor can be written as∫ 1

−1
d (cos β ) dJi

Ki,Ki
(β )〈�i|eiβJy |�i〉 =

∫ ε

0
dβ sin(β )dJi

Ki,Ki
(β )N (β ) +

∫ π

π−ε

dβ sin(β )dJi
Ki,Ki

(β )N (β ),

=
∫ ε

0
dβ sin(β )dJi

Ki,Ki
(β )N (β ) +

∫ ε

0
dβ ′ sin(β ′)dJi

Ki,Ki
(π − β ′)N (π − β ′), (A2)

where N (β ) ≡ 〈�|eiβJy |�〉, as in Eq. (43) of [27], and β ′ = π − β. In the first integral on the right-hand side, the approximation
sin(β ) ≈ β holds to order β2. Furthermore, the d function can be approximated for β ≈ 0 as [34]

dJ
MM ′ (β ) ≈ ξMM ′

μ!

√
(s + μ + ν)!(s + μ)!

s!(s + ν)!

(
β

2

)μ
[

1 − 2s(s + μ + ν + 1) + ν(μ + 1)

2(μ + 1)

(
β

2

)2

+ . . .

]
,

dJi
KiKi

(β ) ≈ 1 − [
J (J + 1) − K2

i

](β

2

)2

, (A3)

where μ = |M − M ′| = 0, ν = |M + M ′| = 2|Ki|, s = J − 1
2 (μ + ν) = J − |Ki|, ξMM ′ = 1 if M = M ′ = Ki was used in the

second line while truncating at order β2. The formula is the same as Eq. (38b) of Ref. [27]. Similarly, for the second integral,
one can obtain for β ≈ π

dJ
MM ′ (β ) ≈ ξMM ′

ν!
(−)s

√
(s + μ + ν)!(s + ν)!

s!(s + μ)!

(
π − β

2

)ν
[

1 − 2s(s + μ + ν + 1) + μ(ν + 1)

2(ν + 1)

(
π − β

2

)2

+ . . .

]
,

dJi
KiKi

(β ) ≈ 1

(2|Ki|)! (−)J−|Ki| (J + |Ki|)!
(J − |Ki|)!

(
π − β

2

)2Ki

= (−)J−|Ki|
(

J + |Ki|
J − |Ki|

)(
π − β

2

)2Ki

, (A4)

which is the same as Eq. (38d) in Ref. [27]. Finally, for N (β ), one can use the Gaussian approximation [27]

N (β ) ≈ exp

(
−β2

β2
0

)
, (A5)
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where β0 ≡ 2/

√
〈J2

⊥〉. Since 〈J2
⊥〉 is large in well-deformed nuclei displaying strong collective rotational motion, the function

N (β ) is strongly peaked as assumed at the start. Equation (A2) eventually becomes, to order β,∫ 1

−1
d (cos β ) dJi

Ki,Ki
(β )〈�i|eiβJy |�i〉 =

∫ ε

0
dβ β e

− β2

β2
0 + (−)J−|Ki|

(
J + |Ki|
J − |Ki|

) ∫ ε

0
dβ ′ β ′

(
π − β

2

)2Ki

N (β ′)

= [1 + (−)Jδ(Ki, 0)]
∫ ε

0
dβ β e

− β2

β2
0 . (A6)

In the last step, the necessity that Ki = 0 for the second contribution to be nonzero has been considered, and we used Eq. (50a)
of Ref. [27] stating that N (π − β ) = N (β ) for β ≈ 0.

Further assuming that ε is small enough for all the above approximations to be valid but large enough with respect to β2
0 ,

namely β2
0 � ε2 � 1, then ∫ ε

0
dβ β e

− β2

β2
0 = β2

0

2
, (A7)

∫ 1

−1
d (cos β ) dJi

Ki,Ki
(β )〈�i|eiβJy |�i〉 = β2

0

2
[1 + (−)Jδ(Ki, 0)], (A8)

Ni = 2

β0
[1 + (−)Jδ(Ki, 0)]−

1
2 . (A9)

Let us now consider Eq. (5). The dominant contributions to the integral, as above, come from either the integrand at β ≈ 0 so
that |�2〉 and its quantum number K2 are unchanged, or at β ≈ π :∫ 1

−1
d (cos β ) dJ2

K1−μ,K2
(β )〈�1|TλμeiβJy |�2〉 =

∫ ε

0
dβ sin(β ) dJ2

K1−μ,K2
(β )〈�K1 |Tλμ|�K2〉N (β )

+
∫ ε

0
dβ ′ sin(β ′) dJ2

K1−μ,K2
(π − β ′)〈�K1 |Tλμ|�−K2〉N (π − β ′). (A10)

In the first term, K2 + μ = K1 and the d function can be approximated as in Eq. (A5). In the second term, instead, one has
−K2 + μ = K1. Therefore, the function dJ2

−K2,K2
appears that can be approximated using the first line of Eq. (A6) using ξMM ′ = 1,

μ = 2|K2|, ν = 0, and s = J2 − |K2|. Putting it all together,∫ 1

−1
d (cos β ) dJ2

K1−μ,K2
(β )〈�1|TλμeiβJy |�2〉 =

∫ ε

0
dβ β e

− β2

β2
0 〈�K1 |Tλμ|�K2〉 +

∫ ε

0
dβ ′ β ′ e

− β2

β2
0 (−)J2−|K2| 〈�K1 |Tλμ|�−K2〉

= β2
0

2
[〈�K1 |Tλμ|�K2〉 + (−)J2−K2 〈�K1 |Tλμ|�−K2〉]. (A11)

Finally, one arrives at

〈J1||Tλ||J2〉 = (2J1 + 1)(2J2 + 1)

2
N1N2

∑
μ

(−)J1−K1

(
J1 λ J2

−K1 μ K1 − μ

) ∫ 1

−1
d (cos β ) dJ2

K1−μ,K2
(β )〈�1|TλμeiβJy |�2〉

= (2J1 + 1)(2J2 + 1)

2

4

β2
0

[1 + (−)J1δ(K1, 0)]−
1
2 [1 + (−)J2δ(K2, 0)]−

1
2

∑
μ

(−)J1−K1

(
J1 λ J2

−K1 μ K1 − μ

)
β2

0

2

× [〈�K1 |Tλμ|�K2〉 + (−)J2−K2 〈�K1 |Tλμ|�−K2〉]

= [1 + (−)J1δ(K1, 0)]−
1
2 [1 + (−)J2δ(K2, 0)]−

1
2 (2J1 + 1)(2J2 + 1)

[
(−)J1−K1

(
J1 λ J2

−K1 μ K2

)
〈�K1 |Tλμ|�K2〉

+(−)J1−K1

(
J1 λ J2

−K1 μ −K2

)
(−)J2−K2 〈�K1 |Tλμ|�−K2〉

]
, (A12)

which constitutes the so-called needle approximation. The same formula was reported in the Appendix of Ref. [25], although
with some typographic errors.
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