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Nucleonic shells and nuclear masses
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The binding energy of an isotope is a sensitive indicator of the underlying shell structure as it reflects the
net energy content of a nucleus. Since magic nuclei are significantly lighter, or more bound, compared to their
neighbors, the presence of nucleonic shell structure makes an imprint on nuclear masses. In this work, using
a carefully designed binding-energy indicator, we catalog the appearance of spherical and deformed shell and
subshell closures throughout the nuclear landscape. After presenting experimental evidence for shell and subshell
closures as seen through the lens of nuclear masses, we study the ability of global nuclear mass models to predict
local binding-energy variations related to shell effects.
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I. INTRODUCTION

Nuclei with 2, 8, 20, 28, 50, 82, and 126 nucleons have
been found to be special by having an exceptionally high
natural abundance or being locally lighter than their neighbors
[1]. These magic nucleon numbers were explained by the
nuclear shell model [2,3] in terms of completely filled nucleon
shells. The nuclei with such numbers of nucleons are referred
to as magic, like doubly magic 48

20Ca28 or semimagic 120
50 Sn70.

Experimentally, there are numerous signatures of magic gaps
of shell closures. They include: locally enhanced binding
energies, rapid changes of separation energies, low-lying col-
lective excitations, kinks in charge radii, and spectroscopic
factors, among other things [4–6].

The quantal stability of the atomic nucleus is determined
by the behavior of the single-particle level density ρ(e) of
the mean-field (intrinsic) Hamiltonian. As the ground state for
many-fermion systems should correspond to the lowest possi-
ble degeneracy, the nucleus is expected to be more bound if
the nucleonic level density near the Fermi level is low. Excep-
tionally stable systems (doubly magic nuclei) are indeed those
with the least degenerate single-particle level density around
the Fermi level. Quantitatively, the extra stability due to the
presence of shell gaps can be encapsulated in the microscopic
shell energy E shell [7–9] that fluctuates with particle number
and reflects the nonuniformities of the single-particle level
distribution. Formally, the shell energy can be approximated
by

E shell =
A∑

i=1

ei −
∫

eρ̃(e)de, (1)

where ei’s are single-particle (Hartree-Fock) energies and
ρ̃(e) is the smoothed single-particle density that averages out
single-particle energies within large energy interval of the
order of the energy difference between major shells. The total

binding energy of a nucleus can be roughly given by [7,8]

B = Bmacr + E shell, (2)

where Bmacr is the “macroscopic” energy that gradually de-
pends on the number of nucleons and thus associated with the
smooth distribution of single-particle levels given by ρ̃(e).

The behavior of E shell changes periodically with particle
number. The lowest shell energy is expected in the regions of
low single-particle level density, e.g., for the spherical magic
numbers 8, 20, 28, 50, 82, and 126. However, below and
above these magic numbers, the level density becomes large
[(2 j + 1)-fold degeneracy of spherical orbitals] and a Jahn-
Teller transition takes place towards deformed shapes [10,11].
The stabilization of deformed nuclei can be associated with
energy gaps in deformed single particle (s.p.) levels, i.e., de-
formed subshell closures [8,9,12]. Examples of deformed s.p.
diagrams, or Nilsson plots, can be found in, e.g., Appendix on
Nuclear Structure of Ref. [13].

II. BINDING-ENERGY INDICATORS

Empirical information on the magnitude of nucleonic cor-
relations is often extracted from experimental data using
binding-energy relations (filters, indicators) based on mea-
sured masses of neighboring nuclei [14,15].

Usually, the binding-energy indicators are the finite-
difference expressions representing various derivatives of
(positive) nuclear binding energy B(N, Z ) with respect to N
and Z . Their role is to isolate some specific parts of the
correlation energy by filtering out that part of the binding
energy which behaves as a polynomial of a required order in N
and Z . The commonly used mass differences are one-nucleon
separation energies Sτ (τ = n, p). For neutrons,

Sn(N, Z ) = B(N, Z ) − B(N − 1, Z ). (3)

2469-9985/2024/109(4)/044311(11) 044311-1 ©2024 American Physical Society

https://orcid.org/0009-0006-9994-5419
https://orcid.org/0000-0002-8084-7425
https://orcid.org/0000-0003-0203-3773
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.044311&domain=pdf&date_stamp=2024-04-05
https://doi.org/10.1103/PhysRevC.109.044311


LANDON BUSKIRK et al. PHYSICAL REVIEW C 109, 044311 (2024)

The two-neutron separation energy is

S2n(N, Z ) = B(N, Z ) − B(N − 2, Z ). (4)

The difference δ2n = S2n(N, Z ) − S2n(N + 2, Z ) is the so-
called two-neutron shell gap indicator that represents twice
the gap in the corresponding single-particle spectrum [16].
The neutron chemical potential λn can be expressed through
two-neutron separation energies [17–19]

λn(N − 1, Z ) ≈ − 1
2 S2n(N = 2k, Z ), (5)

where 2k indicates an even number. We note that λn is nega-
tive for bound systems. In addition,

Sn(N = 2k, Z ) ≈ − λn(N − 1, Z ) − 1

2

∂λn(N − 1, Z )

∂N

+ �n(N − 1, Z ), (6)

where �n(N − 1, Z ) is the average neutron pairing gap
[17,18].

The single-particle (s.p.) neutron energy splitting at the
Fermi level, �en, can thus be defined in terms of one-nucleon
separation energy differences [20,21]:

�en(N = 2k, Z ) = Sn(N, Z ) − Sn(N + 2, Z ). (7)

As demonstrated in Refs. [20,21], if variations of the mean
field and pairing are smooth along isotopic or isotonic chains,
the filter �eτ represents the energy difference between the
lowest particle level and the highest hole (occupied) level. For
instance,

�en(N = 2k, Z ) ≈ en
k+1 − en

k . (8)

Similar relations to Eqs. (3)–(8) hold for protons. It directly
follows from Eqs. (6) and (7) that �eτ is proportional to the
derivative of λτ with respect to the particle number Nτ (Nτ =
Z or N for τ = p or n), i.e., it is inversely proportional to the
level density [22]. The indicator �eτ is thus sensitive to small
changes of the level density at the Fermi level. Indeed, the
regions of the low level density are expected to correspond to
increased values of �eτ .

Since for the smoothly varying mean-field potentials the
chemical potential gradually increases with particle number,
�eτ should be positive in general. The deviations from the
monotonic behavior of λτ (Nτ ) do occur, and are usually as-
sociated with the rapid change of nuclear mean fields due to
configuration changes. In some cases, usually associated with
shape transitions, �eτ < 0; this corresponds to a backbending
in the gauge space of Nτ (λτ ) [19,22,23].

As an illustrative example, Fig. 1 shows �ẽn for the Zr
isotopic chain. The local maxima in �en can be associated
with spherical and deformed s.p. gaps discussed in Sec. V.
The negative value of �en at N = 58 reflects the well-known
spherical-to-deformed shape transition around 98Zr [24,25].

While the goal of our work is to demonstrate that �eτ is
a superb measure of spherical and deformed shell closures,
this indicator can also be used to study mean level spacing,
or mean level density, at the Fermi energy. Indeed, beyond
the regions of low level density associated with gaps, �eτ

represents mean level splitting at the Fermi energy. In the sim-
plest scenario assuming Kramers and isospin degeneracy, the

FIG. 1. Experimental values and model predictions of �en across
zirconium isotopes. Extrapolated values from experimental data are
marked with stars. Strong peaks appear for the deformed gap at N =
40, the magic gap at N = 50, and the spherical gap at N = 56. See
text for details.

mean level spacing equals ε̄ = 4/ρ̃(λ), where ρ̃(λ) = 6a/π2

and a stands for the level density parameter, the value of
which is uncertain. In the simplest isoscalar scenario assum-
ing dominant volume-like A dependence the estimates for
a vary from A/10 (which is the harmonic oscillator limit
[26]) to A/8 MeV−1 [27–29]. This, in turn, gives ε̄ ≈ (60 ±
6)/A MeV. Note, that for the Zr isotopic chain presented in
Fig. 1 it varies from 0.75(8) MeV for A = 80 to 0.60(6) MeV
for A = 100. The estimates agree relatively well with the
data shown in Fig. 1 outside the regions of low level density
associated with deformed and spherical energy gaps.

III. DATASETS AND MODELS

In our analysis we use the most recent measured values of
nuclear binding energies from the AME2020 dataset [30]. In
this analysis we do not consider experimental errors and the-
oretical uncertainties as their proper inclusion would require
the knowledge of underlying covariances. While in many nu-
clei the experimental mass errors are well below theoretical
uncertainties and can be ignored, this is no longer the case
for very exotic nuclei far from stability. In the simplest case
where one assumes completely uncorrelated errors, the total
error of mass filters grows substantially as several masses are
involved. A detailed error analysis of �eτ and other mass
filters will be a subject of forthcoming study.

As for prediction, we consider seven theoretical models
based on the energy density functional theory (EDF) which
are capable of describing the whole nuclear chart: SkM∗

[31], SkP [32], SLy4 [33], SV-min [34], UNEDF0 [35], UN-
EDF1 [36], and UNEDF2 [37]. The above set of EDF models
was augmented by a well-fitted mass model FRDM-2012
[38] that has significantly more parameters than the (less
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phenomenological) DFT models, resulting in a better fit to
measured masses.

For �eτ extraction from the data, the Wigner energy has
to be removed from experimental binding energies as it repre-
sents an irregularity (kink) in the mass surface around |N = Z|
and hence impacts mass difference indicators aiming at ex-
tracting shell structure effects [39,40]. In Ref. [41], the Wigner
term has been parametrized as

EW (2) = aW |N − Z|/A, (9)

where aW = 47 MeV. However, this expression notably under-
estimates the Wigner energy for 80Zr and 56Ni, two locations
of shell closures that are later discussed. For this reason, we
supplement EW (2) with the model of Ref. [42]:

EW (1) = VW e−λW ( N−Z
A )2 + V ′

W |N − Z|e−( A
A0

)2

, (10)

where VW = 1.8 MeV, λW = 380, V ′
W = −0.84 MeV, and

A0 = 26. In our analysis, the average of EW (1) and EW (2) has
been subtracted from all experimental binding energies. The
effect of such subtraction is illustrated in Fig. 1 for �en along
the Zr chain (see Ref. [40] for the discussion of the 80Zr case).

IV. BMEX WEB APPLICATION

The exploration of the experimental and theoretical data
was performed using the Bayesian Mass Explorer (BMEX)
[43] web application and the associated database. An evo-
lution of the Mass Explorer project [44], BMEX contains a
suite of online plotting and comparison tools that were used
to produce the draft figures in the current work. The BMEX
database and software are hosted in a cloud computing envi-
ronment and do not require any downloads or installation by
the end user to access the tool. To save the user’s sessions,
plot exporting and link sharing is also included without the
need for any user accounts or logins. A screenshot of the
application can be found in Fig. 8 in Appendix B.

V. SYSTEMATIC TRENDS

In order to remove the average mass and isospin depen-
dence of shell gaps, we scale �eτ by the average oscillator
frequency [45]:

h̄ω0 = 41A−1/3

(
1 ± N − Z

3A

)
MeV, (11)

where the plus sign holds for neutrons and the minus sign
for protons. In the following, we discuss the dimensionless
splittings

�ẽτ ≡ �eτ /h̄ω0. (12)

When interpreting the patterns of shell gaps in the (N, Z )
plane, it is important to recall that nuclei close to the spherical
magic gaps at Z = 20, 28, 50, 82, and 126 are nearly spherical
and that the quadrupole collectivity primarily depends on the
distance of Z and N to the closest magic proton and neutron
number [46,47]. That is, the largest quadrupole deformations
are expected in the regions between spherical magic gaps.

A. Experimental single-nucleon shell gaps

Figure 2 shows the proton shell gaps �ẽp extracted from
experimental binding energies. The experimental neutron
shell gaps �ẽn are displayed in Fig. 3. The spherical magic
gaps are clearly seen for both protons and neutrons. In addi-
tion, isotopic and isotonic bands of locally enhanced values
of �ẽτ are present; they can be associated with local subshell
closures, both spherical and deformed. They are discussed in
the following.

1. Spherical magic gaps

In the protons, the pronounced Z = 50 gap extends across
the nuclear landscape. The Z = 82 gap is large for N � 126
but it seems to gradually fade away in neutron deficient Pb
isotopes. This is consistent with the presence of shape coexis-
tence effects in these nuclei, in which spherical, prolate, and
oblate structures coexist (and interact) at low energies [24,48].
While the Z = 28 proton shell gap is generally pronounced,
the Z = 20 gap becomes fairly diluted below N = 24.

The neutron magic gaps N = 50, 82, and 126 are well pro-
nounced. The N = 28 gap deteriorates in the lightest isotones,
and a similar situation is seen at N = 20. The disappearance
of N = 20 and 28 magic gaps in neutron-rich nuclei is sup-
ported by an appreciable experimental evidence for deformed
structures below 44S and 32Mg [4,24].

2. Spherical subshell closures

Several local spherical shell gaps can be identified in
Figs. 2 and 3. They include: Z = 14 subshell closure in the Si
isotopes [49]; Z = 64 subshell closure in 146Gd [19]; N = 16
subshell closure in 36Ca [50] and 24O [51]; N = 32 subshell
closure in 52Ca [52]; N = 56 subshell closure in 96Zr [53]; and
N = 64 subshell closure in Sn [54]. The single 2p1/2 orbital
separates the N = 126 magic gap from the N = 124 spherical
subshell [55]. Consequently, these two shell closures overlap
in Fig. 3.

3. Deformed subshell closures

In the regions between spherical magic gaps, the indicator
�ẽτ provides important information about deformed shell
gaps. The region of deformed nuclei around 64Cr [56–59] can
be associated with the deformed subshell closures Z = 24 and
N = 40 [59]. In Fig. 2, the proton shell gap �ẽp is well pro-
nounced for neutron-rich Cr isotopes. Of particular interest are
deformed shell closures at Z = 38, 40 that are responsible for
very large ground-state deformations around 76Sr [60], 80Zr
[40], and 102Zr [24]. The Z = 80 oblate gap is responsible for
weakly deformed ground states of the Hg isotopes [55]. It is
separated from the Z = 82 magic gap by a single 2s1/2 orbit
so these two shell closures overlap in Fig. 2.

The deformed neutron gaps in the rare-earth nuclei seen in
Fig. 3 include: N = 98 gap in the Gd-Dy region [22,61]; N =
104 gap around 174Yb [19]; and N = 108 gap known around
182W [22].

In the actinide and transfermium regions, the most pro-
nounced deformed neutron closures are N = 152 [62,63] and
N = 162 [19,65–67]. In the protons, the deformed shell gap
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FIG. 2. Experimental values of the dimensionless splitting �ẽp Eq. (12) throughout the nuclear landscape. The nuclei for which the
expression (8) involves binding energies extrapolated from systematic trends in [30] are marked by circles. Shell closures corresponding to the
bands of locally elevated values of �ẽp are clearly seen.

at Z = 108 is particularly pronounced [64,65,67–69]. These
subshells are essential for the stabilization of nuclear binding
in the transactinides.

In addition to the above list of shell and subshell closures
that can be straightforwardly identified, there are other regions
in Figs. 2 and 3 with moderately enhanced values of �ẽτ . For

FIG. 3. Similar to Fig. 2 but for �ẽn. The nuclei with negative values of �ẽn are marked by an asterisk.
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FIG. 4. Similar as in Fig. 2 but for the mass model UNEDF1. The range of experimental data is marked by a solid black line.

instance, the N = 92 shell effect around 152Nd can probably
be attributed to octupole correlations.

4. Shape transitions

Negative values of �eτ are associated with shape transi-
tion. Several regions of shape-transitional behavior are seen
in Fig. 3. They include the region of shape coexistence around
98Zr and the transition regions to well deformed prolate shapes
around N = 88 [22,24].

It is interesting to notice that rapid shape transitions are
clearly seen in �ẽn in Fig. 3 but not in �ẽp. Indeed, no regions
of �ẽp < 0 can be seen in Fig. 2, which indicates that the
proton chemical potential λp increases monotonically with Z
throughout the nuclear landscape.

5. Two-nucleon shell gap indicator

The plots of experimental δ2τ are shown in Figs. 6 and 7
in Appendix A. As seen, this indicator behaves in a similar
way as �eτ , though, in practice, the resolving power of the
δ2τ for identifying subshell closures is slightly below that of
�eτ . Indeed, as shown in Ref. [39], δ2τ = �eτ + �Pτ where
�Pτ represents a pairing correction. Consequently, δ2τ is more
affected by correlations, which tend to smear out shell effects.

B. Model predictions

Figures 4 and 5 illustrate the performance of the represen-
tative UNEDF1 mass model with respect to �ẽp and �ẽn,
respectively. The predictions of other models can be obtained
by using the BMEX tool [43]. The predictions extend beyond
the region of nuclei with experimentally known masses, and

hence provide useful guidance for the future experiments at
radioactive ion beam facilities. For instance, it is seen that the
magic gaps Z = 50 and Z = 82 are significantly weakened
around N = 106 and N = 150, respectively.

The overall performance of the mass models with respect
to �ẽτ is illustrated in Table I. As expected, FRDM-2012
performs fairly well overall. Several deformed subshell clo-
sures are robustly predicted in almost all models: Z =
70, 80, 92, 108 and N = 92, 104, and 162. The same holds for
spherical subshell closure N = 56. While the peak at N = 56
predicted by UNEDF1 is underestimated in Fig. 1 the subshell
closure is clearly seen in Fig. 5.

Other shells are predicted by a subset of models. In some
cases, the “theoretically fragile” gaps have been discussed
discussed in literature. See, e.g., Ref. [70] for the N = 152
gap predictions. Interestingly, the models consistently pre-
dict deformed proton shell gaps at Z = 46 around N = 70
and Z = 56 around N = 72, and the deformed neutron gap
N = 72 around Z = 62. These features are not clearly seen
in the experimental data. In general, the predictive power of
the mass models used in this study with respect to �ẽτ is
quite reasonable. Moreover, the experimental finding that �ẽp

is usually positive is nicely confirmed by theory, see Fig. 4.
The predicted regions of �ẽn < 0 in Fig. 5 are broader than
in experiment. This is to be expected as the shape transi-
tions predicted by mean-field models are too abrupt due to
the missing dynamical (zero-point) correlations. While the
mean-field models are generally expected to reproduce shell
and subshell closures at correct particle numbers, the actual
size of the predicted �ẽτ is expected to depend on zero-point
correlations and small model differences (e.g., due to poorly
known spin-isospin terms [25,70] of EDFs).
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FIG. 5. Similar as in Fig. 3 but for the mass model UNEDF1. The range of experimental data is marked by a solid black line and asterisks
denote negative values.

VI. SUMMARY

The s.p. energy splitting at the Fermi level �eτ has been
extracted from measured nuclear masses and compared with
predictions of mean-field models. As demonstrated in this

work, �eτ is indeed a superb indicator of shell closures in
spherical and deformed nuclei. In particular, this quantity can
be very useful when studying the appearance and disappear-
ance of nucleonic shell gaps in exotic nuclei.

TABLE I. Performance of different mass models with respect to �ẽτ corresponding different subshell closures seen in experimental data.
The models are SM = SkM∗, SP=SkP, SL=SLy4, SV=SV-min, U0=UNEDF0, U1=UNEDF1, U2=UNEDF2, and FR=FRDM-2012.

�eτ SM SP SL SV U0 U1 U2 FR

Protons

38 � � � � � �
40 � � � � � �
44 � �
70 � � � � � � � �
74 � �
80 � � � � � � �
88 �
92 � � � � � � � �
108 � � � � � � � �

Neutrons

56 � � � � � � �
70 � � � � � � � �
92 � � � � � � �
98 �
104 � � � � � � �
108 �
124 � � � � � �
152 � � � � �
162 � � � � � � � �
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FIG. 6. Similar as in Fig. 2 but for experimental values of the dimensionless single-particle splitting δ̃2p.

After cataloging experimental shell and subshell closures
obtained by means of �ẽτ , we showed that EDF-based
models yield the placements of s.p. energy splitting max-
ima consistently with experiment. Indeed, mean-field models
are expected to perform well in this regard as the con-
cept of intrinsic s.p. orbits and energies is naturally present
there. In some cases, such as the deformed A ≈ 80 and A ≈
100 regions, theory sometimes poorly predicts the spherical-
to-deformed shape transition due to missing zero-point
correlations [25]. This deficiency of current models will need
to be addressed. In this context, we wish to emphasize that the
intent of this work in not to exhaustively quantify the fidelity
of theoretical models’ predictions of �eτ .

Additionally, this work highlights the potential for user-
focused scientific software to aid discovery and provide
guidance for future experimental campaigns. To this end, the
BMEX tool used in this work will be continually updated to
include new experimental data and extended to a broader set
of nuclear models. A broader set of uncertainty estimates for
both experimental and theoretical data will also be added to
the tool. The new features will include estimates of experi-
mental and theoretical errors on mass filters, and a Bayesian
model mixing module that will combine the knowledge from
multiple models [71–73].
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APPENDIX A: EXPERIMENTAL LANDSCAPES OF δ̃2τ

The two-nucleon shell gap indicators are usually defined
as δ2n = S2n(N, Z ) − S2n(N + 2, Z ) and δ2p = S2n(N, Z ) −
S2p(N, Z + 2). Figures 6 and 7 show the dimensionless single-
particle splitting δ̃2τ extracted from experimental values of δ2τ

scaled as δ̃2τ ≡ δ2τ /2h̄ω0, where h̄ω0 is given by Eq. (11).

APPENDIX B: THE BAYESIAN MASS EXPLORER

The Bayesian Mass Explorer (BMEX) project aims to
provide a user-friendly interface to theoretical model pre-
dictions with quantified uncertainties. To enable this vision,
BMEX utilizes a cloud-based infrastructure that allows for
efficient data retrieval, plotting, and light computation to be
performed server-side and then delivered to the user in their
browser. The web application uses the Plotly Dash framework
and a PYTHON back end that takes advantage of multiple
server workers to better handle several users simultaneously.
The application is continuously built as a Docker container
which eases deployment to arbitrary server architectures and
can also easily be self-hosted locally for development or
for local deployments. Should the load on the server pass
a certain threshold, independent instances of the container
can also be deployed onto new servers and access to each
one can be load balanced. This improves availability and
stability of the application, at the cost of needing to have
a separately hosted database instance to manage user-saved
sessions. A separate mechanism for saving user sessions is
also implemented via link encoding, though this is less scal-
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FIG. 7. Similar as in Fig. 3 but for experimental values of the dimensionless single-particle splitting δ̃2n.

able and presents issues for backwards compatibility. Figure 8
presents a sample screenshot of the BMEX web interface in a

configuration similar to what was used for the present investi-
gation of single-particle energy splittings.

FIG. 8. Sample screenshot of the Bayesian Mass Explorer web interface in a configuration similar to what was used for the present
investigation. The configuration and quantity of interest for each plot is accessed through the tab functionality on the left and additional data
series can be added to the isotopic chains in the sidebar. The current view can be saved and shared using the “Share View” button on the right
sidebar. Vector graphics in the PDF format can also be exported through the web interface for easy integration into documents.
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