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Configuration mixing in even-even 148−154Sm within the interacting boson model
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The interacting boson model with configuration mixing due to two-particle–two-hole excitations is applied
to describe even-even 148−154Sm to investigate the cross-shell excitation effects in these nuclei. It is shown
from the fitting results to the experimentally known positive-parity level energies, B(E2) values, and electric
quadrupole moments that the IBM configuration mixing (CM) describes these nuclei better than the IBM
consistent-Q formalism without the configuration mixing. Especially, the IBM-CM fitting results to the known
B(E2) values are significantly improved. Furthermore, it is shown from the IBM-CM fitting results that the
intruder configuration turns to be always dominant in the 0+

2 , 2+
2 , and 4+

2 states of well-deformed 150,152,154Sm.
Most notably, there is a clear normal-intruder configuration crossover along the yrast line of these nuclei
described by the IBM-CM.

DOI: 10.1103/PhysRevC.109.044310

I. INTRODUCTION

The interacting boson model (IBM) has been used to great
success in describing medium- and heavy-mass nuclei [1].
Though more than one shape of a nucleus can be identified
from the minimum nuclear potential energy with different de-
formation parameters in the collective model [2], it is unable
to characterize the associated configurations [3]. Duval and
Barrett then extended the IBM for the first time to include the
simplest mixing of the normal (valence shell) configuration
with the intruder configuration due to two-particle–two-hole
(2p-2h) excitations from the nearest lower shell, which has
been proven to be very successful in describing nuclei near a
proton shell closure [4,5]. Heyde and Wood et al. conducted
detailed studies on the configuration mixing in even-even
and odd-A nuclei around proton numbers Z ≈ 50 and Z ≈ 82
within the IBM with configuration mixing (CM) framework
[6–8] and discussed the high spin states of even-even Dy
nuclei with up to six-particle and six-hole excitations [9].
In addition, the matrix coherent state method was applied to
the IBM-CM to describe the shape (phase) evolution and the
quantum phase transition behaviors of some nuclei [10,11].
Detailed analysis was also made on the quantum phase transi-
tions of some even-even nuclei in the IBM-CM [12,13] and
some odd-A nuclei in the interacting boson-fermion model
with configuration mixing [14,15], respectively. Since there
are additional particle type and hole type bosons in the 2p-2h
excitations, these bosons can either be treated as the same
or different types in the IBM-CM calculations. In most pre-
vious studies, they were not distinguished from each other
[10,16–22], while they were considered to be different in
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Ref. [23]. In some special cases, exact solution of the IBM-
CM may exist [24–26]. In addition, the link between the
IBM-CM and a self-consistent mean-field approach based on
nuclear energy density functional may be adopted to ana-
lyze the shape coexistence phenomena [27]. Very recently,
one-particle and one-hole (1p-1h) excitations to the upper
next-nearest major shell have been included in the IBM frame-
work that describes both the low-lying properties and the
isoscalar giant monopole and quadrupole resonance phenom-
ena of an even-even nucleus simultaneously [28]. Generally
speaking, the shape (phase) coexistence phenomena and re-
lated properties of nuclei with proton or neutron number
near a closed-shell or a subshell closure are well described
by the IBM-CM. However, the aforementioned articles are
mainly on configuration mixing phenomena of nuclei in vibra-
tional and transitional regions. Due to the large deformation,
multiparticle-multihole excitations from the nearest lower
shell are also likely to occur in well-deformed nuclei [9,29],
for which the IBM-CM description may be helpful to resolve
the long-term debate on the nature of the low-lying states,
especially that of low-lying 0+ states in well-deformed nu-
clei [30,31].

In this paper, the IBM-CM with 2p-2h excitations from the
nearest lower shell is applied to describe low-lying properties
of 148,150,152,154Sm. Positive-parity energy levels, experimen-
tally known B(E2) values, and electric quadrupole moments
of 148,150,152,154Sm are fitted and compared to the experimen-
tal data and the results of the consistent-Q (CQ) formalism
without the configuration mixing [32].

II. THE MODEL

We employ an algebraic approach to the IBM-CM of nor-
mal and intruder configurations [4,33]. It should be noted that
here we do not distinguish proton-type bosons from neutron-
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type bosons, nor do we distinguish particle-type bosons from
hole-type bosons for simplicity. The IBM-CM is based on the
shell model, in which the normal (valence shell) configuration
and the intruder configuration with 2p-2h excitations from
the nearest lower shell span the symmetric irreducible rep-
resentations (irreps) [N] and [N + 2] of the IBM U(6) group,
respectively, where N is the total number of bosons when there
is no 2p-2h excitation, which is counted as the number of
valence particle pairs in the valence shell in this paper. The
IBM-CM Hamiltonian can be written as [34]

Ĥ = P̂N Ĥnor P̂N + P̂N+2 Ĥintr P̂N+2 + P̂N+2 Ĥmix P̂N

+ P̂N Ĥmix P̂N+2, (1)

where P̂N or P̂N+2 is the projection operator, which projects
onto the [N] or [N + 2] subspace. According to the CQ
formalism [35],

Ĥnor = ε (N )
s N̂ + (

ε
(N )
d − ε (N )

s

)
n̂d − κ (N ) Q̂χ · Q̂χ , (2)

Ĥintr = ε (N+2)
s (N̂ + 2) + (

ε
(N+2)
d − ε (N+2)

s

)
n̂d

−κ (N+2) Q̂χ · Q̂χ + � + b L̂ · L̂, (3)

where n̂d = d† · d̃ , with d̃μ = (−)μd−μ, is the d-boson num-
ber operator; N̂ = n̂s + n̂d , in which n̂s = s†s is the s-boson
number operator; ε (N )

s (ε (N+2)
s ) and ε

(N )
d (ε (N+2)

d ) are single-
particle energies of the s and d bosons in each configuration;
κ (N ) (κ (N+2)) is the strength of the quadrupole-quadrupole
interaction; � is the energy needed for the 2p-2h excitation
from the nearest lower shell;

Q̂χ = d†s + s†d̃ + χ (d† × d̃ )(2) (4)

is the quadrupole operator, in which (d† × d̃ )(l ) with the
component of the l tensor omitted represents the angular
momentum coupling of the d-boson creation and annihilation
operators to the angular momentum l; the last L̂ · L̂ term in
Eq. (3) is added to get a better fit to the low-lying level
energies; and the configuration mixing term is taken as

Ĥmix = ωd [(d† × d†)(0) + (d̃ × d̃ )(0)] + ωs (s† 2 + s2). (5)

In the following, we take ωs = ωd = ω to reduce the number
of free parameters. Since only excited states of the model are
concerned, the parameter ε (N )

s can be taken arbitrarily with
no influence to excited states calculated with only the d- and
s-boson single-particle energy gap ε

(N )
d − ε (N )

s being effective
for the normal configuration.

The E2 transition operator is defined as

T (E2) = q(N )
2 P̂N Q̂χ P̂N + q(N+2)

2 P̂N+2 Q̂χ P̂N+2, (6)

which is consistent with the CQ formalism [35], where q(N )
2

(q(N+2)
2 ) is the effective charge related parameter for each con-

figuration. In the calculation, q(N )
2 = q(N+2)

2 = q2 is assumed.
Accordingly, B(E2; Lξ → L′

ξ ′ ) and the electric quadurpole
moment Q(Lξ ) are given by

B(E2; Lξ → L′
ξ ′ ) = 1

2L + 1
|〈L′

ξ ′ ||T (E2)||Lξ 〉|2 (7)

and

Q(Lξ ) =
√

16π
5 〈LL, 20|LL〉〈Lξ ||T (E2)||Lξ 〉/(2L + 1)1/2, (8)

respectively, where Lξ labels the ξ th excited state with the
angular momentum L.

In this paper, the eigenstates |Lξ 〉 of the Hamiltonian (1) are
expanded in terms of the U(6) ⊃ SU(3) ⊃ SO(3) basis, which
can be expressed as

|Lξ 〉 =
∑

(λ,μ) ς

C(ξ,N,L)
(λ,μ),ς |[N](λ,μ) ς L〉

+
∑

(λ,μ) ς

C(ξ,N+2,L)
(λ,μ),ς |[N + 2](λ,μ) ς L〉, (9)

where (λ,μ) is the Elliott label for an SU(3) irrep, ς is the
SU(3) ↓ SO(3) branching multiplicity label, and C(ξ,N,L)

(λ,μ),ς and

C(ξ,N+2,L)
(λ,μ),ς are the expansion coefficients. In the calculation,

the analytical expressions of the reduced matrix elements of
s- and d-boson creation and annihilation operators in the U(6)
⊃ SU(3) ⊃ SO(3) basis provided in Eq. [36] and the FORTRAN

code for evaluating Wigner coefficients of SU(3) ⊃ SO(3)
[37,38] are used. Moreover, occupation probability of the nor-
mal configuration P(ξ,L)

nor and that of the intruder configuration
P(ξ,L)

intr for a given eigenstate (9) are useful for our analysis,
which are given by

P(ξ,L)
nor =

∑
(λ,μ) ς

∣∣C(ξ,N,L)
(λ,μ),ς

∣∣2
, (10)

P(ξ,L)
intr = 1 − P(ξ,L)

nor =
∑

(λ,μ) ς

∣∣C(ξ,N+2,L)
(λ,μ) ς

∣∣2
. (11)

III. THE MODEL FIT TO EVEN-EVEN 148−154Sm

The low-lying properties of even-even Sm isotopes have
been extensively studied in the IBM without configuration
mixing [32,39–41], which shows that there is the shape
(phase) evolution from the spherical [U(5)] to the axially de-
formed [SU(3)] phase in even-even 146−154Sm. In particular, it
is shown that 152Sm with neutron number N = 90 is a typical
nucleus at the critical point of the first-order U(5)-SU(3) shape
(phase) transition [42,43].

In this paper, the IBM-CM Hamiltonian (1) is adopted
to fit positive-parity level energies of even-even 148−154Sm,
which are also fitted by the original CQ Hamiltonian without
configuration mixing for comparison. In order to reduce the
number of free parameters of the IBM-CM, the 2p-2h ex-
citation energy needed in the IBM-CM Hamiltonian (1) for
each nucleus is fixed by the average of the minimum 2p-2h
excitation energies from below the neutron (n) and proton
(p) closed shells with � = (�n,min + �p,min)/2 shown in Ta-
ble I. For example, �n,min = 2 εn,44 − 2 εn,40 and �p,min =
2 εp,32 − 2 εp,24 for 148

62 Sm86, where εn,k (εp,k) is the kth neu-
tron (proton) single-particle energy produced from a Nilsson
deformed shell model code, for which the deformation param-
eters of each nucleus are taken from Ref. [44]. Thus, there
are eight adjustable parameters in the IBM-CM Hamiltonian
(1), while there are only three parameters in the CQ formal-
ism, which are determined from a best fit to the low-lying

044310-2



CONFIGURATION MIXING IN EVEN-EVEN … PHYSICAL REVIEW C 109, 044310 (2024)

TABLE I. The 2p-2h excitation energy � = (�n,min + �p,min )/2
for 148−154Sm, where �n,min and �p,min are the minimum excitation
energies from below the neutron N = 82 and the proton Z = 50
closed shells, respectively, calculated from a Nilsson deformed shell
model code, and the quadrupole deformation parameter ε2 for each
nucleus [44] is also provided.

148
62 Sm86

150
62 Sm88

152
62 Sm90

154
62 Sm92

ε2 0.16000 0.19000 0.22000 0.25000
�n,min 4.71188 3.47630 2.49830 2.93460
�p,min 8.49964 8.29098 7.98050 7.48210
� 6.60576 5.88364 5.23940 5.20835

positive-parity level energies of even-even 148−154Sm. Once
the model parameters are thus fixed, as clearly shown in
Eq. (6), there is only the effective charge related parameter q2

that is adjustable in fitting to B(E2) values. The fitting quality
of both the IBM-CM and the CQ formalism is measured by the
parameter-dependent root-mean-square deviation σ defined
by

σ =
√√√√ 1

N − N0

N∑
i=1

(Oi,th − Oi,exp)2, (12)

where N denotes the total number of data fitted, N0 is the
number of adjustable parameters, and Oi,th and Oi,exp are the
theoretical and the corresponding experimental values of a
level energy or a B(E2) value, respectively.

The parameters of the IBM-CM and the CQ formalism
produced from a best fit for each nucleus are shown in Table II.
In the IBM-CM, with the increasing of the mass number, both
εN

d − εN
s and εN+2

d − εN+2
s decrease with the increasing of the

mass number A, while the parameter χ gradually approaches
−√

7/2, indicating that the U(5)-SU(3) shape (phase) transi-
tion persists in the configuration mixing description. In the
CQ formalism, the model parameter εd − εs also decreases
the increasing of the mass number A, while χ = −√

7/2
for 148−154Sm is preferred in the CQ formalism, consistent

FIG. 1. Level energies (in MeV) of the experimentally identified
positive-parity bands of 148Sm and 150Sm, where the left (black)
levels are those obtained from the experiments, the middle (red)
levels are those obtained from the IBM-CM, and the right (blue)
levels are those obtained from the original CQ formalism.

with the U(5)-SU(3) description for these nuclei shown in
Ref. [32].

The fitting results of both the IBM-CM and the CQ
formalism to the low-lying positive-parity level energies of
148−154Sm and in comparison to the experimental results [45]
are shown in Figs. 1 and 2 with the detailed data provided in
Tables III–VI. For 148Sm, there are 40 positive-parity levels
fitted as shown in Figs. 1(a) and 1(b), among which spin
and parity of the excited level at 2.441 MeV have not been
determined experimentally and are assigned to be 0+

6 in the
fitting. For 150Sm, there are 37 positive-parity levels fitted as
shown in Figs. 1(c) and 1(d), among which spin and parity
of the excited level at 2.444 MeV have not been determined
experimentally and are assigned to be 5+

3 in the fitting. For
152Sm, there are 60 positive-parity levels fitted as shown in
Figs. 2(a) and 2(b), among which spin and parity of the excited
levels at 2.423 and 2.309 MeV have not been determined
experimentally and are assigned to be 0+

8 and 5+
3 , respectively,

TABLE II. The model parameters determined from a best fit to the low-lying positive-parity level energies of even-even 148−154Sm in the
IBM-CM and the CQ formalism, where the unit is in MeV, except for the dimensionless parameter χ and the effective charge q2 (in

√
W.u.),

and χ = −√
7/2 is preferred for all the nuclei fitted in the CQ formalism.

148
62 Sm86

150
62 Sm88

152
62 Sm90

154
62 Sm92

IBM-CM ε
(N )
d − ε (N )

s 0.93000 0.88000 0.71440 0.66000
κ (N ) 0.03014 0.03022 0.03222 0.03224

ε (N+2)
s −0.54058 −0.43760 −0.40162 −0.36849

ε
(N+2)
d − ε (N+2)

s 0.11300 0.11000 0.10800 0.10400
κ (N+2) 0.01000 0.01300 0.01350 0.01390

b 0.00770 0.00760 0.00290 0.00055
χ −0.88000 −0.92000 −0.93000 −0.94000
ω 0.03120 0.03150 0.03355 0.05011
q2 1.49330 1.69880 2.10015 2.03651

CQ εd − εs 0.61000 0.48000 0.44000 0.32880
κ 0.01000 0.01007 0.01400 0.01866
q2 1.72300 1.99340 2.15900 1.85000
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FIG. 2. The same as Fig. 1, but for 152Sm and 154Sm.

in the fitting. For 154Sm, there are 26 positive-parity levels
fitted as shown in Figs. 2(c) and 2(d), among which spin
and parity of the excited levels at 2.130 MeV have not been
determined experimentally and are assigned to be 8+

3 in the fit-
ting. In addition, spin and parity of several excited levels have
not been confirmed uniquely, for which the spin and parity
assignments in both the IBM-CM and the CQ formalism are
clearly provided in Tables III–VI. As clearly shown by σ (E )
provided in Table VII, the fitting quality of the IBM-CM to the
positive-parity level energies of these nuclei is significantly
better than that of the CQ formalism.

Once the model parameters are determined in the fitting
to the level energies, experimentally known B(E2) values
of 148,150,152,154Sm are calculated accordingly, of which the
results are shown in Table VIII. In both the IBM-CM and
the CQ formalism, the effective charge related parameter
q2 is fixed by the experimental value of B(E2; 2+

1 → 0+
1 ),

which is provided for each nucleus in the last row of Table II.
For 148Sm, the calculated results of the IBM-CM are closer
to the corresponding experimental values than those of the
CQ formalism except for B(E2; 2+

2 → 2+
1 ). For 154Sm, the

calculated results of B(E2; 8+
1 → 6+

1 ) and B(E2; 10+
1 → 8+

1 )
of the IBM-CM are significantly improved in comparison
to the corresponding results of the CQ formalism. For
150Sm, the calculated results of the IBM-CM are better than
those of the CQ formalism except for B(E2; 4+

1 → 2+
1 ),

B(E2; 6+
1 → 4+

1 ), B(E2; 4+
2 → 2+

3 ), B(E2; 4+
3 → 2+

1 ),
and B(E2; 4+

4 → 2+
2 ). Especially, B(E2; 0+

2 → 2+
1 ),

B(E2; 2+
2 → 0+

2 ), B(E2; 4+
2 → 2+

2 ), and B(E2; 4+
2 → 6+

1 ) are
significantly improved in comparison to those calculated from
the CQ formalism, which is mainly due to the fact that the
0+

2 , 2+
2 , 4+

2 , and 6+
1 states of 150Sm are intruder configuration

dominant as shown by the occupation probabilities of the
normal and intruder configurations of these states in Fig. 4(b).
For example, since the 0+

2 state mainly belongs to the intruder
configuration, while the 2+

1 state mainly belongs to the
normal configuration in the IBM-CM, B(E2; 0+

2 → 2+
1 )

turns to be greatly suppressed and becomes closer to the
corresponding experimental value in comparison to the value
of the CQ formalism without the configuration mixing.
Similarly, for 152Sm, B(E2; 2+

2 → 0+
2 ), B(E2; 4+

2 → 2+
2 ),

B(E2; 8+
1 → 6+

1 ), B(E2; 0+
2 → 2+

1 ), and B(E2; 0+
3 → 2+

2 ) in

TABLE III. Some low-lying positive-parity level energies of
148Sm (in MeV), where “ Theory ” denotes both the IBM-CM and
the CQ formalism, “ — ” indicates that the corresponding spin and
parity are not determined in experiments, and the experimental data
are taken from Ref. [45].

Spin and parity

Theory Expt. Expt. IBM-CM CQ

0+
1 0+ 0 0 0

0+
2 0+ 1.424 1.243 0.929

0+
3 0+ 1.921 1.636 1.688

0+
4 0+ 2.205 1.969 2.078

0+
5 0+ 2.358 2.217 2.857

0+
6 — 2.441 2.361 3.368

2+
1 2+ 0.550 0.540 0.466

2+
2 2+ 1.454 1.439 1.045

2+
3 2+ 1.664 1.648 1.499

2+
4 2+ 1.972 2.018 2.139

2+
5 2+ 2.146 2.064 2.308

2+
6 (1, 2+) 2.284 2.281 2.718

2+
7 2+ 2.314 2.361 2.990

2+
8 2+ 2.382 2.430 3.413

2+
9 (2+) 2.442 2.547 3.546

2+
10 2+ 2.568 2.671 4.074

3+
1 3+ 1.904 2.013 1.625

3+
2 3+ 2.328 2.421 2.785

3+
3 3+ 2.390 2.604 3.685

4+
1 4+ 1.180 1.212 0.964

4+
2 4+ 1.733 1.832 1.607

4+
3 4+ 1.895 2.146 2.096

4+
4 4+ 2.111 2.282 2.259

4+
5 4+ 2.228 2.373 2.795

4+
6 4+ 2.327 2.544 2.949

4+
7 4+ 2.490 2.642 3.387

4+
8 4+ 2.524 2.696 3.492

4+
9 4+ 2.673 2.732 3.671

4+
10 4+ 2.724 2.819 4.139

5+
1 5+ 2.148 2.342 2.217

5+
2 5+ 2.214 2.680 2.917

5+
3 5+ 2.641 2.823 3.461

6+
1 6+ 1.906 1.917 1.500

6+
2 6+ 2.096 2.260 2.202

6+
3 6+ 2.194 2.517 2.724

6+
4 (4+, 5, 6+) 2.716 2.610 2.901

7+
1 7+ 2.392 2.722 2.842

8+
1 8+ 2.545 2.430 2.080

8+
2 8+ 2.715 2.881 2.834

9+
1 9(+) 3.095 3.192 3.506

the IBM-CM are also significantly improved in comparison
to the CQ formalism, which is mainly due to the fact that
the 0+

2 , 2+
2 , 4+

2 , 6+
1 , and 8+

1 states are intruder configuration
dominant as shown by the occupation probabilities of the
normal and intruder configurations of these states in Fig. 4(c).
As shown by σ [B(E2)] in Table VII, the calculated results
of the IBM-CM are obviously better than those of the CQ
formalism due to the configuration mixing in these nuclei.
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TABLE IV. The same as Table III, but for 150Sm.

Spin and parity

Theory Expt. Expt. IBM-CM CQ

0+
1 0+ 0 0 0

0+
2 0+ 0.740 0.761 0.595

0+
3 0+ 1.256 1.229 1.261

2+
1 2+ 0.334 0.372 0.291

2+
2 2+ 1.046 0.921 0.756

2+
3 2+ 1.194 1.312 1.034

2+
4 2+ 1.417 1.568 1.540

2+
5 2+ 1.794 1.596 1.745

2+
6 (2+) 1.927 1.938 1.987

2+
7 2+ 2.006 2.055 2.297

2+
8 (2+, 5+) 2.055 2.115 2.540

2+
9 2+, 3+, 4+ 2.342 2.263 2.688

2+
10 (1−, 2+) 2.507 2.393 3.053

3+
1 3+ 1.505 1.534 1.188

3+
2 (3+, 4+) 2.044 2.049 2.044

3+
3 3+ 2.456 2.361 2.850

3+
4 3+, 4+ 2.556 2.647 3.098

4+
1 4+ 0.773 0.852 0.620

4+
2 4+ 1.449 1.224 1.164

4+
3 4+ 1.643 1.669 1.486

4+
4 4+ 1.820 1.808 1.691

4+
5 4+ 1.971 2.061 2.063

4+
6 4+ 2.025 2.186 2.240

4+
7 4+ 2.117 2.319 2.505

4+
8 4+ 2.153 2.364 2.621

4+
9 4+ 2.191 2.423 2.835

4+
10 3+, 4+ 2.465 2.570 3.125

5+
1 2+, 5+ 1.883 1.830 1.624

5+
2 5+ 2.020 2.325 2.205

5+
3 — 2.444 2.452 2.578

6+
1 6+ 1.279 1.302 0.999

6+
2 (6)+ 2.107 1.792 1.606

8+
1 8+ 1.837 1.757 1.428

10+
1 10+ 2.433 2.292 1.905

12+
1 12+ 3.048 2.922 2.429

14+
1 14+ 3.676 3.651 3.000

16+
1 16+ 4.306 4.482 3.615

Figure 3 provides four typical B(E2) values and the
branching ratio R = B(E2; 2+

3 → 0+
2 )/B(E2; 2+

3 → 0+
1 )

[42,43] as functions of the mass number A for
148,150,152,154Sm. For B(E2; 0+

2 → 2+
1 ) shown in Fig. 3(a),

the IBM-CM result is significantly improved in comparison
to that of the CQ formalism, except for 154Sm, of which
the IBM-CM result is larger than the experimental one. For
B(E2; 2+

2 → 0+
1 ) shown in Fig. 3(b), the results of both

the models are strongly suppressed and about the same in
magnitude, and the IBM-CM result seems better than that
of the CQ formalism, though the experimental value of
B(E2; 2+

2 → 0+
1 ) for 154Sm is not available. In Ref. [42],

the ratio R was found to be very small for 152Sm and
could be reproduced in the CQ formalism, which was then
interpreted due to the phase coexistence [43]. In the present
work, however, the parameters of both the models were

TABLE V. The same as Table III, but for 152Sm.

Spin and parity

Theory Expt. Expt. IBM-CM CQ

0+
1 0+ 0 0 0

0+
2 0+ 0.685 0.706 0.474

0+
3 0+ 1.083 1.223 1.108

0+
4 0+ 1.659 1.470 1.509

0+
5 0+ 1.736 1.960 1.939

0+
6 0+ 1.755 2.160 2.273

0+
7 0, 1, 2, 3− 2.287 2.366 2.830

0+
8 – 2.423 2.455 3.090

2+
1 2+ 0.122 0.176 0.114

2+
2 2+ 0.810 0.807 0.708

2+
3 2+ 1.086 1.257 0.895

2+
4 2+ 1.293 1.471 1.342

2+
5 2+ 1.769 1.583 1.591

2+
6 2+ 1.906 1.786 1.868

2+
7 2+ 2.138 2.141 2.160

2+
8 2+ 2.240 2.266 2.386

2+
9 2+ 2.268 2.427 2.509

3+
1 3+ 1.234 1.389 1.073

3+
2 (3+) 1.908 1.928 1.803

4+
1 4+ 0.366 0.505 0.323

4+
2 4+ 1.023 1.009 1.014

4+
3 4+ 1.372 1.490 1.247

4+
4 4+ 1.613 1.646 1.607

4+
5 4+ 1.757 1.958 1.870

4+
6 4+ 2.052 2.091 2.077

4+
7 (2+, 3, 4+) 2.138 2.235 2.274

4+
8 4+, 5 2.320 2.236 2.403

4+
9 3, 4+ 2.402 2.367 2.727

4+
10 3,4,5 2.482 2.536 2.901

4+
11 4+, 5 2.567 2.579 3.070

5+
1 5+ 1.560 1.612 1.414

5+
2 5+ 1.891 2.199 2.074

5+
3 — 2.309 2.304 2.310

6+
1 6+ 0.707 0.887 0.616

6+
2 6+ 1.311 1.385 1.382

6+
3 6+ 1.728 1.740 1.646

6+
4 6+ 2.004 1.876 2.049

6+
5 6+ 2.040 2.307 2.385

7+
1 7+ 1.946 1.886 1.818

7+
2 7+ 2.206 2.487 2.545

8+
1 8+ 1.125 1.246 0.985

8+
2 8+ 1.666 1.945 1.813

8+
3 8+ 2.140 2.074 2.110

8+
4 8+ 2.392 2.204 2.541

8+
5 8+ 2.459 2.625 2.928

9+
1 9+ 2.375 2.221 2.288

10+
1 10+ 1.609 1.621 1.424

10+
2 10+ 2.080 2.369 2.305

10+
3 10+ 2.662 2.513 2.637

10+
4 (10+) 2.810 2.879 3.086

10+
5 10+ 2.905 2.999 3.516

11+
1 11+ 2.833 2.622 2.820

12+
1 12+ 2.149 2.045 1.931

12+
2 12+ 2.526 2.795 2.858

12+
3 12+ 3.128 2.960 3.226

12+
4 12+ 3.352 3.414 3.687
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TABLE V. (Continued.)

Spin and parity

Theory Expt. Expt. IBM-CM CQ

14+
1 14+ 2.736 2.529 2.502

14+
2 14+ 2.977 3.280 3.471

14+
3 14+ 3.293 3.469 3.876

14+
4 14+ 3.931 3.905 4.344

determined by the least-mean-square algorithm, in which
no special attention was paid to this ratio. As shown in
Fig. 3(c), B(E2; 2+

3 → 0+
2 ) and B(E2; 2+

3 → 0+
1 ) produced

from the two models are all acceptable, but the IBM-CM
results are a little improved. As clearly shown in Fig. 3(d),
the ratio R indeed decreases drastically from 150Sm to 152Sm
in both the models, but the IBM-CM result is closer to the
experimental data globally, though the experimental ratios of
148Sm and 154Sm are not available. The calculated results for
the experimentally known electric quadrupole moments of the
2+

1 and 4+
1 states in 148,150,152,154Sm are provided in Table IX,

which shows once again that the IBM-CM results are closer
to the experimental data in comparison to the corresponding
results of the IBM-CQ formalism.

TABLE VI. The same as Table III, but for 154Sm.

Spin and parity

Theory Expt. Expt. IBM-CM CQ

0+
1 0+ 0 0 0

0+
2 0+ 1.099 1.040 1.006

0+
3 0+ 1.202 1.522 1.768

2+
1 2+ 0.082 0.130 0.065

2+
2 2+ 1.178 1.115 1.091

2+
3 2+ 1.286 1.443 1.290

2+
4 2+ 1.440 1.715 1.920

2+
5 2+ 1.878 1.986 2.047

2+
6 2+ 1.922 2.091 2.450

3+
1 3+ 1.539 1.578 1.367

3+
2 3+ 1.707 2.219 2.183

4+
1 4+ 0.267 0.408 0.216

4+
2 4+ 1.338 1.263 1.276

4+
3 4+ 1.665 1.677 1.468

5+
1 5+ 1.805 1.805 1.589

6+
1 6+ 0.544 0.772 0.451

6+
2 6+ 1.577 1.510 1.550

6+
3 (6+) 1.974 1.905 1.740

7+
1 7+ 2.154 2.023 1.899

8+
1 8+ 0.903 1.124 0.767

8+
2 (8+) 1.741 1.916 1.907

8+
3 — 2.130 2.133 2.102

10+
1 10+ 1.333 1.420 1.160

10+
2 (10+) 2.069 2.319 2.342

12+
1 12+ 1.826 1.698 1.639

12+
2 (12+) 2.439 2.595 2.852

TABLE VII. The root-mean-square deviations of the positive-
parity level energies (in MeV) and B(E2) values (in W.u.).

148
62 Sm86

150
62 Sm88

152
62 Sm90

154
62 Sm92

σCM(E ) 0.19 0.15 0.17 0.23
σCQ(E ) 0.66 0.39 0.26 0.29
σCM[B(E2)] 3.75 23.00 27.01 27.79
σCQ[B(E2)] 4.04 48.18 32.84 31.57

The histograms shown in Fig. 4 are occupation proba-
bilities of the normal and intruder configurations in some
excited states of 148,150,152,154Sm described by the IBM-CM
according to Eqs. (10) and (11). It is clearly shown that the
0+

2 , 2+
2 , and 4+

2 states are always the intruder configuration
dominant states, except for 148Sm, of which, instead of 0+

2
and 2+

2 states, the 0+
3 and 2+

3 states become the intruder con-
figuration dominant states. Due to the intruder configuration
dominance in these states, the related B(E2) values, such as
B(E2; 0+

2 → 2+
1 ), B(E2; 2+

2 → 0+
2 ), and B(E2; 4+

2 → 2+
2 ) of

these nuclei, are fitted better in the IBM-CM formalism than
in the CQ formalism. In addition, the occupation probabilities
of the normal and intruder configurations of 0+

2 and 0+
3 states

are always opposite. For example, the occupation probabilities
of the normal and the intruder configurations of the 0+

2 states
are 18% and 82%, respectively, while they are 82% and 18%,
respectively, in the 0+

3 states of 152Sm. Moreover, if the β-
band-head 0+ state is assumed to be the normal configuration
dominated in the IBM-CM, according to Fig. 4, the 0+

2 state
in 148Sm, and the 0+

3 state in 150,152,154Sm may be the β-band-
head with 74%, 80%, 82%, and 66% normal configuration
contribution, respectively. Most noticeably, the occupation
probabilities of the normal and intruder configurations of the
yrast states change gradually from normal configuration dom-
inant to intruder configuration dominant with the increasing of
the angular momentum quantum number L, among which the
6+

1 state is the crossover point. Figure 5 provides B(E2; L →

FIG. 3. Four typical B(E2) values and the ratio
R = B(E2; 2+

3 → 0+
2 )/B(E2; 2+

3 → 0+
1 ) of 148,150,152,154Sm.
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TABLE VIII. B(E2) values calculated from the IBM-CM and the CQ formalism and compared with the experimentally available data (in
W.u.), where “—” indicates that the corresponding experimental value is not available.

Lξ → L′
ξ ′ Expt. [45] IBM-CM CQ Lξ → L′

ξ ′ Expt. [45] IBM-CM CQ

148Sm 2+
1 → 0+

1 31.2(13) 31.200 31.200 2+
2 → 0+

1 3.3(4) 0.598 0.338
4+

1 → 2+
1 51(6) 52.662 57.445 2+

2 → 2+
1 30(3) 21.903 35.294

2+
3 → 0+

1 1.3(5) 0.078 0.011 2+
3 → 2+

1 4.5(15) 1.788 0.112
2+

3 → 0+
2 — 11.991 25.691 0+

2 → 2+
1 — 37.108 59.681

150Sm 2+
1 → 0+

1 57.1(13) 57.100 57.100 4+
1 → 2+

1 110(17) 93.278 107.922
6+

1 → 4+
1 150(5) 125.209 137.564 8+

1 → 6+
1 170(9) 175.827 150.798

0+
2 → 2+

1 53(5) 54.894 110.980 2+
2 → 0+

1 0.81+0.26
−0.21 0.389 1.154

2+
2 → 0+

2 110+4
−3 99.999 31.334 4+

2 → 2+
2 190(9) 126.935 62.159

4+
2 → 2+

3 42(20) 2.786 13.911 4+
2 → 6+

1 80(4) 76.750 14.154
2+

3 → 0+
2 9.1(24) 0.740 34.227 2+

3 → 4+
1 7(3) 0.376 27.652

2+
3 → 0+

1 2.1(5) 1.187 0.170 4+
3 → 2+

1 1.4(7) 0.030 0.104
4+

3 → 2+
4 70(4) 24.694 2.733 4+

4 → 2+
2 4.1(21) 0.011 0.928

152Sm 2+
1 → 0+

1 145.0(16) 145.000 145.000 4+
1 → 2+

1 209.5(22) 215.436 222.469
6+

1 → 4+
1 240(4) 245.296 251.032 8+

1 → 6+
1 293(4) 299.958 259.356

10+
1 → 8+

1 314+35
−26 328.409 253.543 0+

2 → 2+
1 33.3(12) 40.434 74.149

2+
2 → 0+

2 170(12) 198.643 90.852 2+
2 → 2+

1 5.7(4) 4.199 13.459
2+

2 → 4+
1 18.0(12) 48.513 23.395 2+

2 → 0+
1 0.94(6) 0.032 0.006

4+
2 → 2+

2 250(4) 270.711 142.633 4+
2 → 6+

1 17(3) 92.452 15.447
4+

2 → 2+
1 0.74(12) 2.095 0.070 4+

2 → 4+
1 5.0+1

−0.7 4.947 10.117
3+

1 → 2+
3 120+6

−9 230.693 157.147 3+
1 → 2+

1 6.8+1.5
−1.1 3.173 3.726

3+
1 → 4+

1 7.2+1.6
−1.1 4.345 4.386 2+

3 → 0+
1 2.9(4) 2.310 3.127

2+
3 → 0+

2 0.026(4) 0.284 4.401 2+
3 → 4+

1 0.56(8) 0.394 6.496
4+

3 → 2+
3 62+35

−24 87.341 68.956 4+
3 → 2+

2 0.30+0.18
−0.13 0.591 1.546

4+
3 → 6+

1 0.9+0.6
−0.4 1.593 6.544 4+

3 → 2+
1 0.7+0.5

−0.3 0.234 0.843
4+

3 → 4+
1 7+4

−3 5.770 1.856 0+
3 → 2+

2 34+23
−11 57.47 110.27

0+
3 → 2+

1 0.80+0.53
−0.23 9.850 0.881 2+

5 → 4+
3 40+13

−12 33.995 23.599
2+

5 → 0+
2 7.6+2.2

−2.0 0.808 0.644 2+
5 → 0+

1 0.58+0.16
−0.15 0.106 0.013

154Sm 2+
1 → 0+

1 176(1) 176.000 176.000 4+
1 → 2+

1 245(6) 255.640 247.716
6+

1 → 4+
1 289(8) 285.971 265.010 8+

1 → 6+
1 319(17) 315.000 265.142

10+
1 → 8+

1 314(16) 340.219 255.270 12+
1 → 10+

1 282(19) 358.560 237.685
0+

2 → 2+
1 12(3) 28.139 5.188 2+

4 → 0+
1 2.13(16) 0.418 0.001

2+
4 → 4+

1 0.48(7) 0.178 0.015 2+
2 → 0+

1 - 0.347 0.561
2+

3 → 0+
1 - 2.652 0.526 2+

3 → 0+
2 - 0.128 1.353

L − 2) along the yrast line as a function of L of 152,154Sm in
the IBM-CM in comparison to that in the CQ formalism. It

FIG. 4. The same as Fig. 1, but for 152Sm and 154Sm.

is shown that the IBM-CM curves are closer to the experi-
mental data in general, except for the tail at L = 12 of 154Sm,
which is still away from the experimental point, while the
CQ curves are always much lower than the experimental data
points of 152Sm and 154Sm for L � 6. Therefore, the IBM-CM
significantly improves the results of most B(E2) values not

TABLE IX. The electric quadrupole moments Q(2+
1 ) and Q(4+

1 )
(in e b), where “—” indicates that the corresponding experimental
value is not available.

148
62 Sm86

150
62 Sm88

152
62 Sm90

154
62 Sm92

Q(2+
1 ) Expt. [45] −0.98(27) −1.32(19) −1.683(18) −1.87(4)

IBM-CM −0.837 −1.335 −2.190 −2.336
CQ −0.784 −1.293 −2.235 −2.440

Q(4+
1 ) Expt. [45] — — −2.6(14) −2.2(8)

IBM-CM −1.255 −2.103 −3.023 −2.908
CQ −1.357 −2.039 −3.100 −3.200
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FIG. 5. B(E2; L → L − 2) along the yrast line as a function of
L of 152,154Sm in the IBM-CM with comparison to the experimental
data and the CQ formalism data.

only due to the inclusion of the intruder configuration but
also due to the symmetry structure of the normal and intruder
configurations in the IBM-CM eigenstates shown in Fig. 4.
All in all, the 2p-2h cross-shell excitations seem of importance
in elucidating the low-lying structures of these well-deformed
nuclei.

IV. CONCLUSIONS

In summary, the IBM-CM including 2p-2h excitations
across the closed shell is applied to describe well-deformed
148,150,152,154Sm focusing on the cross-shell excitation effects
in these nuclei. Experimentally known positive-parity level
energies, B(E2) values, and electric quadrupole moments
are fitted and compared with the corresponding experimen-
tal data and the results of the consistent-Q formalism. It
is shown that the IBM-CM is better than the CQ for-

malism in general. Especially, the B(E2) values, such as
B(E2; 0+

2 → 2+
1 ), B(E2; 2+

2 → 0+
2 ), and B(E2; 4+

2 → 2+
2 ), of

these nuclei produced from the IBM-CM are significantly
improved in comparison to those from the CQ formalism.
The occupation probabilities of the intruder and the normal
configuration calculated from the IBM-CM show that the 0+

2 ,
2+

2 , and 4+
2 states of 150,152,154Sm are intruder configuration

dominant, which reveals the nature of these low-lying states
in 150,152,154Sm in the IBM-CM framework, namely, the 2p-
2h excitations indeed play an important role in these nuclei.
Moreover, the IBM-CM results also show that the occupation
probabilities of the normal and intruder configurations of the
yrast states change gradually from normal configuration dom-
inant to intruder configuration dominant with the increasing
of the angular momentum quantum number, among which
the 6+

1 state is the crossover point. B(E2; L → L − 2) along
the yrast line of 152,154Sm produced from the IBM-CM is
indeed closer to the experimental data than that from the
CQ formalism without configuration mixing. Furthermore, in
order to describe the isoscalar giant monopole and quadrupole
resonance phenomena in these well-deformed nuclei, 1p-1h
excitations also approximated as bosons may be included as
proposed in Ref. [28], which will be a part of our future work.
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