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Background: A recent inelastic o-scattering experiment [P. Adsley et al., Phys. Rev. Lett. 129, 102701 (2022)]
found 0% resonances in >*Mg on and above the '>C + >C break-up threshold. It has been conjectured that the
states have a '>C + '2C cluster structure, and play a similar role in accelerating '>C + '>C fusion to the manner
in which the Hoyle state accelerates production of '2C in massive stars.

Purpose: We aim to build up a quantitative theoretical basis for the considerations of the Hoyle-state paradigm,
by calculating the distribution of the O states in the shell model, as well as in the relevant cluster models.
Methods: We determine the spectrum of excited 0 states in >*Mg nucleus using multiconfigurational dynamical
symmetry calculations leading to a unified description of the quartet (or shell), '2C 4 '2C and *Ne + *He cluster
configurations.

Results: The density of 0T states in the quartet spectrum is comparable to that found in experiment; however,
the density of cluster states is considerably less.

Conclusions: The recently observed a-scattering resonances do not seem to be simple '>C + '2C cluster states,
but are more plausibly interpreted as fragmented cluster states due to coupling to quartet excitations, as

background states.

DOI: 10.1103/PhysRevC.109.044309

I. INTRODUCTION

In the 1950s, Hoyle predicted the existence of a resonance
in '2C with spin-parity 0% lying just above the threshold
for breakup into three alpha particles, that could explain the
production of '>C in massive stars [1]. This state, largely
responsible for the existence of carbon in our universe, was
subsequently found in experiment and is traditionally known
as the “Hoyle state” in Hoyle’s honor. In a recent work [2],
this Hoyle-state paradigm was extended to the '>C + '>C fu-
sion. In particular the authors investigated if there are O
resonance(s) in >*Mg close to the '>C + '2C threshold energy,
which can play a similar role to that of the Hoyle state in the
carbon burning. Four such 0" resonances were identified in
an *Mg(a, a') *Mg experiment [2]; it is argued that some or
all of these resonances have '2C + '2C cluster structure, there-
fore, the phenomenon is parallel with that of the Hoyle state.
The fact that these states predominantly decay by «-particle
emission is considered to be a further argument in favor of
this interpretation.

Inspired by this exciting conjecture and experimental find-
ing, we have carried out calculations in order to build up
some quantitative background from the theoretical side. In
particular, we have determined the distribution of O states
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in ?*Mg, and we have studied their relation to the '2C + '2C
and 2°Ne + *He cluster configurations. We have done so by
reproducing the gross features of the energy spectrum over a
wide energy range.

As a theoretical tool, we have applied multiconfigurational
dynamical symmetry (MUSY) [3,4]. This symmetry connects
the shell, collective, and cluster models to each other in order
to handle multishell problems; therefore, it is able to give a
unified treatment of different phenomena, which are usually
described by separate models. This symmetry has turned out
to be successful in relating diverse segments of spectra at
different regions of excitation energy and deformation, which
are produced in various reactions (and have connections to
various cluster configurations) [3-7].

Previously, the semimicroscopic algebraic cluster model
was applied to the description of the 2*Mg spectrum in [8].
That early calculation and the present work have consider-
able similarities. In both cases, low-energy states and the
high-lying '2C + '2C spectrum of resonances are described
in a unified way: by applying semimicroscopic approaches,
with dynamically symmetric Hamiltonians. There are, how-
ever, important differences as well. In [8], only the 2o+ 2
cluster configuration was taken into account, while, here, we
consider the quartet states of >*Mg, which form the spin-
isospin zero sector of the no-core shell model space, together
with the '2C + '>C and °Ne + *He clusterizations. For a uni-
fied treatment of the spectra of different configurations we
apply a Hamiltonian invariant with respect to the transforma-
tions from one configuration to the other [3,4,9]. According
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to the semimicroscopic nature of our approach, the energy
functional contains free parameters, but only in a very small
number and with well-defined physical content, as is dis-
cussed in more detail below. The number of fitted parameters
of our Hamiltonian is only 3 4 2 (for the energy and moment
of inertia functionals), as opposed to the 12 employed in the
previous description in [8].

The MUSY Hamiltonian provides us with a spectrum of
the quartet (or shell) and the two cluster configurations over
a wide range of excitation energy. Along the deformation pa-
rameter the states cover the moderate ground region, as well as
the largely deformed (theoretically predicted) shape isomers
up to the linear o chain. The density of '>C + '>C resonances
is obtained as a parameter-free prediction, and its comparison
with experimental observation serves as a consistency check
of the description.

In what follows, we first give a brief introduction to MUSY,
then apply it to the 2*Mg nucleus with special attention to the
relevant cluster configurations. Finally, some conclusions are
drawn.

II. MULTICONFIGURATIONAL
DYNAMICAL SYMMETRY

MUSY connects the fundamental structure models of nu-
clei: the shell model, the quadrupole collective model, and the
cluster model. It is a multishell generalization of the historical
relationship between these models, established in 1958 for a
single shell problem [10-13]. In particular, MUSY provides
us with a unified multiplet structure of different configura-
tions, as well as with operators for the calculation of physical
observables.

For the single-shell problem, it is defined by the group
chain

Ua3) > SU@3) o> SO@A3)
|[n1’n27n3]5 ()‘"M)’ Ka L> (1)

Here, A = ny — np, w = np — n3, and K is the multiplicity of
the orbital momentum L. These representation labels are the
quantum numbers which characterize the basis states of the
shell model. The collective and cluster bands are specified
by their U(3) symmetries, i.e., they are picked up from the
shell model basis. The spin and isospin degrees of freedom
are described by the Wigner US7 (4) group, and in the case of a
UST (4) scalar (spin and isospin zero) representation, the shell
model simplifies to a quartet model [14]. When a Hamiltonian
with a U(3) dynamical symmetry is applied

H = Hyo + xQQ + €'LL
= Cy3 + xCyy)s + eCis @

the energy can be calculated analytically and in a unified way
for different configurations. Here, C stands for the invariant
operator of the group indicated as a subscript (and of the order
shown as a superscript). A similar procedure is applicable for
electromagnetic transitions.

For the multishell problem, the dynamical symmetry is
defined by the group chain

U;3) ® U3 D> UB)> Su@B) o> SO0QB)
|[n‘§,n‘§,n§],[nf,ni,ng],p, [n1,m2,n3] (A, ), K, L ).
(3)

Here, p distinguishes between the multiple appearances of
[n1, ny, n3] in the direct product representation. This sym-
metry is the common intersection of the symplectic shell
model [15,16], the contracted symplectic model, [17,18], and
the semimicroscopic algebraic cluster model [19,20]. These
models are many-major-shell algebraic approaches, based on
the shell, quadrupole and cluster pictures, with microscopic
model spaces. U (3) is the symmetry of the lowest-lying shell
in the shell and collective models, while in the cluster model,
it is the intrinsic symmetry of the clusters. U,(3) gives the
major shell excitations, which take place in steps of 2/w in the
symplectic and contracted symplectic models, and in steps of
17w in the cluster model.

When dynamically symmetric Hamiltonians are applied,
which are expressed in terms of invariant operators of the
united groups of chain (2), the operators are invariant with
respect to transformations from one configuration to the
other [3,9]; therefore, the energy spectra of states [with com-
mon U(3) symmetry] in different configurations are identical.
Here, we use the following Hamiltonian:

1
H = hon + aCyy, + bCy); + dK* + % o @

The moment of inertia & can be calculated either for el-
lipsoids (with cylindrical symmetry) defined by the U(3)
quantum numbers, or it can be expressed in terms of the
0 =ap+ a1C§%)3 invariant operator [21]. The eigenvalues of
the Casimir invariants are as follows (Cé%g) =1+ u’+
e300+ ), (C5) = 0= WA+ i+ 3+ 20+
3), (Cs) = L(L+1).

‘We note here, that the connection of the fundamental struc-
ture models, as formulated in terms of MUSY shows some
similarity to the relation revealed between the symplectic and
cluster models in [22,23]. In particular, Suzuki and Hecht
determined the relation of the wave functions of these ap-
proaches, so they gave a quantitative basis for the cluster-shell
overlap (or coexistence). In spite of their similar spirit, how-
ever, there are some differences between the two methods as
well. We mention here some aspects of MUSY, which are new,
in comparison with the essential studies of [22,23]. In MUSY
not only the symmetries of the wave functions are studied
but also the symmetries of the operators; actually, the relation
of the models is presented in terms of a dynamical symme-
try [3,9]. MUSY usually deals with the complete no-core
model space. In fact, the relation between the shell, collective,
and cluster models is established for the SU(3) basis, so it is
valid for the symplectic model, as well as for the multishell
extension of the Elliott model (without explicit appearance of
the symplectic structure) too [24].
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FIG. 1. Currently known experimental energies of positive parity
states as a function of J(J 4 1) in the **Mg nucleus [25]. Green
dots indicate definite spin-parity, while red stars show the uncertain
ones. Red lines between states indicate gamma transitions. The black
lines show the assumed rotational bands, which we have labeled with

K™ quantum numbers. Only the ground state (GS) and 2} bands are
available in the experimental database [25].

III. THE SPECTRUM OF THE *MG NUCLEUS
A. Background

The experimental data of the low-energy region are com-
piled in [25]. Two bands are well-established from the
experimental side, and the energy and spin-parity of many
states are known. Some spin-parities are uncertain. They are
shown in Figs. 1 and 2.

Data on high-lying '>C + '2C resonances are collected
in [26]. Theoretical predictions for shape isomers are
available from energy-surface calculations based on the
Nilsson model [27], and from the Bloch-Brink «-cluster
model [28-30]. The stable shapes were also determined
from the stability and self-consistency calculation of the
SU(3) symmetry (or quadrupole deformation) [31], and the
result was compared in [32] with those of energy-minima
considerations.

B. Model spaces

We construct the US7 (4)-scalar (i.e., spin-isospin zero) sec-
tor of the no-core shell model, which we call quartet-model
space [14]. In the construction procedure the Pauli-exclusion
principle is fully observed, and spurious excitations of the
center of mass are excluded.

Cluster model spaces are obtained by characterizing the
intrinsic structure of the clusters by their leading U(3) repre-
sentations, i.e., [4,4,0] for 12C, [0,0,0] for *He, and [12,4,4] for
20Ne, and coupling these representations with a large variety
of their relative motion [19,20]. Physically, it means that not

J
01 2 3 4 5 6 7 8
B9 ¢ = | | / |
[ 24Mg negative parity states
25 * !
20- : !

R TR
e MR
* kA A

—~
(=4

—

N

*

—~
—
'
w
—
Tk
DDA A4

Iy, :

* ke
*obewE

¢ 02 6 12 20 30 42 56 72
JJ+1)
FIG. 2. Currently known experimental energies of negative par-
ity states as a function of J(J + 1) in the 24Mg nucleus [25]. The
notations are the same as in Fig. 1.

only the ground state, but also the rotational band built on the
ground state are included in the description as the internal
cluster degree of freedom, thus any relative orientations of
the clusters and the molecular axes are allowed. In the case
of 2C + '2C clusterization, a further symmetry requirement
has to be taken into account due to the component clusters
being identical. The most relevant representations are listed
in Table I, together with their multiplicities both in the shell
and in the cluster models. When the multiplicity is one both
in the shell and in the cluster configurations, their wave func-
tions are identical with each other due to the fact that in the
shell-model expansion of the cluster state only a single term
is included in the superposition. [Basis states of different U(3)
representations are orthogonal to each other.]

C. Calculation of the spectrum

MUSY is usually applied with a simple dynamically sym-
metric Hamiltonian of Eq. (4), where the first term is the
harmonic oscillator Hamiltonian, which can be taken from
systematics [33], giving fiw = 12.595 MeV for **Mg. The
parameters a, b, d, ay, a; are fitted to experimental data. The
second term includes the quadrupole-quadrupole interaction,
as in the Elliott model [10], the next term can distinguish
between prolate and oblate deformation, and the last one is
the rotational part. K? lifts the degeneracy of states with the
same angular momentum within an SU(3) multiplet.

In the fitting procedure, we included the members of the
two well-established bands (with weight 1.0, except the uncer-
tain 67 state of 2fr band, which has a weight of 0.5.), and took
into account four high-lying shape isomers (with weight 0.1).
They were obtained from three different model calculations in
good agreement with each other [32]. In particular, the energy
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TABLE I. The ten most deformed representations of the 0, 1, 2,
and 4 fiw (T = 0) quartet model space of the **Mg nucleus. Here, n
denotes the major shell excitation, C® gives the expectation value
of the second order Casimir invariant of SU(3), and the last three
columns show the multiplicities of the representations in the quartet
and cluster model spaces.

n Uu@) SUB) C® quartet 2C+72C »Ne+a
[1684] (84) 148 1 1 1
[1585] (7.3) 109 1 1

[14,10,4] 4,6) 106 1 1

[157.6] (&1) 100 1 |

0 [14,9,5] 5.4) 88 1

[12,12,4] (0,8) 88 1 1
[14.86] (62) 76 2 2
[13.105] (35) 73 1
[13,9,6] 4,3) 58 1
[138,7] (5.1) 49 2 1
[18,7,4] (11,3) 205 1 1 1
[17.84] 94 172 2 1
[16,103] (6.7) 166 1

[17,7,5] (10,2) 160 3 2

1 [17.66] (11,0) 154 1

[1694] (7.5) 145 4 1
[14,12,3] 2,9) 136 1

[16,8,5] (8,3) 130 7 2

[15,10,4] (5,6) 124 6 1
[16,7.6] (O.1) 121 7 1

[20.64] (142) 276 1 1 1
[19,8,3] (11,5) 249 1 1

[19,7.4] (123) 234 4 2 1
[19.6,5] (13,1) 225 3 1

2 [18,9,3] (9,6) 216 2

[18,8.,4] (10,4) 198 13 3 1
[16,122] (4,10) 198 1

[17,10,3] (7,7) 189 4

[18,7,5] (112) 186 15 1

[18,66] (12.0) 180 10 1

[24.44] (200) 460 1 1 1
[23.63] (17.3) 409 1 1

[23,5,4] (18,1) 400 3 1 1
[22.82] (146) 376 1 1

4 22731 (154) 358 6 1
[22,6,4] (16,2) 346 20 2 1
[22,5,5] (17,0) 340 8
2192] (127) 334 2
[21,8,3] (13,5) 313 22 2

[16,16,0] (0,16) 304 1

surfaces of the Nilsson-model [27], and «-cluster model were
studied [28-30], as well as the stability and self-consistency
of the SU(3) symmetry [32]. Their U(3) quantum numbers
are [24,4,4], [16,16,0], [28,8,0], and [60,0,0]. The energies of
the band-heads, as shown in the right part of Fig. 3 were taken
from the results of the Bloch-Brink model [28-30]. They were
needed in order to be able to fit our parameters, since the
two well-established low-lying bands belong to a single U(3)
representation. By including these states, we could determine

the gross features of the energy spectrum, which is needed for
the investigation of the 07 state.

Then, we arranged the experimentally observed states into
bands, according to the model spectrum. In the first step
candidates for rotational bands were obtained from the exper-
imental data of Figs. 1 and 2, by requiring straight lines which
connect three or more states with well-defined spin-parity.
Those SU(3) quantum numbers were associated to them from
the model space of Table I, which correspond to the largest
deformation, i.e., lowest energy with the proper K™ content.
The states with known spin-parity were also weighted by 0.1,
while the uncertain ones were weighted with 0.05.

The goodness of the fit is measured by

exp Eth
F = Zw(l) exp) ). 5)

The values of the parameters are as follows: a =
—0.148228 MeV, b = 0.000392 MeV, d = 0.666544 MeV,
ap = 0.141965 ﬁv, a; =0. 015811M Vs belonging to F =
0.11378. Figure 3 shows the model spectrum of these param-
eters in comparison with the experimental one.

The in-band E2 transitions are given by the formula [34]

[LAITIIL)
2L+ 1
2L+
T2L+ 1

2
x (ID2/| QKL PCH ) (6)

B(E2,L; — Ly) =

o?[((MOKL;,

where the o? = 0.817 W.u. parameter is obtained from the
B(E2; 21+ — Of) transition strength of 21.5 W.u. [35]. Here,
the operator 77 is related to the mass quadrupole operator and
effective charge [20]

T2 J— eeff 2 (7)

The ((Aw)KL;, (11)2||(A)KLy) symbol stands for an
SU@B3)D SO(3) Wigner coefficient [36]. The measured (and
calculated) E?2 transition strengths, in Weisskopf units, are as
follows: in the ground band 21.5 (21.5), 39 (28.9), and in the
second band 58 (38.4).

D. 2C + 2C resonances

Once the parameters of the Hamiltonian are determined
from the quartet spectrum, MUSY determines the cluster
spectra free from ambiguity. The predictions for the cluster
spectra are shown in Fig. 4. These high-lying resonances
are not arranged, of course, in rotational bands, therefore,
the relevant comparison can be made between the number
of states with a definite spin-parity in the energy window,
where experiments could be carried out. This is also shown
in Table II.

The large-scale distribution of band-heads of the quartet,
12C 4+ 12¢, and *°Ne + *He configurations are shown in Fig. 5.
Please note the change of the density of states in the three
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FIG. 3. The spectrum of the semimicroscopic algebraic quartet model (upper part) in comparison with experimental data for the **Mg
nucleus (lower left part) and the results of Bloch-Brink « cluster model (lower right part). Experimental bands are labeled by K™ quantum
numbers, and the model states by n(x, w)K™ labels. The width of the arrows between the states is proportional to the strength of the E2

transition.

configurations. The quartet sector contains all the shell-model
band heads with Wigner-scalar (spin-isospin zero) symmetry.
The two binary cluster configurations also have these quantum
numbers, but they contain only those states which are built
from the two clusters with ground intrinsic states. Thus many
nucleon degrees of freedom are frozen, resulting in much
less density of states. The cluster model space is obtained
from the coupling of the internal cluster degrees of freedom
to that of the relative motion, and due to the fact that the
20Ne + *He configuration has a double-closed-shell cluster, its
state density is smaller than that of '>C + '*C.

+°C Th. vs. Exp.
max| 20.4|121.5|22.9124.9|27.4|129.7|33.9|36.4|38.7| 44.4| 50.4

Enin[17.7]18.1]17.9 23.1]26.8[31.2(32.7|37.4|43.4[494
Liol21l416 18 110112114116 118 120

FIG. 4. Theoretical spectra of even-momentum states of
12C 4 12C clusterization compared to experimental data in different
energy windows. For each angular momentum, the bottom of
the energy window is min(Eyp) —0.5 MeV and the top is
max(Eeyp) + 0.5 MeV. The branchings indicate states that are close
to each other. Each column shows the experimental states on the
right and the theoretical states on the left.

IV. THE 0* SPECTRA

The extension of the Hoyle-state paradigm is based on the
existence and location of 0™ resonances, which have a strong
coupling to the '>C+ '>C and *’Ne +« reaction channels.
Therefore, in this section, we investigate the 0" spectrum of
the quartet model, as well as those of the two relevant cluster
configurations. These spectra are given in Fig. 6, which also
locate the 2°Ne 4+« and '>C + '2C threshold energies.

As mentioned above, cluster configurations are character-
ized by dominant U(3) symmetries of the internal structure
of the clusters, i.e., the coupling to the reaction channels are
handled in terms of the leading representation. As can be
seen, the density of 0T resonances of the quartet spectrum is
comparable with the observed one, both in general, and in the
neighborhood of the '2C 4 '?C threshold energy. The density
of such 0 states, however, is smaller for those which overlap
with the '2C + '2C and with the *°Ne 4« reaction channels,
and especially those which overlap with both. This observa-
tion seems to indicate that not all the 0" states observed in
the recent experiment [2] have a structure, which contains
2C4+12C and *Ne 4« cluster configurations in the leading
representation approximation.

TABLE II. Number of 'C+ '2C resonance states in energy
windows indicated by the experimental observations. The energy
windows of the theoretical calculation were set between min(Eey,) —
0.5 and max(Ey) + 0.5 MeV.
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FIG. 5. The landscape of the quartet and cluster band-heads in
the 2*Mg nucleus.
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FIG. 6. 0% spectra in quartet and cluster model spaces in **Mg.
The lower line represents the 2’Ne +« threshold energy and the
upper one the '2C + 2C threshold energy. The second from the right
spectrum represents the core-plus-alpha configuration with excited
2ONe (see text for further explanation). The branchings denote states
with multiplicities greater than 1. Dashed lines indicate the states
also visible in the low-energy spectra, and red dotted lines indicate
the states found in [2].

Let us think in terms of the reaction picture, which pays
attention to the intermediate region (in between the entrance
and exit channels) when all the nucleons are in the close
neighborhood of each other within the range of the strong
interaction. Then reactions can be classified according to the
population of the intermediate states, which are organized into
hierarchic order: simple states, doorway states, hallway states,
etc. [37-40]. From this viewpoint, the dense pattern of 0T
states observed near the threshold energy seems to emerge
from the fragmentation of the simple (cluster) state due to the
coupling to some background states. Here, we investigate one
possibility of this kind from the microscopic viewpoint.

In the cluster configurations considered here so far, which
give the connection to the reaction channels, each cluster
is characterized by a single U(3) representation, i.e., by a
single intrinsic state of well-defined quadrupole shape. The
intrinsic cluster structure is coupled to the relative motion of
the clusters on the U(3) level—the so-called strong coupling
cluster scheme. Here, we consider the possibility of allowing
other intrinsic cluster states without major-shell excitation,
i.e., we take into account OZiw intrinsic cluster excitations. For
12C there is no other U(3) symmetry in the valence shell. For
20Ne the following U(3) (and the corresponding SU(3)) rep-
resentations can be taken into account [12,4,4] (8,0), [10,6,4]
4,2), [8,8,4] (0,4), [8,6,6] (2,0). The sequence of this order
corresponds to the decreasing values of the second order
SU(3) Casimir invariants, i.e., decreasing quadrupole defor-
mation. Figure 6 shows the distribution of the 0" states for
these larger model spaces too.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated some questions raised by
the notion of extending the Hoyle-state paradigm to '2C + '2C
fusion [2]. The key concept is that there is (are) 0" res-
onance(s) near the threshold energy, in common with the
triple-o reaction which produces the >C nucleus. In [2], four
candidate states were reported from an experiment of inelastic
alpha-scattering on 2*Mg. The preference of these states to
break-up into the 2°Ne 4+« decay channel is considered to be
a further support for this interpretation.

Here, we have investigated the 0% spectra of different
configurations of >*Mg. In particular, we have considered the
quartet states, i.e., UST (4) Wigner-scalar (spin-isospin zero)
sector of the no-core shell model, and the '2C + '2C, as well
as 2°Ne + *He cluster configurations, and their intersection.

In calculating spectra, we have applied Hamiltonians
suggested by the multiconfigurational dynamical symmetry,
which is able to handle different configurations in a unified
way. Its phenomenological energy functional contains 3 + 2
fitting parameters for the energy functional and the moment
of inertia. In this procedure, the states of the two rotational
bands established by the experiments [25] were taken into
account with weight 1.0, while those which we could arrange
into bands from the experimental compilation [25], as well as
the theoretically predicted shape isomers of the highly excited
and deformed region (from three different models) [32] had
weights of 0.1. The model spectrum approximates the experi-
mental one reasonably well (Figs. 3, 4, 5).
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Based on the description of the low-energy quartet spec-
trum, MUSY is able to give a parameter-free prediction for
the distribution of the states of the high-lying '>C + '2C res-
onances, as shown in Fig. 4 and Table II. The similarity of
the density of model states to those of the observed ones
is considered as a support for the reliability of the MUSY
description.

The distribution of 0% states of different configurations
shows the following pattern: the density of the quartet states,
both in general, and in the threshold energy region, is sim-
ilar to that of the experimental one. The number of 0"
states in both cluster configurations, and especially in their
intersection is considerably less. This shows that the re-
cently observed four 0" resonances are fragmented, and are
not simple '>C+ '2C cluster states, with intrinsic ground
states of both clusters. We have carried out some kind of

quantitative comparison in this respect. If one takes into
account all the quartet states as background states for the
coupling, the densities from the experimental and theoretical
sides are comparable. In the '>C 4 '>C cluster configuration,
major-shell excitations are needed in the internal cluster struc-
ture for the observed density of O states.

In short, the 0" resonances recently identified in experi-
ment [2] do not seem to be simple '>C + '2C cluster states,
but their existence is in line with the picture of fragmenting a
simple state by coupling it to the 0 quartet states.
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