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We adapt the proton-neutron finite-amplitude method, which in its original form is an efficient implementation
of the Skyrme quasiparticle random phase approximation, to include the coupling of quasiparticles to like-
particle phonons. The approach allows us to add beyond-quasiparticle random-phase approximation correlations
to computations of Gamow-Teller strength and β-decay rates in deformed nuclei for the first time. We test the
approach in several deformed isotopes for which measured strength distributions are available. The additional
correlations dramatically improve agreement with the data, and will lead to improved global β-decay rates.
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I. INTRODUCTION

The r process, which is responsible for synthesizing many
of the heavy elements, is not fully understood [1]. It is thought
at present to occur primarily in neutron-star mergers, but may
also take place in supernovae. To pin down the conditions
under which rapid neutron capture and β decay can lead
to observed isotopic abundances, we need to understand the
properties of nuclei that are too neutron-rich to be made in lab-
oratories. Among the most important properties are β-decay
rates.

Computing these rates in all neutron-rich isotopes is a
difficult undertaking. Though ab initio methods for solv-
ing the nuclear many-body problem have made great strides
[2–5], they have not yet been extended to heavy nuclei far
from closed shells. The best approach for now is energy-
density-functional theory, in particular, its version of linear
response, which relates density oscillations to transition rates.
References [6–9] have applied the charge-changing version
of the Skyrme or relativistic quasiparticle random-phase ap-
proximation (QRPA) to produce tables of β-decay rates in
thousands of isotopes. The method can be used either to
compute transition rates directly through the diagonalization
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of a QRPA Hamiltonian matrix, or to extract the rates
from response functions. The Hamiltonian matrix is so
time-consuming to build, however, that the matrix approach
in Ref. [9] required the assumption of spherical symme-
try to obtain the thousands of rates needed for simulating
nucleosynthesis.

With the advent of the finite amplitude method (FAM)
[10,11] for computing a QRPA linear response, calculations
of strength distributions in deformed isotopes [12–14] became
straightforward. The global tables in Refs. [6,8] were obtained
with the charge-changing version of this approach, called the
proton-neutron FAM (pnFAM) [15], and the assumption only
of axial symmetry. The QRPA within density-functional the-
ory has limitations, however, no matter how it is formulated.
A linear response produced by oscillations of a mean field is at
best an adiabatic approximation, correct only at an oscillation
frequency of zero, even if the time-independent functional
on which the response is based is exact (which it never is).
One can obtain a more realistic frequency-dependent response
by coupling the quantized oscillations—phonons—to other
phonons or to incoherent pairs of the quasiparticles that com-
pose the phonons. The first option is the phonon-coupling
(or two-phonon) model, in which single-QRPA-phonon states
are supplemented by those with two phonons. The approach
is applied to Gamow-Teller strength in Refs. [16] and [17];
a computationally efficient implementation for large single-
particle spaces appears in Ref. [18]. The second option,
when developed systematically, leads in lowest order to the
time-blocking approximation [19–22], which is equivalent to
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a density-functional version of the “quasiparticle-vibration-
coupling” model [23,24]. Within Skyrme density-functional
theory, this approximation has been used in a limited num-
ber of spherical nuclei to compute Gamow-Teller strength
distributions [25] and β-decay rates [26]. The phonons are
like-particle excitations that are emitted and reabsorbed by
the proton and neutron quasiparticles that underlie the exci-
tations of the charge-changing QRPA. To make the picture
produce the correct zero-frequency response, which is de-
termined completely by the static Skyrme functional, one
can employ the subtraction procedure first proposed in
Ref. [27].

The coupling of quasiparticles to phonons significantly
improves agreement with data in spherical nuclei. One
would like to use the method in global calculations of β-
decay rates but faces the same problem encountered by the
QRPA itself a few years ago: the usual implementation is
through a Hamiltonian matrix, which is too time-consuming
to construct when spherical symmetry cannot be exploited.
Because the vast majority of nuclei are deformed, we thus
need a different formalism. An extension of the pnFAM
is the obvious choice. A formalism for the extension of
the like-particle FAM with relativistic density function-
als was developed, though not applied, in Refs. [28,29].
Here, we both show how to extend the pnFAM to include
the coupling of quasiparticles to like-particle phonons and
use the extension to compute Gamow-Teller distributions
in several deformed isotopes, finding the agreement with
experiment to be dramatically better than in the original
pnFAM.

Treating β decay in our new approach is a separate task
because its rates are sensitive to small amounts of low-lying
Gamow-Teller strength, which the Skyrme functionals that we
have used in the past were adjusted to reproduce within the
ordinary pnFAM. The parameters of the functionals must thus
be refit before an improved table of rates can be created. We
can, of course, demonstrate the effects of coupling quasiparti-
cles to phonons on a few representative β-decay rates without
refitting, and we do that here. The global application of the
approach faces an additional obstacle, however, to obtain
the interaction between quasiparticles and phonons, we apply
the like-particle FAM in a way that will be hard to auto-
mate for use in the thousands of isotopes for which we need
β-decay rates. Towards the end of this paper, we discuss
relatively straightforward steps that will remedy the problem,
deferring their implementation and the Skyrme-parameter re-
fitting to the future.

The rest of the paper is structured as follows. Section II
presents our method for adding the coupling of quasipar-
ticles and phonons to the pnFAM and discusses subtleties
that arise in deformed nuclei. Section III presents Gamow-
Teller distributions in 76Ge, 82Se, and 150Nd, and compares
them with experimental data from charge-exchange reactions.
Section IV presents β-decay rates in 12 deformed isotopes,
showing that the new physics usually increases those rates.
Section V contains a road map of sorts for the computation
of β-decay rates in all unstable nuclei, a discussion of the
explicit treatment of correlations within a density-functional
framework, and a conclusion.

II. FORMALISM

Our goal is to compute the strength distribution produced
by a charge-changing operator F :

F =
∑

pn

fpna†
pan, (1)

where the coefficients fpn are arbitrary. The strength distribu-
tion can be written in the form

dB(F, ω)

dω
= − 1

π
Im SF (ω), (2)

where ω is the frequency with which F perturbs the nucleus
(or equivalently, the amount of energy it supplies) and the
“response function” SF (ω) is

SF (ω) = −
∑

M

( |〈M|F |0〉|2
�M − ω

− |〈M|F †|0〉|2
�M + ω

)
. (3)

Here, |0〉 is the ground state of the initial nucleus and the
|M〉’s are states in the final nuclei populated by single-charge-
exchange processes with energies �M above the energy of |0〉.
The perturbing frequency/energy ω is a complex number a
distance � above the real axis. Though � is supposed to be
taken to zero at the end of any calculation, nonzero values
supply widths to peaks that mock up effects of the continuum
(which our calculations neglect).

After a Hartree-Fock-Bogoliubov (HFB) transformation,
without proton-neutron mixing, the operator F can be written
as

F =
∑
πν

(
F 20

πν α†
πα†

ν + F 02
πν αναπ + F 11

πν α†
παν + F 11

νπ α†
ναπ

)
,

(4)
where the Greek letters π and ν label proton and neutron
quasiparticle orbitals, and α† and α represent operators that
create and annihilate quasiparticles. The F i j

πν in Eq. (4) depend
on the f ’s in Eq. (1) and the HFB matrices U and V [30] that
specify the transformation from particles to quasiparticles. In
the pnFAM, the response function can be written in the form

SF (ω) =
∑
πν

[
F 20∗

πν Xπν (ω) + F 02∗
πν Yπν (ω)

]
, (5)

where the X ’s and Y ’s are the fluctuation amplitudes in
density-matrix elements induced by the action of F , applied
at frequency ω. The pnFAM equations for these amplitudes
are [15]

Xπν (ω) = −δH20
πν (ω) + F 20

πν (ω)

επ + εv − ω
,

Yπν (ω) = −δH02
πν (ω) + F 02

πν (ω)

επ + εv + ω
. (6)

Here, the ε’s are quasiparticle energies and δH20
πν and δH02

πν

are the pieces of the fluctuating generalized HFB mean-field
Hamiltonian that multiply pairs of quasiparticle creation and
annihilation operators in the same way as do F 20

πν and F 02
πν in

Eq. (4). Because δH20 and δH02 depend on the X ’s and Y ’s,
Eq. (6) is most easily solved through iteration.

In the QRPA, the states |M〉 are simple two-quasiparticle
and two-quasihole excitations of the ground state |0〉. We want
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to make these simple states more realistic by allowing them to
mix with states that include coherent like-particle excitations.
The most straightforward way of doing that is to allow the
emission and reabsorption of like-particle QRPA phonons by
one of the quasiparticles in the two-quasiparticle excitation
of |0〉, or the exchange of such a phonon between the two.
When only one phonon is allowed to exist at a time within a
time-ordered picture for the two-quasiparticle propagator, we
end up with the quasiparticle-vibration coupling model [25]
or, equivalently, the time-blocking approximation [20,22].

The modifications to the FAM equations induced by the
quasiparticle-phonon coupling can be derived in a number of
ways. One can, for example, follow the equations of motion
method for charge-changing excitations, for example, using
the ansatz

|M〉 = Q†
M |0〉 (7)

with

Q†
M =

∑
πν

(
X M

πνα
†
πα†

ν − Y M
πναναπ

+
∑

N

X̃ M
πνNα†

πα†
νQ†

N − Ỹ M
πνNQNαναπ

)
. (8)

Here, Q†
N creates the N th like-particle phonon (with non-

negative energy) in the usual like-particle QRPA, the X ’s and
Y ’s are now charge-changing QRPA-level amplitudes, and the
X̃ ’s and Ỹ ’s are beyond-QRPA amplitudes that specify the

ways in which quasiparticles couple to phonons. One might
also include terms in which pairs of like quasiparticles couple
to charge-changing phonons, but those are less important [31]
and we neglect them here.

When the complicated amplitudes X̃ and Ỹ are eliminated
in the usual way in favor of a propagator in the space of
complicated excitations, one finds, instead of Eq. (6), relations
that we refer to as the pnFAM* equations:

Xπν (ω) = −δH20
πν + [W̃ (ω)X (ω)]πν + F 20

πν

επ + εν − ω
,

Yπν (ω) = −δH02
πν + [W̃ ∗(−ω)Y (ω)]πν + F 02

πν

επ + εν + ω
, (9)

where

W̃ (ω) = W (ω) − W (0) (10)

and

[W̃ (ω)X (ω)]πν =
∑
π ′ν ′

W̃πν,π ′ν ′ (ω)Xπ ′ν ′ (ω),

[
W̃ ∗(−ω)Y (ω)

]
πν

=
∑
π ′ν ′

W̃ ∗
πν,π ′ν ′ (−ω)Yπ ′ν ′ (ω). (11)

The matrix W , which includes a phonon-loop correction to
single-quasiparticle energies and a phonon-exchange interac-
tion (see Fig. 1) is given by

Wπν,π ′ν ′ (ω) =
∑

N

{ ∑
π1

〈π |H |π1, N〉 1

ω − [ωN + (επ1 + εν )]
〈π ′|H |π1, N〉∗δν ′ν

+
∑
ν1

〈ν|H |ν1, N〉 1

ω − [ωN + (επ + εν1 )]
〈ν ′|H |ν1, N〉∗δπ ′π + 〈π |H |π ′, N〉 1

ω − [ωN + (επ ′ + εν )]
〈ν ′|H |ν, N〉∗

+ 〈ν|H |ν ′, N〉 1

ω − [ωN + (επ + εν ′ )]
〈π ′|H |π, N〉∗

}
. (12)

Here, ωN is the energy of the N th like particle phonon. Each of
the four terms in Eq. (12) corresponds to one of the diagrams
in Fig. 1. Using W̃ (ω) instead of W (ω) in Eq. (9) implements
the subtraction procedure [27] that guarantees that the static
response is the same as in the unmodified pnFAM [32].

Within the expression in Eq. (12) for W , which is some-
times called the “spreading matrix,” are quasiparticle-phonon
vertices, matrix elements of the Hamiltonian with a single
quasiparticle on one side and another quasiparticle of the same
type plus a phonon on the other. The phonons can be excited
by a like-particle one-body operator G:

G =
∑
pp′

Gpp′a†
pap′ +

∑
nn′

Gnn′a†
nan′ , (13)

where p, p′ label proton orbitals and n, n′ label neutron or-
bitals. In like-particle linear-response theory, G generates
fluctuations δH in the like-particle HFB Hamiltonian. The
quasiparticle-phonon vertices can be related to δH11, the

coefficients of operators of the form α†
ναν ′ and α†

παπ ′ in the
fluctuating like-particle HFB Hamiltonian, through a contour
integral [14] or, as Ref. [28] shows, through the relation

〈β|H |β1, N〉 = i lim
�→0

�

〈N |G|0〉δH11
ββ1

(�N + i�). (14)

Here, β and β1 can represent either proton or neutron quasi-
particle orbitals as long as they are of the same type, and
〈N |G|0〉 is the matrix element connecting the ground state
with the N th phonon. In the like-particle FAM, this last quan-
tity can be extracted up to an arbitrary and irrelevant phase
from the like-particle response function SG,

SG(ω) = −
∑

N

( |〈N |G|0〉|2
ωN − ω

− |〈N |G†|0〉|2
ωN + ω

)
, (15)

as

〈N |G|0〉 = lim
�→0

√
i�SG(ωN + i�). (16)
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FIG. 1. Diagrams illustrating the four contributions to the
“spreading matrix” W in Eq. (12). Blue lines represent protons and
red lines neutrons. Black squiggly lines represent phonons, either
emitted and reabsorbed by a single nucleon or exchanged between
nucleons.

In this paper, in place of the generic charge-changing
operator F we will usually use the components of the Gamow-
Teller operator,

FK =
∑

i

σK (i)τ−(i), (17)

where the sum is over nucleons, K labels the projection of the
angular momentum along the z axis, and τ− ≡ 1

2 (τx − iτy)—
note the nonstandard normalization—turns neutron states into
proton states while annihilating the latter. In place of G we
will use the multipole operators

GT =0
LK =

∑
i

rL
i YLK (θi, ϕi ), GT =1

LK =
∑

i

rL
i YLK (θi, ϕi )τz(i),

(18)
where τz is 1 for neutrons and −1 for protons. Here, L is any
integer, r is the radial coordinate, and YLK is the spherical
harmonic with angular momentum L and z-projection K . For
a given charge-changing projection K , like-particle phonons
created by operators GT

L,K ′ with any value of K ′ can play a role.
To eliminate the spurious states corresponding to translation
and rotation, we simply discard phonons with an energy less
than 0.5 MeV.

III. GAMOW-TELLER STRENGTH FUNCTIONS

The computation of strength functions proceeds as follows.
First, we use the code HFBTHO [33,34] to solve the HFB
equations for arbitrary Skyrme functionals. In the work here,
we use a single-particle space consisting of 16 shells. With
quasiparticle energies and wave functions in hand, we then
run the like-particle FAM enough times to generate all states
excited by the natural-parity operators in Eq. (18) with L � 6.
(Our code is not yet set up for the less-important unnatural-
parity excitations.) To isolate those states, in each multipole
(specified by L and K in spherical nuclei, and parity and K in
deformed nuclei) we solve the FAM equations for 40 values
of the excitation frequency ω between 0 and 20 MeV, with

FIG. 2. (a) Gamow-Teller strength distributions for the nucleus
82Se. The red dashed and solid blue curves, representing results
calculated with the pnFAM and pnFAM* (see text), have been scaled
by 0.62. The black curve, from Ref. [41] is experimental data. In ob-
taining each curve, we chose the imaginary part � of the perturbing
frequency to be 0.5 MeV. (b) Integrated Gamow-Teller strength.

an imaginary component of 0.5 MeV, to identify the peaks in
the strength function. For each such peak we run the FAM
several times again, with the real part of ω at the energy of the
peak and the imaginary part decreasing towards zero, and use
Eq. (14) to compute the quasiparticle-phonon vertices.

The final step is to use Eq. (12) to construct the spreading
matrix W and solve the pnFAM* equations in Eq. (9). Rather
than store the four-index matrix W , we store the simpler
quasiparticle-phonon vertices and construct W on the fly as
needed. After obtaining Xπν (ω) and Yπν (ω) for many values
of ω near the real axis, we use Eqs. (2) and (5) to construct first
the response and then the Gamow-Teller strength distribution.

In what follows, we display results for the strength dis-
tribution obtained with the Skyrme functional SGII [35,36],
which was designed for spin-isospin excitations, with the
same effective interaction in the time-even and time-odd chan-
nels. The SGII parametrization has been used successfully
in many like-particle (Q)RPA calculations, including those
that examine low-lying states [37–39] and the position of the
giant dipole resonance [40]. Here, we supplement the func-
tional with mixed surface-volume pairing, with strengths of
−265.25 MeV fm3 for neutrons and −340.0625 MeV fm3 for
protons, and a pairing window cut off at 60 MeV. Distributions
have been measured in several nuclei that can undergo ββ

decay (to provide information that bears on the matrix ele-
ments that govern the two-neutrino and neutrinoless versions
of that process), and we begin with the 82Se. Our HFBTHO cal-
culations predict the nucleus to have mild axially symmetric
deformation with the quadrupole-deformation parameter,

β =
√

π

5

Q2

R2
, (19)

given by β = 0.13. Here, Q2 is the usual quadrupole moment
and R2 the mean-square nuclear radius.

Figure 2 shows the distributions both of the strength itself
and the summed strength with each scaled by a factor of 0.62
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FIG. 3. Same as Fig. 2, but restricted to strength below 8 MeV.

that would correspond to an effective value for the axial-vector
coupling constant gA of 1.0 in β decay calculations. The
figure also displays the measured strength [41], the overall
normalization of which is highly uncertain. The most salient
feature of the pnFAM* strength is that it is spread, and thus
agrees much better with the experimental distribution. It is not
very quenched, however, which is why we scale it; evidently
the absence of multiphonon emission and reabsorption in W
is responsible for the small quenching. (As in most extended
QRPAs, the Ikeda sum rule is preserved, so that any quenching
of low-energy strength implies a long tail at high energies,
as in Ref. [42]. The inverse-energy weighted sum is is also
guaranteed, by the subtraction procedure, to be be the same
in the pnFAM and pnFAM*. The energy-weighted sum can
change, but not dramatically.) Both the spreading and lack of
significant quenching with the coupling of quasiparticles to vi-
brations are consistent with results in spherical nuclei [25,42].
But, in a promising sign for the ability of these calculations to
improve on pnFAM calculations of β-decay rates, both Figs. 2
and 3 (which displays the low energy part of Fig. 2) show the
pnFAM* low-lying strength, by far the most important for β

decay, to be much closer to that of experiment.

FIG. 4. Same as in Fig. 2 but for 76Ge.

FIG. 5. Same as in Fig. 2 but for 150Nd, with the experimental
data from Ref. [43].

Figure 4 shows the same curves as Fig. 2 but for the nucleus
76Ge. Recent works, both experimental [44,45] and theoretical
[46], suggest that this nucleus is triaxial, but we (are forced
to) treat it as axially symmetric, with a deformation parameter
from HFBTHO of β = 0.12. The same features are apparent
here as in Fig. 2.

Figure 5 shows the curves for the significantly heavier
and more deformed nucleus 150Nd, which in our calculations
has β = 0.21. Again, the pnFAM* improves agreement with
experiment overall, but an even stronger quenching than the
0.62 we apply is called for.

The addition of the spreading matrix W to the pnFAM
slows the computation, both because of the time required to
evaluate W and because the values for Xπν (ω) and Yπν (ω) in
the iterative solution of Eq. (9) converge more slowly than
do those in Eq. (6). To speed the computation, we would
like to include as few like-particle phonons as possible in the
spreading matrix in Eq. (12). But how do we decide which
are the most important and how many do we include? These
questions were addressed in spherical nuclei in Ref. [47]. The
authors showed that to evaluate the importance of the N th
phonon one can reliably use the ratio of the expectation value
〈V 〉N of the interaction in the phonon state to the phonon
energy ωN :

vN ≡ 〈V 〉N

ωN
. (20)

This measure, justified carefully in Ref. [47], reflects the per-
turbative phonon exchange, which accentuates the importance
of low-energy phonons, and the relation between 〈VN 〉 and the
quasiparticle-phonon vertices in Eq. (14). After some manip-
ulation, vN can be written in the form

vN = 1 − 1

ωN

∑
αβ

(εα + εβ )
(∣∣X N

αβ

∣∣2 + ∣∣YN
αβ

∣∣2
)
. (21)

Here, the X ’s and Y’s are the like-particle QRPA analogs of
pnQRPA X ’s and Y ’s in Eq. (8), and the indices α and β run
over all pairs in which both label protons or both label neu-
trons. Equation (24) in Ref. [14] implies that we can extract

044308-5



LIU, ENGEL, HINOHARA, AND KORTELAINEN PHYSICAL REVIEW C 109, 044308 (2024)

FIG. 6. Gamow-Teller strength distribution in 82Se obtained in
the pnFAM* with several values for the cutoff parameter vmin. The
lower that quantity, the more phonons the calculation includes. As
before, we include all natural-parity multipoles with L � 6.

the X ’s and Y’s as the limits

X N
αβ = −i lim

�→0

�

〈N |G|0〉Xαβ (ωN + i�),

YN
αβ = −i lim

�→0

�

〈N |G|0〉Yαβ (ωN + i�). (22)

Here, G is one of the multipole operators in Eq. (18) and the
Xαβ (ω) and Yαβ (ω) are the like-particle FAM amplitudes, i.e.,
the analogs of the pnFAM X ’s and Y ’s in Eq. (6).

Figure 6 shows the results in 82Se of requiring that |vN |
be larger than a critical value vmin as that quantity decreases.
At the smallest value, vmin = 0, there is no truncation and
the calculation includes all the 150 phonons corresponding
to distinct maxima in the like-particle strength functions,
when plotted with � = 0.5 MeV. At the values vmin = 0.3,
and 0.5, the calculation includes 62 and 35 phonons, respec-
tively. Although truncation has a noticeable effect in the giant
Gamow-Teller resonance, even the most dramatic one does
very little at low energies. That means that when calculating
β decay rates, we can expect to get away with relatively few
phonons. The effects of truncation in 76Ge and 150Nd are
similar.

To conclude this section, we look at the effects of limiting
ourselves to like-particle excitation operators with L � 6 in
Eq. (18). Figure 7 shows strength distributions in 82Se for
different values Lmax of the maximum angular momentum in
the excitation operators. One can see that by Lmax = 5 the
distribution has converged. The pattern is almost exactly the
same in the other two isotopes we examined earlier. Of course,
as noted in Ref. [47], Skyrme interactions create divergences
in infinite model spaces; the convergence we observe may be
different in model spaces that are truncated differently.

IV. β-DECAY RATES

As we have noted, β-decay rates depend sensitively on
details of the low-lying parts of strength distributions. Unlike
gross features such as giant resonances, low-lying strength

FIG. 7. Gamow-Teller strength distribution in 82Se obtained in
the pnFAM* with several values for the maximum angular momen-
tum Lmax in states excited by the like-particle operators in Eq. (18).
No other cutoffs are imposed, i.e., vmin = 0.

is strongly affected by the isoscalar pairing interaction, the
coefficient of which was fit along with the coefficients of
other terms in the time-odd part of the functional for global
Skyrme-QRPA calculations of β decay [6,8]. As we have
seen, allowing quasiparticles to couple to phonons also alters
low-lying strength. So that we do not confuse the effects, we
continue to work with SGII, without tweaking coefficients and
with no isoscalar pairing. Table I shows the effects of the
quasiparticle-phonon coupling on decay half-lives in 11 rep-
resentative heavy nuclei. Six of the 11 are prolate and five are
oblate (though data in 106Mo, which we find to be oblate, may
be more consistent with prolate deformation [48]). In all the
isotopes, the pnFAM without any modification overpredicts
the half-lives by placing too little strength at low energies.
And the quasiparticle-phonon coupling always reduces the
half-lives, often dramatically, and always improves the agree-
ment with experiment. In none of the cases, however, does the
half-life decrease enough to agree with experiment. We have
included first-forbidden decay, but it never contributes more

TABLE I. Deformation parameter, experimental half-life in sec-
onds, pnFAM half-life with the Skyrme functional SGII, pnFAM*
half-life with the same functional, and pnFAM* half-life when
phonons with vN < 0.3 are excluded, for 11 deformed isotopes.

Isotope β tExpt.
1/2 (s) tpnFAM

1/2 (s) tpnFAM*
1/2 (s) t ′ pnFAM*

1/2 (s)

78Zn 0.11 1.47 15.8 3.57 4.27
168Gd 0.31 3.03 280 17.7 18.9
152Ce 0.30 1.40 79.8 6.05 8.85
156Nd 0.32 5.49 406 32.5 34.7
164Sm 0.33 1.42 66.9 9.96 10.2
154Ce 0.30 0.30 18.3 3.04 2.86
112Mo −0.20 0.15 1.58 0.547 0.622
94Kr −0.23 0.21 3.12 1.29 1.63
112Ru −0.21 1.75 86.8 16.5 17.4
106Mo −0.21 8.73 106 19.1 22.3
96Sr −0.21 1.07 64.3 8.49 9.80
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than a few percent to the decay rate in the nuclei examined
here (and like the allowed rate, it is increase in the pnFAM*).
It remains to be seen what will happen with an interaction
like those used in Refs. [6,8], for which time-odd coupling
constants were adjusted to reproduce rates on average.

What happens if we do try to include isoscalar pairing? As
already noted, prior QRPA calculations used isoscalar pairing
to increase the strength below the β-decay Q value, decreas-
ing predicted half-lives so that on average they were correct.
Many were significantly too small, however, and many others
significantly too large, in spite of the isoscalar pairing. What
can we expect if we add isoscalar pairing in calculations that
include the coupling of quasiparticles to phonons? To get an
idea, we looked at what happens in a few nuclei with SGII.
Happily, and perhaps not surprisingly, when phonon coupling
is included, the effects of isoscalar pairing are less dramatic. In
112Ru, for example, setting the isoscalar-pairing strength to the
average of the neutron and proton pairing strengths reduces
the half-life by about 40% in the pnFAM but only by about
20% in the pnFAM*. In 95Sr, the corresponding numbers are
about 45% and 30%. These half-lives are still larger than those
from experiment with SGII. It remains to be seen what will
happen, e.g., with the functional SkO’, when several pieces of
the T -odd part are adjusted as in Refs. [6] and [8]. Phonon
coupling is a more natural way of reducing half-lives than is
dialing isoscalar pairing, and we are optimistic.

V. DISCUSSION

Our method for including the coupling of quasiparticles
to phonons is much more efficient than the extension of the
matrix QRPA. It is not yet efficient enough, however, to allow
us to apply it to all of the approximately 4000 neutron-rich
isotopes. At present, we extract the quasiparticle-phonon cou-
pling by first computing like-particle strength functions at
many values of ω and in many channels, identifying peaks,
and employing Eqs. (14) and (16) for each one. How might
we get the same information more efficiently?

One advantage of the traditional matrix QRPA is that it
directly produces the transition amplitudes X N

αβ and YN
αβ [see

Eq. (22)], which in turn determine 〈β|H |β1, N〉 and there-
fore Wπν,π ′ν ′ (ω) in a straightforward algebraic way. The chief
disadvantage is the long time it takes to construct the many
elements of the QRPA Hamiltonian matrix. The FAM can
actually be used to construct the matrix much faster [49], and
a starting point for future work is to build and diagonalize
the matrix, use the results and Eq. (21) to select the most
important phonons, and then construct W . And we can do
even better by employing a Lanczos-like approach to produce

only the most important parts of the matrix. Reference [50]
applies the Arnoldi algorithm in concert with a FAM-like pro-
cedure to obtain matrices with dimensions of order 100 × 100
that, when diagonalized, reproduce strength distributions ac-
curately. Another promising option is to expand the QRPA
X ’s and Y’s in terms of FAM amplitudes at values of ω far
from the real axis. This approach, which we will present in a
separate paper [51], is analogous to the eigenvalue continua-
tion introduced in Ref. [52].

Once we have a faster procedure, we will be able use
the pnFAM* to refit the parameters of the time-odd part of
any Skyrme functional to a set of selected β-decay rates,
charge-changing resonance energies, etc., as was done with
the pnFAM itself in Ref. [6]. We can include the parameters
multiplying chiral two-body weak-current operators, the in-
frastructure for which was presented in Ref. [53], in that fit.
The result should be much better predictions for r-process
simulations.

This plan raises the question of what it means to extend
density-functional theory beyond the QRPA, i.e., beyond a
time-dependent mean-field ansatz. Does it make sense to
use a density-dependent “Hamiltonian” in conjunction with
beyond-mean-field correlations? Are not the correlations al-
ready implicit in the functional itself? We need not answer
these questions carefully to be confident that including more
correlations is worthwhile. Doing so pushes our method in
the direction of an ab initio solution of the Schrödinger equa-
tion. Double counting of correlations can be removed through
parameter refitting. The more correct physics we include by
extending our many-body methods, the fewer correlations
we have to capture in Kohn-Sham-like equations. An exact
many-body method would be appropriate in conjunction with
a functional that corresponds simply to the mean-field ex-
pectation value of an ab initio Hamiltonian. Our long term
goal is to move nuclear density-functional theory as close to
that point as possible. The improved description of charge-
changing processes presented here is a good start.
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