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The lifetimes of the first excited 7
2

−
states in the Tz = ± 3

2 mirror nuclei 47Mn and 47Ti have been extracted
utilizing the γ -ray line shape method, giving τ = 687(36) ps and τ = 331(15) ps respectively. Since these
transitions are essentially pure M1 transitions, these results allow for a high-precision comparison of analog M1
strengths in mirror nuclei. The two analog B(M1)s are observed to be identical to a precision of about 10%. The
expected dependence of the transition matrix element with Tz has been used to extract the separate isoscalar and
isovector components of the transition strength, and the results are discussed in the context of predictions, based
on the isospin formalism, regarding analog B(M1) strengths.

DOI: 10.1103/PhysRevC.109.044307

I. INTRODUCTION

The neutron-proton exchange symmetry, rooted in the
approximate charge symmetry and charge independence of
the nucleon-nucleon interaction, is one of the most funda-
mental tenets in nuclear physics. The isospin concept [1]
provided the framework to describe the resulting symme-
tries that are observed to occur in nuclei, i.e. isobaric analog
states (IAS) of the same isospin quantum number T in an
isobaric multiplet. The formalism of isospin provides the
mathematical tools to allow the quantum-mechanical predic-
tion of properties of those IAS, in a multiplet, as a function of
Tz [= (N − Z )/2].

Predictions that follow from this formalism include the
isobaric multiplet mass equation (see, e.g., [2] for a recent
review), which describes energy splitting between IAS as a
function of Tz and the various isospin rules that describe the Tz

dependence of electromagnetic transition strengths between
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pairs of IAS within the multiplet; see the description later in
this article. Testing the predictions of the isospin formalism
through measuring the Tz dependence of these properties is
a crucial method of examining the isospin symmetry, and
purity, of the states concerned. To date, precision tests of
these predictions have had a strong focus on energy splitting
across a multiplet, through precision measurements of masses
(e.g., [2]) or excitation-energy differences through gamma-ray
spectroscopy (e.g., [3–7]).

Testing the Tz dependence of electromagnetic transition
strengths, however, presents significant experimental chal-
lenges, since it requires high statistics measurements of
lifetimes in proton-rich systems. Nevertheless, such measure-
ments can provide crucial insight into the underlying isospin
symmetry of the wave functions, as well as providing in-
formation on the isospin-dependence of the electromagnetic
transition operators through examination of the isoscalar and
isovector components of the transition strength.

In the current work we present a high-precision measure-
ment of the lifetimes of a pair of T = 3

2 analog states in

the Tz = ± 3
2 mirror nuclei 47Mn / 47Ti: the Jπ = 7

2
−

first-
excited states. Since the transition in question is a virtually
pure M1 transition, the analysis has enabled an unusually
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precise comparison of analog B(M1)s in a mirror pair, and the
first example of a high-precision comparison of such B(M1)
strengths in Tz = ± 3

2 mirrors. The Tz dependence of the M1
strength is analyzed and discussed.

II. EXPERIMENTAL PROCEDURE

The data presented in this work originate from an ex-
periment that has been previously reported by Yajzey et al.
[3] and Uthayakumaar et al. [4], where full details can be
found of the experiment. The work presented here focuses
solely on the lifetime measurements, and so the experimental
details presented are limited to those specifically important for
the lifetime analysis. The experiment was performed at the
National Superconducting Cyclotron Laboratory (NSCL) at
Michigan State University (MSU), using the A1900 separator
[8] and the S800 spectrograph setup [9]. The A1900 was
used to select beams of 48Mn (≈ 84 MeV/u) and 48V (≈ 89
MeV/u), in two separate sets of A1900 magnet settings, fol-
lowing fragmentation of a 58Ni primary beam on a 9Be target.
These secondary beams impinged on a 188-mg cm−2 9Be
reaction target. The nuclei of interest, 47Mn and 47Ti, were
produced via one-neutron and one-proton knockout respec-
tively, and these final fragments were identified, uniquely,
through the standard time-of-flight and energy-loss methods
[9], which are described in detail for this experiment in [3,4].

These two reactions are “analog” reactions: the two sec-
ondary beam species, 48Mn and 48V, are T = 1 mirror nuclei,
and the “mirrored” reactions (−1n and −1p respectively)
were used to populate analog states in the T = 3

2 mirror nuclei
47Mn and 47Ti.

The prompt γ rays emitted in the reaction at the secondary
target were detected using the Gamma-Ray Tracking In-beam
Nuclear Array (GRETINA) [10,11]. For this measurement,
GRETINA consisted of nine detector modules in two rings:
four that were centered at 58◦ with respect to the beam axis,
and five at 90◦ [3,4,10]. In this analysis, the first interaction in
the GRETINA array was assumed to be that with the largest
energy deposited, and the position of this interaction, deter-
mined from pulse-shape analysis, was used for the Doppler
correction. Due to the very low energy (≈120–160 keV) of
the γ rays being analyzed here, GRETINA was analyzed in
“single-crystal” mode, i.e., there were no add-back or track-
ing procedures employed that involve neighboring detectors.
Indeed, for this γ -ray energy, it was observed that using the
add-back procedure described in Ref. [4] reduces the photo-
peak efficiency compared with single-crystal mode.

III. RESULTS

A. Decay of the first excited state of Tz = − 3
2

47Mn

A new level scheme of the proton-rich nucleus 47Mn was
recently established by Uthayakumaar et al. [4] from the same
experiment, and reaction channel, as that being presented
here. By far the strongest transition observed in 47Mn in this
experiment was a γ ray of around 123 keV. Given the very
long lifetime of the state from which this transition decays
(see below), and the comparison with the mirror nucleus, 47Ti,
this is clearly the decay of the first excited state in 47Mn.

The analog first-excited state in 47Ti is the 159-keV Jπ = 7
2

−

state, which has a published lifetime of τ = 303(9) ps [12],
and which decays directly to the Jπ = 5

2
−

ground state. The
analysis presented in Ref. [4] yielded a new level scheme for
47Mn, and showed that the other populated levels, all of which
have decay paths that flow through this 123-keV state, include
the newly identified 9

2
−
1,2,

11
2

−
1,2,

13
2

−
1 , and 15

2
−
1 states. The pre-

cise γ -ray energy of the decay from the 47Mn first-excited
state, and the lifetime of the state, have been determined by
the analysis presented in this current work.

The γ -ray spectra presented here were obtained by select-
ing the incoming (48Mn and 48V) and outgoing (47Mn and
47Ti) nuclei using the standard particle identification proce-
dure using the A1900 and S800 detectors as described in
Ref. [4]. The velocity vector of the final nucleus, required
for Doppler corrections, was determined on an event-by-event
basis using the S800 tracking detectors [9]. A value for the
velocity of the final nucleus, β = v

c , is required to perform
Doppler correction and is a key parameter for the lifetime
measurement. The transit time across the 1-mm-thick 9Be
secondary target is ≈ 10 ps, hence the value of β at the point
of decay, for the long-lived transition being studied here, is
the β corresponding to decays downstream of the target. This
post-target β was determined event-by-event using the S800
tracking, with an average value determined by the S800 mag-
net settings. This yielded β = 0.377 for 47Mn and β = 0.396
for 47Ti. These values are used in the analysis that follows.

A low-energy (<180 keV) portion of the spectra created,
following the above steps, is shown in Fig. 1 for (a) 47Ti
and (b) 47Mn. Figure 1(a) shows that the γ -ray peak for 47Ti
has a clear low-energy, asymmetrical tailing as a result of the
long lifetime of the state. Inspection of the 47Mn spectrum,
Fig. 1(b), shows a similar tail. The tailing effect is typical,
for these experimental conditions, of decays from long-lived
states with lifetimes >100 ps, for which the causes are de-
tailed in Refs. [13,14]. The current evaluation for 47Ti [12]
derives the lifetime of this state, τ = 303(9) ps, from the
weighted average of the results of Refs. [15,16]. The long
tail on the high statistics transition around 123 keV in 47Mn
allows for a high-precision analysis of the lifetime of the
newly observed first-excited state in 47Mn. The analysis was
performed first on the 47Ti 159-keV transition, to validate the
technique used, given that the lifetime is known to a high
precision.

B. Lifetime measurements for the analog Jπ = 7
2

−
states

To perform the lifetime measurements, the experimental γ -
ray peak shape was compared with the results of a simulation
[17,18] based on the GEANT4 package [19]. The simulation,
which takes into account the specific GRETINA geometry
for this experiment, accounts for lifetime effects for a given
transition, and allows for the addition of feeding transitions
from higher-lying states. In the present analysis, all the the
observed feeding states in 47Ti have short lifetimes (< 3 ps),
and it is assumed that the lifetimes of the analog feeding states
in 47Mn have similarly short lifetimes. Since the lifetimes
under investigation are of the order of several hundred ps,
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FIG. 1. The Doppler-corrected γ -ray spectra for (a) 47Ti and (b) 47Mn at velocities β = 0.396 and 0.377 respectively. The red line shows
the simulated spectrum using the optimum best-fit parameters of τ = 331 ps and Eγ = 159.4 keV for (a) and τ = 687 ps and Eγ = 122.6 keV
for (b). The inset plot presents the χ 2 per degree of freedom for a varying lifetime and using the optimum γ -ray energy obtained using the 2D
χ 2-minimization procedure (see text for details).

it can be assumed that the addition of these states to the
simulation would not have any significant impact on the ex-
tracted lifetime of the 7

2
−
1 state. Hence, the decay of a single

state alone was simulated. Setting up the simulation required
specification of a number of reaction-related parameters, such
as the secondary beam momentum spread and reaction-target-
induced momentum spread, which were adjusted in order to
reproduce the experimentally observed momentum spectrum.
The effective position resolution for Doppler correction was
also optimized to match experimental data. The two remaining
key input parameters are the lifetime and the γ -ray energy.
Both of these parameters were optimized for each peak; see
below. In addition to the simulated spectrum, the background
under the peak was simulated through the addition of a simple
exponential background.

Simulations were then performed and fitted to the exper-
imental peak shapes varying, systematically, the remaining
two parameters: the γ -ray energy and the lifetime. A
two-dimensional minimization procedure was followed to op-
timize both the γ -ray energy and the lifetime. The reasons for

allowing the γ -ray energy to vary are twofold. First, even if
the γ -ray energy is known, there could be systematic effects
in the experimental spectra (e.g., beam velocity or geometry)
which could affect the apparent energy and hence bias the
extracted lifetime. Second, the transition in 47Mn is new to this
work, and this procedure allows the γ -ray energy to be reli-
ably determined. This two-dimensional (2D) χ2-minimization
procedure was demonstrated in Ref. [20] and recently em-
ployed in Ref. [13]. The results of the procedure are shown
in Fig. 2 .

Once the global minimum χ2 was found, from the data
in Fig. 2(a), the optimum γ -ray energy was fixed, and the
lifetime alone was varied to establish the χ2/ndf plot, shown
as the inset of Fig. 1(a). The minimum of this distribution was
used to determine the optimum value of the lifetime.

Figure 1(a) shows the final fit for 47Ti using the optimal
parameters, found to be τ = 331 ps and Eγ = 159.4 keV. For
both 47Ti and 47Mn, a small high-energy tail, which cannot
come from lifetime effects, was observed. This tail was also
observed in Ref. [13]. One potential origin of this high-energy
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FIG. 2. Plots of χ 2 per degree of freedom having fitted the simu-
lation to the spectra for (a) 47Ti and (b) 47Mn. The χ 2/ndf is plotted
as a function of the lifetime and the γ -ray energy of the peak in
question; see text for details.

tail may be due to the incorrect determination of the first
interaction point in GRETINA for a small number of events.
As in [13], a six-channel region on the right edge of the peak
was excluded from the fit for this reason. The effect of the
inclusion, or not, of this range has little effect on the extracted
lifetime, but was nevertheless included in the systematic error.
The statistical error in the lifetime was obtained from the
χ2 + 1 value from the distribution in the inset in Fig. 1(a),
having first normalized the χ2 such that χ2/ndf would have
a minimum value of 1.0. The resulting error is then adjusted
upwards to account for the correlation between Eγ and τ evi-
dent in Fig. 2. This was achieved by assuming that the contour
of χ2 + 1 in the two-dimensional χ2 surface has the same
geometrical shape as that of the contours visible in Fig. 2.
This procedure yields a statistical error of ±4 ps. The main
contributions to the systematic errors that were considered in
this analysis are as follows. Errors associated with geometrical
uncertainties (3%) and γ -ray anisotropy effects (1.5%) were
included (assumed to be the same as in Refs. [13,17], which
employed the same technique). For 47Ti the uncertainty in
the effective gamma-ray interaction position was assumed to
be ±1 mm, yielding a 1.9% error, and uncertainties in the
determination of β gives a 0.7% error. In addition, there
appears to be a systematic deviation from the simulation a
for ≈6 channels around 148 keV, possibly indicating the
presence of an unknown contamination peak. As a result,
the range 144–150 keV was excluded from the fit as well as

the six-channel region described above. This increases the
lifetime by 5 ps, and was also included as an additional
systematic error. The total systematic error is then 14 ps. By
adding both the statistical and systematic errors in quadrature,
this yields a lifetime of τ = 331 ± 4 (stat.) ±14 (sys.) ps
[T1

2
= 229(10) ps] for the 7

2
−
1 state.

Having determined the lifetime, this procedure was re-
peated, for this fixed lifetime, to determine the final value of
the γ -ray energy and its associated error. This yields Eγ =
159.4 keV. The line-shape fitting procedure is very sensitive
to the energy of the γ ray, yielding a small statistical error of
0.3 keV. We have assumed a 1 keV systematic error, as with
Ref. [4], to account for uncertainties in Doppler correction and
energy calibration. These final values, τ = 331(15) ps and
Eγ = 159(1) keV, are both in reasonable agreement with the
literature values of τ = 303(9) ps and Eγ = 159.37(1) keV
[12]. This provides a helpful validation of the methods used.

The identical procedure was then carried out for 47Mn
[Figs. 1(b) and 2(b)], where optimal values of τ = 687 ps and
Eγ = 122.6 keV were established. The statistical error in the
lifetime was determined to be ±17 ps. The systematic errors
in this case were geometrical uncertainties (3%), anistropy
(1.5%), β uncertainty (1.3%), position resolution (2.3%), and
exclusion of the high-energy tail (0.9%). Below ≈70 keV in
both spectra, there is a large broad structure, presumably due
to radiative electron capture (see the low-energy edge of the
spectra in Fig. 1). This has the potential to disturb the results
for 47Mn, and so the effect of varying the lower end of the fit
range was investigated and used to determine a further sys-
tematic error of 1.6%). The final systematic error is therefore
32 ps. This yields a final result of τ = 687 ± 17 (stat.) ± 32
(sys.) ps. The γ -ray energy had the same 0.3 keV statistical
error as with the 47Ti transition, and the same systematic error
was applied, yielding Eγ = 123(1) keV.

The 159-keV γ -ray transition from the 7
2

−
1 state in 47Ti is

known to be a near-pure M1 transition with only a very small
contribution from the E2 component [12]. Combining the
current result of τ = 331(15) ps with the two previous values
[15,16] yields a new weighted average of τ = 309(7) ps. The
current evaluated B(E2) ↓ strength for the 159.4-keV tran-
sition, from Coulomb excitation data, is 243(43) e2fm4 [12]
which, when combined with the new lifetime gives B(M1) =
0.0445(10)μ2

N with |δ| = 0.098(9). This corresponds to the
M1 component being ≈99% of the total strength. The final
values for the lifetimes and the B(E2) and B(M1) in 47Ti are
shown in Table I.

For the 123-keV transition in 47Mn, we have no experi-
mental information on the mixing ratio and hence the B(M1)
and B(E2) strengths cannot be independently determined.
However, following the approach used in Ref. [20], we can
consider the combinations of values of the B(M1) and B(E2)
for 47Mn for a range of possible mixing ratios; see the solid
line in Fig. 3. Immediately it can be seen that the the value of
the unknown B(E2), for the 123-keV transition in 47Mn, has
very little impact on the corresponding B(M1) value, again
due to the low γ -ray energy which forces the transition to be
completely dominated by the M1 component. As an exercise,
we have allowed the B(E2) in 47Mn to vary by a factor of 100
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FIG. 3. Solid blue line and data points: Values along this line correspond, for the 123 keV transition in 47Mn, to the B(M1) (see principal
x axis) and the corresponding B(E2) (see principal y axis) consistent with the experimentally measured lifetime of the 7

2

−
1

state in 47Mn. The
resulting ratio of the analog B(M1) values for the A = 47 mirror pair (Mn/Ti) is plotted on the upper x axis and the ratio of the analog B(E2)
values on the right y axis. The data points correspond to values of |δ| of 0.03 to 0.24 in steps of 0.01. Red dashed lines: The limits (±1σ ) on
B(M1) for 47Mn.

from 24.3 to 2430 e2fm4 (≈2.4–240 W.u.). The lower end of
the range is ten times smaller than the corresponding analog
B(E2) value in 47Ti, and the upper value is ten times higher.
This large range of B(E2) values results in a variation of the
47Mn B(M1) from 0.044(2) to 0.042(2)μ2

N . Since there is no
known mechanism that could cause B(E2) strengths in mirror

TABLE I. Comparison of the experimental and theoretical life-
times and B(M1) and B(E2) transition strengths for decays from the
7
2

−
1

state to the 5
2

−
1

ground state in the 47Ti and 47Mn mirror pair.
The mixing ratio for the transition in 47Mn is unknown, therefore the
B(M1) and B(E2) strengths have not been uniquely determined. The
shell-model predictions used the effective charges from Dufour and
Zuker [21] (εp = 1.31, εn = 0.46) and bare nucleon g factors. The
experimental energies were used to obtain the shell-model lifetimes.

47Ti 47Mn

Experiment

Lifetime (ps) 309(7)a 687(36)
B(M1) (μ2

N ) 0.0445(10)
B(E2) (e2fm4) 243(43)b

Shell Model

Lifetime (ps) 734 1486
B(M1) (μ2

N ) 0.0187 0.0203
B(E2) (e2fm4) 125 214

aWeighted average of the current result with those of Refs. [15,16].
bCurrent evaluation [12].

nuclei to differ by an order of magnitude, we consider that this
range (the range displayed in Fig. 3) contains all physically
reasonable combinations of B(E2) and B(M1) for 47Mn. This
is the range chosen for the data presented in Fig. 3 and used
in the subsequent analysis.

While we cannot learn anything from these new results
about the comparison of the analog B(E2) strengths for de-
cays from these analog Tz = ± 3

2 , Jπ = 7
2

−
states, Fig. 3 shows

that the ratio of the B(M1) strengths between the mirrors re-
mains well constrained, even with this conservatively chosen
range of possibilities; see the top axis of Fig. 3. The red dashed
lines in Fig. 3 contain the error bounds (±1σ ) for B(M1)Mn.
Considering the full range of possibilities between the dashed
lines yields B(M1)Mn = 0.0432(35)μ2

N . Taking into account
the error in B(M1)Ti, the ratio of the two B(M1)’s is then
constrained to be B(M1)Mn

B(M1)Ti
= 0.97(8). That is, the two analog

Jπ = 7
2

− → 5
2

−
transitions in the Tz = ± 3

2 mirrors have iden-
tical M1 strengths within a precision (1σ ) of around 10%. Due
to the high statistics of the measurement reported here, the
comparison of the analog B(M1) strengths has an unusually
high precision, compared with typical lifetime measurements
in very proton-rich systems. Moreover, the two B(M1)s have
been determined in an identical (i.e. analog) reaction process
and performed under identical experimental conditions. This
gives a high confidence to the comparison. Hence, the result-
ing observation that the experimental B(M1)s are essentially
identical is worthy of further discussion.
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IV. DISCUSSION

Theoretical analysis of how transition matrix elements vary
for analog states within a mutiplet has been presented in a
number of texts, perhaps the most comprehensive being by
Warburton and Wesener [22], where a number of isospin
“rules” have been derived that describe the Tz dependence
of electromagnetic transition matrix elements. The most gen-
eral rule is that, in the limit of pure isospin (perfect isospin
symmetry of the analog wavefunctions), the transition matrix
elements for analog T → T transitions should be precisely
linear in Tz. A recent analysis of this rule for B(E2) transitions
can be found in Ref. [23]. Testing the veracity of these rules
is developing into a key approach to testing isospin purity in
nuclei. In the case of analog transitions in a pair of mirror
nuclei, the linearity rule cannot be tested and, apart from
the specific case of E1 transitions, there is no exact rule
that predicts, on the basis of isospin symmetry, the specific
comparative behavior of “mirrored” transitions. In the case of
M1 transitions, however, there is a “quasi” (approximate) rule
[22], described later in this section.

The total transition matrix element, for an isospin-
conserving (T → T ) transition between states Ji and Jf , is
determined by

M(σL) = 〈Jf M f : T Tz|H(σL)|JiMi : T Tz〉; (1)

see Ref. [22] for a full description. Since the nuclear current
density can be separated into an isoscalar and an isovector
part, this allows an equivalent separation in the interaction:

H(σL) = H (0)
(σL) + H (1)

(σL), (2)

where H (0)
(σL) and H (1)

(σL) represent the isoscalar and isovector
interactions respectively. With this separation complete, the
Wigner-Eckart thereom can be applied in isospin to extract
the Tz dependence of the total transition matrix element; see
[22] for details. Having further reduced the matrix elements
in angular momentum, the reduced transition strength B(σL)
can be written as

B(σL) = 1

2Ji + 1

[
M (0)

(σL) + Tz√
(2T + 1)(T + 1)T

M (1)
(σL)

]2

,

(3)

where

M (0)
(σL) = 〈Jf ‖H (0)

(σL)‖Ji〉,
M (1)

(σL) = 〈Jf : T |‖H (1)
(σL)‖|Ji : T 〉.

The isoscalar part of Eq. (3) (the first term) contains no ex-
plicit isospin dependence. The isovector component of the
transition [second term in Eq. (3)] depends on both T and
Tz. M (1)

(σL) has been reduced in isospin and both M (0)
(σL) and

M (1)
(σL) have been reduced in angular momentum. Inserting the

relevant values of T and Tz into Eq. (3) yields, for the current
work,

B(M1)T =|Tz |= 3
2

= 1

2Ji + 1

[
M (0)

(M1) ±
√

3

20
M (1)

(M1)

]2

, (4)

where ± corresponds to the sign of Tz. Equation (4) therefore
shows that for a pair of mirrored (T → T ) transitions, for
which Tz has opposite signs, identical B(M1) strengths can
only occur if either one of M (0)

(M1) or M (1)
(M1) is significantly

smaller, in absolute magnitude, than the other.
Following the approach of Fujita et al. [24] it is possible to

adapt Eq. (4) to define separate isoscalar and isovector B(M1)
strengths as follows:

B(M1)IS
T =|Tz |= 3

2
= 1

2Ji + 1

[
M (0)

(M1)

]2
,

B(M1)IV
T =|Tz |= 3

2
= 1

2Ji + 1

3

20

[
M (1)

(M1)

]2
.

Fujita et al. [24] showed that these two components can be
connected to the analog B(M1)s in a mirror pair. Solving
Eq. (4) simultaneously yields

B(M1)a = 1
4 [

√
B(M1)+ −

√
B(M1)−]2, (5)

B(M1)b = 1
4 [

√
B(M1)+ +

√
B(M1)−]2, (6)

where B(M1)± corresponds to the analog transitions with
Tz = ±T . One of B(M1)a or B(M1)b corresponds to B(M1)IS

and the other to B(M1)IV. Since it is commonly assumed that
magnetic dipole transitions are dominated by the isovector
component, it could be assumed (as was done in other work,
e.g., [24]) that the larger of these [i.e., B(M1)b], is the isovec-
tor one. However, it is not possible, a priori, to specify which
is which.

Considering all the data between the dashed (±1σ ) lines in
Fig. 3 yields B(M1)− = 0.0432(35)μ2

N , and combining this
with the updated value of B(M1)+ yields, for this analog pair
of transitions

B(M1)a = 2+13
−2 × 10−6 μ2

N ,

B(M1)b = 4.38(18) × 10−2 μ2
N .

From this analysis, it appears that one of the two compo-
nents of the B(M1) transition strengths is about four orders
of magnitude smaller than the other. This observation can
be made possible only by the high precision measurements
of both B(M1)’s; see the form of Eq. (5). It should also be
noted that while these separate components can be extracted
from experimental data, doing so relies on the assumption of
perfect isospin symmetry of the analog wave functions. While
the vanishingly small component [i.e., B(M1)a] is most likely
the isoscalar component, this assignment cannot be explicitly
made.

Fujita et al. [24] performed an extensive analysis of ana-
log transition strengths in the Tz = ± 1

2 A = 27 mirror nuclei,
through measurements of the mirrored B(M1)’s as well as
analog B(GT ) values. They measured B(M1)IS and B(M1)IV

for three excited states of the mirror pair. Generally they
found that B(M1)IV was 1–2 orders of magnitude larger. In
the current work, the lower limit for B(M1)b/B(M1)a, using
the 3σ range for B(M1)a is >1000.

The values of M (k)
(M1) are determined by the application of

the magnetic dipole operator, μ, which, again, has an isoscalar
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and isovector part. This can be written (e.g., [24])

μ=
[

A∑
i

(
1

2
g(0)

s σ i+g(0)
l l i

)
−

A∑
i

τz
(i)

(
1

2
g(1)

s σ i+g(1)
l l i

)]
μN ,

(7)
where g(0)

s(l ) = 1
2 (gπ

s(l ) + gν
s(l ) ) are the isoscalar g factors and

g(1)
s(l ) = 1

2 (gπ
s(l ) − gν

s(l ) ) are the isovector g factors. σ, l are the
usual spin and orbital angular momentum operators and τz is
the isospin projection operator, the eigenvalues of which are
+1 for neutrons and −1 for protons. It is the first term in
Eq. (7) which leads directly to M (0)

(M1) and the second term

to M (1)
(M1). Examination of Eq. (7) reveals the origin of the

usual dominance of the isovector term. The opposite signs of
the proton and neutron spin g factors lead to g(0)

s = 0.88 and
g(1)

s = 4.71, a factor of ≈ 5 difference. The orbital term g(0)
l l i

can also partly cancel the spin term in the isoscalar matrix
element (see [22]). Warburton and Wesener [22] estimated
the relative magnitude of matrix elements for single-particle
transitions of purely isoscalar and purely isovector nature (i.e.,
revised “Weisskopf-type” estimates). While such estimates
are only approximate, it was found that the total transition ma-
trix element for a purely isovector transition of single-particle
strength was around an order of magnitude greater (absolute
value) than that for a purely isoscalar transition. This would
lead to ≈ 2 orders of magnitude difference in B(M1). Thus,
the expectation is that, for strong transitions (i.e., ≈1 W.u),
the isovector matrix element will be expected to dominate
strongly.

The above argumentation led to the “quasi” rule that
M1 transition strengths in mirror nuclei should be (quoting
Ref. [22]) “of approximately equal strength within, say, a
factor of two, if the transitions are of average strength or
stronger.” It is pointed out in Ref. [22] that the strong dom-
inance of the isovector term is only guaranteed for strong
transitions, i.e., of single-particle strength. In the current
work, this is not the case: the transitions observed here are
much weaker with B(M1)total ≈ 0.03 W.u. Thus, the theo-
retical conditions for the usual dominance of the isovector
component may not be present here.

Skorka et al. [25] in 1966 performed an analysis of �T =
0 and |�T | = 1 M1 transitions in A < 40, N = Z nuclei,
the former being restricted (through isospin selection rules)
to being purely isoscalar in nature and the latter to being
purely isovector. It was found that the isoscalar M1 transitions
ranged from ≈0.0001 to ≈0.1 W.u., with a quoted aver-
age of ≈0.005 W.u in Ref. [25], while isovector transitions
ranged from ≈0.01 to ≈10 W.u., with a quoted average of
≈0.4 W.u. On the assumption that the larger measured compo-
nent, B(M1)b, is indeed the isovector one, the value extracted
here would be at the bottom end of the observed range for
isovector transitions. With that assignment, the B(M1)IS value
from this work would be at least an order of magnitude below
the bottom end of the typical range observed in Ref. [25]. We
can provide no explanation for this, other than a coincidental
numerical cancellation of different terms.

Shell-model calculations have been performed to predict
the B(M1) and B(E2) for the analog transitions being studied

in this work. Calculations were performed using the ANTOINE

code [26,27] using the KB3G interaction [28] in the full f p
space. For determination of the B(M1), bare-nucleon g factors
were used while for the B(E2) strengths the effective charges
of Duflo and Zuker [21] (εp = 1.31, εn = 0.46) were used.
The experimental energies were used in order to make a pre-
diction of the lifetimes. As expected, the B(E2) (and therefore
the choice of effective charges) has virtually no impact on the
predicted lifetime, since the strength is completely dominated
by the M1 (predicted to be ≈99% of the strength for both
nuclei). The predicted B(M1) strengths are small in magnitude
and very similar in value, as in the experimental observations.
Both are about a factor of 2 smaller than the experimental
values, resulting in proportionally longer lifetimes. It is likely
that cross-shell excitations between the sd and f p shells,
which are missing in this shell-model interaction, would be re-
quired to improve the agreement. Despite the poor agreement
between the experiment and theory on the magnitude of the
B(M1)’s, the theoretical ratio of B(M1)IV/B(M1)IS is ≈2400,
consistent with the experimental value of B(M1)b/B(M1)a,
when the 1σ error ranges are considered.

V. CONCLUSIONS

The lifetimes of the first-excited Jπ = 7
2

−
states in the Tz =

± 3
2 A = 47 mirror nuclei 47Mn and 47Ti have been measured

using a Doppler-shift line-shape method. The lifetime for this
state in 47Mn, which has been observed for the first time in this
experiment, was measured to be τ = 687(36) ps, compared
with τ = 331(15) ps for its analog state in 47Ti. The anal-
ysis has enabled a high-precision comparison of analog M1
strengths, with the two B(M1)’s being shown to be identical
to within ≈10%. The formalism for the isospin-dependence
of electromagnetic transition strengths has been applied to
the experimental data to extract the isoscalar and isovector
components of the reduced transition probability, B(M1). One
of these two components, most likely the isovector one, is
found to completely dominate over the other by four orders
of magnitude.

The processed experimental data generated during the
current study are available in the University of York
repository [29].
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