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Background: Large-scale computations of fission properties are an important ingredient for nuclear reaction
network calculations simulating rapid neutron-capture process (the r process) nucleosynthesis. Due to the large
number of fissioning nuclei potentially contributing to the r process, a microscopic description of fission based
on nuclear density functional theory (DFT) is computationally challenging.
Purpose: We explore the use of neural networks (NNs) to construct DFT emulators capable of predicting
potential energy surfaces and collective inertia tensors across the whole nuclear chart, starting from a minimal
set of DFT calculations.
Methods: We use constrained Hartree-Fock-Bogoliubov (HFB) calculations to predict the potential energy and
collective inertia tensor in the axial quadrupole and octupole collective coordinates, for a set of nuclei in the
r-process region. We then employ NNs to emulate the HFB energy and collective inertia tensor across the
considered region of the nuclear chart. Least-action pathways characterizing spontaneous fission half-lives and
fragment yields are then obtained by means of the nudged elastic band method.
Results: The potential energy predicted by NNs agrees with the DFT value to within a root-mean-square error of
500 keV, and the collective inertia components agree to within an order of magnitude. These results are largely
independent of the NN architecture. The exit points on the outer turning line are found to be well emulated.
For the spontaneous fission half-lives the NN emulation provides values that are found to agree with the DFT
predictions within a factor of 103 across more than 70 orders of magnitude.
Conclusions: Neural networks are able to emulate the potential energy and collective inertia well enough to
reasonably predict physical observables. Future directions of study, such as the inclusion of additional collective
degrees of freedom and active learning, will improve the predictive power of microscopic theory and further
enable large-scale fission studies.

DOI: 10.1103/PhysRevC.109.044305

I. INTRODUCTION

Large scale calculations of fission properties are an essen-
tial ingredient for the modeling of the rapid neutron-capture
process (r process), responsible for the production of roughly
half of the nuclei heavier than iron found in nature [1,2].
Fission determines the range of the heaviest nuclei that can be
synthesized during the r process, recycles the material during
the neutron irradiation phase, and shapes the final abundances
[3–5]. Given the large amount of energy released in this decay,
the presence of fissioning nuclei can leave fingerprints in the
electromagnetic counterpart produced in neutron star mergers
[6,7]. However, as most of the fissioning nuclei produced
during the r process cannot be measured, theoretical predic-
tions are indispensable to perform accurate nuclear reaction
network calculations.

During the last decades, several efforts have been devoted
to the systematic estimation of fission barriers [8–13], spon-
taneous fission half-lives [13–15], and fragment distributions
[16–20] of r-process nuclei. However, due to the inherent
complexities characterizing the theoretical description of the

fission process [21], most of the available calculations re-
sort to phenomenological approaches based on simplified
assumptions. This limitation can be overcome by employ-
ing the nuclear density functional theory (DFT) [22–24],
which is the quantum many-body method based on effec-
tive nucleon-nucleon interactions applicable across the whole
nuclear landscape. But given its computational costs, using
DFT for fission is a daunting task for large-scale studies of
r-process nuclei [21,25,26]. As such, the usage of DFT emu-
lators can be an invaluable tool to extend the current reach of
microscopic fission calculations.

Machine learning has been used with great success in
many areas of nuclear physics (see [27] for a recent review
on this topic). In particular, machine learning has been used
in many DFT studies to emulate potential energy surfaces
(PESs), in both quantum chemistry [28–31] and in nuclear
physics [32,33]. However, these have generally focused on
emulating individual potential energy surfaces, rather than
many nuclei across a portion of the nuclear chart (or many
related chemical systems in the quantum chemistry case). In
an important study, Ref. [34] succeeded in emulating PESs
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and other quantities using committees of multilayer neural
networks (NN).

In this study, we use fully connected, feed-forward NNs
to emulate the PES and collective inertia tensor, parametrized
by the axial quadrupole and octupole moments Q20 and Q30,
between nuclei in the r-process region of the nuclear chart.
The paper is organized as follows. Section II reviews the
theoretical approach to spontaneous fission used in this work.
Section III describes the characteristics of the employed NNs.
Section IV demonstrates the performance of the NNs on the
Hartree-Fock-Bogoliubov (HFB) energy and collective inertia
tensor, and Sec. V compares the exit points and spontaneous
fission half-lives obtained using the DFT inputs and the em-
ulated NN inputs. Finally, conclusions are summarized in
Sec. VI.

II. SPONTANEOUS FISSION WITHIN THE NUCLEAR
DENSITY FUNCTIONAL THEORY

Spontaneous fission (SF) is a dynamical process where the
nucleus evolves from the ground state into a split configu-
ration. In the adiabatic approximation, SF is modeled using
a finite set of collective variables {qi} usually describing the
nuclear shape. The SF half-life can be computed within this
approach as t1/2 = ln 2/nPfis, where n is the number of as-
saults on the fission barrier, and Pfis the fission probability
given by the probability of the nucleus to tunnel through the
fission barrier, which can be estimated using the semiclassical
Wentzel-Kramers-Brillouin (WKB) approach [35]

Pfis = 1

1 + exp (2S(L))
, (1)

where S(L) is the collective action computed along the station-
ary trajectory L[s] that minimizes S in the multidimensional
space defined by the collective coordinates

S(L[s]) = 1

h̄

∫ sout

sin

√
2Meff(s)(V (s) − E0) ds (2)

with V and Meff being the potential energy and inertia ten-
sor, respectively, computed along the fission path L[s]. The
integration limits sin and sout correspond to the classical inner
and outer turning points, respectively, defined by the condition
V = E0, where E0 is the collective ground-state zero-point
energy stemming from quantum fluctuations in the collective
coordinates. While the latter can be estimated from, e.g., the
curvature of V around the ground state (g.s.) configuration,
in many SF studies E0 is taken as a fixed positive constant
ranging between 0.5 and 2.0 MeV above the ground-state
energy [13,15]. For simplicity, we follow the latter approach
and fix E0 = Eg.s.. And, throughout this work, we will refer to
the collective coordinates at sout [in this work, (Q20, Q30)] as
the exit point [36].

From Eq. (2) it can be deduced that the main ingredients
required for the estimation of the SF half-lives are the effective
potential energy V and collective inertia Meff. In this work,
we compute these quantities by employing the self-consistent
mean-field method [22,24] summarized in the following.

Nuclear configurations are obtained by means of the HFB
method, where the many-body wave function |�〉, described

as a generalized quasiparticle product state, is given by the
minimization of the mean value of the Routhian:

Ĥ′ = ĤHFB −
∑

τ=n,p

λτ N̂τ −
∑

μ=1,2,3

λμQ̂μ0. (3)

In Eq. (3), ĤHFB is the HFB Hamiltonian, and λp and λn

are the Lagrange multipliers fixing the average number of
protons and neutrons, respectively. The shape of the nucleus is
enforced by constraining the moment operator Q̂μν with mul-
tipolarity μ and magnetic quantum number ν. In this work, we
explore the evolution of the total energy and collective inertia
tensor as a function of the elongation of the nucleus and its
mass asymmetry, which are described by the axial quadrupole
Q20 and octupole Q30 moment operators, respectively:

Q̂20 = ẑ2 − 1
2 (x̂2 + ŷ2) , (4a)

Q̂30 = ẑ3 − 3
2 (ŷ2 + x̂2)ẑ. (4b)

In order to reduce the computational cost, axial sym-
metry is enforced in all the calculations (〈Q̂μν〉 = 0 for all
ν �= 0), and the additional constraint 〈Q̂10〉 = 0 is imposed
to remove the spurious center of mass. Finally, the nuclear
HFB Hamiltonian ĤHFB is given by the finite-range density-
dependent nucleon-nucleon Gogny interaction. We employ
the D1S parametrization [37], which has been widely used
in nuclear structure studies across the whole nuclear chart,
including the description of fission properties of heavy and
superheavy nuclei [38]. The effective potential is then given
by V = E − Erot, where E is the energy obtained from the
HFB equations for the Routhian (3), and Erot is the energy
correction related to the restoration of rotational symmetry,
computed using the approach of Ref. [39]. Calculations are
carried out by employing the HFB solver HFBaxial, which
solves the HFB equations by means of a gradient method with
an approximate second-order derivative [40]. The quasipar-
ticle wave functions are expanded in an axially symmetric
deformed harmonic oscillator single-particle basis, containing
states with Jz quantum number up to 35/2 and up to 26
quanta in the z direction. The basis quantum numbers are
restricted by the condition 2n⊥ + |m| + nz/q � Nmax

z , where
q = 1.5 and Nmax

z = 17. This choice of the basis parameters
allows for a proper description of the elongated prolate shapes
characteristic of the fission process [41].

The collective inertia tensor Mμν is computed within the
adiabatic-time-dependent HFB (ATDHFB) approximation us-
ing the nonperturbative scheme [42–44]

Mμν = h̄2

2q̇μq̇ν

∑
αβ

Fμ∗
αβ F ν

αβ + Fμ
αβF ν∗

αβ

Eα + Eβ

, (5)

where qi are the collective coordinates and

Fμ

q̇μ

= A† ∂ρ

∂qμ

B∗ + A† ∂κ

∂qμ

A∗ − B† ∂ρ∗

∂qμ

A∗ − B† ∂κ∗

∂qμ

B∗ (6)

is given in terms of the matrices of the Bogoliubov transfor-
mation A and B, and the corresponding particle ρ and pairing
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κ densities. Then, the effective inertia tensor is given as

Meff =
∑
μν

Mμν

dqμ

ds

dqν

ds
. (7)

It is important to remark that the Mμν components can suffer
from rapid oscillations in the presence of single-particle level
crossings near the Fermi surface. Such abrupt changes of oc-
cupied single-particle configurations produce variations in the
derivatives of the densities in Eq. (6), resulting in pronounced
peaks of Meff along the fission path [43–45].

The least action paths (LAP) are computed using the
nudged elastic band method (NEB) [36]. Due to the large
number of paths that must be explored, NEB parameters can-
not be tuned by hand. Instead, multiple NEB runs are started,
with initial paths ending at various points along the outer
turning line. The NEB algorithm depends on two parameters,
k and κ , which adjust spring and harmonic restoring forces,
respectively. Not varying k and κ will, on occasion, miss some
LAPs, akin to skipping over a narrow minimum in an opti-
mization routine. Different runs are started for k and κ in the
range 0.05–10, for each initial path. These runs converge to a
number of different stationary paths. Typically, there is some
component of the path that travels along the outer turning line.
To select the final tunneling path, the paths are interpolated
using 500 points, and truncated when near the outer turning
line and within an energy tolerance of 0.5 MeV. The unique
paths are chosen based on the clustering of the exit point using
the mean shift algorithm as implemented in scikit-learn [46],
and the path corresponding to a given exit point with the least
action is chosen as the LAP.

III. NEURAL NETWORKS

In this work, we use feed-forward NNs as our emulators.
We train separate NNs on the potential energy V and the
components of M. Each NN takes as input (A, Z, Q20, Q30),
specifying the nucleus and deformation, then outputs the value
(either V or one of Mμν) at that point. As discussed in
Sec. IV A, to further improve NN performance, we rescale
the NN inputs to lie between zero and one (to avoid biasing
the NNs, the same linear rescaling factors are used for all data
points).

We train NNs with a number of hidden layers varying
between 2 and 7 with 200 hidden nodes in the first layer,
and a decreasing number of nodes in each subsequent layer.
We use the RELU activation function, and train to minimize
the root-mean-square error in the desired quantity. For each
variant on the NN depth, we train multiple NNs, forming a
committee of NNs. We then combine the predictions from
each NN in the committee in a weighted average, to further
reduce the error on the prediction.

To train the NNs, we have computed PESs and the collec-
tive inertia for 194 nuclei, each on a regular grid of 4 b for
0 � Q20 � 248 b, and 6 b3/2 for 0 � Q30 � 60 b3/2. These
nuclei are then labeled as either training, combining, or val-
idation. The combining and validation nuclei were sampled
from a uniform random distribution, such that no region of
the nuclear chart is over-represented in either data set; the

FIG. 1. �V (A, Z ) (in MeV) for the deepest NN. The different
shapes indicate to which data set each nucleus belongs.

remaining nuclei form the training set. These different data
sets are indicated in Fig. 1. For each nucleus, the entire grid is
used in the training and/or combining and/or validation. The
nuclei in the training set are used to train individual NNs, the
nuclei in the combining data set are used to combine predic-
tions from the committee members in a weighted average, and
the nuclei in the validation set are used for validation of the
NN predictions. The weights for each committee member are
chosen to minimize the root-mean-square error on the nuclei
in the combining data set. As can be seen, most of the nuclei
(about 70%) are used for training, with the remaining 30%
split equally between the combining and validation data sets.
In general, the NN performance is not sensitive to the distri-
bution of training data, provided the NN does not attempt to
extrapolate across the nuclear chart. No detailed optimization
of the choice of training nuclei was carried out.

As mentioned in Sec. II, it is known that the collective
inertia tensor can develop discontinuities and rapid variations
due to level crossings. This makes emulation of the tensor
challenging since the tensor components can span many or-
ders of magnitude as a function of deformation. If the NN is
trained on the inertia tensor components by themselves, the
network predictions are poor. However, while these problems
are features of the approximations used to calculate the inertia,
the NN can still learn certain features of the inertia tensor by
carrying out the eigenvalue decomposition of the inertia tensor

M = U�U T , (8)

where U is the 2 × 2 matrix of eigenvectors and � is the
diagonal matrix of eigenvalues. Since U is an orthogonal
matrix, we can represent U as an element of the set SO(2)
parametrized by Euler angle θ . In this representation, M is
completely parameterized by its eigenvalues and the Euler an-
gle θ . So, the NN is trained on θ and the log of the eigenvalues
at each point (Q20, Q30). Training on this representation of the
tensor is similar to normalizing the network inputs, as both
put NN inputs/outputs on a similar scale. Additionally, this
forces the tensor predictions to be positive semidefinite. We
also transform θ to the range (−π/2, π/2), so that the angles
are mostly clustered near zero (on the interval (0, π ), there
are two clusters: one at 0 and one at π , which the NN has
difficulties learning).

Once the NNs are trained, PESs and inertias are com-
puted for the same grid of deformations as the original DFT
calculations. While the NNs can be evaluated at arbitrary

044305-3



DANIEL LAY et al. PHYSICAL REVIEW C 109, 044305 (2024)

(Q20, Q30), it is less computationally expensive to use a stan-
dard cubic spline interpolator on the grid predicted by the
NN. Moreover, the LAPs computed using the NN evaluations
and the spline interpolator agree well with each other. Due
to the relatively large number of LAP calculations, we report
the LAPs computed using the spline-interpolated NN predic-
tions, rather than using the NN predictions themselves.

IV. NEURAL NETWORK QUALITY

Here, we examine the quality of the NNs, on both the PES
and the collective inertia. In general, we observe that the NN
is able to reproduce both the PES and the collective inertia for
most of the nuclei under consideration. Moreover, the quality
of the NN is relatively stable across the different architectures
considered.

Throughout this section, we will refer to the PES and
collective inertia computed using DFT as the reference data,
and the PES and inertia computed using the NN as the NN
reconstruction.

A. Potential energy surfaces

For a single nucleus, we define the root-mean-square er-
ror (RMSE) �V (A, Z ) in energy over the collective domain
considered as

�V (A, Z )2 = 1

n

∑
Q20,Q30

[V DFT(Q20, Q30, A, Z )

− V NN(Q20, Q30, A, Z )]2, (9)

where n = 693 is the number of grid points evaluated in the
PES. A similar quantity can be defined for the components of
Meff, although there n varies slightly from nucleus to nucleus.

Figure 1 shows �V (A, Z ) across the region of the nuclear
chart considered, for the deepest NN (seven hidden layers
with 200-175-150-125-100-75-50 hidden units), with rescaled
inputs. As can be seen, for most nuclei, �V (A, Z ) � 0.5 MeV.
Exceptions occur, with most remaining below 1.5 MeV. For
some nuclei, such as 308Cf, 314Fm, and 318No, relatively poor
performance may be expected: these nuclei are on the outer
edge of the region of the nuclear chart considered, and hence
the NN is extrapolating from the training region to reach them.
For other nuclei, such as 232Th and 280Cm, poor performance
is unexpected: these nuclei are surrounded by training nuclei,
and so should be emulated fairly well. As such, it seems
unlikely that poor performance is due solely to the location of
the nucleus on the nuclear chart relative to the training data.

To understand the reduced performance, we examine the
nuclei in question. Figure 2(a) shows the reference PES for
280Cm, and Fig. 2(b) shows the difference between the refer-
ence PES and its NN reconstruction. This nucleus is chosen
because it has �V = 2.15 MeV, which is the largest of all
nuclei in the validation set. The difference is less than 1 MeV
across most of the PES, including in the region relevant for
fission. The energy difference is large elsewhere, with a differ-
ence of more than 5 MeV, which is why �V is rather large for
280Cm. We conclude that even for nuclei with larger RMSE,

FIG. 2. (a) The reference PES for 280Cm in MeV. (b) The dif-
ference between the reference and reconstructed PESs, again for
280Cm, in MeV. The reference ground state and the reference LAPs
are marked with a red X symbol and black lines, respectively, in both
panels. The energy range 0.5 � V DFT � 12 MeV is shaded in gray in
(b).

NNs could provide a very reasonable description of the fission
path. This aspect will be examined further in Sec. V.

To assess the sensitivity of our results with respect to the
NN architecture, we repeated our calculations employing dif-
ferent NN sizes and rescaling the inputs. Figure 3 shows the
RMSE (now averaged across all nuclei in a given data set)
across the different data sets for a variety of NN depths. As is
generally expected, the training data set has a monotonically
decreasing RMSE as the NN depth increases; this is simply
due to the increasing number of tunable parameters in the
NN. On the other hand, the RMSE for the combining and
validation sets is fairly stable with respect to the number of
hidden layers of the NN.

A general improvement is observed when normalizing the
inputs (A, Z, Q20, Q30) to be between 0 and 1. This is due to
two factors. First, the weights are not scale-invariant. An input
much larger than 1 is equivalent to a large initial weight, with a
normalized input. Because the final NN weights are expected
to be small (hence initializations following, e.g., the Xavier
initialization [47], as in this work), the initial weights are far
from the final values, and convergence slows. Indeed, the final

FIG. 3. The RMSE for a variety of different NN sizes. The
dashed line shows the same depth NN, but with input variables
normalized to the range [0,1].
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FIG. 4. The reference components of M, plotted against the NN
reconstructions, for all nuclei considered. The black line is the diago-
nal, MDFT

μν = MNN
μν . The blue squares/green circles/orange triangles

correspond to the training/combining/validation data sets. Note that,
for use on a log scale, we plot the absolute value of M23 (the other
components are non-negative). M22 is in MeV−1b−2, M23 is in
MeV−1b−5/2, and M33 is in MeV−1b−3.

NN weights are small, and the distribution of the weights
is similar when comparing NNs with normalized and non-
normalized inputs. Second, the optimization method itself is
not scale-invariant: non-normalized inputs correspond to an
ill-conditioned Hessian matrix, in which case gradient descent
(and related methods) converge slowly [48,49].

We conclude that the NN performance in predicting the
PES is relatively stable with respect to the NN architecture;
Sec. V will demonstrate that performance on this level is
adequate for predicting SF observables.

B. Collective inertia

Since the components of M vary across multiple or-
ders of magnitude and the network is trained on the log of
the eigenvalue decomposition, a loss function such as the
root-mean-squared error is not an adequate measure of the
performance of the NN. Instead, Fig. 4 shows the reference
inertia components, plotted against the NN reconstructions,
for all nuclei considered. The NN used is the seven-hidden-
layer NN with rescaled inputs, with the number of hidden
units as described in Sec. IV A. The diagonal components
M22 and M33 are predicted fairly well, as the distributions
align roughly along the diagonal. It is worth noting that the
distributions are slightly misaligned, in all data sets consid-
ered, indicating that the NN tends to underpredict relatively
large values, and overpredict relatively small values. This, in
turn, shows that the NN is slightly biased towards the mean
value of the inertia.

However, the off-diagonal component |M23| is not aligned
along the diagonal, except for large values. This is be-
cause this component actually varies across almost 10 orders
of magnitude (compared to the 4 orders of magnitude for
M22 and M33), and so the NN is biased towards predict-
ing the larger values more accurately, resulting in a general
overprediction of M23. In terms of the angle θ that is ac-
tually determined by the NN, it is difficult to predict both
small and large angles, and because θ is allowed to be
negative, a logarithm transform is not possible. Neverthe-
less, one obtains a reasonable-looking distribution above
|M23| � 10−4 MeV−1 b−5/2, indicating that some learning
has indeed taken place. And, the poorly-learned values be-
low 10−4 MeV−1 b−5/2 are truncated at values 10−6 −
10−2 MeV−1 b−5/2.

When changing the depth of the NN, performance is simi-
lar. For shallow networks, predictions on the training data set
show a larger bias: the distribution of points on the inertia
plot is less aligned with the diagonal for the M22 and M33

components. In other words, the larger reference values are
underestimated, and the smaller reference values are over-
estimated. The validation data set is aligned similar to the
deepest network, shown in Fig. 4. As the depth of the network
is increased, the training data points are aligned closer with
the diagonal. This is indicative of the NN tending to overfit
on the training data as the number of variational parameters
increases. The distribution of M23 values remains approx-
imately the same when increasing NN depth, with a slight
improvement on the truncated M23 values. In general, the
NN performance on the validation data set is mostly stable
when varying the NN depth. The overarching question is
whether this performance is sufficient for predicting observ-
able quantities of interest. As with the PES, this question can
be directly answered by looking at NN predictions of physical
observables.

V. IMPACT ON OBSERVABLE QUANTITIES

While encouraging, the results discussed in Sec. IV do
not give a perfectly clear estimation of the performance of
the NNs. For instance, the NN reconstruction of the PES for
280Cm may be adequate for reproducing fission observables—
especially SF fragment yields and half-lives, despite the poor
RMSE, since the largest deviations occur at deformations that
will not be explored by LAPs. Similarly, the NN commonly
fails to reproduce the off-diagonal component of the collective
inertia, M23, but primarily for small values of M23.

Here, we examine the performance of the NN on the
lifetime-weighted exit point, as a proxy for the fragment yield
[20,50], and the half-life of the nucleus. For both quantities,
we compare three sets of data: the quantity computed using
(i) the reconstructed PES and the identity inertia; (ii) using
the reference PES and the reconstructed inertia; and (iii) the
reconstructed PES and inertia. In this way, we can isolate
the impact of the PES and inertia emulations separately, and
combine them to assess the overall error of the emulator. In
this section, we use the seven-hidden-layer NN with rescaled
inputs, with a number of hidden units described in Sec. IV A.
Based on the relative insensitivity to the depth of the NN
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FIG. 5. The Q30 component of the reconstructed lifetime-
weighted exit point, minus the reference Q30 component, in b3/2.
These results were computed using configuration (iii), i.e., the NN
was used to reconstruct both the PES and the collective inertia.

shown in Sec. IV, the overall performance is expected to be
similar for different NN depths.

Similar to Sec. IV, exit points and SF half-lives com-
puted using only DFT inputs will be referred to as reference
quantities; those with any NN input will be referred to as
reconstructed quantities.

A. Exit points

As demonstrated in [20,50], the location of the exit points
is sufficient for roughly estimating the fission fragment yields.
For this reason, we can consider exit points as reasonable
proxies for the fragment yields. When multiple fission chan-
nels exist, the combined fragment yields are attained by
adding the yields of each channel, weighted by the probability
of populating a particular channel. Thus, agreement of the
lifetime-weighted exit point indicates strong agreement in
the fission fragment yields (and, by necessity, indicates that
the dominant fission mode is also in agreement between the
reference data and the NN reconstruction).

Figure 5 shows the difference in the octupole moment of
the lifetime-weighted exit point, for configuration (iii) men-
tioned above. The octupole moment is chosen because it is
critical for explaining multimodality in SF. The Q30 error
is similar for the other configurations, and the quadrupole
moment is typically within ±1 b for all configurations.

The agreement is good between the reference exit point
and the NN reconstruction: at ±1 b3/2, we expect the frag-
ment yields to agree well (within the hybrid method of
Refs. [20,50]). This agreement is mainly due to the accurate
PES reconstruction, as previous studies have shown that the
exit point location is fairly robust with respect to variations in
the collective inertia [45,50–52]. This agreement holds even
for nuclei whose PES reconstruction has a large error, such
as 280Cm, indicating that the qualitative features shown in
Fig. 2(a) are reconstructed well enough to describe multi-
modality in SF.

Notice, however, that the exit point locations are not re-
produced perfectly for some nuclei, especially in the thorium
(Z = 90) chain, where the difference can be as much as 5 b3/2.
This is not due to the PES reconstruction: Fig. 1 shows that the
thorium isotopes have RMSE �V (Z = 90) � 100 keV, and
the exit point reconstruction when considering configuration
(i) is within 1 b3/2 of the reference value. Additionally, a

FIG. 6. The half-life predicted using the DFT reference data,
t sf-DFT
1/2 , plotted against the half-life computed using the NN recon-

struction, t sf-NN
1/2 . (a) shows configuration (i), in which only the PES

is emulated; (b) shows configuration (iii), in which both the PES and
the collective inertia are emulated. The black line marks the diagonal:
t sf-DFT
1/2 = t sf-NN

1/2 . Gray bars are drawn at t sf-DFT
1/2 × 10±3, i.e., 3 orders

of magnitude above and below the diagonal. Insets show the range
10−5–1010 s, to highlight the relevant r-process range.

side-by-side comparison of the collective inertia components
does not show a systematic deviation between the reference
inertia and the NN reconstruction.

Nevertheless, the error is due to the inaccurate collective
inertia reconstruction. However, it is not a systematic error.
Rather, random error is present for every deformation con-
sidered, and it is the accumulation of this random error that
causes the discrepancy. While the location of any individual
exit point is not sensitive to the collective inertia, the probabil-
ity of tunneling to a particular point depends on the probability
given in Eq. (1). Because the probability is exponentially
dependent on the action (and therefore exponentially depen-
dent on the collective inertia reconstruction), comparatively
small errors can add up and actually switch the dominant exit
point, from asymmetric to symmetric and vice versa. This is
especially important for nuclei with a wide fission barrier, as
the cumulative error along the path is large.

In general, we observe that both the PES and the collec-
tive inertia are emulated well enough to predict exit points
that agree with the reference data. And, for most nuclei, the
dominant mode is also in agreement. Together, this means that
the SF fragment yields are in agreement between the refer-
ence data and the NN reconstruction for most nuclei under
consideration.

B. Spontaneous fission half-lives

In this section we examine the performance of the NN
when predicting the SF half-life, t sf

1/2. For the sake of simplic-
ity, we do not include triaxiality and pairing correlations as
collective degrees of freedom, despite their large impact on
the predicted t sf

1/2 [51,53–56].
Figure 6 shows t sf

1/2 computed using the reference data vs.
t sf
1/2 computed using the NN reconstruction, for configurations

(i) and (iii) mentioned above [results for configuration (ii) are
similar to those of (iii)]. As can be seen, the t sf

1/2 predictions
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FIG. 7. The ratio of the reconstructed half-life, t sf-NN
1/2 , to the ref-

erence half-life, t sf-DFT
1/2 , plotted against the difference in Q20 between

the ground state and the exit point, for configuration (iii). Gray bars
mark a three orders of magnitude region.

agree well, typically within 3 orders of magnitude across the
approximately 80 orders of magnitude under consideration.

Figure 6(a) demonstrates that the PES reconstruction is
sufficient to predict t sf

1/2 values that agree well with the refer-
ence values. As with the SF fragment yields, this is true even
for nuclei with a large �V , e.g. 280Cm, once again demon-
strating that the PES emulation quality is indeed sufficient to
reproduce SF observables.

Figure 6(b) includes the collective inertia emulation. As
can be seen, the reproduced t sf

1/2 values agree less well with
the reference values, although the disagreement is still within
3 orders of magnitude for most nuclei. This is not unexpected:
Sec. V A shows that the collective inertia emulation, while
sufficient for most nuclei, is not accurate enough for all nuclei.

Similar to Sec. V A, the reason for the disagreement in t sf
1/2

is the accumulation of random errors when the fission pathway
goes across the fission barrier. Now, rather than changing
the dominant fission mode, t sf

1/2 is simply changed from the
reference value in a more-or-less random manner. The effect
is most prominent for long-lived nuclei, where errors in the
collective inertia add up to a fairly large value as the pathway
traverses a wider fission barrier. This is demonstrated in Fig. 7,
where the ratio of the half-lives is plotted against the barrier
width, defined here as the difference between Q20 at the exit
point and Q20 at the ground state. As can be seen, as �Q20

increases above ∼75 b, the difference between reconstructed
half-lives and the reference half-lives tends to increase.

While it may be desirable in principle to improve the em-
ulation, the nuclei whose t sf

1/2 values are reproduced with a
large error are those predicted to be stable to SF, within the
(Q20, Q30) collective space. As such, errors in the SF observ-
ables have little effect on results that are further dependent on
t sf
1/2, such as r-process network calculations.

The inset panels in Fig. 6 magnify the range 10−5–1010 s, to
highlight the relevant r-process range. As can be seen, almost
all nuclei within this range are reproduced nicely within three
orders of magnitude. Therefore, we conclude that NNs are
able to reproduce both the PES and the collective inertia well
enough that t sf

1/2 is reproduced within 3 orders of magnitude
for nuclei for which SF is relevant in the r-process region.

VI. CONCLUSIONS

In this work, we have shown that fully connected feed-
forward NNs are able to emulate both the potential energy
and the collective inertia across a region of the nuclear chart,
in the collective space consisting of the axial quadrupole and
octupole moments. In general, the emulation error on the po-
tential energy is about 500 keV, and the largest discrepancies
are found in high-energy regions far from the fission path.
The inertia tensor is reproduced within roughly an order of
magnitude. We find that the NN performance is stable with
respect to changes in the architecture, while the rescaling
of input variables produces a general improvement overall.
Most of the exit points predicted by the NN agree with the
DFT predictions within a (�Q20,�Q30) = (2 b, 1 b3/2) range.
The SF half-lives are usually reproduced within a factor 103

over a span of more than 70 orders of magnitude. We find
that the largest source of discrepancies is the emulation of
the collective inertia tensor, due to the rapid changes of the
inertia tensor in regions where single-particle level crossings
are present. For some very long-lived nuclei, the associated
error accumulates along the wider fission barrier. Conversely,
in nuclei where fission can be a major decay mode, the emu-
lations are in very good agreement with reference data.

Emulation error in the training data set suggests that mod-
ifications to the training methodology may be warranted. To
improve NN performance on exit points, one could introduce
a hybrid loss function that includes the error in the exit point.
This will likely focus the NN on the region relevant to fission.
However, such a loss function requires many NEB calcula-
tions at each iteration in the training, making the NN training
time unreasonable. To improve the NN performance on M23,
one could train one NN to fit the (logarithm of the) magnitude
of θ , and another to classify the sign of θ . Doing so risks
misclassifying θ , potentially leading to a larger error in M23.
One could also experiment with different transformations of
the angle, θ . Given that both the half-lives and exit points
are emulated reasonably well despite the misprediction of θ ,
neither approach has been pursued in this work.

In future studies, we plan to include more collective co-
ordinates. Dynamic pairing fluctuations have been shown to
be important for accurately predicting SF half-lives [51,53–
56], and other multipole moments have a significant impact on
both the collective motion from the ground state to the fission
isomer [57,58] and the fragment yields [41,59,60]. The NNs
described in this study are expected to have similar perfor-
mance when including more collective coordinates. However,
these NNs require a large amount of training data, and gen-
erating such data may be prohibitively expensive for many
collective coordinates. One attractive option, as demonstrated
in Ref. [34], is to select nuclei for use in training in an iterative
manner based on the performance of the NN, so as to reduce
the required number of DFT calculations.

Another option is to consider different emulators that may
require a smaller amount of training data. Reduced order mod-
eling techniques have recently been used in nuclear physics
to study both nonrelativistic and relativistic DFT [61,62],
especially for use in uncertainty quantification. We intend to
explore the usefulness of these techniques in emulating DFT
results.
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