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Spin squeezed states and wobbling motion in a collective Hamiltonian
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A semiclassical approach combined with adiabatic approximation is applied to the particle+triaxial rotor
(PTR) model in order to derive the collective potential and mass parameters of a collective Hamiltonian (CH)
that depends only on the total angular momentum for the wobbling motion. The CH approximates very well
the energies and E2 transition probabilities associated with the lowest wobbling states in both even-even and
odd-mass systems. The spin squeezed state (SSS) representation with the character of a wave function in
orientation angle of the total angular momentum is introduced to illustrate on the structure of the states. The
probability distribution for the lowest states of the PTR and the CH agree well. This demonstrates that the
method can be used to incorporate collective wobbling into the microscopic tilted axis cranking approach. A
classification scheme for the wobbling mode based on the SSS states is discussed.
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I. INTRODUCTION

Nuclear wobbling motion, originally proposed by Bohr and
Mottelson [1], is a unique phenomenon observed in triaxially
deformed rotating nuclei. This motion involves the nucleus
rotating around the principal axis with the largest moment
of inertia, which then executes harmonic oscillations about
the space-fixed angular momentum vector. The energy spectra
associated with this motion produce a series of rotational
E2 bands that correspond to different oscillation quanta (n).
These bands are characterized by transitions with �I = 1,
which predominantly exhibit E2 character.

However, the existence of wobbling motion in even-even
nuclei, where no intrinsic angular momentum is involved,
remains unconfirmed experimentally. Wobbling bands have
been observed in odd-mass nuclei, where the coupling be-
tween a triaxial rotor and a high- j particle or hole can give
rise to two distinct wobbling modes [2]. These modes are
referred to as longitudinal wobbling (LW) and transverse wob-
bling (TW), depending on whether the angular momentum
of the high- j particle or hole is parallel or perpendicular to
the principal axis with the largest moment of inertia. Con-
sequently, the wobbling energy increases with spin for LW,
while it decreases for TW [2]. In a subsequent work by Chen
and Frauendorf [3], a more comprehensive classification of
wobbling motion was introduced based on the topology of
classical orbits visualized using corresponding spin coherent
state (SCS) maps. These maps (also called as azimuthal plots
in Refs. [4–6] when applied for the visualization of total
angular momentum) provide probability distributions for the

*Corresponding author: qbchen@phy.ecnu.edu.cn
†Corresponding author: sfrauend@nd.edu

orientation of the angular momentum on the unit sphere pro-
jected onto the polar angle θ and azimuthal angle φ plane.
According to this classification, LW corresponds to a revolu-
tion of the total angular momentum J around the axis with
the largest moment of inertia, whereas TW corresponds to a
revolution of J around an axis perpendicular to the axis with
the largest moment of inertia. By employing these scientific
classifications and models, one has gained a deeper under-
standing of the wobbling motions exhibited by triaxial rotors
coupled with high- j quasiparticles.

Currently, the experimental observations of wobbling
bands are primarily reported in odd-proton nuclei. Notable
examples include 161Lu [7], 163Lu [8,9], 165Lu [10], 167Lu
[11], 167Ta [12], and the most recent discovery in 151Eu [13]
in the A ≈ 160 mass region, 135Pr [14,15] and 133La [16]
in the A ≈ 130 mass region, and 187Au [17] and 183Au [18]
in the A ≈ 190 mass region. Additionally, wobbling bands
have been observed in odd-neutron nuclei such as 105Pd [19],
127Xe [20], and 133Ba [21]. More recently, wobbling bands
have also been pointed out in even-even nuclei with a two-
quasiparticle configuration, specifically in 130Ba [22–24] and
136Nd [25,26]. It is important to acknowledge that certain pro-
posed wobblers continue to be a topic of controversy [27–34].
Nevertheless, these experimental observations contribute to
the scientific understanding of wobbling motion in various
nuclear systems.

On the theoretical front, the wobbling motion was initially
proposed within the framework of the triaxial rotor model
(TRM) [1]. The TRM allows for an investigation of the angu-
lar momentum geometry associated with the wobbling motion
in a triaxially deformed even-even nucleus [3,35,36]. Subse-
quent to the discovery of the first wobbling structure in the
odd-proton nucleus 163Lu [8], the particle-triaxial-rotor (PTR)
model [2,3,6,23,37–43] and its approximate solutions [44–49]
have been employed to describe the wobbling mode.
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In addition, various efforts have been made to extend
the cranking model within the mean-field theory frame-
work in order to study the wobbling motion. Due to the
mean-field approximation, the cranking model only yields
the yrast sequence for a given configuration. To describe
wobbling excitations, it is necessary to go beyond the mean-
field approximation. Currently, this has been achieved by
incorporating quantum correlations through methods such as
the random-phase approximation [50–56], the angular mo-
mentum projection method [24,25,57], and the collective
Hamiltonian (CH) method [58,59]. Notably, the collective
Hamiltonian framework has also achieved considerable suc-
cess in describing chiral motion [60–62], which is also the
fingerprint of the triaxial deformation. These theories offer
means to incorporate quantum effects beyond the mean-field
level in the study of wobbling motion.

The present paper further develops of the CH approxi-
mation for the PTR model. One reason is that the collective
Hamiltonian provides an instructive perspective on the results
of full the PTR calculations in terms of the familiar “potential
+ kinetic energy” paradigm. It provides another view on the
physics of the coupled system that is complementary the SCS
maps of the classical orbits on the surface of the angular
momentum sphere, which we developed in Ref. [3]. Both
approaches provide an extended classification of the collec-
tive mode into LW and TW, which is based on whether the
total angular momentum revolves, respectively, the medium
principal axis with the maximal moment of inertia or an axis
perpendicular to it. This scheme extends the original LW-
TW classification introduced in Ref. [2], which is based on
whether the particle is aligned with the medium axis or an axis
perpendicular to it, by taking into account the reorientation
of the particle caused by the Coriolis force. In this way the
transition with increasing angular momentum from TW to LW
via a flip mode is correctly described.

The other motivation for the present study is that the con-
struction of the CH from the adiabatic energy can be applied to
the microscopic tilted axis cranking (TAC) calculations. Our
future work will explore this avenue. The present study is a
proof of principle. We demonstrate how derive a CH from
the TAC-like adiabatic energy, which reproduces with good
accuracy the first and second wobbling bands of the PTR
model, which we can directly calculate.

Compared to earlier versions collective Hamiltonian ap-
proach in Refs. [58–62], the present paper proposes a novel
approach in which both the collective potential and mass
parameter of collective Hamiltonian are derived from the
semiclassical adiabatic energy, and the total angular momen-
tum retains its nature as a good quantum number.

Furthermore, to enable a comprehensive comparison be-
tween the wave functions derived using different models, this
work will introduce the concept of spin squeezed states (SSS).
Squeezed states, initially introduced in the domain of quantum
optics [63], represent a generalization of coherent states [64].
In contrast to coherent states, which minimize the uncertainty
product �x�p, squeezed states exhibit a smaller uncertainty
in either �x or �p at the expense of a larger complementary
width. The SSS states provide a valuable interpretation from a
quantum mechanical perspective as they connect the discrete

J-space representation with the continuous coordinate φ’s
wave function. This approach allows for a deeper understand-
ing of the wobbling motion within the context of the collective
Hamiltonian framework, providing insights that go beyond the
scope of traditional analysis.

II. THEORETICAL FRAMEWORK

A. Spin squeezed states

The Hilbert space of the quantal system with one degree of
freedom and good absolute angular momentum j is spanned
by the “k states” |k〉, which possess a projection − j � k � j
on the quantization 3-axis. The motion of the system is sub-
ject to the constraint imposed by the conservation of angular
momentum, which restricts it to the sphere of constant angular
momentum,

j2 = j2
1 + j2

2 + j2
3 = j( j + 1). (1)

In the context of this quantal system, it is possible to
identify the angular momentum projection operator ĵ3 as the
momentum operator p̂, which represents the momentum along
a particular direction. Consequently, the angle operator φ̂,
responsible for determining the orientation of the angular
momentum vector ĵ projection in the 1-2-plane, can be inter-
preted as the conjugate position operator q̂. This interpretation
allows us to establish a correspondence between the quantum
mechanical operators and their classical counterparts. In par-
ticular, we find the following commutation relation

[ p̂, q̂] = [ ĵ3, φ̂] = −i. (2)

In the classical counterpart of the system, the quantities j3 and
φ correspond to the canonical variables p and q, respectively.

In the following, we introduce the SSS. The overcomplete,
nonorthogonal set of SSS are expressed in terms of k states as

|φ〉 = 1√
2 j + 1

j∑
k=− j

eiφk|k〉 = R†
3 (φ)|φ = 0〉, (3)

which are generated by rotating the state |φ = 0〉 state about
the 3-axis within the range −π � φ � π . Note that in the
case of half-integer j, the spinor |k〉 obeys R†

3 (2π )|k〉 = −|k〉,
which implies |φ + 2π〉 = −|φ〉. For this reason the explicit
definition of the φ range is of importance. The SSS states are
normalized but nonorthogonal,

|〈φ|φ′〉| =
⎧⎨
⎩

1, if φ = φ′,

∣∣ sin [( j+1/2)(φ−φ′ )]
(2 j+1) sin[(φ−φ′ )/2]

∣∣, if φ �= φ′.
(4)

The overlap |〈φn|φ′〉| ≈ 0.64 at φ′ = (φn + φn+1)/2 and = 0
at φ′ = φn+1.

The SSS set is massively overcomplete, because the di-
mension of the j space is 2 j + 1, whereas the dimension of
the SSS space is infinite. There are infinite many possible
transformations from the SSS basis back to the k-basis. One
obvious transformation is

| jk〉 =
√

2 j + 1

2π

∫ π

−π

dφ e−iφk|φ〉, (5)
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which corresponds to the resolution of the identity operator,

1̂ =
∑

k

| jk〉〈 jk| = 2 j + 1

2π

∫ π

−π

dφ |φ〉〈φ|. (6)

The probability distribution of the SSS is given by

P(φ)ν = 1

2π

I∑
K,K ′=−I

e−i(K−K ′ )φρ
(ν)
KK ′ , (7)

where φ is the angle with the short axis in the short-medium
axis plane. The ρ

(ν)
KK ′ is the density matrix or the reduced

density matrix composed by the expansion coefficient of the
eigenfunction on the basis [3]. In the framework of TRM
and the collective Hamiltonian introduced subsequently in
Sec. II B, the coefficients are denoted as C(ν)

IK , and ρ
(ν)
KK ′ is

calculated by [3]

ρ
(ν)
KK ′ = C(ν)

IK C(ν)∗
IK ′ . (8)

In the PTR model with the coefficients C(ν)
IKk (with k here

being the projection of the particle angular momentum on the
quantizated 3-axis), ρ

(ν)
KK ′ is the reduced density matrix [3],

ρ
(ν)
KK ′ =

∑
k

C(ν)
IKkC

(ν)∗
IK ′k, (9)

which is constructed by averaging over the degrees of freedom
k that are not of interest for the moment.

The SSS probability fulfills the normalization condition as∫ π

−π

P(φ)ν dφ = 1. (10)

A complete orthogonal basis can be also spanned by the
discrete “φ states” |φn〉, which are the SSS taken at the discrete
angles φn = 2π (n− j)

2 j+1 , n = 0, . . . , 2 j [cf. Eq. (4)]. The devia-

tion of these “angle states” from being eigenstates of eiφ̂ is of
the order 1/2 j. They are localized in φ around φn. The SSS
interpolate between the discrete φ states, which provides the
information about the phase relations between the discrete φ

states.
Figure 1 illustrates the basis sets of k states, φ states, SSS,

as well as SCS used in Ref. [3]. The set of k states is orthonor-
mal and complete. The j3 takes the sharp values k while φ

is uniformly distributed over the circles of constant latitude,
which is often illustrated in form of a precession cones. For
the φ states, φ̂ is localized at the discrete values φn while
j3 is uniformly distributed over the semicircles of constant
longitude, which can be imagined as a semicircular sheets.
They represent the momentum and coordinate representations
of the states in the j space. As mentioned above, the SSS
states interpolate between the discrete φ states, facilitating the
extraction of phase relations among these discrete states. The
set of the SCS is generated by rotating the generating state
| j, k = j〉 over the whole angular momentum sphere [3].

It is noted that the authors of Refs. [44–49] used the SCS
with the original complex number parameters. The one-to-
correspondence with the more intuitive parametrization in
Fig. 1 is discussed in Ref. [65].

The notation squeezed states comes from quantum op-
tics. They are a generalization of coherent states. For

FIG. 1. Schematic illustration of the different states used as basis
sets in the j space. Each state is represented by a curve along
which the endpoint of angular momentum vector is distributed with
equal probability. The k states are circles of constant latitude k.
The φ states are semicircles of constant φ. The figure displays the
pertaining meridians. For the continuous set of SCS only the states
|θ = 0, φ = 0〉 and |θ = π/2, φ = 0〉 are shown. For the continuous
set of SSS only the states |φ = 0〉 and |φ = −π/4〉 are shown.

coherent states the uncertainty product �x�p is minimized.
For squeezed states either �x or �p is smaller than for the op-
timal coherent states (and the complementary width is larger).
The SSS uncertainty �φ ≈ 3/(2 j) [see Eq. (4)] is smaller
than the SCS width of 1/

√
2 j because k has a large width

of 2 j + 1.
The proposed SSS plots will be applied to the triaxial rotor

and particle-rotor systems in this work in combination with
the collective Hamiltonian introduced below.

B. Triaxial rotor model in angle-momentum representation

The classical mechanics of gyroscopes offers a framework
for classifying quantal states. In this context, the classical
orbits of the angular momentum vector, relative to the body-
fixed principal axes, represent the intersection lines between
the sphere of constant angular momentum and the ellipsoid
of constant energy. Detailed discussions on the construction
of these orbits can be found in Refs. [2,3,66]. For the triaxial
rotor the orbits are given by the two angles θ and φ as

J1 =
√

I (I + 1) sin θ cos φ, (11)

J2 =
√

I (I + 1) sin θ sin φ, (12)

J3 =
√

I (I + 1) cos θ, (13)

which are restricted to the sphere of constant angular
momentum,

J2 = J2
1 + J2

2 + J2
3 = I (I + 1). (14)

Namely θ is the angle between the angular momentum J and
the 3-axis and φ is the angle between the projection of J onto
the 1-2-plane and the 1-axis.
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With the above definitions, the TRM Hamiltonian [1]

HTR = Ĵ2
1

2J1
+ Ĵ2

2

2J2
+ Ĵ2

3

2J3
(15)

can be rewritten as a classical Hamiltonian,

HTR = I (I + 1)

(
sin2 θ cos2 φ

2J1
+ sin2 θ sin2 φ

2J2
+ cos2 θ

2J3

)
,

(16)

which can be cast into the form

HTR = V (φ) + J2
3

2B(φ)
, (17)

with

V (φ) = I (I + 1)

(
cos2 φ

2J1
+ sin2 φ

2J2

)
, (18)

B(φ) = 1

2

[
1

2J3
− cos2 φ

2J1
− sin2 φ

2J2

]−1

. (19)

In the above formula, the J1,2,3 are the corresponding mo-
ments of inertia of the three principal axes. It is crucial to
highlight that the derivations presented above for the collec-
tive potential V (φ) and mass parameter B(φ) are carried out
without any approximation. This rigorous treatment allows for
a comprehensive and precise characterization of the quantum
behavior associated with wobbling motion in triaxial nuclei.

The classical TRM Hamiltonian (17) in J3-φ representation
has the form of a kinetic term with the φ-dependent inertia
parameter B(φ) and the periodic potential V (φ) as given by
Eqs. (19) and (18). The step of quantization of the classical
energy is not unique. To quantize it, we apply the general Pauli
prescription [67,68]. The quantized form of the CH reads as
[58–60]

HCH = − h̄2

2
√

B(φ)

∂

∂φ

1√
B(φ)

∂

∂φ
+ V (φ). (20)

The volume element in the present collective space is∫
dτCH =

∫ π

−π

dφ
√

B(φ). (21)

The CH Hamiltonian is diagonalized in the basis

|ψK〉 = 1√
2π

exp[iKφ]

B1/4(φ)
. (22)

The CH matrix elements are evaluated by numerical integra-
tion, where the derivation of ∂/∂φ acts on the mass parameter
term B1/4(φ) in the denominator of Eq. (22). The results of
the diagonalization in the basis −I � K � I agrees exactly
with the diagonalization of the original TRM Hamiltonian
(15). It provides all solution with the four representations
of the D2 group R1(π ) = ±1 and R3(π ) = ±1. The TRM
describes the rotational excitations built on the ground-state
even-even nuclei. Therefore the intrinsic state is the quasipar-
ticle vacuum, which has the symmetry R1(π ) = R3(π ) = 1.
The TRM rotational states must have the same symmetry,

because a rearrangement of the principal axes must leave the
product of the intrinsic and rotational wave function invariant
(see Ref. [1]). The Hamiltonian couples only basis states K
with K ± 2 and is invariant with respect to K → −K . The
completely symmetric representation corresponds to even-K
and symmetric solutions for even-I and antisymmetric solu-
tions for odd-I .

The collective function is written as

|�〉ν =
∑

K

C(ν)
IK |ψK〉, (23)

in which the expansion coefficients C(ν)
IK are obtained by diag-

onalizing the CH Hamiltonian (20) and used to construct the
density matrix (8) to calculate the SSS plots. Additionally we
diagonalized it in an extended K-basis, large enough that the
results did not depend on the cutoff.

In order to derive the angle-momentum representation of
the TR Hamiltonian, the authors of Refs. [44–46] used the
SCS basis and accomplished the requantization by means of
boson expansion techniques for the angular momentum oper-
ators. They studied approximate solutions of their version of
the differential equation (20).

C. Collective Hamiltonian for the particle-triaxial-rotor model

The PTR model couples high- j particles to the triaxial
rotor core. The corresponding Hamiltonian has been given in
many textbooks, e.g., Ref. [1]

ĤPTR = ĥp +
∑

i=1,2,3

Ai
(
Ĵ2

i − 2Ĵi ĵi + ĵ2
i

)
. (24)

with the inertial parameters Ai = 1/(2Ji ). The particle
Hamiltonian ĥp is taken as single- j shell Hamiltonian

ĥp = κ
[(

3 ĵ2
3 − j2) cos γ +

√
3
(

ĵ2
1 − ĵ2

2

)
sin γ

]
. (25)

The angle γ serves as the triaxial deformation parameter and
the coupling parameter κ is proportional to the quadrupole
deformation parameter β.

As discussed in our previous paper [3], the PTR Hamil-
tonian is diagonalized in the product basis |IIK〉| jk〉, where
|IIK〉 are the rotational states for half-integer I and | jk〉 the
high- j particle states in good spin j approximation. The eigen-
states are hence expressed as

|IIν〉 =
∑
K,k

C(ν)
IKk|IIK〉| jk〉. (26)

The coefficients C(ν)
IKk of the states in the triaxially deformed

odd-A nuclei are not completely free. They are restricted by
requirement that collective rotor states must be symmetric
representations of the D2 point group. When the K and k in
the sum run respectively from −I to I and from − j to j, their
difference K − k must be even, and one half of all coefficients
is fixed by the symmetry relation,

C(ν)
I−K−k = (−1)I− jC(ν)

IKk . (27)
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From the amplitudes of the eigenstates C(ν)
IKk , the reduced

density matrices

ρ
(ν)
kk′ =

∑
K

C(ν)
IKkC

(ν)∗
IKk′ (28)

and

ρ
(ν)
KK ′ =

∑
k

C(ν)
IKkC

(ν)∗
IK ′k (29)

are obtained, which contain the information about the parti-
cle angular momentum j and the total angular momentum
J, respectively. The respective reduced density matrices are
plugged into Eq. (7) to generate the pertaining SSS plots. We
used the same method in our preceding paper [3] to generate
the SCS plots.

In order to construct a CH we apply the adiabatic ap-
proximation. The particle angular momentum ĵi is treated as

an operator while the total angular momentum is treated as
a classical vector as in Eqs. (11)–(13). The corresponding
adiabatic Hamiltonian is written as

Ĥad = ĥp +
∑

i=1,2,3

Ai
(
J2

i − 2Ji ĵi + ĵ2
i

)
, (30)

with Ji being numbers given in Eqs. (11)–(13) and the in-
ertial parameters Ai = 1/(2Ji ). The Ĥad is diagonalized in
the j-space | jk〉 (with k being the 3-axis component of the
particle angular momentum j in the intrinsic frame). This
indicates that the particle angular momentum operators ĵi and
ĵ2
i are treated exactly. The adiabatic approximation is similar

but slightly different from the TAC mean-field approximation
[58,61,69,70]. For the adiabatic PTR the recoil term 〈 ĵ2

i 〉 is
diagonalized, whereas it is replaced by 〈 ĵi〉2 under the TAC
mean-field approximation.

The expectation value of the adiabatic Hamiltonian can be
expressed in terms of the polar angle θ and azimuthal angle φ

of the total angular momentum J as follows:

Ead(θ, φ) = 〈Ĥad〉
= 〈ĥp〉 +

∑
i=1,2,3

Ai
(
J2

i − 2Ji〈 ĵi〉 + 〈
ĵ2
i

〉)

= 〈ĥp〉 +
∑

i=1,2,3

Ai
〈
ĵ2
i

〉 + I (I + 1)[(A1 cos2 φ + A2 sin2 φ) + cos2 θ (A3 − A1 cos2 φ − A2 sin2 φ)]

− 2
√

I (I + 1)[A1

√
1 − cos2 θ cos φ〈 ĵ1〉 + A2

√
1 − cos2 θ sin φ〈 ĵ2〉 + A3 cos θ〈 ĵ3〉]. (31)

We consider the TW case. The adiabatic energy has a minimum at θ = π/2, because the long axis (3-axis) of the triaxial
deformed nucleus has the smallest moment of inertia and the particles tend to align their angular momentum with the short axis
(1-axis). In order to construct a CH of the form (17), we expand it with respect to cos θ , which is a small quantity near θ = π/2.
The linear term is zero because the expansion is around the minimum. Further employing the approximation√

1 − cos2 θ ≈ 1 − 1
2 cos2 θ, (32)

one can approximate the adiabatic energy as

Ead(θ, φ) ≈ 〈ĥp〉 +
∑

i=1,2,3

Ai
〈
ĵ2
i

〉 + I (I + 1)(A1 cos2 φ + A2 sin2 φ) − 2
√

I (I + 1)(A1 cos φ〈 ĵ1〉 + A2 sin φ〈 ĵ2〉) − 2A3J3〈 ĵ3〉

+ J2
3

[
(A3 − A1 cos2 φ − A2 sin2 φ) + 1√

I (I + 1)
(A1 cos φ〈 ĵ1〉 + A2 sin φ〈 ĵ2〉)

]

= V (φ) + J2
3

2B(φ)
, (33)

where we have used Eqs. (11)–(13).
The collective potential V (φ) is energy Ead(θ = π/2, φ).

To obtain the mass parameter we calculate the energy varia-
tion generated by the very small shift δ = θ − π/2,

�E = Ead(π/2 + δ, φ) − Ead(π/2, φ). (34)

Correspondingly, the angular momentum of the third compo-
nent varies as

�J2
3 = J2

3 (π/2 + δ, φ) − J2
3 (π/2, φ). (35)

From the relationship

�E = �J2
3

2B(φ)
, (36)

one obtains

B(φ) = �J2
3

2�E
. (37)

One can easily check that using this method, the same mass
parameter (19) of the TRM can be obtained.
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D. Electromagnetic transition probabilities

The probability of the electromagnetic transitions B(E2)
can be obtained from the CH wave function expansion coef-
ficients Cν

IK on the basis ψK (22). The reduced E2 transition
probability is calculated as

B(E2, Iν → I ′ν ′) =
∑
μKK ′

∣∣Cν ′∗
I ′K ′Cν

IK〈ψK ′ |M E
2μ|ψK〉∣∣2

. (38)

The corresponding E2 operator is taken as

M E
2μ =

√
5

16π
Q̂2μ, (39)

Q̂2μ = D2
μ0Q′

20 + (
D2

μ2 + D2
μ−2

)
Q′

22, (40)

with the intrinsic quadrupole moments

Q′
20 = Q0 cos γ , Q′

22 = 1√
2

Q0 sin γ , (41)

where Q0 is the intrinsic charge quadrupole moment, calcu-
lated by Q0 = (3/

√
5π )R2

0Zβ, R0 = 1.2A1/3 fm. The matrix
elements 〈ψK ′ |M E

2μ|ψK〉 have the well-known form for good
K states as given by Bohr and Mottelson [1].

III. RESULTS AND DISCUSSION

A. Triaxial rotor system

For the triaxial rotor, we discuss the system with the mo-
ments of inertia Jm,s,l = 30, 10, 5 h̄2/MeV for the medium
(m), short (s), and long (l) axes, which was studied previ-
ously in Refs. [2,3,35]. In Refs. [3,35], the energy spectra as
function of spin and the angular momentum structure were
illustrated in the framework of TRM. In addition, Ref. [3]
introduced the two-dimensional SCS maps, i.e., probability
distribution for the orientation of the angular momentum on
the (θ, φ) plane, to extract the classical mechanics underpin-
ning of the quantal triaxial rotor model from the numerical
results. In this subsection, we will focus on discussing the
information provided by the collective Hamiltonian and the
one-dimensional SSS.

The calculated collective potential V (φ) and the collective
mass parameter B(φ) for I = 8 are shown in Fig. 2. Note that
φ is the angle between the projection of J onto the s-m plane
and the s axis. The V (φ) and B(φ) are symmetrical with re-
spect to φ = 0 line, as a result of the invariance of the intrinsic
quadrupole moments with respect to the D2 symmetry for a
triaxial rotor system. The minima in the V (φ) and B(φ) locate
at φ = ±π/2, which corresponds to uniform rotation about
the m axis with the largest moment of inertia.

Figure 2 further displays the TRM energies for states with
angular momentum I = 8 and I = 9 as dots, while the ener-
gies obtained from the collective Hamiltonian are represented
by bars. It is important to note that the D2 symmetry imposes
a restriction on the number of eigenstates. Specifically, for
I = 8, there are five eigenstates labeled as n = 0, 2, 4, 6, and
8, while for I = 9, there are four eigenstates labeled as n = 1,
3, 5, and 7. Remarkably, the energies obtained from the collec-
tive Hamiltonian exhibit perfect agreement with those derived
from the TRM calculations. This consistent agreement is

FIG. 2. Upper panel: Classical potential energy V (φ) as a func-
tion of φ for spin I = 8. The dots show the quantal energies Eν

calculated by TRM, while the horizontal lines represent the energies
obtained by the collective Hamiltonian HCH, which incorporates a
φ-dependent mass parameters B(φ) shown in the lower panel. Note
that for the even-n states, they are calculated from I = 8 states,
while for the odd-n states, they are calculated as the 72/90 of I = 9
energies.

expected because the derivation of the collective Hamiltonian,
given by Eq. (20), does not introduce any approximations
specifically for the triaxial rotor system. Consequently, the
excellent agreement confirms the validity and accuracy of the
collective Hamiltonian approach.

The function B(φ) describing the collective potential does
not depend on the spin, as shown in Eq. (19). However, the
term V (φ) in the potential does depend on the spin through
the factor I (I + 1), as described by Eq. (18). As a result,
the stiffness of the collective potential increases with increas-
ing spin. This characteristic has significant implications, as
it suggests that the wobbling energy, defined as the energy
difference between adjacent wobbling states, also increases
with spin. This finding provides a more general perspective on
the conclusion obtained by the assumption of small amplitude
oscillations of the total angular momentum in the framework
of TRM in Ref. [1].

As aforementioned, the SSS plots offer a quantum me-
chanical perspective by providing the probability density
distribution of the wave function in the φ degree of free-
dom. These plots allow for an intuitive interpretation as they
resemble the familiar probability density distributions in the
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FIG. 3. Probability densities of the SSS for the triaxial rotor
states 1–5 of I = 8 and the state 1 of I = 9. The smooth solid
and dashed lines show the continuous SSS P(φ)ν obtained by the
TRM and collective Hamiltonian, respectively. The dots represent
the discrete SSS probability 2π

2I+1 P(φn)ν .

φ representation. The probabilities of the SSS are illustrated
in Fig. 3 for the triaxial rotor states numbered 1 to 5 with
I = 8, as well as for state 1 with I = 9. These probabili-
ties are calculated using the collective Hamiltonian and are
compared with the corresponding probabilities obtained from
the TRM calculations. Impressively, the resulting SSS plots
obtained from the collective Hamiltonian calculations exhibit
a high degree of agreement with those obtained from the
TRM calculations. This agreement suggests that the SSS plots
derived from the collective Hamiltonian can be interpreted as
probability densities of the continuous eigenfunctions in the φ

representation. Therefore, they provide a familiar and intuitive
interpretation of the system’s quantum mechanical properties.

In the classical regime, the motion of the triaxial rotor is
confined to the regions between the potential energy function
V (φ) and the bars, as depicted in Fig. 3. In the SSS plots, the
n = 0 state denoted as 81 exhibits a prominent bump, which
represents the presence of zero-point oscillations, arising from
quantum mechanical fluctuations at the system’s ground state.
The n = 1 state labeled as 91 possesses the character of the
first excited oscillator state. The φ oscillation has a larger
amplitude, and a zero crossing at φ = ±π/2. This observation
corresponds to the behavior of the Hermite polynomial H1.

The n = 2 state, denoted as 82, exhibits the characteristics
of the second oscillator state within the potential. The am-
plitude of the oscillation in the φ degree of freedom reaches
almost π . Within the allowed regions of motion, there are two
zeros symmetrically positioned at ±π/2. This pattern reflects

the Hermite polynomial H2 in the wave function associated
with this state.

The SSS plots corresponding to the states 83 (n = 4), 84

(n = 6), and 85 (n = 8) show a standing wave patterns with a
periodicity of 2n, where the potential energy function modu-
lates the heights of the peaks. In particular, the n = 8 state 85

represents an almost pure Kl = 8 structure, with a relatively
weak modulation which arises due to the interplay between
the underlying potential energy landscape and the quantum
mechanical properties associated with the state. For the n = 4
state 83, the SSS plot exhibits prominently enhanced peaks at
φ = 0 and π . This enhancement indicates the proximity of the
classical separatrix orbit separating the wobbling motion with
respect to the m axis and l axis. It represents the characteristic
flip mode (FW) [3] that involves rapid transitions between the
two orientations of the unstable s axis.

Figure 3 also includes the probability distribution of the
discrete φn states, which is given by 2π

2I+1 P(φn)ν with a prefac-
tor in order to properly normalize it. The SSS states smoothly
interpolate between the discrete points of the φn distribu-
tion, resulting in a continuous wave function with a density
distribution. However, the discreteness of the φn distribution
tends to obscure the intuitive understanding of SSS structures,
especially as the number of peaks increases. Particularly for
the state 85, the discrete distribution appears counterintuitive.
Since K = 8 is almost a good quantum number, one would
expect the probabilities for all φn to be approximately equal.
Contrary to this expectation, a decrease towards φ = ±π

is observed in the discrete φn distribution. This decrease is
caused by the symmetrization of the state, specifically the
superposition (|IIK〉 + |II − K〉)/

√
2. This symmetrization

leads to an interference between the φ±n states. The contin-
uous SSS density distribution, on the other hand, behaves
as anticipated. It oscillates proportionally to cos2(Kφ), while
the envelope remains roughly constant. Therefore, the SSS
plots highlights the interplay between continuous and discrete
aspects of the quantum system and offers valuable insights
into the symmetries and interference effects at play in the
triaxial rotor system.

B. Particle-rotor system

For the particle-rotor system, we discuss 135Pr reported
in Refs. [14,15] as the first example for transverse wobbling
of triaxial nuclei with normal deformation. In Ref. [2], the
concepts of TW and LW were proposed in the framework of
PTR using the tentative experimental result of 135Pr as exam-
ple. In Ref. [59], the suggested wobbling bands in 135Pr were
investigated using the collective Hamiltonian based on the
TAC approach. The experimental energy spectra of both yrast
and wobbling bands were well reproduced by the collective
Hamiltonian. But the total angular momentum was not a good
quantum number due to the rotational symmetry breaking
in TAC. In Ref. [6], the behavior of the collective rotor in
wobbling motion was investigated in PTR in the rotor angular
momentum representation. In Ref. [3], the interpretation of
the quantum states of the model of a triaxial rotor coupled
to an odd-particle was discussed in detail using the wobbling
motion in 135Pr as example. In particular, two-dimensional
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FIG. 4. Collective potential energy V (φ) (upper two panels) and mass parameter B(φ) (lower two panels) as functions of φ for the particle-
rotor system of 135Pr. The dots show the PTR energies EPTR, while the horizontal lines show the collective Hamiltonian energies ECH. Their
energies are plotted with respect to the minima of the collective potential Ead(min).

plots of the probability distributions of the SCS were used to
generalize the classification of the collective excitations of the
PTR as TW and LW modes based on their topologies. In this
subsection, we will show the results obtained by the collective
Hamiltonian and the one-dimensional SSS.

The input parameters are β = 0.17 (corresponds to κ =
0.038), γ = 26◦, and Jm,s,l = 21, 13, 4 h̄2/MeV, the same
as in Refs. [2,3,6].

To construct a collective Hamiltonian, similarly to the
triaxial rotor case, we first calculate the collective potential
and mass parameter starting from the adiabatic particle-rotor
Hamiltonian (30). The adiabatic energy Ead(φ), which can be
considered as the potential energy for the collective wobbling
mode, is obtained by minimizing adiabatic energy Ead(θ, φ)
(33) with respect to the angles θ for fixed φ. The adiabatic
energy Ead(φ) − Ead(min) is displayed in Fig. 4, which repre-
sents the bottom of the valley in the surface Ead(θ, φ) relative
to its lowest point. To simplify the presentation, we focus on
displaying the results within the region of −π/2 � φ � π/2.
However, it is important to note that the results in the regions
of −π � φ � −π/2 and π/2 � φ � π have symmetrical
behavior with respect to the results in the region −π/2 �
φ � 0 and 0 � φ � π/2, respectively. This symmetry arises
because the particle-rotor Hamiltonian is invariant under the
D2 symmetry.

As shown in Fig. 4, with increasing spin I the adiabatic
energy becomes biased toward the m axis. Above the critical
angular momentum Jc = 11 a maximum at φ = 0 appears,
which generates two minima with the same energy located at
the angles ±φ.

The mass parameters B(φ) calculated by Eq. (37) are
shown in Fig. 4 as well. As expected for a triaxial nucleus

with D2 symmetry, B(φ) is symmetric with respect to φ = 0.
The peaks of B(φ) at φ = ±π/2 drive the nucleus towards the
m axis with the largest moment of inertia. Unlike in the case of
the triaxial rotor system, the B(φ) in PTR changes with spin.
The magnitude of B(φ) increases with spin in the low spin
region I � 29/2, while decreases above I = 31/2.

The adiabatic potential allows one to associate a collective
wave function with the wobbling mode, which provides a
quantal perspective like the TRM wave function in Sec. III A.
The CH

HCH = J2
3

2B(φ)
+ V (φ) (42)

is constructed by adding a kinetic term with the inertia param-
eter B(φ) to the potential energy V (φ) shown in Fig. 4. The
CH is diagonalized in the discrete basis (22) with K being I ,
I − 2, . . . , −I + 1. The pertaining amplitudes C(ν)

IK represent
the collective wave functions. For half-integer spin there are
two degenerate states, because the CH couples only K with
K, K ± 2. They are

|α3〉 =
∑

K

C(ν)
IK |IIK〉, | − α3〉 =

∑
K

C(ν)
IK |II − K〉,

K = I, I − 2, . . . , −I + 1, (43)

where α3 = I is the signature with respect to R3(π ). The two
solutions are related by time reversal and represent examples
of Kramer’s degeneracy of half-integer spin systems. It is
sufficient to study the |α3〉 states.

The diagonalization of the CH provides more solutions
than the PTR, because the latter takes into account that the TR
rotor core states are the completely symmetric representations
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FIG. 5. Energies of the lowest states Eν of the PTR Hamiltonian
(symbols) and the collective Hamiltonian (full drawn lines), the adia-
batic energy (dashed) and the TAC energy (dashed-dotted), for 135Pr.
The energies are shifted by 1.743 MeV, which is the lowest energy
from the diagonalization of hp(γ ) in Eq. (25). In the following, the
yrast states (n = 0) are denoted by 11/21, 15/21, 19/21, . . . , the
single wobbling excitations (n = 1) by 13/21, 17/21, 21/21, . . . , and
the double wobbling excitations (n = 2) by 15/22, 19/22, 23/22, . . . .

of the D2 group. This entangles the quantum state of the
particle with the rotational state. The symmetry restriction
gets lost in deriving the CH. In the quantal PTR version of
Eq. (30) the Coriolis matrix elements 2Ĵi ĵi couple the compo-
nents |IIK〉| jk〉 in such a way that the change of the particle j
projection k and the total J projection K are related such the
core is total symmetric with respect to D2. This correlation
gets lost when Ĵi is replaced by the number Ji in calculating
the adiabatic energy surface (30).

Comparing with the PTR solutions, one finds that for the
signature I = j + 2m (m being an integer number) the first
and third solutions describe the n = 0 and n = 2 wobbling
states. The second and fourth solutions should be discarded.
These states with the n = 1 and n = 3 character do not appear
in the PTR calculations. Likewise, for the signature I = j +
1 + 2m the second and fourth solutions describe the n = 1 and
n = 3 wobbling states. The first and second solutions should
be discarded. These states with the n = 0 and n = 2 character
do not appear in the PTR calculations.

The resulting energies of the lowest bands, which represent
the n = 0, 1, 2, 3 wobbling states, agree rather well with the
PTR values as displayed in Fig. 5. The n = 0 yrast states
are 0.1–0.2 MeV too high. A possible reason is that from
Ead(min), which is shown as the dashed line in Fig. 5, a “fluc-
tuation term” should be subtracted, which generally appears in
adiabatic collective Hamiltonians. In our case, it is attributed
to the quantual fluctuations of the total angular momentum
that are missed in the adiabatic potential, which is obtained for
a fixed classical vector J. Such corrections generally decrease
the adiabatic potential, which would shift the dashed line in
Fig. 5 somewhat below the PTR yrast energies (as well as the
whole CH spectrum somewhat down). A comparison of the
different contributions to the total energy shows that the PTR
has a Coriolis term (negative) arising from fluctuations of the
l component of J, which are missing in the adiabatic energy.

FIG. 6. Upper panel: Calculated in-band B(E2)in(I → I − 2) of
the bands in Fig. 5, where the same line and color conventions
are used. Lower panel: Calculated interband B(E2)out(I → I − 1)
transition probabilities between the bands shown in Fig. 5. In order
to keep the legend compact, the connecting transitions are labeled by
quanta numbers n, which are associated with the oscillator states in
the TW regime. Beyond, n represents just a counting label for the
states.

The dots and horizontal lines in Fig. 4 show the energies
with respect to the potential’s minimum,

Ew = Eν − Ead(min), (44)

where Eν are the energies calculated by the exact diagonaliza-
tion of the PTR Hamiltonian or the CH. The minimum of the
adiabtic energy Ead(min), is shown as the dashed line in Fig. 5.
The energy difference (44) can be assigned to the collective
wobbling energy.

One notes that the PTR states for spins 19/2, 23/2, and
27/2 are located a bit below the minimum potential energy as
shown in Fig. 4. This reflects the above discussed somewhat
too-high energy of the adiabatic potential.

The upper panel of Fig. 6 compares the CH intraband
B(E2)in(I → I − 2) values with the PTR ones, where the
same line convention as in Fig. 5 is used. The lower panel
shows the interband B(E2)out(I → I − 1) transition proba-
bilities among the n = 0, 1, 2, and 3 bands in Fig. 5. The
strong collective �I = 1 E2 transitions, which characterize
the wobbling motion, are reflected by Fig. 6. The CH results
become inaccurate around I = 33/2, indicating that the adia-
batic approximation is no longer good. For the n = 3 band the
adiabatic approximation is also not good enough.
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FIG. 7. Full curves show the probability density of the SSS for the n = 0−3 states calculated by PTR, while the dashed curves display the
ones by the CH.

The SSS collective (SSS-CH) probability densities are cal-
culated as the square of the collective wave function Eq. (23)
obtained from the pure density matrices of the α3 solutions.
Using the −α3 solutions gives the same results.

Figure 7 compares these SSS-CH probability densities with
the SSS PTR (SSS-PTR) densities directly obtained from
the PTR reduced density matrices. Like for the TRM (see
Sec. III A), we also diagonalized the collective Hamiltonian
within a sufficiently extended basis of |K| > I states. The
results agree with ones shown in Figs. 4–7 on the scale of the
figures. Hence one can see the SSS-CH densities as the proba-
bility densities of collective wave functions in the continuous
φ approximation.

For the states n = 0 and n = 1, SSS-PTR probabilities are
rather similar to the SSS-CH densities. This demonstrates that
the development of the structure is well accounted by the
collective Hamiltonian composed of the adiabatic double-well
periodic potential and a kinetic term with a φ-dependent iner-
tia parameter. The analog Hamiltonian describes the relative
“pseudorotation” of the two parts of a molecule attached to
each other by one chemical bond (see, e.g., Ref. [71]), where
the collective wave functions are characteristic for double-
well periodic potentials. The probability distributions in φ

direction are standing waves with one, two, three, and four
maxima in the interval −π/2 � φ � π/2 for n = 0, 1, 2, 3,
respectively. Within the full range −π � φ � π the maxima
are located symmetrically to φ = 0, ±π/2, ±π . Depending
on the position of the potential minimum, the maxima form
pairs close to φ = 0, ±π in the case of TW and φ = ±π/2 in
the case of LW.

The SSS-PTR densities correlate well with the SSS-CH
ones of the n = 0 and 1 collective states. The n = 2 double
wobbling structure is strongly disturbed yet recognizable. For
n = 3 the SSS density substantially deviates from the CH
one. The adiabatic approximation, on which the concept of

a collective wave function is based, becomes progressively
inaccurate with increasing n.

There is a complementary perspective. In calculating the
reduced density matrix, the tracing out of the j degree of free-
dom destroys to some extend the coherence of the complete
PTR wave function. In general, the properties of the J degrees
of freedom are described by the reduced density matrix, which
cannot be further simplified. If j follows J in an adiabatic
way, the reduced density matrix can be approximated by a
pure density matrix generated from a collective wave function
in the J degree of freedom. The coherence in the J degree
of freedom decreases with increasing n. One can quantify
the degree of coherence by diagonalizing the reduced density
matrix. For a pure, completely coherent state one eigenvalue
is 1 and all other are zero. The TRM states are examples.
For partial coherence one has one large eigenvalue, the eigen-
vector of which represents the coherent wave function and
the eigenvalue its probability. The remaining eigenfunctions,
which appear with the probability of their small eigenvalues,
distort the coherence.

1. The TW regime

For I � 23/2, the collective potential has a minimum at
φ = 0. The SSS-PTR probability distributions in Fig. 7 are
similar to the SSS-CH of the collective wave functions with
n = 0, 1, and 2 within the adiabatic potential which is centered
at φ = 0. The densities have n pronounced maxima symmetric
to φ = 0, which reflect the Hermite polynomials Hn. The
behavior is analogous to that of the TRM discussed in the
context of Figs. 2 and 3. With increasing n, the SSS-PTR
distributions appear progressively washed out as compared
to the SSS-CH distributions of the collective wave functions.
We attribute this to a loss of coherence which signals that the
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FIG. 8. The SSS probability density for the odd particle calculated by PTR for the n = 0−3 states.

adiabatic approximation loses accuracy. Figure 7 shows that
the n = 3 PTR structures are not well described by the CH.

The SSS-PTR distribution of state n = 3 substantially de-
viates from the SSS-CH of the collective wave functions,
which indicates that the adiabatic approximation fails. This
can be seen comparing the SSS distribution for the odd
particle in Fig. 8. As expected for the adiabatic behavior,
the particle is well aligned with the s axis for n = 0, 1, and
2. The n = 3 distribution is different. We associated the dif-
ference with the mixing of the n = 3 collective wobbling state
and the signature partner band. The latter represents the first
excited state of the adiabatic Hamiltonian (30), which is not
taken into account when deriving the CH.

For the n = 3 states 17/22, 21/22, and 25/22, the adiabatic
condition is as badly realized as for 13/22. The SSS distri-
butions for j are nearly the same as for 13/22 and 25/22 in
Fig. 8. The SSS-PTR densities for J resemble the SSS-CH
qualitatively. The classification of the states as strongly per-
turbed three-quanta TW oscillations seems acceptable. In our
preceding paper we argued that the coupling of the n = 3 wob-
bling state with the signature partner state becomes weaker
with increasing I .

Up to I = 23/2, the n = 0 SSS distributions have a peak
at φ = 0, which gets wider with I . As expected for TW, the
wobbling energy

Ew(I ) = E (I, n = 1) − 1
2 [E (I − 1, n = 0) + (I + 1, n = 0)]

(45)

decreases with I . The PTR transition probabilities in Fig. 6 are
well reproduced by the CH states.

2. The flip regime

For I = 27/2-35/2, the potential develops a maximum at
φ = 0, which generates two minima near φ = π/4. The n = 0
states 27/21 and 31/21 can be interpreted as being composed
of two states localized in the two minima (localized states),
which are coupled by tunneling through the shallow barriers.
The superposition of the localized states is constructive as

seen by the substantial SSS probability under the barriers.
With increasing I , the tunneling through the barriers at φ = 0
decreases and the tunneling through the barriers at ±π/2
increases, which reflects the respective change of the barrier
heights. For I � 35/2, the SSS plots are well understood in
terms of the even n = 0 and odd n = 1 wave functions in a
collective potential with an increasing barrier at φ = 0 and a
decreasing small hump at the m axis. The n = 1 states 29/21

and 33/21 represent the odd linear composition of the local
states. They are little sensitive to the presence of the barriers
at φ = ±π/2, because their probability is small there, where
the wave functions changes sign.

The SSS plots of the n = 2 states can be understood in
terms of the probability densities of the collective wave func-
tions belonging to the periodic potentials shown in Fig. 4. The
SSS plots of the states 31/22 and 35/22 show two minima
half-way between the s and m axes and two maxima located at
the barriers (at φ = 0, ±π/2). The SSS plot of the state 43/22

shows the characteristic two minima located symmetrically to
φ = ±π/2, respectively. The SSS probability of state 29/22

illustrates the transition from the TW to the flip mode (FM)
and the one of the state of 39/22 the transition from the FM to
the LW mode.

There is another perspective. The vicinity of the barrier
top slows down the motion, which is reflected by the large
probability density. Accordingly, the vector J flips between
the barrier tops like 83 state of the TRM, which is close to the
separatrix.

3. The LW regime

For the states 37/21, 39/21, 41/21, and 45/21, the adia-
batic potential in Fig. 4 has deep minima centered around
φ = ±π/2 with a tiny bump in the middle. The SSS-CH
distributions follow well the SSS-PTR ones. The states have
the nature of n = 0 and 1 LW wobbling vibrations around
φ = ±π/2. The LW character is not generated by the “frozen
alignment” of the proton angular momentum j with the m
axis. Figure 9 shows the adiabatic angle ϕ of the particle
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FIG. 9. The azimuthal angle ϕ of j as a function of azimuthal
angle φ of J obtained by diagonalization of Had for the selected spins
I = 13/2, 21/2, 29/2, 37/2, and 45/2. The dot on the curve label the
potential minimum for each spin.

vector j as function of the angle φ of the total angular mo-
mentum J. In case of the high I values of the LW regime, j
is pulled toward J by the Coriolis force, but ϕ < φ due to the
triaxial potential, which favors ϕ = 0. This explains the SSS
plots in Fig. 8. They show the same kind of maxima as the
SSS-PTR. However, the corresponding maxima are wider and
shifted toward ϕ = 0. The difference is understood by means
of Fig. 9.

For the states 33/22, 37/22, 41/22, and 45/22, the PTR
and CH SSS densities differ qualitatively from each other. As
expected, the SSS-CH develops into a n = 3 LW structure
with three minima located symmetrically to φ = ±π/2. In
contrast, the maxima of the SSS-PTR distribution at φ =
±π/2 become dominant and the oscillations disappear. This
indicates a change of the structure, which is beyond the realm
of adiabaticity. As seen in Fig. 8, the particle SSS has a
maximum whereas the SSS-PTR has a minimum, i.e., j and J
move with opposite phase, which is not uncommon for higher
excited states of coupled oscillators.

C. Two-quasiarticle-rotor system

In the study of two-quasiparticle-rotor system, the even-
even nucleus 130Ba has been identified as the first example of a
system exhibiting two-quasiparticle wobbling bands [22,23].
The authors of Ref. [22] observed two new bands built on
the two-quasiparticle π (1h11/2)2 configuration in 130Ba. In
Ref. [23], these two bands were investigated using the con-
strained triaxial covariant density functional theory (CDFT)
combined with quantum PTR calculations. The energy dif-
ference between the two bands, as well as the available
electromagnetic transition probabilities B(M1)out/B(E2)in

and B(E2)out/B(E2)in, were well reproduced. The analysis
of the angular momentum geometry demonstrated that lower
band, the well-known S-band, represents the zero-quanta TW
oscillation and the higher band represents the one-quanta
TW oscillation state generated by a two-quasiparticle config-

uration. Later, the two-quasiparticle wobbling in 130Ba was
further examined using the projected shell model [24], provid-
ing additional support for this phenomenon. In the following,
we use this example to discuss its interpretation in terms of
the SSS visualization and a collective Hamiltonian.

In the investigation of the two-quasiparticle π (1h11/2)2

configuration in 130Ba [23], the deformation parameters were
determined to be at a triaxial shape characterized by (β =
0.24, γ = 21.5◦) using constrained triaxial CDFT calcula-
tions. In order to model this triaxial rotor system, three
spin-dependent moments of inertia Ji = �i(1 + cI ) were
introduced, where i = s, m, and l . The parameters �s,m,l =
1.09, 1.50, and 0.65 h̄2/MeV and c = 0.59 were determined
by adjusting the PTR energies to the experimental energies of
the n = 0 and 1 bands [23].

The approach is analogous to the treatment of the one-
particle case [Eq. (30)], except the adiabatic Hamiltonian (30)
is diagonalized in the space of the two-quasiparticle config-
urations. The adiabatic potential V (φ) = Ead(φ) − Ead(min)
and the mass parameter B(φ) are depicted in Fig. 10. As the
spin I increases, the adiabatic energy becomes increasingly
favored along the m axis, similarly to the case of 135Pr shown
in Fig. 4. Beyond the critical angular momentum of Jc = 22,
a maximum at φ = 0 emerges, resulting in the presence of
two minima with equal energy at angles ±φ. Compared to
135Pr, the transverse geometry in 130Ba exhibits greater stabil-
ity and is sustained over a much wider range of spin values.
The increased stability can be attributed to the larger angular
momentum aligned with the s axis, which is generated by two
quasiprotons instead of one.

The mass parameter B(φ) is also presented in Fig. 10.
Its magnitude increases with increasing spin and is generally
larger than the one of 135Pr. This enhancement in the magni-
tude of B(φ) can be attributed to the larger alignment along the
s axis caused by the presence of two protons. The two protons
contribute significantly to the overall dynamics of the system,
thus influencing the wobbling behavior.

The CH is diagonalized in the discrete basis (22) with even
K being I , I − 2, . . . , −I for the even-I and I − 1, I − 3, . . . ,
−(I − 1) for the odd-I . The resulting energies come in close
pairs. For even-I the first, third, and so on, solutions are
associated with the n = 0, 2,. . . PTR wobbling states. For
odd-I the third, fifth, and so on, solutions are associated with
the n = 1, 3,. . . PTR wobbling states. The selection can be
justified by direct comparison with the PTR solutions.

As the CH couples only K with K ± 2, there is a comple-
mentary set of solutions obtained by diagonalizing the CH in
the basis of odd-K . The energies turn out to be very close
to the energies of the even-K solutions. The pertaining SSS
plots are indistinguishable from the ones of the even-K ones
on the scale of Fig. 13. The full PTR state is composed of both
even- and odd-K components. Thus the difference between
the two types is a consequence of approximation scheme. For
this reason, the odd-K solutions will be disregarded as well.

Figure 11 compares the PTR energies with the adopted
CH energies. The agreement is better than in the case of
135Pr. Only the n = 2 states are somewhat too low. The CH
potentials in Fig. 10 indicate that in 130Ba the TW regime
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FIG. 10. Same as Fig. 4, but for the case of 130Ba.

extends to I = 22 where the flip regime begins. Accord-
ingly, the energies change from the equidistant harmonic TW
spectrum at low I to Ew ≈ 0 at I = 24, which indicates the
instability of TW. The adiabatic approximation very well ac-
counts for the structural change.

In Fig. 12, the upper panel displays the in-band
B(E2)in(I → I − 2) transition probabilities for the bands
presented in Fig. 11, where the same line conventions are em-
ployed. The lower panel exhibits the interband B(E2)out(I →
I − 1) transition probabilities for the n = 0, 1, and 2 bands
depicted in Fig. 11. It is noted that the wobbling motion’s
strong collective �I = 1 E2 transitions are clearly evident in
Fig. 12. The collective Hamiltonian describes very well the
B(E2)in(I → I − 2) PTR values. The B(E2)out(I → I − 1) of
the collective Hamiltonian are overall slightly smaller than
those of PTR.

FIG. 11. Same as Fig. 5, but for the case of 130Ba. Note that
the energies obtained from the collective Hamiltonian are 0.2 MeV
shifted down.

Figure 13 compares the SSS-CH probability densities cal-
culated from the accepted collective wave functions with the
SSS-PTR densities derived from the PTR reduced density ma-
trices. Clearly, the adiabatic approximation works well for all

FIG. 12. Same as Fig. 6, but for the case of 130Ba.
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FIG. 13. Same as Fig. 7, but for the case of 130Ba.

cases. The distinctive features associated with the wobbling
states n = 0, 1, and 2 manifest themselves as the increas-
ing number of minima symmetrically situated around φ = 0.
They reflect the Hermit polynomials which characterize the
number of excitation quanta in the system.

The remarkable correspondence between the SSS-PTR
densities and the SSS-CH densities affirms that the struc-
tural evolution can be effectively described by the collective
Hamiltonian, which comprises the adiabatic double-well
periodic potential and a kinetic term incorporating a φ-
dependent inertia parameter. Hence, it can be concluded that
the implementation of SSS-plots in the analysis of the one-
quasiparticle-rotor and two-quasiparticle-rotor systems leads
to intuitive and comprehensive understanding of the underly-
ing phenomena.

D. Collective Hamiltonian based on tilted axis cranking

Figure 5 also includes the energy of the n = 0 band calcu-
lated by means of the TAC approach. The total Routhian

ĤTAC = ĥp − ω(cos φ ĵ1 + sin φ ĵ2)

− 1
2J1ω

2 cos2 φ − 1
2J2ω

2 sin2 φ (46)

is diagonalized for a grid of cranking frequency ω and tilt
angle φ values, which gives the Routhian E ′

TAC(ω, φ) as the
lowest eigenvalue and the pertaining classical angular vector
components

J1(ω, φ) = 〈 ĵ1〉 + ω cos φJ1, (47)

J2(ω, φ) = 〈 ĵ2〉 + ω sin φJ2. (48)

For the above-discussed adiabatic energy the recoil term 〈 ĵ2
i 〉

is diagonalized. It is replaced by 〈 ĵi〉2 under the TAC mean-
field approximation. In TAC the total angular momentum J
is constrained to be

√
I (I + 1) by adjusting the cranking fre-

quency ω. The difference between the TAC energy and Ead

are almost constant 0.3 MeV in the whole spin region. That
is, up to this shift the classical energy is the same as the
PTR adiabatic energy, and the CH based on the TAC classical
energy is nearly the same as well.

The authors of Refs. [58,59] calculated the TAC energy
and used the Routhian as the collective potential V (φ) =
E ′

TAC(ω, φ) for a fixed value of the frequency ω. The mass
parameter was estimated using the frozen alignment (FA) ap-
proximation [2], namely a harmonic vibration around φ = 0.
Based on these, the CH method gives wobbling energies that
are in agreement with the PTR values.

The success of the CH based on the TAC classical energy
suggests applying the method developed for the PTR sys-
tem to the microscopic versions of the TAC approach. The
problem that the CH provides to many solutions will arise
as well. The “exact” PTR solution which we used to select
the appropriate solution will not be available in this case. In a
future study of the CH based on the microscopic TAC we will
discuss how the selection can be based on the analysis of the
symmetry-broken states of the adiabatic Hamiltonian (30).

IV. SUMMARY

In summary, we introduced the SSS as a nonorthogonal
and overcomplete basis. The utilization of SSS plots in the
analysis of the particle-rotor system offers a new perspective
into the angular momentum geometry and complex dynamics
of the constituents by visualizing the system in terms of the
familiar paradigm of a potential and a mass parameter for the
orientation of the total angular momentum.

The semiclassical approach was combined with the adi-
abatic approximation in order to calculate the collective
potential and mass parameters of a collective Hamiltonian
(CH) capable of describing the wobbling motion in both
even-even and odd-mass systems. The adiabatic approxima-
tion assumes that the response of the one or two particles
can be calculated by classically rotating the triaxial potential
they are moving within, which, in essence, amounts to the
tilted axis cranking (TAC) method. The resulting energy as
function of the orientation classical angular momentum vector
J represents the classical CH when expressing it by the angle
φ of J with the short axis and component Jl along the long
axis, which represent a classical canonical pair of momen-
tum and position respectively. Expanding about Jl = 0 up to
second order results in the familiar form J2

l /B(φ) + V (φ).
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The corresponding quantal CH is obtained by requantization
according to the Pauli prescription.

By diagonalizing the CH, we obtained the energies, E2
transition probabilities, and state vectors, which were com-
pared with the exact ones from the diagonalization of the
original one- and two-particle plus triaxial rotor (PTR) Hamil-
tonian. In order to compare the structure of the PTR states
with the structure of the CH states we employed the prob-
ability density P(φ) of the respective the SSS states, which
corresponds to the conventional probability density of a wave
function.

Good agreement between the of the results from the CH
and PTR was found for the yrast states and the first and
second states above yrast. This is a proof of principle that
the construction of the CH from the adiabatic energy can be
applied to the microscopic TAC calculations. One can expect
that the n = 0, n = 1 and, with some reservation, the n = 2
wobbling excitations will be described by such an extension
of the TAC method. Work along these lines is planned.

Interpreting the plots of the SSS probability density as the
probability density of collective wave functions associated
with the collective classical periodic potential V (φ) (equal
to the adiabatic classical energy) provides a classification
scheme for the PTR states based on their similarity with their
with the CH states, which was introduced in our previous
study [3]. There the geometry of the SCS proxies of the clas-
sical orbits were used, here we invoked the familiar “potential
+ kinetic energy” paradigm of wave functions.

By fixing the energy to one of the PTR states, the classical
motion is confined to stay within V (φ), which provides a
straightforward topological classification. For the TW mode
the allowed region is centered around one of the axes perpen-
dicular to the medium axis with the largest moment of inertia.
For the LW mode the allowed region is centered around the
medium axis itself. For the considered cases of one or two
particles at the bottom of a high- j shell, with increasing angu-
lar momentum V (φ) changes from being centered around the

short axis (φ = 0,±π ) to being centered around the medium
axis (φ = ±π/2). That is, the mode changes from TW to
LW. In the transition region the potential minima are located
around φ = ±π/4, ±3π/4. The lowest states represent FM
where the angular momentum vector jumps between different
regions of the potential landscape. For the n = 0 state it flips
between the minima with no phase change. For the n = 1
state it flips between the minima with a phase change. For
the n = 2 state, when the energy of the system is close to the
tops of the potential, barriers, the angular momentum vector
flips between these locations.

For our example of 135Pr, the SSS plots calculated by the
exact PTR model correlate very well with the probability
densities of the wave functions that belong to the CH. One
recognizes the TW, LW, and transitional FW pattern implied
by the collective Hamiltonian for n = 0, 1 wobbling states.
For the n = 2 state the exact density profile shows the triple
maxima of the collective wave function in the TW and LW
regime. However, it deviates from the flip profile of the CH
between the potential barriers. The exact profile of the next
excitation differs qualitatively from the n = 3 structure of the
CH. The increasing deviations with n of the SSS plots of
the collective wave functions from the exact ones reflect the
expected deterioration of the adiabatic approximation with the
excitation energy.

For the second example of 130Ba with two protons in the
system, the TW geometry exhibits greater stability and is sus-
tained over a much wider range of spin values. The flip regime
is encountered at the maximal observed angular momentum of
I = 24. For the less stable case of 135Pr the experimental data
cover the transition from TW to LW.
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