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We propose a theory framework to study the isospin-symmetry breaking correction δC in superallowed nuclear
β decays, crucial for the precise determination of |Vud |. Based on a general assumptions of the isovector
dominance in isospin-symmetry breaking interactions, we construct a set of functions FTz which involve nuclear
matrix elements of isovector monopole operators and the nuclear Green’s function. Via the functions FTz , a
connection of δC to measurable electroweak nuclear radii is established, providing an experimental gauge of
the theory accuracy of δC. We outline a strategy to perform ab initio calculations of FTz based on the Lanczos
algorithm, and discuss its similarity with other nuclear-structure-dependent inputs in nuclear β decays.
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I. INTRODUCTION

For many decades, superallowed β decays of J p = 0+,
T = 1 nuclei have provided the best measurement of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vud .
The reason is of twofold: (1) At tree level only the vector
charged weak current is involved, whose matrix element is
exactly known assuming isospin symmetry, and (2) there are
so far 23 measured superallowed transitions, with 15 among
them whose f t-value precision is 0.23% or better; the large
sample size implies a large gain in statistics [1].

This advantageous stance is now challenged by the free
neutron decay. On the one hand, the latter benefits from recent
improvements in the single-nucleon radiative correction the-
ory [2–8] and measurements of the neutron lifetime τn [9–12]
and the axial coupling constant gA [13–16]. On the other,
recent analyses unveiled new sources of nuclear structure
uncertainties in superallowed decays [3,17,18]. In fact, taking
the single best measurement of τn and gA, one obtains (adopt-
ing the value of single-nucleon radiative correction quoted in
Ref. [19])

|Vud |n = 0.97413(43), (1)

which should be compared to the superallowed β decay deter-
mination quoted in the same reference:

|Vud |0+ = 0.97367(32). (2)

One sees that the precision of |Vud |n is indeed getting closer
to |Vud |0+ and, more importantly, a small discrepancy between
the two values starts to emerge. This could add to the so-called
Cabibbo angle anomaly [20–22], the mutual disagreement
between different extractions of the Cabibbo angle θC , which
was also sharpened by new theory calculations in the Vus

sector [23–29].

Further improvements in the nuclear-structure-dependent
standard model (SM) theory for superallowed nuclear decays
are required for the latter to regain their lead. Process-specific
quantities originating from measurements and theoretical cor-
rections are usually lumped into the nucleus-independent Ft
value,

Ft ≡ f t (1 + δ′
R)(1 + δNS − δC). (3)

The nucleus-dependent f t values are derived from exper-
imental measurements of the decays’ Q values, branching
ratios and half-lives by absorbing Coulomb distortion effects
in terms of the point-charge Fermi function [30] and beyond
(see [31] for a review). The “outer radiative correction” δ′

R
accounts for quantum electrodynamics (QED) effects beyond
Coulomb distortions, and is well under control [32–35]. The
remaining two corrections depend on nuclear structure in a
nontrivial way: δNS represents the nuclear-structure correction
to the single-nucleon γW box diagram, whereas δC represents
the isospin-symmetry breaking (ISB) correction to the Fermi
matrix element MF . The recent inflation of the |Vud |0+ the-
ory uncertainty comes entirely from δNS, where a previously
missed correction from quasielastic nucleons was identified.
A combination of the dispersive representation [36,37] and
ab initio calculations of nuclear γW -box diagrams may help
reducing this uncertainty in the near future.

In this paper we concentrate on another important theory
input, the ISB correction δC. It measures the deviation of
the full Fermi matrix element MF from its isospin-symmetric
limit, M0

F = √
2 for T = 1. So far its determination relies

solely on model calculations, which is a classic problem
in nuclear theory for more than 6 decades [38]. Frequently
quoted results include calculations based on the nuclear
shell model with Woods-Saxon (WS) potential [35,39–41],
Hartree-Fock wave functions [42,43], density functional the-
ory [44,45], random-phase approximation [46], and the
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isovector monopole resonance sum rule [47]. Results from
different methods are almost randomly-scattered and show no
sign of convergence (see, e.g., Table I in Ref. [48]).

Interestingly enough, despite the tremendous model-
dependence, the assigned theory uncertainty for |Vud |0+ due to
δC in a number of highly cited global analysis turns out to be
extremely small [1,49]. A criterion adopted in these analysis
is the ability of the model calculation to align the Ft values
of different superallowed transitions, per request of the con-
served vector current (CVC) hypothesis [50]. This criterion
effectively ruled out all but one calculation, namely the WS
result, which they used in their subsequent analysis. However,
this strategy is not without controversy: for example, one
cannot rule out the possibility that the CVC hypothesis is
invalidated by physics beyond the standard model (BSM),
or that there is constant shift to all values of δC. It has also
been pointed out that the theory framework on which the WS
calculation is based contains several inconsistencies, e.g., not
using the correct isospin operator [51–53], and correcting for
these might lead to a substantial reduction of the δC values.

A major limitation of existing calculations of δC is the ab-
sence of direct constraints from measurable ISB observables
which can be used to quantify the theory uncertainties. The
most precisely studied ISB observable in nuclear systems is
the isobaric multiplet mass equation (IMME) that describes
the mass splitting between isobaric analog states [54–57];
it was used in a number of studies to either fix the model
parameters [35] or as a preliminary test of the methodology’s
applicability [58]. However, there is no overlap between the
leading nuclear matrix elements that contribute to the IMME
coefficients and to δC, so the extent to which IMME constrains
δC is not entirely clear. To overcome this limitation, we iden-
tified in Ref. [48] a set of ISB observables �M (1)

A,B constructed
from the electroweak nuclear radii across the isotriplet, which
depend on the same nuclear matrix elements as δC. Measure-
ments of the former from atomic spectroscopy, beta decay
recoil effects and fixed-target scattering experiments allow
one to constrain the latter. To illustrate this idea, we adopted
a simple isovector monopole dominance picture to derive a
proportionality relation between �M (1)

A,B and δC. Despite being
model-dependent, this simple picture offers a useful guidance
for the precision target of future experiments.

In this work we further explore the idea in Ref. [48] in a
model-independent way. We construct a set of functions of
an energy variable ζ FTz (ζ ) (Tz = −1, 0, 1) that depend on
the nuclear matrix elements common to δC and �M (1)

A,B. We
show how the needed ISB observables can be derived from
FTz and its derivatives. Therefore, if a theory approach can
reliably calculate FTz as a function of ζ , it simultaneously
predicts �M (1)

A,B and δC with a correlated degree of accuracy.
A good agreement of the calculations with the experimental
measurements for the former will imply the reliability of the
theory prediction for the latter. In this sense, the approach
advocated here directly constrains δC and its uncertainty by
the experiment.

The content of this work is arranged as follows. In Sec. II
we derive the leading perturbative expression of δC and
argue that existing model calculations may contain large

systematic uncertainties. In Sec. III we review the central idea
in Ref. [48], namely the construction of the two ISB observ-
ables �M (1)

A,B from the measurable electroweak nuclear radii.
In Sec. IV we define the functions FTz (ζ ) and demonstrate
their connection to δC and �M (1)

A,B. In Sec. VI we discuss
possible strategies to compute FTz (ζ ) as a function of ζ , which
simultaneously predicts �M (1)

A,B and δC. In Sec. VII we draw
our conclusions.

II. ISB IN PERTURBATION THEORY

To discuss the perturbative expression of ISB observables,
we split the full Hamiltonian as H = H0 + V , where H0 is the
unperturbed, isospin-conserving part and V is the ISB pertur-
bation term. We label the eigenstates of H0 as |a; T, Tz〉 (with
unperturbed energy Ea,T ), where T, Tz are the isospin quantum
numbers, and a represents all other quantum numbers unre-
lated to isospin. In particular, the ground state isotriplet that
undergoes superallowed beta decay transitions is labeled as
|g; 1, Tz〉.

The most commonly studied ISB observable is IMME,

E (a, T, Tz ) = a(a, T ) + b(a, T )Tz + c(a, T )T 2
z , (4)

which takes its form based on the fact that any two-nucleon
interaction can at most be isotensor, i.e., we can write V =
V (1) + V (2), where the superscript denotes the isospin. The
coefficients b and c characterize the strength of ISB effects.
To first order in perturbation theory, they are related to the
diagonal matrix element of V :

b ∼ 〈a; T, Tz|V (1)|a; T, Tz〉, c ∼ 〈a; T, Tz|V (2)|a; T, Tz〉. (5)

Experimental measurements show in general |b| � |c| which
indicates the dominance of isovector ISB effects. For instance,
in JP = 0+, T = 1 isomultiplets, one observes that the ratio
|b/c| � 15 for A � 26, and increases with increasing A [59].

On the other hand, δC depends on a completely different
set of nuclear matrix elements than the IMME coefficients
b and c. To see this, we start with the exact formalism by
Miller and Schwenk [51], and label the eigenstates of H and
H0 temporarily as |n〉 and |n), respectively. The full Fermi
matrix element for a superallowed transition i → f is given
by

MF = 〈 f |τ+|i〉 (6)

with τ+ the isospin raising operator. Similarly, the isospin-
limit Fermi matrix element is M0

F = ( f |τ+|i). The Wigner-
Brillouin perturbation theory implies

|n〉 =
√
Zn

[
|n) + 1

En − 	nH	n
	nV |n)

]
, (7)

where En is the energy of the full state |n〉, 	n = 1 − |n)(n|
projects out the unperturbed state |n), and

Zn =
[

1 + (n|V 	n

(
1

En − 	nH	n

)2

	nV |n)

]−1

(8)

044302-2



TOWARD AB-INITIO NUCLEAR THEORY … PHYSICAL REVIEW C 109, 044302 (2024)

is a normalization factor to ensure 〈n|n〉 = 1. Substituting
Eq. (7) into Eq. (6) gives

MF =√ZiZ f

[
M0

F + ( f |V 	 f
1

E f − 	 f H	 f

×τ+
1

Ei − 	iH	i
	iV |i)

]
, (9)

which is the central result of Ref. [51]. It is clear from the
expression above that the deviation between MF and M0

F starts
at O(V 2). Concentrating on the O(V 2) corrections in Eq. (9)
and using the definition |MF |2 = |M0

F |2(1 − δC), we get

δC = 〈g; 1, Tzi|V 	i

(
1

Eg,1 − 	iH0	i

)2

	iV |g; 1, Tzi〉

+ 〈g; 1, Tz f |V 	 f

(
1

Eg,1 − 	 f H0	 f

)2

	 f V |g; 1, Tz f 〉

− 2

M0
F

〈g; 1, Tz f |V 	 f
1

Eg,1 − 	 f H	 f
τ+

× 1

Eg,1 − 	iH	i
	iV |g; 1, Tzi〉 + O(V 3). (10)

We observe that due to the presence of the projection operators
the leading expression of δC contains no diagonal nuclear ma-
trix element of the form 〈g; 1, Tz|V |g; 1, Tz〉, so it is orthogonal
to the leading expressions of the IMME coefficients {b, c}.
Subsequently, the ability of a model calculation to reproduce
the IMME coefficients accurately does not guarantee its abil-
ity to determine δC with the same accuracy.

To proceed further we must invoke some general prop-
erties of the ISB interaction V . We will assume that V is
predominantly isovector, i.e., V ≈ V (1). The IMME coeffi-
cients suggest that, for a ∼10% precision goal this is a good
assumption for A � 26. With this, we insert a complete set of
intermediate nuclear states {|a; T, Tz〉} to each term in Eq. (10)
and apply the Wigner-Eckart theorem,

〈a; T, Tz|V |g; 1, T ′
z 〉 = C1,1;T,Tz

1,T ′
z ;1,0 〈a; T ||V ||g; 1〉 (11)

with Cs the Clebsch-Gordan coefficients. It recasts δC in terms
of the reduced matrix element 〈a; T ||V ||g; 1〉. Since V is an
isovector, the intermediate states can only have T = 0, 1, 2;
also, the a = g, T = 1 intermediate states are excluded by the
projection operators. With these we obtain

δC = 1

3

∑
a

|〈a; 0||V ||g; 1〉|2
(Ea,0 − Eg,1)2

+ 1

2

∑
a �=g

|〈a; 1||V ||g; 1〉|2
(Ea,1 − Eg,1)2

− 5

6

∑
a

|〈a; 2||V ||g; 1〉|2
(Ea,2 − Eg,1)2

+ O(V 3). (12)

Within an isotriplet there are two superallowed transi-
tions: (Tzi = −1) → (Tz f = 0) and (Tzi = 0) → (Tz f = +1).
It turns out that Eq. (12) applies to both transitions, which
means that δC for the superallowed β decays within the
same isotripet are identical up to O(V 2) assuming the
dominance of isotripet ISB interaction. This conclusion is
model-independent as it straightforwardly follows from the
Wigner-Eckart theorem, and serves as a useful consistency

TABLE I. δ−1,0
C and �C computed with WS and RPA.

WS RPA

A δ−1
C (%) δ0

C(%) �C δ−1
C (%) δ0

C(%) �C

26 0.435(27) 0.310(18) 0.34(8) 0.176 0.139 0.23
34 0.659(40) 0.613(49) 0.07(10) 0.268 0.234 0.14
38 0.745(47) 0.628(54) 0.17(11) 0.313 0.278 0.12
42 0.960(63) 0.690(46) 0.32(9) 0.384 0.333 0.14
46 0.760(87) 0.620(63) 0.20(15) (N/A) (N/A) (N/A)
50 0.660(49) 0.660(32) 0.00(0) (N/A) (N/A) (N/A)
54 0.790(67) 0.770(67) 0.03(4) (N/A) 0.319 (N/A)

check of existing calculations. Interestingly enough, this sim-
ple conclusion has never been discussed in literature. As an
example, we quote in Table I the WS [1] and RPA (with
PKO1 parametrization) [46] calculation of δC for the Tzi =
−1 and Tzi = 0 transitions (which we denote as δ−1

C and
δ0

C, respectively) within the same isotriplet, and define their
relative difference: �C ≡ |2(δ−1

C − δ0
C)/(δ−1

C + δ0
C)|. We find

that some of their results give �C as large as 20% or more
for A � 26. We conclude that even the most widely adopted
model calculation of δC is not free from potentially large
systematic errors.

III. ELECTROWEAK NUCLEAR RADII
PROBE ISB EFFECTS

The first step towards a systematic reevaluation of ISB
corrections to superallowed β decays is to identify new ex-
perimental observables that are able to directly constrain δC.
This idea is pioneered in Ref. [48], and we briefly review it
below. A key object throughout the discussion is the isovec-

tor monopole operator defined as �M (1) = ∑
i r2

i
�̂T (i), where

�̂T is the isospin operator and i labels the nucleons in the
nucleus. Rank-1 irreducible tensors in the isospin space can
be formed as M (1)

0 = M (1)
z , M (1)

±1 = ∓(M (1)
x ± iM (1)

y )/
√

2. For
convenience, we may also define a corresponding isoscalar
monopole operator as M (0) = ∑

i r2
i .

In Ref. [48] we defined two ISB-sensitive combinations of
experimental observables. The first one reads

�M (1)
A ≡ 〈 f |M (1)

+1 |i〉 + 〈 f |M (1)
0 | f 〉. (13)

The first term on the right hand side comes from the mea-
surement of the t dependence of the (Tzi = 0) → (Tz f = +1)
superallowed β decay form factor

f̄+(t ) = 1 − t

6
〈 f |M (1)

+1 |i〉 + O(t2), (14)

which corresponds to the charged weak radius. The second
term combines the proton and neutron distribution radii of the
Tz = +1 daughter nucleus,

〈 f |M (1)
0 | f 〉 = Nf

2
R2

n, f − Z f

2
R2

p, f . (15)
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Above, the root mean square (rms) distribution radius of a
nucleon in a nucleus φ is defined as

Rp/n,φ =
√√√√ 1

X
〈φ|

A∑
i=1

r2
i

(
1

2
± T̂z(i)

)
|φ〉 (16)

with − for the proton and + for the neutron, and X = Zφ or
Nφ . These radii can be measured through fixed-target scatter-
ing experiments.

In the meantime, we recall that the nuclear charge radius,
largely given by Rp, is measurable via atomic spectroscopy for
both stable and unstable nuclei. With this, one may construct
another experimental observable by combining the charge
radii across the isotriplet

�M (1)
B ≡ 1

2

(
Z1R2

p,1 + Z−1R2
p,−1

) − Z0R2
p,0, (17)

where the subscript −1, 0, 1 denotes Tz of the nucleus.
It is easy to see using Wigner-Eckart theorem that both

�M (1)
A,B vanish identically in the isospin limit: replacing the

external states by isospin eigenstates, we get

�M (1)
A → 〈g; ; 1, 1|M (1)

+1 |g; 1, 0〉 + 〈g; 1, 1|M (1)
0 |g; 1, 1〉

= 0,

�M (1)
B →

∑
Tz=±1

〈g; 1, Tz|1

4
M (0) − 1

2
M (1)

0 |g; 1, Tz〉

− 〈g; 1, 0|1

2
M (0) − M (1)

0 |g; 1, 0〉
= 0. (18)

This qualifies both observables as clean probes of ISB ef-
fects. Their leading nonzero expression arises by expanding
the external states to O(V ) following Eq. (7). Assuming the
isovector dominance in V , as discussed in Sec. II, a straight-
forward derivation gives

�M (1)
A = − 1

3

∑
a

〈a; 0||M (1)||g; 1〉∗〈a; 0||V ||g; 1〉
Ea,0 − Eg,1

− 1

2

∑
a �=g

〈a; 1||M (1)||g; 1〉∗〈a; 1||V ||g; 1〉
Ea,1 − Eg,1

− 1

6

∑
a

〈a; 2||M (1)||g; 1〉∗〈a; 2||V ||g; 1〉
Ea,2 − Eg,1

−
∑

a

〈a; 2||V ||g; 1〉∗〈a; 2||M (1)||g; 1〉
Ea,2 − Eg,1

+ O(V 2)

(19)

and

�M (1)
B =Re

{
−2

3

∑
a

〈a; 0||M (1)||g; 1〉∗〈a; 0||V ||g; 1〉
Ea,0 − Eg,1

+
∑
a �=g

〈a; 1||M (1)||g; 1〉∗〈a; 1||V ||g; 1〉
Ea,1 − Eg,1

−1

3

∑
a

〈a; 2||M (1)||g; 1〉∗〈a; 2||V ||g; 1〉
Ea,2 − Eg,1

}
+ O(V 2),

(20)

respectively. The reduced matrix elements of �M (1) are defined
as

〈a; T ′′, T ′′
z |M (1)

Tz
|g; 1, T ′

z 〉 = C
1,1;T ′′,T ′′

z

1,T ′
z ;1,Tz

〈a; T ′′||M (1)||g; 1〉.
(21)

It is easy to check that the definition of �M (1)
B in Eq. (17)

ensures the absence of terms ∼M (0) ⊗ V at O(V ).

IV. UNIVERSAL FUNCTIONS CONNECTING
ALL ISB OBSERVABLES

The dominant source of ISB is the Coulomb repulsion
between protons, with its prevailing part coming from the
one-body potential of a uniformly charged sphere of radius
RC ,

VC ≈ − Ze2

4πR3
C

A∑
i=1

(
1

2
r2

i − 3

2
R2

C

)(
1

2
− T̂z(i)

)
. (22)

For the isotriplets of interest we may take Z ≈ A/2, and RC is
related to the point-proton radius of the respective nucleus as
R2

C = (5/3)R2
p. Notice that the potential above assumes that

all nucleons reside at ri < RC . In reality, there are (small)
corrections due to the non-zero nucleon wave functions at
ri > RC where the potential behaves as 1/ri. This residual
effect could be estimated within nuclear models and included
as a part of the systematic uncertainties in the theory analysis.

The ISB part of VC involves only the T̂z(i) in the second
round bracket, and is purely isovector. Furthermore, as far as
the off-diagonal matrix elements are concerned, the RC term in
the first bracket does not contribute. One may therefore make
the connection

V ↔ (
Ze2/8πR3

C

)
M (1)

0 . (23)

With this, both δM (1)
A,B and δC share the same set of reduced

matrix elements of the form |〈a; T ||M (1)||g; 1〉|2, which is the
central result of Ref. [48]. The main difference is that �M (1)

A,B
contain only one energy denominator because they arise from
a first-order perturbation, while δC starts from second order
and contains two energy denominators. We define the follow-
ing generating function:

�̄T (ζ ) ≡
∑
a �=g

|〈a; T ||M (1)||g; 1〉|2
Ea,T − ζ

, T = 0, 1, 2 (24)

with ζ an energy variable. The value of �̄T (ζ ) at ζ = Eg,1 is
directly related to �M (1)

A,B, while its derivative at ζ = Eg,1 is
directly related to δC.

To directly access the reduced matrix elements in Eq. (24)
through nuclear theory calculations, we define a set of nuclear
matrix elements for Tz = −1, 0, 1 which will be the key ob-
jects of theory studies,

FTz (ζ ) ≡ 〈g; 1, Tz|(M (1)
−1 )†G(ζ )M (1)

−1 |g; 1, Tz〉

− |〈g; 1, Tz − 1|M (1)
−1 |g; 1, Tz〉|2

ζ − Eg,1
(25)

with G(ζ ) = 1/(ζ − H0) the nuclear Green’s function. The
second term on the right hand side subtracts out the a = g,
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T = 1 intermediate state contribution and exists only for Tz =
1, 0 but not for Tz = −1. Inserting a complete set of nuclear
states to the first term, we get

F1(ζ ) = − 1
3 �̄0(ζ ) − 1

2 �̄1(ζ ) − 1
6 �̄2(ζ ),

F0(ζ ) = − 1
2 �̄1(ζ ) − 1

2 �̄2(ζ ),

F−1(ζ ) = − �̄2(ζ ). (26)

These three matrix elements can be solved for all three �̄T (ζ ).
To connect to our ISB observables we expand the functions
FTz around ζ = Eg,1:

FTz (ζ ) = αTz + βTz (ζ − Eg,1) + O((ζ − Eg,1)2), (27)

where αTz , βTz are constant expansion coefficients. With these,
we obtain

�M (1)
A = Ze2

8πR3
C

{α1 + α−1},

�M (1)
B = Ze2

8πR3
C

{2α1 − 4α0 + 2α−1}, (28)

and

δC = −
(

Ze2

8πR3
C

)2

{β1 − β−1}. (29)

The interconnection between δC and the electroweak nu-
clear radii through the universal function FTz (ζ ) is largely
model-independent, as long as the identification of Eq. (23)
holds, and may be viewed as a kind of sum rule. A theory cal-
culation of FTz (ζ ) that simultaneously gives all the expansion
coefficients, will be able to predict δC, and at the same time
receive direct experimental constraints from �M (1)

A,B. These
experimental constraints allow us to quantify the theory un-
certainties in δC.

V. LIMITATIONS OF THE CONVENTIONAL
SHELL MODEL

To illustrate the idea we propose and investigate the main
physics that enters δC by computing the generating function
FTz (ζ ) explicitly using conventional shell model. Through this
process we are also able to check the validity of some assump-
tions we made in arriving at Eq. (25). We consider the A = 38
isotriplet as an example.

A. Checking the approximation to the Coulomb potential

The rigorous expression of a Coulomb potential felt by a
point-like proton from a nucleus of charge Z is (0 < r < ∞):

VC (r) = − Ze2

8πR3
C

(
r2 − 3R2

C

)
�(RC − r) + Ze2

4πr
�(r − RC ).

(30)

The approximation in Eq. (22) then corresponds to replacing
the equation above by (0 < r < ∞):

V appr
C (r) ≡ − Ze2

8πR3
C

(
r2 − 3R2

C

)
. (31)

We adopt the empirical formula for the sphere radius

RC =
√

5

3

〈
r2

p

〉1/2 ≈
√

5

3
× 1.1A1/3 fm. (32)

In the shell model, we describe single-nucleon states by the
harmonic oscillator wave function: ψn�m(�x) = Rn�(r)Y�m(x̂).
The radial wave function reads

Rn�(r) =N r�e−νr2
L

�+ 1
2

n−1 (2νr2)

N =
[(

2ν3

π

)1/2 2n+2�+2(n − 1)!!ν�

(2n + 2� − 1)!!

]1/2

, (33)

where ν = mω/2 with m the nucleon mass, and the harmonic
oscillator frequency

ω ≈ 41A−1/3 MeV (34)

with these, we can compute the single-particle expectation
value of the Coulomb potential VC and the approximated ex-
pression V appr

C :

〈VC〉n� = − Ze2

8πR3
C

∫ RC

0

(
r2 − 3R2

C

)
R2

n�r2dr

+ Ze2

4π

∫ ∞

RC

1

r
R2

n�r2dr

〈
V appr

C

〉
n�

= − Ze2

8πR3
C

∫ ∞

0

(
r2 − 3R2

C

)
R2

n�r2dr, (35)

from which we can define a relative error

�n� ≡
〈
V appr

C

〉
n�

〈VC〉n�

− 1. (36)

The nucleons in the A = 38 isotriplet occupy the orbitals
1s, 1p, 1d and 2s. For these orbitals we find

�1s ≈ −0.004%, �1p ≈ −0.03%,

�1d ≈ −0.1%, �2s ≈ −0.2%, (37)

much below our aimed precision goal for δC (∼10%). We
conclude that within the shell model framework the approx-
imation of VC in Eq. (22) is valid. A similar check can be done
for other non-shell-model approaches.

B. Computing the generating function

Now we proceed to compute the generating function. Re-
call the nuclear Green’s function

G(ζ ) = 1

ζ − H0
=

∑
X

|X 〉〈X |
ζ − EX

, (38)

where {X } are all possible intermediate states. Conventional
shell model provides the wave functions of the single-nucleus
ground and excited states with definite JP and isospin; restrict-
ing ourselves to these intermediate states, we may directly
compute the isospin generating functions �̄I in Eq. (24) with-
out going through FTz . For instance, for the A = 38 system
they can all be expressed in terms of the matrix element
of M (1)

−1 between the 38Ar ground state and all the 38K(0+)
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excited states:

�̄0(ζ ) = − 3
∑

a

|〈38K(0+, a, 0)|M (1)
−1 | 38Ar(g)〉|2

ζ − E (38K(0+, a, 0))
,

�̄1(ζ ) = − 2
∑
a �=g

|〈38K(0+, a, 1)|M (1)
−1 | 38Ar(g)〉|2

ζ − E (38K(0+, a, 0))
,

�̄2(ζ ) = − 6
∑

a

|〈38K(0+, a, 2)|M (1)
−1 | 38Ar(g)〉|2

ζ − E (38K(0+, a, 0))
. (39)

Next we discuss the isovector monopole operator M (1)
−1 . In

shell model we adopt the following second-quantized form:

M (1)
−1 = 1√

2

∑
α

〈α|r2|α〉b†
αaα

=
∑

n�

〈r2〉n�

∑
j

√
2 j + 1

2
[b†

n� j ãn� j]
(0)
0 , (40)

where aα annihilates a neutron at the single-nucleon or-
bital α = (n, �, j, mj ) within a chosen model space, while
b†

α creates a proton; in the second line we recast the prod-
uct of operators in terms of rank-0 tensors, with aj,mj ≡
(−1) j−mj ã j,−mj . The single-nucleon matrix element 〈r2〉n� can
be computed using harmonic oscillator wave functions, and in
fact the outcome is analytically known:

〈r2〉n� = 2n + � − 1
2

mω
= N + 3

2

mω
, (41)

where N = 2n + � − 2 is the principal quantum number. The
expression above immediately tells us that, to get a possibly
nonzero generating function, one cannot choose the model
space to include only orbitals with the same N (e.g., the
sd shell), because otherwise the matrix element 〈α|r2|α〉 in
Eq. (40) would become a constant and could be factorized out
from the sum, which would make M (1)

−1 ∝ τ−, where

τ− =
∑

α

b†
αaα =

∑
n� j

√
2 j + 1[b†

n� j ãn� j]
(0)
0 (42)

is the isospin-lowering operator. Since τ− only connects
| 38Ar(g)〉 to | 38K(0+, g, 1)〉 which is excluded in Eq. (39),
such a choice of model space would result in vanishing gen-
erating functions.

Below we describe a sample calculation. We choose the
model space spsd p f , which means all nucleons in the A = 38
isotriplet are taken as valence quarks; in accordance to this
model space, we choose the “FSU interaction” outlined in
Refs. [60,61]. This interaction is implemented to the latest
version of the NUSHELLX code [62] which is able to perform
shell model calculations with large dimensions. Using the
code, we first study the energy levels of 38K(0+). The outcome
is summarized in Table II, where we find that only T = 1
states are predicted; they can only contribute to �̄1(ζ ).

Next, using the same model space, interaction and code,
we compute the one-body density matrix element (OBDME)
for the 38Ar(g) → 38K(0+) transition

a(n� j) ≡ 〈 f |[b†
n� j ãn� j]

(0)
0 |i〉. (43)

TABLE II. Shell model calculation of the 38K(0+) energy levels.

State label T Excitation energy (MeV)

38K(0+, g, 1) 1 0.000
38K(0+, 1, 1) 1 6.029
38K(0+, 2, 1) 1 16.464

The nonvanishing matrix elements are summarized in Ta-
ble III, and let us understand what these numbers mean. First,
we may compute the Fermi matrix element for the 38Ar(g) →
38K(0+, g, 1) transition

MF = 〈38K(0+, g, 1)|τ−| 38Ar(g)〉 (44)

using the second-quantized form of τ− [Eq. (42)] and the
numbers in the first row of Table III. The numerical result is
close to

√
2, which is exactly what we expected (note that the

FSU interaction is isospin-symmetric).
In the meantime, plugging the numbers in the second and

third row from Table III into Eq. (40), we find that the tran-
sition matrix element of M (1)

−1 from 38Ar(g) to the 38K(0+)
excited states are zero, which implies a vanishing generating
function �̄1(ζ ). This is easy to understand by realizing that,
despite the large model space that we chose, the non-vanishing
OBDME in Table III only involves orbitals in the sd shell,
so the M (1)

−1 matrix element vanishes following our discussion
after Eq. (41). We have also tried different model space and
interactions (e.g., sd p f space with the SDPF-MU interaction
[63], and psd space with the interaction in Ref. [64]), but still
obtain the same vanishing result.

The working example above indicates that the conventional
shell model, which only takes into account the lowest nuclear
excitations, falls short to capture the main physics that in-
duces a nonzero δC. Some reasonable speculations are (1) The
sum of contributions from all higher nuclear excitations could
return a nonsuppressed effect, or (2) The continuum interme-
diate states (e.g., nucleus + nucleon) could play an important
role. This also resonates with a previous observation that the
direct computation of δC with no-core shell model (NCSM)
returned a nonconvergent result [65] (a new calculation with
NCSM + continuum is on the way). We thus conclude that,
a reliable methodology to study δC should at least be able to
(directly or indirectly) take these two effects into account.

VI. POSSIBLE COMPUTATIONAL STRATEGY

Among the two criteria that we posted above for a reliable
δC calculation, the requirement to sum over all excited-state
contributions is equivalent to computing the inversion of the

TABLE III. The nonvanishing OBDME for the 38Ar(g) →
38K(0+) transition.

a(1d5/2) a(1d3/2) a(2s1/2)

38Ar(g) → 38K(0+, g, 1) 0.01554 0.66856 0.02760
38Ar(g) → 38K(0+, 1, 1) −0.00739 0.12422 −0.16289
38Ar(g) → 38K(0+, 2, 1) −0.09315 0.10169 0.01753
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Hamiltonian matrix in the nuclear Green’s function G(ζ ),
which is computationally demanding. Fortunately, there are
standard computational strategies to achieve this purpose, and
here we provide one example based on the Lanczos algorithm
[66–68].

We start by defining a properly normalized starter state

|φ0〉 ≡ M (1)
−1 |g; 1, Tz〉√

〈g; 1, Tz|
(
M (1)

−1

)†
M (1)

−1 |g; 1, Tz〉
. (45)

With this, the first term of FTz (ζ ) can be written as

〈g; 1, Tz|
(
M (1)

−1

)†
G(ζ )M (1)

−1 |g; 1, Tz〉
= 〈g; 1, Tz|

(
M (1)

−1

)†
M (1)

−1 |g; 1, Tz〉〈φ0|G(ζ )|φ0〉. (46)

Again, the coefficient 〈g; 1, Tz|(M (1)
−1 )†M (1)

−1 |g; 1, Tz〉 only in-
volves the ground state matrix element, while 〈φ0|G(ζ )|φ0〉 is
more complicated. To evaluate the latter, we construct a set of
n orthonormal Lanczos basis {|φi〉}n−1

i=0 through the following
iteration:

|wi+1〉 ≡ bi+1|φi+1〉 ≡ H0|φi〉 − ai|φi〉 − bi|φi−1〉, (47)

where

ai ≡ 〈φi|H0|φi〉, bi ≡
√

〈wi|wi〉 (48)

are the so-called Lanczos coefficients, with b0 ≡ 0 and
|φ−1〉 ≡ 0. The Hamiltonian H0 is tridiagonalized under such
basis, and the desired matrix element can be expressed as a
continuous fraction involving the Lanczos coefficients,

〈φ0|G(ζ )|φ0〉 = g0(ζ ), (49)

defined via the following recursion relation:

gi(ζ ) = 1

ζ − ai − b2
i+1gi+1(ζ )

, i = 0, 1, . . . , n − 2, (50)

which terminates at gn−1(ζ ) = 1/(ζ − an−1). For complete-
ness, we also provide the recursion relation of the first ζ

derivative,

g′
i(ζ ) = −g2

i (ζ )
(
1 − b2

i+1g′
i+1(ζ )

)
, i = 0, 1, . . . , n − 2 (51)

with g′
n−1(ζ ) = −g2

n−1(ζ ).
The procedure above determines FTz (ζ ) completely

in terms of two ground-state matrix elements 〈g; 1, Tz|
(M (1)

−1 )†M (1)
−1 |g; 1, Tz〉, 〈g; 1, Tz − 1|M (1)

−1 |g; 1, Tz〉 and the Lanc-
zos coefficients {ai, bi}, none of which requires a matrix
inversion. In particular, the expansion coefficients of our in-
terest can be written as

αTz =
{
〈g; 1, Tz|

(
M (1)

−1

)†
M (1)

−1 |g; 1, Tz〉g0(ζ )

− |〈g; 1, Tz − 1|M (1)
−1 |g; 1, Tz〉|2

ζ − Eg,1

}
ζ=Eg,1

,

βTz =
{
〈g; 1, Tz|

(
M (1)

−1

)†
M (1)

−1 |g; 1, Tz〉g′
0(ζ )

+ |〈g; 1, Tz − 1|M (1)
−1 |g; 1, Tz〉|2

(ζ − Eg,1)2

}
ζ=Eg,1

, (52)

with g0(ζ ) and g′
0(ζ ) entirely fixed by the Lanczos coefficients

following Eqs. (50), (51). Within this formalism, δC is tightly
constrained by the experimental observables. To make a pre-
diction of �M (1)

A,B, one needs to compute the two ground-state
matrix elements and all the Lanczos coefficients. Once this is
done, there is no more freedom left for δC which at this point
can also be computed. The predicted values of �M (1)

A,B can be
compared with the experiment, and the respective deviation
and experimental uncertainty may be directly translated into
the well-justified uncertainty estimate for δC.

We stress that the strategy outlined above is, as such,
model-independent. Putting it into practice requires mi-
croscopic nuclear theory calculations of the ground-state
matrix elements and the Lanczos coefficients, preferably with
ab initio methods. For light nuclei, methods such as quantum
Monte Carlo [69,70] and NCSM [71] are powerful tools; for
medium-size nuclei, coupled-cluster theory [72], In-medium
similarity renormalization group [73] and nuclear lattice ef-
fective field theory [74–77] may be applicable. Notice that,
for light nuclei (A ∼ 10) some of our basic assumptions on
ISB interactions (e.g., the isovector dominance) may not be
as solid, but the definition of FTz (ζ ) through Eq. (25) is
not affected by these assumptions and it can be computed
nonetheless, which serves as important prototypes for future
computations involving heavier nuclei. While the outlined
strategy is not based on a model, it uses several approxima-
tions. Such approximations include the identification of the
ISB potential V with the isovector monopole operator �M (1),
the assumption of the uniform-sphere proton distribution, and
the neglect of the isotensor part of V . The validity of these
approximations should be subject of future studies.

VII. CONCLUSIONS

Despite the quoted high precision level of |Vud |0+ in the lit-
erature, it has now become increasingly transparent that there
could be hidden systematic uncertainties at the order 10−4 or
larger, which were not reflected in the current error budget
and are crucial for precision tests of SM at low energies. In
particular, existing theory calculations of the ISB correction
δC to the Fermi matrix element are model-dependent and,
as we point out in this paper, may not be consistent with
general constraints from isospin symmetry. We show that the
ability of a nuclear theory approach to predict nuclear mass
splittings does not imply the same predictive power for δC:
the former depend primarily on ground-state diagonal nuclear
matrix elements, while the latter must involve excited states.
On the other hand, the new ISB observables �M (1)

A,B introduced
in Ref. [48] are constructed from measurable electroweak
nuclear radii, and probe the same nuclear matrix elements as
δC. Therefore, it is more natural to gauge the theory accuracy
for δC using �M (1)

A,B, rather than the IMME coefficients.
Existing ab initio studies of δC consist mainly of direct

computations of the full Fermi matrix element in the presence
of ISB interactions. In this work we propose an alternative
approach. Based on the isovector dominance of ISB inter-
actions, we define the functions FTz (ζ ) that involve matrix
elements of isovector monopole operators and a single nu-
clear Green’s function. We show that the coefficients of its
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expansion with respect to ζ around the ground state energy
Eg,1 give simultaneously �M (1)

A,B and δC. With that, we recast
the problem of an experimental-verifiable theory calculation
of δC in terms of the study of the ζ -dependence of FTz (ζ ).
Through a working example with conventional shell model,
we conclude that the low-lying nuclear excitations are not
the main contributors to a nonzero δC, and speculate that
the (1) summation over higher excitations and (2) continuum
intermediate states may be important. The main difficulty to
fulfill the first criteria is the inversion of a large Hamiltonian
matrix in the nuclear Green’s function G(ζ ), which could be
bypassed using mathematical techniques such as the Lanczos
algorithm we described in Sec. VI. With this strategy, both δC

and �M (1)
A,B are uniquely determined from a set of ground-state

nuclear matrix elements and Lanczos coefficients, and share
the same level of the theoretical accuracy.

Finally, we wish to point out a similarity between the
new formalism for computing δC proposed in this work, and
that for the nucleus-dependent radiative correction δNS intro-
duced in Ref. [37]. The latter depends on the generalized
Compton tensor, T μν ∼ 〈 f |Jμ

a G(ζ )Jν
b |i〉, where {Jμ

a , Jν
b } are

electroweak current operators and G(ζ ) is the same nuclear
Green’s function that appears in this work. The only difference

with FTz is that the isovector monopole operators are replaced
by current operators. Therefore, methodologies applicable for
ab initio calculations of δNS will also apply to δC. This newly
identified similarity may help to promote simultaneous theory
progress in the two quantities that are crucial for a precise
extraction of |Vud |, and further foster the potential of nuclear
β decay experiments for discovering or constraining new
physics beyond the standard model.
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