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Research on the static fission properties of 240Pu within the reflection asymmetric
relativistic mean-field theory
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The reflection asymmetric relativistic mean-field (RASRMF) theory was applied to investigate the static
fission properties of 240Pu. The potential energy curves with different spatial symmetries were obtained, and the
calculated fission barrier heights are in good agreement with available experimental data. Compared with other
theoretical calculations, better consistency with experiments is achieved. The matter density distributions clearly
show the shape evolution along the fission path. Notably, the outer barrier is significantly reduced due to the
reflection asymmetric deformations, making mass-asymmetric fission more favorable. These results indicate that
the reflection asymmetric degree of freedom plays an important role in regulating the fission barrier and fission
path of 240Pu. Furthermore, the sensitivity of fission barriers to pairing correlations was examined. The use of the
BCS approximation with a constant pairing gap led to unphysical results; therefore, a variable pairing strength
was used to evaluate its influence on the fission barriers. It was found that a slight increase in pairing strength
enhanced ground state stability but reduced fission barrier heights, promoting fission through more effective
state repopulation during nuclear elongation. This conclusion remains consistent across RASRMF calculations
employing both the NL3 and PK1 parameters.
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I. INTRODUCTION

The atomic nucleus is a complex quantum many-body sys-
tem with intricate interparticle interactions. Nuclear fission
[1,2], which is related to quantum tunneling resulting from
a nonequilibrium large amplitude collective motion in the
system, is one of the most enigmatic phenomena in modern
nuclear physics. The first experimental evidence of nuclear
fission was discovered by Hahn and Strassman in 1939 [3].
Meitner and Frisch [4], as well as Bohr and Wheeler [5],
provided theoretical interpretations of the process shortly
thereafter. Since then, numerous studies have focused on the
fission mechanism. These explanations suggest that the com-
petition between nuclear attraction and Coulomb repulsion
drives the nucleus to split into two or three fragments that
subsequently decay by emitting particles. Despite extensive
investigations into the fission mechanism, a fully microscopic
description of the process remains extremely challenging.

To comprehend nuclear fission, it is essential to have a
comprehensive understanding of the fission barrier, such as
its height, which plays a crucial role in comprehending the
mechanisms and dynamics of nuclear fission and estimat-
ing the corresponding observables quantitatively [6–10]. The
fission barrier is also related to the stability of superheavy
nuclei [11–14] and the r process of stellar nucleosynthe-
sis [15–17]. Actinide nuclei are primarily characterized by
a double-humped fission barrier due to quantum shell ef-
fects [18–20]. The inner and outer barriers can be affected
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differently through various deformation degrees of freedom.
Triaxial and octupole deformations can decrease the heights
of the inner and outer barriers, respectively [21–23]. Since the
fission barrier is not observable, and the height of the fission
barrier is model dependent, it is necessary to compare various
theoretical models to obtain a more reliable fission barrier.

The liquid-drop model [5], proposed by Bohr and Wheeler,
was the first model for describing the fission barriers. They
used this model to calculate barrier heights and associated
deformations for extremely heavy nuclei. To explain the
experimental observation that fission mainly occurs asym-
metrically, microscopic shell corrections were introduced to
the liquid-drop model by Strutinsky and his collaborators
[18,19]. The macroscopic-microscopic (MM) method, which
derives from the Strutinsky shell correction method, is an
important candidate for large-scale calculations of fission
barriers based on the analysis of multidimensional potential
energy surfaces. To date, several versions of the MM method
have been developed to study fission barriers, including the
MM finite-range liquid-drop model [24–26], the MM Woods-
Saxon model [27–30], the MM Lublin-Strasbourg drop model
[31–33], and the MM cranked Nilsson-Strutinsky model [34].
In addition, there are also some microscopic methods, such as
the extended Thomas-Fermi plus Strutinsky integral method
[16,35,36], nonrelativistic energy density functionals based
on Skyrme [37–40] and Gogny forces [41–44], and covari-
ant density functional theory [45–51], for examining fission
barriers.

As previously mentioned, the majority of research on fis-
sion barriers has been conducted using nonrelativistic models.
In recent years, covariant density functional theory (CDFT)
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[52–55] has emerged as one of the most successful micro-
scopic models for studying both ground and excited states of
nuclei across the entire nuclear chart. Specifically, CDFT in
the deformed harmonic oscillator (HO) basis has been widely
applied to investigate fission barriers and has yielded re-
sults consistent with experimental data [56–61]. For example,
Abusara et al. [57] conducted the first systematic investigation
of inner fission barriers for actinide nuclei within the triaxial
relativistic mean-field approach in a Cartesian deformed HO
basis. Subsequently, similar studies were extended to super-
heavy nuclei by Abusara et al. [62]. To examine the impact
of triaxial and octupole deformations on even-even actinide
fission barriers, Lu et al. [59] developed a multidimensional
constrained CDFT in an axially deformed HO basis. However,
due to the complexity of large deformation configurations
during fission, the accuracy of calculations based on the one-
center HO basis decreases with increasing elongation. The
two-center HO (TCHO) basis is one option to address this
problem and has been used in nonelativistic Hartree-Fock-
Bogoliubov models [63–65] and the MM model [33]. TCHO
has proven to be particularly suitable for describing fission
systems. Recently, TCHO has also been extended in point-
coupling CDFT to analyze induced fission dynamics [66].

The impact of triaxiality on the fission barrier has long been
recognized. In macroscopic-microscopic model calculations,
the introduction of triaxial deformation can reduce the height
of the inner fission barrier [21,22,30,67]. Similarly, in nonrela-
tivistic and relativistic energy density functional calculations,
triaxial deformation significantly affects the height of the
fission barrier for actinides [41,57,58,68–70]. Typically, the
lowering effect of triaxiality on the inner barrier of actinides
is around 1–3 MeV [49], while that on the outer barrier is
approximately 0.5–1 MeV [59,71]. For superheavy nuclei,
the influence of triaxial deformation on fission is even more
pronounced [14]. Therefore, it is evident that triaxiality plays
a crucial role in nuclear fission.

In addition to triaxiality, reflection asymmetric octupole
deformation also has a significant impact on fission. It
is well known that the heights of the outer barriers of
actinide nuclei can be reduced by octupole deformation.
Furthermore, studies have shown that including octupole de-
formation can lead to a transition from mass-symmetric to
mass-asymmetric fission for actinides and superheavy nuclei
[72,73]. Octupole-deformed shell effects are primarily re-
sponsible for mass-asymmetric fission in actinides [74]. Here,
we mainly focus on the influence of octupole deformation
on fission, and ignore the triaxial deformation in order to
clearly demonstrate the importance of octupole deformation
to fission.

The reflection asymmetric relativistic mean-field (RAS-
RMF) theory based on the TCHO basis has been employed
to study octupole deformed nuclei [75] and has successfully
described octupole shape phase transition [76,77] and shape
coexistence phenomena [78,79]. This work aims to better
understand the role of octupole deformation in the fission
process by examining the static fission properties of 240Pu
using the RASRMF theory and to provide a more accurate de-
scription for experimental data on fission barriers in actinides.
Furthermore, considering the important role that pairing

correlations play in the fission process of atomic nuclei, it is
essential to appropriately address pairing correlations in order
to obtain reliable fission barriers. We have compared various
strategies for addressing pairing correlations within the BCS
approximation and have proposed a more suitable approach
for their consideration.

The paper is organized as follows: Sec. II provides an
overview of the RASRMF theory, Sec. III presents the nu-
merical details and results, and Sec. IV offers a summary of
the findings.

II. FORMALISM

To investigate the fission properties for 240Pu, we first
present the theoretical formalism of RASRMF. The starting
point of the RASRMF theory is an effective Lagrangian den-
sity [80–82]:

L = ψ̄[iγ μ∂μ − M − gσ σ − gωωμγ μ − gρ �ρμ�τγ μ

− 1
2 eγ μ(1 − τ3)Aμ]ψ + 1

2

(
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σ σ 2
)

− 1
4ωμνωμν + 1
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3 g2σ
3 − 1

4 g3σ
4

− 1
4 �ρμν �ρμν + 1
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4 c3(ωμωμ)2

− 1
4 AμνAμν, (1)

where ψ is the Dirac spinor of the nucleon with the cor-
responding mass M, σ is the isoscalar-scalar meson that
provides medium-range attraction, ω is the isoscalar-vector
meson that provides short-range repulsion, ρ is the isovector-
vector meson reflecting the difference of neutron and proton,
and A is the photon field describing the electromagnetic prop-
erties of atomic nuclei. mσ , mω, and mρ are the masses of
σ , ω, and ρ mesons, and gσ , gω, and gρ are the coupling
constants of the mesons with the nucleons. g2, g3, and c3 are
the nonlinear self-coupling coefficients of σ and ω mesons.
The field tensors for the mesons and photons are defined as

ωμν = ∂μων − ∂νωμ,

�ρμν = ∂μ�ρv − ∂ν �ρμ,

Aμν = ∂μAν − ∂νAμ.

Starting from the Lagrangian density, with the classical varia-
tional principle, we derive the Dirac equation

[−i�α · �∇ + V (�r) + β[M + S(�r)]]ψi = εiψi (2)

for the nucleons with the scalar potential S(�r) and vector
potential V (�r),

S(�r) = gσ σ (�r),

V (�r) = gωω0(�r) + gρτ3ρ0(�r) + e
(1 − τ3)

2
A0(�r),

and the Klein-Gordon equations(−
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3
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)
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−
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for the mesons and photons with the source terms

ρs =
A∑

i=1

ψ̄iψi, ρv =
A∑

i=1

ψ
†
i ψi,

ρ3 =
A∑

i=1

ψ
†
i τ3ψi, ρc =

Z∑
p=1

ψ†
pψp.

Equations (2) and (3) are nonlinear coupled equations, and
solved by the basis expansion method. For the axially sym-
metric deformed nuclei, the Dirac spinors can be presented as

ψi(r, t ) =
(

fi(r, s, t )
igi(r, s, t )

)

= 1√
2π

⎛
⎜⎜⎜⎜⎜⎝
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where �i is the third component of angular momentum. To
include the reflection asymmetric degree of freedom, the
eigenfunctions of the TCHO potential are used as the basis to
expand the Dirac spinors f ±

i and g±
i in the RMF calculations.

The TCHO potential [75] has the following form:

V (r⊥, z) = 1

2
Mω2

⊥r2
⊥ +

{
1
2 Mω2

1(z + z1)2, z < 0,

1
2 Mω2

2(z − z2)2, z � 0.
(5)

Here, z1 and z2 represent the distances from the center of the
ellipsoid to the plane of their intersection, and ω1 (ω2) corre-
sponds to the oscillation frequency of the harmonic oscillator
for z < 0 (z � 0).

The TCHO potential can be completely determined by the
three parameters δ2, δ3, and 
z. δ2 is the basis deformation.
At the large elongations encountered in the description of
fission, the convergence of the numerical calculation will
be poor if the selected basis deformation is not appropriate,
and the obtained results may be incorrect. In the present
calculation, the basis deformation is chosen in the following
way [83]: δ2 = 0.5β2 for 0 � β2 � 1.5 and δ2 = 0.5

√
β2 for

β2 > 1.5. δ3 is the asymmetric coefficient of the TCHO basis,
δ3 = ω1/ω2. When δ3 = 1, the system is reflection symmetric.

z (= z1 + z2) represents the center distance of the TCHO
basis. Here, we mainly focus on the reflection asymmetric de-
formation; the adopted 
z is consistent with that in Ref. [75].

Along the elongated direction, more states are included
in the basis, which will be conducive to the convergence of
the results. Following the prescription of Ref. [71], the states
meeting [nz/Qz + (2nρ+ | ml |)/Qρ] � Nf are included in
the expansion of the large component of the Dirac spinor,
where Qz = max(1, bz/b0) and Qρ = max(1, bρ/b0), and b0,
bz, and bρ are the oscillator lengths. The expansion of the
small component is truncated at Ng = Nf + 1 major shell to
avoid the occurrence of spurious states.

In order to obtain the potential energy curves, i.e., the
total binding energy as a function of deformation, we per-
form the constrained RMF calculations. The binding energy
under a certain deformation can be obtained by constraining

the quadrupole moment 〈Q̂2〉 to the given value μ2 in the
expectation value of the Hamiltonian [84], i.e.,

〈H ′〉 = 〈H〉 + 1
2C2(〈Q̂2〉 − μ2)2 (6)

where C2 is the spring constant, and μ2 is the given
quadrupole moment. 〈Q̂2〉 is the expectation value of the
quadrupole moment operator, which is expressed as 〈Q̂2〉 =
〈2r2P2(cos θ )〉. The deformation parameter β2 is related to
〈Q̂2〉 by 〈Q̂2〉 = 3√

5π
AR2β2 with R = r0A

1
3 (r0 = 1.2 fm) and

A is the mass number.
We also fix the center-of-mass of the nuclei at the origin

under the constraints of the monopole moment operator 〈Q̂1〉
to avoid spurious motions of the center of mass:

〈Q̂1〉 = 0. (7)

III. NUMERICAL DETAILS AND RESULTS

Based on the previous formalism, we investigate the static
fission properties of actinide nuclei with 240Pu as an exam-
ple. To enhance the precision of our results, we employ the
updated NL3* parameter set [85] in our calculations. Pairing
correlations are handled using the traditional BCS approx-
imation. The corresponding parameters are determined by
reproducing the experimental odd-even mass difference. For
the ground state of the nucleus, either a BCS approximation
with a constant pairing gap or a given pairing strength is
suitable. However, in the study of the fission process of atomic
nuclei, it is not appropriate to use a BCS approximation with a
constant pairing gap. The reasons for this will be discussed in
more detail later. In the RASRMF calculation here, the pairing
correlations are processed with a BCS approximation of the
given pairing strength. Specifically, we set the neutron pairing
strength Gn = 0.089 178 MeV and proton pairing intensity
Gp = 0.144 259 MeV.

The potential energy curves of 240Pu as a function of the
quadrupole deformation β2 are shown in Fig. 1. The red
solid line represents the fission path obtained from the RAS-
RMF calculations, while the black solid line shows the result
from the usual reflection symmetric relativistic mean field
(RSRMF) calculations for better understanding of the lower-
ing effect of the reflection asymmetric degree of freedom on
the outer barrier. Both the reflection symmetric and reflection
asymmetric fission paths exhibit a double-hump structure,
with the former having a higher outer barrier. However, when
reflection asymmetry is considered, the outer barrier height
decreases significantly, making the reflection asymmetric fis-
sion path more favorable. This finding is consistent with
previous studies that emphasized the role of octupole defor-
mation on the outer barrier [46,59]. Furthermore, it can be
observed from Fig. 1 that the reflection symmetric and reflec-
tion asymmetric fission paths of 240Pu from the ground state
to the isomeric state almost overlap, indicating that octupole
deformation has little effect near the inner barrier.

In Refs. [72,73], it was shown that the inclusion of the
octupole deformation in the actinides and superheavy nuclei
leads to a transition from symmetric to asymmetric fission.
To illustrate this transformation clearly, the matter density
distributions in 240Pu at the ground state, first saddle point,
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FIG. 1. Potential energy curves of 240Pu as a function of the
quadrupole deformation β2. The black solid line corresponds to the
result obtained in the RSRMF calculations, and the red solid line cor-
responds to that obtained in the RASRMF calculations. The energy
is normalized with respect to the binding energy of the ground state.
The parameter set used is NL3*.

isomeric state, and second saddle point are plotted in Fig. 2.
Figures 2(a) and 2(b) correspond to the results with reflection
symmetry and reflection asymmetry imposed, respectively. In
Fig. 2(a), the ground state of 240Pu has a prolate shape. At
the first saddle point of the fission path, the nucleus elongates
along the z axis. As the quadrupole deformation β2 increases,
the nucleus becomes further elongated, and a slight neck
appears. At the second saddle point, the neck becomes more
pronounced, and the nucleus shows a tendency towards sym-
metric division. However, due to the inclusion of the reflection
asymmetric degree of freedom, the ground state of 240Pu ap-
pears slightly pear-shaped in Fig. 2(b). As the deformation
increases, similarly to Fig. 2(a), the nucleus begins to elongate
along the z axis. But, by the second saddle point, the mass
density distribution is reflection asymmetric, and the nucleus
is more inclined towards mass-asymmetric fission. As seen
in Fig. 1, mass asymmetry is mainly formed during the rapid
descent following passing the outer barrier.

To further highlight the accuracy of our calculations, we
have compared the results for the inner barrier height Bi

and outer barrier height Bo, as well as the excitation en-
ergy EII of the isomeric state relative to the ground state,
with those obtained from other models. The results of
the macroscopic-microscopic Woods-Saxon model [30], the
Skyrme Hartree-Fock-Bogoliubov (SHFB) method [86], the
multidimensionally constrained relativistic mean-field (MDC-
RMF) model [71], and available experimental data [87,88] are
presented in Table I. As shown in Table I, when reflection
asymmetry is taken into account, the outer barrier height is
reduced by 4.34 MeV compared to when reflection symmetry
is assumed. In contrast, the inner barrier height and the exci-
tation energy of the isomeric state remain nearly unchanged.
This reduction in the outer barrier height emphasizes the

FIG. 2. Matter density distributions of 240Pu at the ground state,
first saddle point, isomeric state, and second saddle point on the plane
x = 0. Panel (a) is for reflection symmetry imposed, and panel (b) is
for reflection asymmetry imposed with β3 = −0.029. The parameter
set used is NL3*.

critical role that reflection asymmetric degree of freedom
plays in accurately describing the static fission properties of
actinide nuclei.

As we can see from our current calculations, they are in
good agreement with experimental data and other theoretical
models. For the inner barrier of 240Pu, the RSRMF, RASRMF,
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TABLE I. The calculated inner barrier height (Bi), outer barrier
height (Bo), and excitation energy (EII ) of the isomeric state relative
to the ground state in comparison with the experimental data and
other theoretical calculations. The values in parentheses represent
the results of the MDC-RMF calculation with triaxial deformation
allowed. All quantities are given in MeV.

Model Bi EII Bo

RSRMF 6.50 1.72 9.63
RASRMF 6.34 1.62 5.29
MM [30] 6.61 1.94 5.71
SHFB [86] 9.32 2.59 6.46
MDC-RMF [71] 7.98 – 6.24

(5.92) – (5.60)
Expt. 6.05 [88] 2.8 [87] 5.15 [88]

and MM calculations align more closely with experimental
data. However, both the SHFB and MDC-RMF calculations
significantly overestimate the barrier due to the absence
of triaxial degree of freedom. It is worth noting that although
triaxial deformation is also not included in our calculation,
the result still aligns with experimental data. This is because
there are many factors that influence the height of the bar-
rier. In addition to deformations, the height of the fission
barrier depends on the pairing interactions [38,86,89–91].
As shown in Table I, the difference between the calculated
inner barrier height by the RASRMF and experimental data
is 0.29 MeV, while the difference between the RSRMF cal-
culation and experimental data is even larger (0.45 MeV).
This deviation may be compensated by considering triaxial
deformation.

For the outer barrier, since the effect of octupole de-
formation is considered in the calculation, the results from
RASRMF, MDC-RMF, SHFB, and MM reproduce experi-
mental data well. However, our result is closer to the data than
those predicted by the other three theories. Accurately predict-
ing the energy of the fission isomer is crucial for describing
low-lying shape oscillations in actinide nuclei [92]. The SHFB
calculation matches the experiment better compared to our
calculation and the MM calculation. Further exploration is
needed to understand why the theory underestimates the ex-
perimental value of the excitation energy of the isomeric state
relative to the ground state.

In addition to deformation, the heights of the inner and
outer barriers in nuclear fission are profoundly affected by
pairing correlations. This phenomenon has been thoroughly
examined in a series of earlier works [38,86,90,91]. As
elucidated in Ref. [89], the fission barriers cannot be ac-
curately described through the BCS approximation using a
constant pairing gap. To confirm this assertion, the pairing
gaps for protons and neutrons in 240Pu, as a function of the
quadrupole deformation β2, along the fission pathway derived
from RASRMF calculations utilizing the NL3* parameter set,
are illustrated in Fig. 3. One can clearly see that the pairing
gaps of neutrons and protons fluctuate significantly along the
fission path. In particular, there is a relatively small pairing
gap at the minima of the potential energy curve and a large
pairing gap at the saddle point. This can be understood by

FIG. 3. The pairing gaps of neutrons and protons for 240Pu as
a function of the quadrupole deformation β2. These results are ob-
tained in the RASRMF calculations with the parameter set NL3*.

the fact [89] that the density of single-particle levels in the
vicinity of the Fermi surface is changing considerably along
the fission path. Since the pairing gap is closely linked to
the level density [18], it cannot remain constant, and the
calculations using the BCS approximation with a constant
pairing gap will lead to nonphysical results for the fission
barrier.

To affirm the superiority of our computation, which incor-
porates pairing correlations through the BCS approximation
with a specified pairing strength, we have conducted a com-
parative analysis against RASRMF calculations employing
the BCS approximation with a fixed pairing gap. The out-
comes of this comparison are depicted in Fig. 4 for the nucleus
240Pu, utilizing the RASRMF framework with the NL1 [93]
and NLSH [94] parameter sets. In the figure, the blue dashed
curve represents the RASRMF+BCS computations utilizing
a constant pairing gap, whereas the red dashed curve il-
lustrates the results obtained with a fixed pairing strength.
As Fig. 4 elucidates, the potential energy curve exhibiting
a distinctive double-hump structure is accurately reproduced
by the RASRMF model when applying both the NL1 and
NLSH parameter sets in the calculation of 240Pu. This is
achieved using the BCS approximation, whether with a fixed
pairing gap or with a given pairing strength. However, it is
noteworthy that the fission barrier height deduced from the
BCS approximation with a constant pairing gap (
) is signif-
icantly elevated compared to that derived from a fixed pairing
strength (G), particularly in the RASRMF+BCS calculations
utilizing the NL1 parameter set. This disparity underscores the
critical importance of precise treatment of pairing correlations
in achieving a reliable prediction of the fission barrier. Addi-
tionally, we have observed a systematic shift towards lower
values in the deformation of all minima and barriers calculated
with the NLSH parameter set relative to those computed with
NL1, aligning with the findings reported in an earlier study
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FIG. 4. The potential energy curves for 240Pu in the RASRMF
calculations with the parameter sets NL1 [93] and NLSH [94]. The
labels “constant 
” and “constant G” represent the BCS approxi-
mation with a constant pairing gap 
 and a constant strength G,
respectively. The results with NL1 and NLSH are respectively dis-
played in the upper and lower panels.

[46]. A plausible rationale for this discrepancy may lie in the
increased effective mass associated with the NLSH parameter
set, as previously suggested [45].

Numerical results on barriers and minima in Fig. 4 are
summarized in Table II. For comparison, the result from the
relativistic mean-field (RMF) calculations [46] and the ex-
perimental data are also listed there. It can be seen that the
fission barriers obtained by the RASRMF calculations with
a constant 
 in the NL1 and NLSH parametrizations are
comparable with those from the RMF calculations. However,
when these theoretical results are contrasted with experimen-
tal data, they consistently overestimate the barrier heights. The
introduction of triaxial deformation may be able to reduce the
height of the inner barrier, but it is difficult to match the exper-
imental value by considering triaxiality alone. Even including
the reflection asymmetric degree of freedom in the RASRMF
and RMF calculations, the outer barrier height is still higher
than the experimental value. In contrast to the RASRMF
calculations with a constant 
, the barriers obtained from
the RASRMF calculations with a constant G demonstrate
improved concordance with experimental results. This finding
suggests that an appropriate treatment of pairing is essential
for nuclear fission prediction based on CDFT. Compared with
the BCS approximation with a constant pairing gap, the BCS
approximation with a fixed pairing strength in the CDFT
calculations is more accurate in describing the fission of the
nucleus.

To understand the extent to which the fission barrier is
affected by pairing interactions, we have calculated the po-
tential energy curves of 240Pu with different pairing strengths
using the RASRMF framework with the parameter set NL3*.
All energies were normalized relative to their ground-state
value. As can be seen from Fig. 5, when the initial pairing
interaction strengths Gn and Gp are changed from 96% to
104%, respectively, the potential energy curves become lower.
Conversely, decreasing the pairing strength increases the en-
ergy of the isomeric state and the height of the inner and outer
barriers, making it more difficult for the nucleus to undergo
fission. Table III provides detailed values of the energies of
the ground and isomeric states and the heights of the fission
barriers for different pairing strengths, along with available
experimental data for comparison. It was found that a slight
increase in the pairing strength enhanced the stability of the

TABLE II. The ground state energy (Eg.s.), inner barrier height (Bi), outer barrier height (Bo), and the excitation energy (EII ) of the isomeric
state relative to the ground state with different treatments of pairing (constant 
: constant pairing gap; constant G: constant pairing strength)
obtained in the RASRMF calculations with the parameters NL1 [93] and NLSH [94] in comparison with the experimental data and other
theoretical calculations. All quantities are given in MeV.

Model Pairing correlation Parameter set Eg.s. Bi EII Bo

RASRMF BCS(constant 
) NL1 −1813.55 11.03 2.91 10.23
NLSH −1818.99 7.82 1.59 7.17

BCS(constant G) NL1 −1814.13 6.38 1.17 6.26
NLSH −1819.88 5.72 1.36 6.23

RMF [46] BCS(constant 
) NL1 −1811.9 10.8 2.9 9.4
NLSH −1818.8 8.4 2.0 8.5

Expt. – – −1813.45 [95] 6.05 [88] 2.8 [87] 5.15 [88]
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FIG. 5. The potential energy curves of 240Pu with different pair-
ing strengths obtained in the RASRMF calculations. The parameter
set used is NL3*.

ground state, but reduced the fission barrier height, making the
nucleus more conducive to fission due to pairing allowing for
states to repopulate more effectively as the nucleus elongates
[96]. Moreover, the energies of the ground state, isomeric
state, and fission barrier obtained using the original pairing
strengths match the experimental data better than those ob-
tained from other pairing strengths. It should be mentioned
that, in the calculation of the potential energy surface obtained
by adding constraints, there are individual anomalies, possibly
due to the collapse of the pairing correlations, which we have
eliminated.

The potential energy curves of 240Pu, obtained through de-
tailed studies, have emphasized the significant role of pairing
interactions in understanding the fission properties of actinide
nuclei. This has sparked interest in examining how sensitive
the fission barriers are to variations in parameter sets, as ex-
plored in Refs. [57,97]. The potential energy curves of 240Pu
calculated using the RASRMF method with three different
parameter sets (NL3 [98], NL3* [85], and PK1 [99]) are
presented in Fig. 6, and the quantitative information from

TABLE III. The calculated energies for the ground state and
those for the isomeric state and fission barrier relative to the ground-
state value. The labels 96%, 98%, 100%, 102%, and 104% indicate
the percentage relative to the original pairing strengths. All quantities
are given in MeV. For comparison, experimental data are also listed
in the last line.

Eg.s. Bi EII Bo

96% −1813.24 6.96 1.79 5.57
98% −1813.57 6.68 1.70 5.49
100% −1813.90 6.34 1.62 5.29
102% −1814.29 6.02 1.49 5.05
104% −1814.75 5.70 1.32 4.83
Expt. −1813.45 [95] 6.05 [88] 2.8 [87] 5.15 [88]

FIG. 6. The potential energy curves of 240Pu obtained in the
RASRMF calculation with the three parameter sets NL3 [98], NL3*
[85], and PK1 [99].

these curves is summarized in Table IV. As can be seen from
the figure, all the three calculations successfully reproduce the
double-humped structure of 240Pu. However, there are some
differences between the potential energy curves obtained from
the calculations using different parameter sets. By comparing
the results in Table IV, we observe that the inner barrier values
calculated using NL3 and NL3* are closer to experimental
data. Nevertheless, for the outer barrier, only NL3* provides
a better prediction. Additionally, while the energy values of
fission isomers calculated using all three parameter sets are
lower than the experimental value, the result from NL3* is
more accurate than those of the other two parameter sets. The
study shows that NL3* provides a more accurate description
of the static fission properties of 240Pu compared to the other
two parameter sets.

IV. SUMMARY

In summary, the RASRMF theory was employed to inves-
tigate the static fission properties of actinide nuclei with 240Pu
as an illustrated example. The conventional BCS approxima-
tion, which utilizes a specific pairing strength instead of a
fixed pairing gap, is employed to manage pairing correlations.

TABLE IV. The available energies for the fission barrier and
isomeric state in 240Pu in the RASRMF calculations with different
parameter sets. The energies are expressed relative to their ground-
state values. For reference, the experimental data are also included in
the last line. All values are given in MeV.

Parameter set Bi EII Bo

NL3 [98] 6.17 1.22 4.59
NL3* [85] 6.34 1.62 5.29
PK1 [99] 5.40 0.95 4.49
Expt. 6.05 [88] 2.8 [87] 5.15 [88]

044301-7



YU-TING QIU AND JIAN-YOU GUO PHYSICAL REVIEW C 109, 044301 (2024)

This method is considered more appropriate for depicting the
fission process. The potential energy curves for 240Pu with
reflection symmetry and reflection asymmetry were obtained.
It was discovered that accounting for reflection asymmetry
notably reduces the outer barrier of 240Pu compared to the
symmetrical case. However, the fission pathway from the
ground state to the isomeric state remains almost identical.
This suggests that the degree of freedom associated with
reflection asymmetry significantly impacts the outer barrier
but has a minimal effect on the inner barrier and the second
minimum.

The matter density distributions clearly illustrate the shape
evolution of 240Pu along both the reflection-symmetric and
reflection-asymmetric fission pathways. The inclusion of
the reflection asymmetric degree of freedom favors mass-
asymmetric fission for the nucleus. The mass asymmetry is
mainly formed during the rapid descent after overcoming
the outer barrier. It is evident that the reflection asymmetric
degree of freedom not only reduces the height of the outer
barrier but also significantly influences a fundamental charac-
teristic of the mass distribution in fission products, whether it
is symmetric or asymmetric.

The fission barrier heights obtained from the RASRMF
calculations show agreement with empirical data and previous
studies, with the exception of the SHFB approach, which
significantly overestimates the inner barrier’s height due to
its neglect of triaxiality. It is worth noting that, despite the
omission of triaxiality in the current calculations, the results
still concur with empirical observations. This concurrence can
be attributed to various factors affecting the barrier height,
including deformations and pairing correlations. The model
used for these computations does not adequately account for
the impact of triaxiality at the saddle point configuration.

The role of pairing correlations in the fission process is
investigated. It is observed that BCS calculations with a con-
stant pairing strength (G) result in significant fluctuations of
the pairing gap (
) along the fission path. In contrast, the
fission barriers derived from RASRMF and RMF calculations

with a fixed 
 are notably higher than experimental data.
Moreover, the barriers obtained from RASRMF calculations
with a constant G show better agreement with experimen-
tal findings. These outcomes suggest that proper treatment
of pairing correlations is crucial for accurate predictions of
nuclear fission within the framework of CDFT. The current
calculation employing a fixed G in the BCS approximation
more accurately describes the fission of the nucleus compared
to the BCS approximation with a constant 
, as referenced in
other studies.

A slight increase in pairing strength enhanced ground state
stability but lowered the fission barrier, favoring fission due to
pairing allowing for states to repopulate more effectively as
the nucleus elongates. Additionally, the dependence of fission
barriers on parameter set was examined, and it was found
that the RASRMF calculation with NL3* provides a better
description of the fission barriers for 240Pu than those with
NL3 and PK1.

Overall, the predictive power of the RASRMF theory for
static fission properties of actinide nucleus 240Pu is convincing
when compared to experimental data and results from other
models. Further systematic study of fission barriers of actinide
nuclei using the RASRMF theory is necessary. Furthermore,
future researches will consider the effect of triaxiality on
fission barriers, as it has been shown to lower both the inner
and outer barriers in previous studies. Additionally, forthcom-
ing studies will embrace a more precise treatment of pairing
through the application of the Bogoliubov transformation
within the RASRMF framework.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China under Grants No. 11935001 and
No. 11575002, the Key Research Foundation of Education
Ministry of Anhui Province under Grant No. KJ2018A0028,
and the Doctoral Scientific Research Startup Fund of Anhui
University (Grant No. J01001319-J10113190082).

[1] M. Bender, R. Bernard, G. Bertsch, S. Chiba, J. Dobaczewski,
N. Dubray, S. A. Giuliani, K. Hagino, D. Lacroix, Z. Li, P.
Magierski, J. Maruhn, W. Nazarewicz, J. Pei, S. Péru, N. Pillet,
J. Randrup, D. Regnier, P.-G. Reinhard, L. M. Robledo et al., J.
Phys. G: Nucl. Part. Phys. 47, 113002 (2020).

[2] N. Schunck and D. Regnier, Prog. Part. Nucl. Phys. 125, 103963
(2022).

[3] O. Hahn and F. Strassmann, Naturwissenschaften 27, 11 (1939).
[4] L. Meitner and O. R. Frisch, Nature (London) 143, 239 (1939).
[5] N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
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