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We investigate the nuclear symmetry energy and neutron star properties using a Bayesian analysis based
on constraints from different chiral effective field theory calculations using new energy density functionals
that allow for large variations at high densities. Constraints at high densities are included from observations
of GW170817 and from NICER. In particular, we show that both NICER analyses lead to very similar
posterior results for the symmetry energy and neutron star properties when folded into our equation-of-state
framework. Using the posteriors, we provide results for the symmetry energy and the slope parameter, as well
as for the proton fraction, the speed of sound, and the central density in neutron stars. Moreover, we explore
correlations of neutron star radii with the pressure and the speed of sound in neutron stars. Our 95% credibility
ranges for the symmetry energy Sv , the slope parameter L, and the radius of a 1.4M� neutron star, R1.4, are
Sv = (30.6–33.9) MeV, L = (43.7–70.0) MeV, and R1.4 = (11.6–13.2) km. Our analysis for the proton fraction
shows that larger and/or heavier neutron stars are more likely to cool rapidly via the direct Urca process. Within
our equation-of-state framework a maximum mass of neutron stars Mmax > 2.1M� indicates that the speed of
sound needs to exceed the conformal limit.
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I. INTRODUCTION

Understanding dense matter is a central challenge in nu-
clear physics and astrophysics. In nature, dense matter exists
in the cores of neutron stars under extreme neutron-rich con-
ditions. The properties of neutron-rich matter around nuclear
densities are described by the nuclear symmetry energy and
its density dependence. While there have been impressive
constraints from nuclear theory, nuclear experiments, and
astrophysics (see, e.g., Refs. [1–4]), more precise determi-
nations of the symmetry energy and its slope parameter L at
saturation density, n0 = 0.16 fm−3, are still an open problem.

From the theoretical side, the symmetry energy is best
constrained by controlled calculations of the equation of
state (EOS) of neutron matter based on chiral effective
field theory (EFT) interactions [5–13]. This yields values
for the symmetry energy Sv at saturation density and the
L parameter in the ranges of Sv = (30–35) MeV and L =
(35–70) MeV. However, to describe the EOS to all densities
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in neutron stars requires extensions beyond the reach of chiral
EFT calculations. To this end, different extensions, such as
piecewise polytropes [14], speed-of-sound based parametriza-
tions [15,16], nonparametric Gaussian processes [17], or
nuclear energy-density functionals (EDFs) have been used
(see, e.g., Ref. [18]).

Recently, new EDFs for the nuclear EOS were introduced
by Huth et al. [3], and have the advantage of providing high-
density extrapolations that are consistent with causality and
with a maximum of the speed of sound. These functionals
allow for EOS calculations for the broad ranges of conditions
reached in core-collapse supernovae and neutron star mergers.
In this work, we use these new EDF EOSs to constrain the
symmetry energy and neutron star properties based on a prior
informed by chiral EFT calculations of neutron matter.

From the astrophysics side, the strongest constraint on
the nuclear EOS comes from the observation of heavy
two-solar-mass neutron stars [19–21]. Moreover, the heav-
iest well measured neutron star, PSR J0740+6620, was
recently also observed by NICER to provide constraints on its
radius [22,23]. In addition, NICER observed the mass and ra-
dius of a typical-mass neutron star, PSR J0030+0451 [24,25].
The NICER analyses for both neutron stars by Riley
et al. [22,24] and by Miller et al. [23,25] give different mass-
radius posteriors, but agree within their uncertainties. The
differences in the posteriors are reduced by including realis-
tic assumptions for the EOS, and in this work we explicitly
show that in our EDF EOS ensembles the results from both
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NICER analyses are very similar. In addition to the NICER
constraints, we include in our Bayesian inference the tidal de-
formability information from GW170817 inferred by results
from LIGO/Virgo [26]. Using the chiral EFT informed priors
with the astro posteriors, we provide results for the symmetry
energy and neutron star properties.

This paper is organized as follows. In Sec. II we introduce
our EOS framework using the new EDFs from Huth et al. [3].
These are fit to a range of chiral EFT calculations of neutron
matter. Building on this EOS prior, we include constraints
at high densities from observations of GW170817 and from
NICER using a Bayesian analysis. In Sec. III, we investigate
the posterior distributions for the symmetry energy and the
slope parameter, as well as for the proton fraction, the speed
of sound, and the central density in neutron stars. Moreover,
we explore correlations of neutron star radii with the pressure
and the speed of sound in neutron stars. Finally, we summarize
our results and conclude in Sec. IV.

II. EQUATION-OF-STATE FRAMEWORK

The EOS describes the energy density and pressure of mat-
ter for given baryon density, composition, and temperature.
Since we focus on cold neutron stars, we consider zero tem-
perature. For a given EOS, the mass and radius of neutron stars
follow by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [27,28]. Our starting point will be the EOS of ho-
mogeneous matter, which we constrain by empirical ranges of
the properties of symmetric nuclear matter around saturation
density and by neutron matter calculations. Based on each
EOS, we calculate consistently the structure of the neutron
star crust.

Since neutron stars are extremely neutron rich with pro-
ton fractions ≈5%, the most important constraints for the
EOS come from neutron matter calculations. In this work,
we focus on neutron matter calculations based on chiral EFT
interactions, which has the advantage that chiral EFT predicts
consistent many-body interactions and enables systematic
uncertainty estimates based on the EFT expansion [2,29].
Neutron matter has been calculated based on chiral two- and
three-nucleon interactions using many-body perturbation the-
ory (MBPT) [5,6,10,11,13], quantum Monte Carlo (QMC)
methods [9,30], self consistent Green’s function (SCGF)
methods [7], and coupled cluster (CC) theory [8,12]. These
calculations are able to include all interactions up to next-to-
next-to-next-to-leading order (N3LO) [6,11,13] and include
uncertainty estimates from the EFT truncation [11–13,31].

A. Energy density functionals

To extend the EOS to high density we use nonrelativistic
EDFs, which depend on the baryon number density n and
proton fraction x of uniform matter. The baryonic energy
density ε(n, x) is expressed as

ε(n, x) = 1

2mN
τn(n, x) + 1

2mN
τp(n, x)

+ (1 − 2x)2 fn(n) + [1 − (1 − 2x)2] fs(n), (1)

where τn/2mN and τp/2mN are the neutron and proton ki-
netic densities, with nucleon mass mN . It was shown that the
dependence on isospin asymmetry is to a very good approx-
imation quadratic [32,33], with the dominant nonquadratic
contributions stemming from the kinetic densities, so that
Eq. (1) provides a very good approximation for asymmetric
nuclear matter. The functionals fn(n) and fs(n) can be chosen
to satisfy the constraints from neutron matter calculations and
symmetric nuclear matter properties, respectively.

For the interaction density functionals, we take the form
introduced recently by Huth et al. [3],

fn(n) =
3∑

j=0

a jn2+ j/3

d j + n( j+1)/3
, fs(n) =

3∑
j=0

b jn2+ j/3

d j + n( j+1)/3
,

(2)

where a j, b j are fit parameters and d j = d fm−1− j with pa-
rameter d = 3 [3]. This corresponds to an expansion of the
interaction energy density in powers of the Fermi momentum
kF ∼ n1/3, and the denominator ensures that the interaction
part becomes proportional to n5/3 at higher densities. Note
that without the denominator, the interaction part generally
causes the speed of sound to exceed the speed of light beyond
some baryon density. For a detailed discussion of these new
functionals and the parameter choices, see Ref. [3].

B. Constraints from neutron matter calculations
based on chiral effective field theory

For neutron matter constraints we use the MBPT calcu-
lations from Ref. [11] based on different chiral NN+3N
Hamiltonians, including the Hebeler+ interactions [35], the
NNLOsim potentials [36], as well as the N3LO 450 MeV
and 500 MeV uncertainty bands [11] (using the NN Entem-
Machleidt-Nosyk (EMN) interactions [37]). The different
neutron matter results and their uncertainties are given by the
individual lines shown in Fig. 1. We use the individual lines
to fit the a j of the EDF for neutron matter, fn(n) in Eq. (2),
based on the kF expansion and d = 3.

The b j of the corresponding symmetric matter part, fs(n),
are determined from empirical properties. We fit to the
binding energy E/A(n0) = −16 MeV at saturation density
n0 = 0.16 fm−3, the incompressibility K = 235 MeV, with
K = 9n2∂2(E/A)/∂n2(n0, x = 1/2), and the skewness Q =
−300 MeV, with Q = 27n3∂3(E/A)/∂n3(n0, x=1/2). These
values are extracted from Skyrme EDFs and constraints for
nuclear matter properties [38]; see also Ref. [39]. Since neu-
tron star properties are not very sensitive to symmetric nuclear
matter, we do not vary all nuclear matter properties, but only
explore the most uncertain value of Q in the following; see
Sec. III C.

The uncertainties in our EDF EOSs are reflected in the
covariance matrix of �x = (�a, �b), defined as

Cjk = 1∑
i wi

∑
i

wi
(
xi

j − 〈x j〉
)(

xi
k − 〈xk〉

)
, (3)

where xi
j is the set of fit parameters (a j, b j ) for the ith individ-

ual EOS, 〈x j〉 represents the average of x j , and wi is the weight
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FIG. 1. Neutron matter energy per particle E/N as a function of
number density n based on the MBPT calculations from Ref. [11]
using different chiral NN+3N Hamiltonians (labeled Hebeler+,
NNLOsim, and N3LO; for details see text). The band shows the 95%
credibility region modeling the different MBPT results with the EDF
ensemble used in this work (based on the kF expansion and d = 3).
For comparison we also show the unitary gas constraint [34].

for each EOS. Since we do not vary the symmetric nuclear
matter properties, in this work Cjk is a 4 × 4 matrix for the
a j from the neutron matter EOSs only. In the initial set given
by the 17 neutron matter EOSs, the weights are wi = 1, but
when we implement Bayes statistics and inferences, wi < 1.
With the average 〈x j〉 and the covariance matrix Cjk , a mul-
tivariate normal distribution can be used to generate an EOS
ensemble based on our EDF EOSs. We note that the statistical
uncertainties from this EOS ensemble have of course a prior
sensitivity to the initial set of individual EOSs.

The resulting EDF EOS ensemble based on the multi-
variate normal distribution is shown in Fig. 1 with the 95%
credibility region in comparison to the individual EOSs based
on MBPT calculations of neutron matter. The ensemble is
based on 100 000 EOSs generated using the EDF, Eqs. (1)
and (2), from the average 〈x j〉 and the covariance matrix Cjk

based on the individual neutron matter MBPT EOSs. The
agreement between the band and the individual lines in Fig. 1
indicates that the EDF EOS ensemble employed in this work
can generalize chiral EFT results within their uncertainties.
Moreover, we compare the EDF EOS ensemble to the unitary
gas constraint [34] and observe in Fig. 1 that this is nicely
fulfilled by our EOSs. For completeness, we show in Fig. 2
the prior of our EDF ensemble extended up to 8n0.

C. Bayesian modeling

We incorporate the astrophysics constraints on the EOS by
applying Bayes’ theorem, from which the posterior distribu-
tion results from the combination of the prior and likelihood,

P(�a|D) = P(D|�a)P(�a)∫
d�a P(D|�a)P(�a)

. (4)

FIG. 2. Same as Fig. 1 but for the 95% credibility region of the
EDF ensemble used in this work (based on the kF expansion and
d = 3), but extended up to 8n0.

Here, P(�a) represents the EOS prior given by the EDF pa-
rameter space obtained from the neutron matter calculations
and symmetric nuclear matter properties, and D stands for
the astrophysical data, so that P(D|�a) is the likelihood or
conditional probability of obtaining D for a given EDF with
parameter set �a. In our study, we include the astrophysical ob-
servations of GW170817 and results from NICER to constrain
the EOS at higher densities.

For the NICER mass-radius constraints for PSR
J0030+0451 and PSR J0740+6620 we consider separately
either the Amsterdam analysis of Riley et al. [22,24] or
the Illinois/Maryland analysis of Miller et al. [23,25]. The
heaviest neutron star mass of 2.08 ± 0.07 M� [21] is thus
directly implemented through the NICER M-R information
of PSR J0740+6620. Folding in the NICER constraints
based on our prior leads to the likelihood for the EDF
parameters [40,41]

P(NICER|�a) =
∫

dM P(M )P(NICER|M, R(M, �a)), (5)

where P(M ) is the probability domain of the NICER analysis
and P(NICER|M, R(M, �a)) is the likelihood of each of the
two NICER results for a given EDF EOS with parameter set
�a [42]. The integral is carried out by discretizing the M-space,
summing over all bins which are passed by the M(�a)-R(�a)
relation, and weighting those bins with the NICER posterior
for each of the sources successively.

In addition to NICER, we use the tidal deformability infor-
mation from GW170817 inferred by LIGO/Virgo [26],

P(LIGO|�a) =
∫

dM1dM2 P(M1, M2)

× P(LIGO|M1M2�1(M1, �a)�2(M2, �a)), (6)

where P(M1, M2) is the probability domain from the
LIGO/Virgo analysis and P(LIGO|M1M2�1�2) is the like-
lihood of the LIGO/Virgo analysis a given EDF EOS with
parameter set �a [42]. We assume that the NICER and
GW170817 analyses are independent of each other so that,
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combining both constraints, the likelihood is given by

P(D|�a) = P(NICER|�a)P(LIGO|�a). (7)

Multiplying the combined likelihood with the prior P(�a) and a
normalization constant considering the integral in the denom-
inator, we obtain the posterior distribution P(�a|D) for a given
EDF EOS with parameter set �a.

III. RESULTS

Next we present our results for the properties of neutron
stars and the symmetry energy based on the EOS framework
developed in the previous section. This combines the infor-
mation from neutron matter based on chiral EFT interactions,
with empirical properties of symmetric nuclear matter, as well
as astrophysical constraints from GW170817 and NICER us-
ing a family of EDFs for nucleonic matter. Since matter in
neutron stars is very neutron-rich, we have focused more on
the propagation of the theoretical uncertainties in our knowl-
edge of neutron matter. An advantage of our EOS framework
is that we use the same EDF to construct the crust and core
EOSs for neutron stars. In the following, we present our re-
sults for the neutron star mass and radius, the proton fraction,
the speed of sound, and the central density in neutron stars.
We also provide results for the symmetry energy and the slope
parameter and explore correlations of neutron star radii with
the pressure and the speed of sound in neutron stars.

A. Mass-radius relation

The mass and radius of neutron stars are obtained by solv-
ing the TOV equations for nonrotating stars. Figure 3 shows
the 95% credibility regions for the mass M and radius R
generated from the multivariate normal distribution for the
EDF EOSs based on an ensemble of ≈105 EOSs. The top
panel shows the prior distribution for the kF expansion using
different values of d = 1, 3, 5, 7 and d = ∞. The middle
and lower panels show the posterior distribution including
astrophysics information from GW170817 and the NICER
analysis of Riley et al. [22,24] or the NICER analysis of
Miller et al. [23,25], respectively. Our results show that the
posterior distributions obtained from the two different NICER
analyses are very similar once the nuclear physics information
is encoded in the EOS framework.

Regarding the different EDF choices, we find that the
d = 3 distribution is similar to the cases of d = 5, 7 and
d = ∞. However, large d , and in particular d = ∞, allows
for the speed of sound to become acausal, c2

s > 1 (in units
with the speed of light c = 1), as the density increases, which
is not the case in either neutron or symmetric matter for d = 3
by construction. In addition, as d = 1 makes the interaction
energy density rapidly behave like n5/3, the EOS becomes soft
at rather low densities compared to the larger d values [3]. As
a result the 95% credibility regions for mass and radius only
extend slightly above 2M�. Therefore, in the following, we
will show results only for the EDF EOSs with d = 3. Before
doing so, we also list the radius ranges of typical 1.4M� and
2M� neutron stars to show the rather minor sensitivity to the
choice of d (see Table I).

FIG. 3. Top panel: 95% credibility regions for the neutron star
mass M and radius R generated from the multivariate normal dis-
tribution for the EDF EOSs with the kF expansion using different d
values. Middle panel: Posterior distribution based on the top panel
prior and including astrophysics information from GW170817 and
NICER (dashed 95% and 68% contours from the Amsterdam analy-
sis, Riley et al. [22,24]). Bottom panel: Same as the middle panel but
using the NICER results from Miller et al. [23,25].

In Table I we give the prior and posterior ranges for
the radius R1.4 of a 1.4M� neutron star at 95% (±2σ )
and 68% (±1σ ) credibilities as well as the most likely ra-
dius for the EDF EOS ensembles with the kF expansion
and different d values. For d = 3, the 95% credibility prior
range is R1.4 = (9.87–13.19) km. Including the astrophysics
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TABLE I. Prior and posterior results for the radius of a 1.4M�
neutron star at ±2σ , ±1σ , and the most likely radius for the EDF
EOS ensembles with the kF expansion and different d values. Results
are given for both NICER analyses (Riley et al. [22,24] and Miller
et al. [23,25]).

R−2σ R−1σ Rmost R+1σ R+2σ

EDF EOS (km) (km) (km) (km) (km)

Prior
d = 1 10.01 11.20 12.25 12.61 13.06
d = 3 9.87 11.39 12.45 12.77 13.19
d = 5 9.88 11.46 12.48 12.80 13.20
d = 7 9.90 11.47 12.48 12.81 13.22
d = ∞ 9.97 11.51 12.50 12.83 13.23

Posterior Riley et al.
d = 1 12.00 12.40 12.78 13.02 13.28
d = 3 11.57 12.13 12.60 12.87 13.17
d = 5 11.48 12.08 12.58 12.86 13.16
d = 7 11.39 12.06 12.58 12.85 13.16
d = ∞ 11.33 12.02 12.58 12.85 13.16

Posterior Miller et al.
d = 1 11.88 12.32 12.73 12.97 13.25
d = 3 11.65 12.19 12.68 12.93 13.23
d = 5 11.63 12.19 12.65 12.92 13.22
d = 7 11.61 12.18 12.68 12.93 13.23
d = ∞ 11.52 12.16 12.65 12.92 13.22

information from GW170817 and the NICER analysis of Ri-
ley et al. [22,24] gives for 95% credibility posterior range
R1.4 = (11.57–13.17) km, while with the Miller et al. [23,25]
analysis R1.4 = (11.65–13.23) km, or the combined range
R1.4 = (11.6–13.2) km. Both NICER analyses thus give very
similar posterior ranges, with the result based on Miller et al.
shifted to slightly larger radii. Overall, the radius range de-
creases by over 50% from 3.3 km for the prior to 1.6 for the
combined posterior, mainly by disfavoring the smaller radii in
the prior range. Moreover, in the prior distribution for d = 3,
72% of EOSs have a maximum mass of neutron stars greater
than 2.0M�, while for the posterior distribution 97% (98%) of
EOSs have a maximum mass above 2.0M� using the NICER
analysis of Riley et al. [22] (Miller et al. [23]).

In Fig. 4, we show the color-coded prior and posterior
distributions for the case of d = 3. In both posterior distribu-
tions, the most probable radii for neutron stars between 1.0M�
and 1.8M� vary only within 0.3 km. Moreover, the mass and
radius distribution for M > 2.0M� is very similar for the prior
and the two posteriors, because the astrophysics information
mainly removes EOSs that give low maximum mass and small
radii.

Table II gives the prior and posterior ranges for the radius
R2.0 of a 2.0M� neutron star for the EDF EOSs with d = 3.
The prior distribution shows a wider radius range because it
does not include information of a massive neutron star. Again
the two posterior ranges for R2.0 are very similar and merely
shifted by less than 100 m. In the case of d = 3, the maximum
mass of neutron stars among the ≈105 EOS ensemble reaches
up to 2.23M�, while it can go up to 2.32M� for d = ∞.

FIG. 4. Same as Fig. 3 but showing the color-coded prior and
posterior distributions for the case of d = 3.

B. Symmetry energy and L parameter

We can also extract the symmetry energy Sv and the slope
parameter L from our calculations. To this end, we calculate

TABLE II. Same as Table I but for the radius of a 2.0M� neutron
star and for the case of d = 3 only.

R−2σ R−1σ Rmost R+1σ R+2σ

EDF EOS (km) (km) (km) (km) (km)

d = 3 Prior 10.46 11.15 12.03 12.40 12.84
d = 3 Post. Riley 10.86 11.56 12.15 12.43 12.75
d = 3 Post. Miller 10.93 11.63 12.25 12.51 12.82
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FIG. 5. Plot of the L parameter versus symmertry energy Sv

based on the MBPT calculations for different chiral NN+3N
Hamiltonians from Ref. [11] [points, see upper left legend; the
dashed (solid) line connects the 500 (450) MeV cutoff N3LO results]
and the resulting prior and posterior distributions based on the EDF
EOS ensemble of this work for the kF expansion and d = 3 (see
lower right legend). Note that the posteriors for both NICER analyses
are very similar. For comparison, we also plot the GP-B results at
N3LO from Ref. [31] and the recent results from Essick et al. [4].
All contours are 95%, except for 90% from Essick et al. Note that all
results are for a fixed reference saturation density n0 = 0.16 fm−3,
while the GP-B results are for the correlated range of 95% of the
calculated saturation density.

the symmetry energy parameters from our EDF EOS ensem-
ble of (ai, bi ) generated by the covariance matrix Cjk [see
Eq. (3)] from

Sv = 1

8

∂2

∂x2

(
ε

n

)
, L = 3

8
n

∂3

∂x2∂n

(
ε

n

)
, (8)

where both symmetry parameters are evaluated at n = n0

and x = 1
2 . The resulting distributions for Sv and L follow

Gaussian distributions, with the mean and covariance matrix
given in the following equation. This is shown in Fig. 5
for the individual MBPT calculations for the different chiral
NN+3N Hamiltonians from Ref. [11] as points, where the
dashed (solid) line connects the 500 (450) MeV cutoff N3LO
results. As discussed, our EDF EOS ensembles are built from
all the different chiral NN+3N results. The resulting 95%
prior and posterior distributions are shown for the EDF EOS
ensemble with the kF expansion and d = 3. Note that our
95% distribution contours are obtained by integrating the 2D
(two-dimensional) domain with 2D probability for Sv and L.
We find that the prior range for Sv and L is narrowed to larger
values with the astrophysics constraints included. For both
NICER analyses the posteriors are again very similar.

For the prior distribution these are given by (mean values
in MeV and convariance matrix in MeV2)

〈Sv, L〉 = (31.96, 51.70), �Sv,L =
(

0.79 6.73
6.73 75.11

)
, (9)

while the posterior distributions for the astrophysical infer-
ences are given for the Riley et al. [22] and Miller et al. [23]
analyses, respectively:

〈Sv, L〉 = (32.23, 56.33), �
Riley
Sv ,L

=
(

0.66 4.56
4.56 40.02

)
(10)

and

〈Sv, L〉 = (32.31, 57.31), �Miller
Sv ,L =

(
0.64 4.43
4.43 40.43

)
.

(11)

We observe that the astrophysics constraints move the pos-
terior distributions to larger Sv and L values within the prior
range. Moreover, all MBPT calculations for the different chi-
ral NN+3N Hamiltonians are still largely within the posterior
range, but some of them only borderline. This points to that
astrophysics prefers EOSs on the stiffer part of the neutron
matter EOS band based on chiral EFT. This is consistent with
the EOS findings in Ref. [43].

In Fig. 5 we also show the GP-B (Gaussian process,
BUQEYE Collaboration) results at N3LO from Ref. [31].
Since the GP-B contours are based on the same N3LO 500
(450) MeV results [11] included in our analysis, we can trace
the difference between the GP-B contours and the N3LO
points to the evaluation of Sv and L for the correlated range
of 95% of the calculated saturation density, while our dis-
tributions are at a fixed reference saturation density n0 =
0.16 fm−3. Since the L parameter scales linearly with the
density, this mainly affects the L value, while the range of
symmetry energies is broadened due to the additional uncer-
tainty in the calculated saturation density.

Finally, we compare our 95% posterior distributions in
Fig. 5 with the recent results from Essick et al. [4], which
are, however, 90% contours. These are based on a different
set of chiral NN+3N calculations and astrophysics constraints
through a more general Gaussian process extension to high
densities. Nevertheless both contours (at the same reference
saturation density n0) are remarkably consistent.

C. Proton fraction

The ground state of neutron star matter is obtained by
solving the condition for beta equilibrium,

μn = μp + μe, (12)

where the neutron, proton, and electron chemical potentials
μn, μp, and μe are given by

μn = ∂ε

∂nn
, μp = ∂ε

∂np
, μe = ∂ε

∂ne
, (13)

with total energy density ε. Since the core is composed of
uniform nuclear matter, Eq. (12) is straightforward for a given
EDF. For the crust EOS, where matter exists in inhomoge-
neous form, we employ the liquid drop model (LDM) [44]
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using the same EDF to construct the EOSs of the inner and
outer crust.

In the inner crust, the total energy density including the
electron contribution is given by [44]

ε = uni fi + σ (xi )ud

rN
+ 2π (exinirN )2u fd (u)

+ (1 − u)nno fno + εe, (14)

where u is the volume fraction of the nucleus to the Wigner-
Seitz cell, ni is the baryon number density of the heavy
nucleus, nno is the density of unbound neutrons, xi is the
proton fraction in the heavy nucleus, and fi = f (ni, xi ) and
fno = f (nno, xno = 0) are the energies per baryon for the
heavy nucleus and unbound neutrons, respectively. σ (xi ) is the
surface tension at zero temperature as a function of the proton
fraction in heavy nuclei, rN the radius of the heavy nucleus,
e the electric charge, d the dimension of the nuclear pasta
phase, fd (u) the Coulomb shape function corresponding to the
nuclear pasta phase, and εe is the electron energy density. We
use the surface tension from [45]

σ (xi ) = σ0
2α+1 + q

x−α + q + (1 − x)−α
, (15)

where σ0, α, and q are parameters fit to the calculation of the
surface tension. In this work, we use σ0 = 1.14 MeV fm−2,
α = 3.4, and q = 30, but note that the crust properties depend
only weakly on the surface tension parameters, and also the
impact of the crust on the investigated neutron star properties
is minor.

Based on the virial theorem, the Coulomb energy is ap-
proximately twice the nuclear surface energy. Thus, we can
combine the surface and Coulomb energy to a single form of
energy contribution, which leads to a simpler equation for the
energy density [46],

ε = uni fi +
(

243π

5
e2x2

i n2
i σ

2(xi )

)1/3

D(u)

+ (1 − u)nno fno + εe, (16)

where D(u) is a continuous dimension function introduced in
Ref. [46]. For total baryon density and proton fraction Yp, and
thus electron density ne = Ypn, the conditions u, ni, xi, and nno

are found by minimizing the total energy density, Eq. (16),
using the Lagrange multiplier method for the constraints of
baryon density and charge neutrality,

n = uni + (1 − u)nno and ne = (1 − u)nixi. (17)

For an outer crust EOS, which is defined as the region without
unbound neutrons, the outside neutron density nno is ne-
glected. Using the LDM construction, the transitions from the
outer to inner crust and to the outer core are thus smooth, since
the same EDF is employed to construct the entire neutron
star EOS.

Figure 6 shows the average proton fraction at the central
density 〈Y c

p 〉 based on the EDF EOS ensemble for the kF

expansion and d = 3, as well as the variance over the average
σY c

p
/〈Y c

p 〉. The average proton fraction is dominated by the
core, but include the details of the crust calculation discussed

FIG. 6. Color-coded posterior distribution of the proton fraction
at the central density based on the EDF EOS ensemble for the kF

expansion and d = 3 (using the NICER Riley et al. analysis). The
left and right panels show the average proton fraction at the central
density 〈Y c

p 〉 and the variance over the average σY c
p
/〈Y c

p 〉, respectively.
The black dashed line denotes the direct Urca threshold of Yp = 1/9.

above. We note that in Fig. 6 (and in Figs. 9 and 10), the
mass and radius domain is restricted to the region where
the relative probability to the maximum probability ratio
P(M, R)/Pmax � 10−2 (as in Fig. 4). As expected, the proton
fraction increases as the mass increases, and, for a given
mass, it increases with radius as the EOS becomes stiffer. Our
EOS ensemble assumes for the proton fraction that matter is
nucleonic, which may not be valid for massive stars. However,
for typical 1.4M� neutron stars, this may not be such a large
extrapolation.

In addition, we plot in Fig. 6 the threshold Yp = 1/9 for
the direct Urca process, which leads to fast cooling neutron
stars [47]. We find that typical neutron stars around 1.4M�
do not exceed this threshold for radii around 12 km, but only
in our largest radius configurations. However, based on our
results, we expect that massive neutron stars with M > 2.1M�
would cool via the direct Urca process.

Figure 7 shows the total proton fraction Y tot
p of the maxi-

mum mass star versus the maximum mass. The total proton
fraction increases along a band as the maximum mass in-
creases, due to the stiffer EOS. Figure 7 shows results for four
different Q values of symmetric nuclear matter, keeping in
mind that negative Q values are favored by nuclear masses,
ab initio calculations, and astrophysics [4,33,38]. With in-
creasing Q, the total proton fraction for a given mass decreases
and also the maximum mass increases, as larger Q stiffens the
EOS. Naturally, the sensitivity to Q is much less pronounced
for typical neutron stars. Figure 8 shows the proton fraction at
the central density Y c

p versus the radius of a 1.4M� star, which
exhibits a tight correlation and is only very weakly dependent
on Q. Larger radii thus have a larger proton fraction. Again
we see that radii around 12 km, as expected based on most
recent EOS astrophysical inferences [23,39,43,48–54], do not
cool via the direct Urca threshold. However for larger radii
R1.4 > 12.6 km (for Q = −300 MeV) even typical neutron
stars would be fast coolers.
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FIG. 7. Color-coded posterior distribution of the total proton
fraction Y tot

p of the maximum mass star versus the maximum mass
for four different Q values (different panels) based on the EDF
EOS ensemble for the kF expansion and d = 3 (using the NICER
Riley et al. analysis). The black dashed line denotes the direct Urca
threshold of Yp = 1/9.

D. Central density and speed of sound

Next, we study the posterior distribution for the central
density and the speed of sound in neutron stars. Figure 9
shows the average central density in units of saturation den-
sity, 〈nc/n0〉, and its variance over the average, σnc/〈nc〉. The
average central density increases with increasing mass, while
it decreases as the radius increases for a given mass of neutron

FIG. 8. Same as Fig. 7 but for the proton fraction at the central
density Y c

p versus the radius of a 1.4M� neutron star.

FIG. 9. Same as Fig. 6 but for the average central density in units
of saturation density 〈nc/n0〉 (left panel) and its variance over the
average σnc/〈nc〉 (right panel).

star. This results from stiffer EOSs leading to larger radii. In
our EDF EOSs, the maximal central density reaches up to
≈7n0, which is reached for softer EOSs in the most massive
neutron stars with smaller radii.

Figure 10 shows the speed of sound squared c2
s = ∂P/∂ε at

the central densities in neutron stars. In our EDFs, the speed
of sound increases but remains causal and decreases at high
density [3]. As we see from Fig. 10, the speed of sound is
increasing as the mass increases, so in neutron stars most
matter is on the part of the EOS that has an increasing c2

s in our
ensemble of EOSs. In Fig. 10, the red dashed line represents
c2

s = 1/3, which shows that even typical 1.4M� stars exceed
the conformal limit, except when they have radii larger than
13 km (see also the middle panel of Fig. 11). Moreover,
information on the radii of massive stars with M � 2.0M�
would inform us about c2

s at the central density (see also
Fig. 12). This could be realized with an improved NICER
radius measurement [22,23] of the 2.08 ± 0.07M� pulsar PSR
J0740+6620 [21].

FIG. 10. Same as Fig. 9 but for the square of the speed of sound
c2

s at the central densities in neutron stars. The red dashed line
represents the conformal limit c2

s = 1/3.
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FIG. 11. Radius of a 1.4M� neutron star versus the pressure at
twice saturation density P2n0 (top), the speed of sound squared at the
central density c2

s (middle), and the L parameter (bottom panel) based
on the EDF EOS ensemble for the kF expansion and d = 3 (using the
NICER Riley et al. analysis). Recall that the L parameter is propor-
tional to the pressure of pure neutron matter at saturation density. In
the middle panel the red dashed line represents the conformal limit
c2

s = 1/3.

E. Correlations

Finally, we study the correlation of neutron star radii with
the pressure and the speed of sound. In Ref. [55] it was

FIG. 12. Same as the middle panel of Fig. 11 but for the radius
of a 2.0M� neutron star.

suggested that the radius of a 1.4M� neutron star would follow
the empirical relation R1.4 ∼ p1/4

2n0
, where p2n0 is the pressure

at twice saturation density. In the top panel of Fig. 11 we
show that this correlation is indeed fulfilled in our EDF EOS
ensemble within a band. For the radius in km and the pressure
in MeV fm−3, we find R1.4 = 1.279 + 5.063 P1/4

2n0
for the mean

line of the correlation shown in Fig. 11, with a correlation
coefficient rxy = 0.985. While the details of this correlation
depend on the EOS model, this indicates that astrophysical
observations of neutron star radii provide constraints for the
pressure at twice saturation density.

The middle panel of Fig. 11 shows the distribution of R1.4

versus the speed of sound at the central density of neutron
stars. Most of the distribution follows a linear trend, but the
correlation coefficient rxy = −0.907 is weaker in this case.
We also observe that c2

s at the central density exceeds the
conformal limit c2

s = 1/3 in our EDF EOS ensemble for R1.4

smaller than 12.8 km. The correlation is even weaker at lower
densities when comparing R1.4 with the L parameter in the bot-
tom panel of Fig. 11, which is proportional to the pressure of
pure neutron matter at saturation density. This is as expected
because the central density of a 1.4M� neutron star is ∼3n0.
Nevertheless, there is a general trend that R1.4 increases as L
increases.

Figure 12 shows the correlation of the radius of a 2.0M�
neutron star with the speed of sound at the central density.
The strong correlation indicates that the radius measurement
of massive neutron stars provides constraints for the speed
of sound in dense nuclear matter. For the radius in km,
we find R2.0 = 16.493 − 7.846 c2

s (nc), with a correlation co-
efficient rxy = −0.996. Moreover, we find within our EDF
EOS ensemble that the speed of sound at the central density
of 2.0M� stars is always greater than the conformal limit.
Table III summarizes the fitting functions for neutron star radii
for different nuclear matter properties and the corresponding
correlation coefficients discussed above.

Figure 13 shows the mass and radius prior when we impose
the conformal limit for the speed of sound. The top panel
shows the case when the speed of sound continues to increase
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TABLE III. Fitting functions for neutron star radii for different
nuclear matter properties and the corresponding correlation coeffi-
cients (as discussed in the text).

Fitting function rxy

R1.4 = 1.279 + 5.063 P1/4
2n0

0.985
R1.4 = 19.550 − 19.757 c2

s (nc ) −0.907
R2.0 = 16.493 − 7.846 c2

s (nc ) −0.996

up to 1/3 and maintains the conformal limit for all higher
densities. The bottom panel is for the case where the speed of
sound jumps to 1/3 at n = 2n0 and remains at the conformal
limit for all higher densities. In both scenarios, the speed of
sound is not larger than the conformal limit at any density.
From Fig. 13, the prior probability of supporting 2.0M� stars
is around 10% or less, which is similar to the findings of
Ref. [56]. Thus, the conformal limit can be consistent with
2.0M� stars, but most of the support of our EDF EOS en-
semble exceeds the conformal limit for massive neutron stars.

FIG. 13. Neutron star mass and radius prior based on the EDF
EOS ensemble for the kF expansion and d = 3 when we impose the
conformal limit of the speed of sound squared c2

s � 1/3 (top panel)
or a jump in the speed of sound squared to constant c2

s = 1/3 at
n = 2n0 (bottom panel).

However, when we take the maximum mass limit as the cen-
tral value of PSR J0740+6620, 2.08M�, the speed of sounds
needs to exceed 1/3 in our ensemble, as the maximum mass
does not reach up to 2.08M� in our modeling in both cases in
Fig. 13.

IV. SUMMARY AND CONCLUSION

We have explored EOS ensembles using new EDFs from
Ref. [3] that allow for large variations at high densities.
The EDF EOS ensembles were constrained by empirical
properties of symmetric nuclear matter and by MBPT calcu-
lations of neutron matter based on different chiral NN+3N
Hamiltonians. Starting from this prior, constraints at high
densities were included from observations of GW170817 and
from NICER, where the heavy neutron star mass constraint
is incorporated through PSR J0740+6620. All our results
show that both the Riley et al. [22] and Miller et al. [23]
NICER analyses lead to very similar posterior constraints for
the symmetry energy and neutron star properties when folded
into our EOS framework.

Based on our EDF EOS ensembles, we have studied the
symmetry energy and the L parameter, as well as the proton
fraction, the speed of sound, and the central density in neutron
stars. Our 95% posterior credibility ranges for the symmetry
energy Sv , the L parameter, and the radius of a 1.4M� neutron
star R1.4 are Sv = (30.6–33.9) MeV, L = (43.7–70.0) MeV,
and R1.4 = (11.6–13.2) km. Moreover, we have shown that
larger and/or heavier neutron stars have a larger proton frac-
tion and are thus more likely to cool rapidly via the direct Urca
process.

As can be seen from our results for Sv and L, present as-
trophysics constraints prefer larger pressures within the prior
ranges. To this end, we have also explored correlations of
neutron star radii with the pressure and the speed of sound.
The radius of 1.4M� stars was found to correlate well with
the pressure at twice saturation density, and R2.0 was shown
to correlate tightly with the speed of sound at the central
density. Therefore, precise measurements of R1.4 provide key
information for density regimes at the limits of chiral EFT
calculations, and radii of massive neutron stars will help to
constrain the behavior of the speed of sound in dense matter.
Finally, by constructing EOS ensembles with imposed con-
formal limit on the speed of sound, we found that a maximum
mass of neutron stars Mmax > 2.1M� indicates that the speed
of sound needs to exceed the conformal limit.
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