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We compute the muon capture on deuteron in the doublet hyperfine state for a variety of nuclear interactions
and consistent nuclear currents. Our analysis includes a detailed examination of the theoretical uncertainties
coming from different sources: the single-nucleon axial form factor, the truncation of the interaction and
current chiral expansion, and the model dependence. Moreover, we study the impact of the use of different
power counting scheme for the electroweak currents on the truncation error. To estimate the truncation error of
the chiral expansion of interactions and currents we use the most modern techniques based on Bayesian analysis.
This method enables us to give a clear statistical interpretation of the computed theoretical uncertainties. Finally,
we provide the differential capture rate as function of the kinetic energy of the outgoing neutron which may
be measured in future experiments. Our recommended theoretical value for the total doublet capture rate is
�th = 395 ± 10 s−1 (68% confidence level). We calculated also the capture rate in the quartet hyperfine state,
which turns out to be in the range [13.3–13.8] s−1 depending on the adopted nuclear interaction.
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I. INTRODUCTION

The muon capture on deuteron, i.e., the process

μ− + d → n + n + νμ (1.1)

is one of the electroweak processes that is accessible experi-
mentally and at the same time can be computed using the most
modern theoretical nuclear physics techniques combining
chiral effective field theory (χEFT) with ab initio numerical
methods. This makes the reaction in Eq. (1.1) the ideal system
for testing χEFT interactions and electroweak currents.

The experimental results for the total capture rate in the ini-
tial doublet hyperfine state � [1–4] are relatively old and have
large error bars that make them compatible within each other
but hard to use for precision tests of the theory. To improve the
precision of experimental measurements, an ongoing experi-
ment at the Paul Scherrer Institute, in Switzerland, performed
by the MuSun Collaboration, aims to reduce the uncertainty
at the order of ≈1.5% [5]. If such precision is achieved, then
it will enable more stringent test of the χEFT predictions.

On the theory side, several calculations have been carried
out. A review of the theoretical results from up to the early
2010s can be found in Ref. [6]. Some more recent calcu-
lations, but not yet fully within the χEFT framework, have
been performed also in Refs. [7,8]. The first steps within the
“hybrid” χEFT approach, where phenomenological potentials
are used together with χEFT nuclear currents, have been
performed in Refs. [7,9]. On the other hand, the first fully
consistent χEFT calculations are those of Refs. [10,11]. Note
that the results of Ref. [10], as well as those of Ref. [11], were
affected by a widely spread error in the relation between the

low-energy constant (LEC) entering the three-nucleon inter-
action and that one entering the axial current. In Ref. [12]
such error was spotted and the results of Ref. [10] were
corrected. Over the past few years, a fully consistent χEFT
calculation, not affected by the above-mentioned error, has
been performed [13]. This work addressed also the impact
of the experimental uncertainty on the single-nucleon axial
form factor [14]. The work in Ref. [13] retained only the 1S0

channel while in that of Bonilla et al. [15] a complete partial
wave expansion was performed together with an analysis of
the theoretical uncertainties to study the capture rate in both
the f = 1/2 (doublet) and f = 3/2 (quartet) hyperfine states.

This work moves on a parallel line, starting from our re-
cent paper where we considered only the 1S0 neutron-neutron
channel [16]. We complete the calculation of Ref. [16] adding
the missing channels with a dual purpose. The first is to
have the most robust theoretical error estimate based on the
Bayesian analysis of the truncation errors of the chiral current
and interaction expansions, on the model dependence, and
on the propagation of the uncertainties related to the LECs
appearing in the currents. Moreover, we carry on also an
analysis of the impact of the use of different power counting
for the electroweak currents on the truncation errors. For the
Bayesian analysis we use the approach introduced in Ref. [17]
and already employed in several works to give reliable esti-
mates of truncation errors in chiral effective field theory (see
Ref. [18] for a complete list of works). The second purpose is
to compute the spectra of the outgoing neutrons as function
of the kinetic energy of the neutron. Beyond the technical
details, this kind of spectrum can possibly be measured in
MuSun experiment [19] and can be useful for the simulation
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of the experimental apparatus, and consequently for data
analysis.

The paper is organized as follow. In the next section we will
introduce the theoretical formalism giving the explicit expres-
sion for the differential capture rate as function of the kinetic
energy of the neutron. In Sec. III we present the nuclear
interaction and current models used in this work. Section IV
is dedicated to a detailed examination of the theoretical un-
certainties. In Sec. V, we discuss our results comparing them
with the recent literature. Finally, in Sec. VI we consider the
impact of our results on the analysis of the future data of the
MuSun experiment.

II. MUON CAPTURE ON DEUTERON FUNDAMENTALS

In the literature the muon capture differential capture rate
was computed versus the relative momenta of the two emitted
neutrons. This has the advantage to reduce the numerical
effort needed in the calculation. On the other hand, this is
not what can be measured experimentally. In this work we
consider the differential capture rate as function of the kinetic
energy of one of the emitted neutrons (i.e., E ′

1 = E1 − mn),
which is the quantity that can potentially be measured in an
experiment using a neutron detector. Let us begin with the
Fermi golden rule, that reads

d� = (2π )δ(E1 + E2 + kν − mμ − md )|Tf i|2 dp1

(2π )3

dkν

(2π )3
,

(2.1)

where E1(E2) is the energy of the first (second) outgoing
neutron, kν the energy of the emitted neutrino, p1(p2) the
momenta of the first (second) outgoing neutron, and kν the
momentum of the outgoing neutrino. Note that the phase
space of the second emitted neutron has been eliminated using
the conservation of the momenta. The transition amplitude is
written as in Ref. [7],

|Tf i|2 = 1

2 f + 1

∑
s1s2hν

∑
fz

|Tf i( f , fz; s1, s2, hν )|2, (2.2)

where f , fz indicate the initial hyperfine state, while s1, s2, and
hν denote the spin z projection for the two neutrons and the
neutrino helicity state. In turn, Tf i( f , fz; s1, s2, hν ) is given by

Tf i( f , fz; s1, s2, hν ) ≡ 〈nn, s1, s2; ν, hν | HW | (μ, d ); f , fz〉

� G′
V√
2
ψ1sM f i( f , fz; s1, s2, hν ), (2.3)

where we have defined

M f i( f , fz; s1, s2, hν ) =
∑
sμsd

〈
1

2
sμ, 1sd

∣∣∣∣ f fz

〉
lσ (hν, sμ)

× 〈
	p,s1s2 (nn)

∣∣ jσ (q)
∣∣	sd (d )

〉
, (2.4)

with lσ and jσ being the leptonic and hadronic current
densities, respectively [7]. Here the leptonic momentum
transfer q is defined as q � −kν and p = (p1 − p2)/2 is the
relative momentum among the two neutrons. Furthermore,
	d (sd ) and 	p,s1s2 (nn) are the deuteron and final nn wave
functions, respectively, with sd indicating the deuteron

spin z projection, which is computed using the variational
method described in Refs. [7,16]. The final nn wave function
	p,s1s2 (nn) can be expanded in partial waves as

	p,s1s2 (nn) = 4π
∑

S

〈
1

2
s1,

1

2
s2

∣∣∣∣SSz

〉 ∑
LLzJJz

iLY ∗
LLz

(p̂)

×〈SSz, LLz|JJz〉	
LSJJz

nn (p), (2.5)

where 	
LSJJz

nn (p) is the nn wave function with orbital
angular momentum LLz, total spin SSz, and total angular
momentum JJz that is computed numerically by using the
Kohn variational principle (see Ref. [20]). The calculation is
performed using partial waves up to J = 4. The contribution
to the total capture rate of the partial waves with J > 2 is
of the order of 0.75%. We verified that partial waves with
J > 4 give negligible contributions. Finally, in Eq. (2.3), the
function ψ1s is the average over the nuclear volume of the
muon wave function in 1s orbit [7,21], namely

|ψ1s| � ∣∣ψav
1s

∣∣ ≡ |ψ1s(0)| =
√

(α μμd )3

π
, (2.6)

where ψ1s(0) denotes the Bohr wave function for a point
charge e evaluated at the origin, μμd is the reduced mass of
the (μ, d ) system, and α is the fine-structure constant. The
integration of the matrix elements M f i is performed using
Gaussian-Legendre quadrature with ≈45 points on the angles
and ≈80 on the internucleon distance r. This permits full
convergence of the integrals.

Without losing generality we can choose q ‖ ẑ and define
the angle θ1 as the angle between q and p1. After exploiting
the conservation of energy in Eq. (2.1) the differential capture
rate reads

� f (E ′
1) = G′2

V

π
|ψ1s(0)|2E1 p1

∫
d cos θ1

E2k2
ν

E2 + kν + p1 cos θ1

×
∑

s1s2hν

∑
fz

|M f i( f , fz, s1, s2, hν ; p1, cos θ1)|2,

(2.7)

where kν and E2 can be easily obtained by the momentum
and energy conservation. The superscript f , that can be equal
to 1/2 and 3/2, indicates the hyperfine state for which the
capture rate is computed. Note that in this case the scattering
wave function depends explicitly on p1 and cos θ1 through p
making the calculation much more expensive.

The total capture rate is then computed integrating directly
on the kinetic energy E1

� f =
∫ E ′max

1

0
dE ′

1 � f (E ′
1). (2.8)

The integrations on E ′
1 and cos θ1 has been performed using

Gauss-Legendre quadrature. To reach convergence we need
to use at least 50 points on E ′

1 and 20 on cos θ1. The total
capture rate was also computed using the standard approach
as in Ref. [7], obtaining on the total capture rate numerical
differences below 0.1 s−1 for each nuclear interaction consid-
ered. In Table I we report the constants and the masses used
in this work. Note that the vector coupling constant that first
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TABLE I. Values of the constants used in the present calculation.

G′
V 1.149 × 10−11 MeV−2

1/α 137.04
md 1875.61 MeV
mn 939.57 MeV
mμ 105.66 MeV

appears in Eq. (2.3) is

G′2
V = G2

V

(
1 + �V

R

)
, (2.9)

where the vector coupling constant GV is given by GV =
1.1357 × 10−11 MeV−2, and the process independent radia-
tive correction �V

R is �V
R = 0.02454, according to the new

updated values of Ref. [22]. The final value is then G′
V =

1.149 × 10−11 MeV−2.

III. NUCLEAR INTERACTIONS
AND ELECTROWEAK CURRENTS

The interactions we use in the present calculation are of
two types. The first ones, developed in Norfolk (NV) [23,24],
are local interactions up to the next-to-next-to-next-to-leading
order (N3LO) and include �-isobars together with pions and
nucleons as degrees of freedom. The interactions are regular-
ized in configuration space with two regulators, one (RS) for
the short-range components associated with 2N contact terms
and the other (RL) for the long-range terms. We consider four
different interactions of this family for which two different
sets of regulators have been used. The LECs have been fit-
ted considering the 2N database within two different energy
ranges.

The second family of interactions considered in this work
is the one developed by Entem, Machleidt and Nosyk (EMN)
[25]. These interactions are implemented in momentum space
and are strongly nonlocal. The degrees of freedom are pi-
ons and nucleons only. For this interaction family all the
orders up to the N3LO are available for three different cutoff
values  = 450, 500, and 550 MeV. The LECs of these in-
teractions are fixed fitting the 2N database up to 300 MeV. In

TABLE II. Summary of 2N interactions used in this study. In
the first column we indicate the name adopted to identify each
interaction and in the remaining columns we list its main features,
including degrees of freedom (DOF), chiral order (Oχ ), cutoff values,
laboratory-energy range over which the fits to the 2N database have
been carried out (E range), and whether it is expressed in configura-
tion (r) or in momentum (p) space.

Name DOF Oχ (RS, RL ) or  E range Space

NVIa π, N,� N3LO (0.8,1.2) fm 0–125 MeV r
NVIb π, N,� N3LO (0.7,1.0) fm 0–125 MeV r
NVIIa π, N,� N3LO (0.8,1.2) fm 0–200 MeV r
NVIIb π, N,� N3LO (0.7,1.0) fm 0–200 MeV r
EMN450 π, N N3LO 450 MeV 0–300 MeV p
EMN500 π, N N3LO 500 MeV 0–300 MeV p
EMN550 π, N N3LO 550 MeV 0–300 MeV p

TABLE III. Ordering of the chiral electroweak currents as given
in Ref. [30]. Abbreivations: 1b, one-body; OPE, one-pion exchange;
CT, contact terms; NR, nonrelativistic; RC, relativistic corrections;
and OPE-�, one-pion-exchange currents with an intermediate �-
isobar excitation. The terms in the square bracket are RC that we
kept at the order given by the naive power-counting. With the star we
indicate the terms that do not appear for the EMN interactions.

Oper. LO (Q−3) NLO (Q−2) N2LO (Q−1) N3LO (Q0)

ρ(A) — — 1b(NR) —
OPE

j(A) 1b(NR) — OPE-�∗ CT(dR)
[1b(RC)] OPE

ρ(V ) 1b(NR) — [1b(RC)] [OPE(RC)]
j(V ) — — 1b(NR) OPE-�∗

OPE [1b(RC)]

Table II we summarize the names of the interactions used in
this work and their specific characteristics.

The adopted models for the nuclear axial and vector
currents are the ones derived in Refs. [26,27] for the NV
potentials and Refs. [28,29] for the EMN ones, respectively.
In this work we performed the analysis on the truncation
errors of the currents considering both the Bochum (see, for
example, Ref. [30]) and the JLab-Pisa group power counting
(see, for example, Refs. [28,29]). We summarize the various
contributions to the currents for the Bochum and JLab-Pisa
power counting in Tables III and IV, respectively. Note that
for the Bochum power counting we considered the rela-
tivistic corrections of the same order as in the naive-power
counting.1

One of the goal of this work is to study the role of the
axial contact term (CT) at N3LO and therefore of the value
of the LEC dR [see Eq. (A1)] on the determination of the
total capture rate. Since the LEC dR is linearly dependent
on the LEC cD that appears in the three-nucleon interaction,
this has been determined fitting contemporary the 3H binding
energy and the Gamow-Teller matrix element of the 3Hβ

decay.
For the NV interactions we used the value of cD (and cE )

fitted in Ref. [27]. For the EMN interactions we refitted cD

(and cE ) following the procedure of Ref. [27]. The results are
reported in Appendix.

The calculation of the differential and total muon capture
rate on deuteron presented below has been carried out for
all the nuclear interactions presented in Table II and for all
the chiral order from LO to N3LO in the case of the EMN
interactions.

1This has been done to maintain consistency with the LECs
fitted in previous works. Clearly, this generates some theoretical
inconsistency. However, from the numerical point of view the total
contribution of the relativistic corrections are of the order of ≈1% on
the total capture rate, and the impact is minimal on the error analysis.
For completeness we report in Table IV the N4LO contribution of the
currents for the JLab-Pisa group power counting.
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TABLE IV. The same as Table III for the JLab-Pisa group power counting scheme of the electroweak currents. For completeness we report
also the contributions at N4LO derived by our group. Abbreviations: 1b, one-body; OPE, one-pion exchange; CT, contact terms; TPE, two-pion
exchange; NR, nonrelativistic; RC, relativistic corrections; OPE-�, one-pion-exchange currents with an intermediate �-isobar excitation; and
sub, subleading. With the asterisk we indicate the terms that do not appear for the EMN interactions. The term with the superscript A are not
yet available for the NV interactions. The dagger indicates that the LECs appearing in these terms have not been determined yet. Note that we
explicitly show for each term the LECs that have been fitted on electroweak processes.

Oper. LO (Q−3) NLO (Q−2) N2LO (Q−1) N3LO (Q0) N4LO (Q1)

ρ(A) — 1b(NR) OPE — TPEA

CT†

j(A) 1b(NR) — 1b(RC) CT(dR) TPE
OPE-�∗ OPE OPE(sub)

ρ(V ) 1b(NR) — 1b(RC) OPE(RC) TPE
j(V ) — 1b(NR) OPE 1b(RC) TPE

OPE-�∗ OPE(dV
2 , dV

3 , dS
2 )

CT(dV
1 , dS

1 )

IV. ANALYSIS OF THE THEORETICAL UNCERTAINTIES

In this section we focus on the sources of uncertainties
and on how we dealt with them. The sources of uncertainties
that we consider are four: (i) the uncertainties on the LECs
appearing in the nuclear electroweak currents as they result
from the fitting procedure and on the single-nucleon axial
form factor, (ii) the error due to the truncation of the chiral
expansion of the current, (iii) the error due to the trunca-
tion of the chiral expansion of the interaction, and (iv) the
dependence on the nuclear interaction model. Clearly, also
the LECs fitted in the nuclear interaction have an impact on
the determination of the full uncertainties as well. However,
a comparison of the results obtained with different nuclear
interactions as in point (iv) can partially give an estimate of
this impact. We are going to consider point (iv) in Sec. V
where we will combine the results obtained in for the single
interactions. Note also that the four sources of uncertainty
are not necessarily independent. However, in this work we
treat them as if they were. Moreover, the power counting
used for organizing the current terms plays a crucial role in
the final determination of the uncertainty. While this cannot
be considered as a source of error itself, we computed the
uncertainties on the currents considering both available power
countings in order to give the most comprehensive picture of
the present theoretical situation.

In Table V we present the computed total capture rate for
the hyperfine state 1/2 for the various nuclear interactions
considered together with the error associated with the various
sources of uncertainty considering the Bochum and JLab-Pisa
group power counting, respectively. In the table we report the
results of the EMN considering the interaction at N3LO. Since
the N4LO currents are not fully determined, we performed our
analysis considering the currents only up to N3LO using the
value of dR fitted consistently at N3LO as well. We discuss in
detail in the following subsections all the various sources of
uncertainties. In Table V we present also the results (without
errors) for the capture rate in the hyperfine state 3/2. These
are consistent with the results of Ref. [15] once the extra
contribution of the partial waves J = 3 and J = 4 is removed
(≈0.75%).

A. Current LECs uncertainties

The axial nuclear charge and current operators are mul-
tiplied by the single-nucleon axial form factor gA(q2), with
q indicating the four-momentum transfer. The single-nucleon
axial form factor can be parametrized as

gA(q2) = gA
(
1 − 1

6 r2
Aq2

)
, (3.1)

where gA = 1.2723 [32] for the NV interactions and gA =
1.2754 [33] for the EMN interactions, and we adopted r2

A =
0.46(16) fm2, as suggested in Ref. [14]. Since q2 for the muon
capture on deuteron is quite large, the uncertainty on r2

A makes
a significant impact on the capture rate. At the same time,
it is important to study the impact of the uncertainty on the
LEC dR on the total capture rate. Such uncertainty is given
in Refs. [27] for the NV interactions and Appendix for EMN
interactions. The errors on r2

A and dR have been propagated
with standard error propagation techniques, i.e.,

σ 2
LECs =

(
∂�

∂r2
A

)2

σ 2(r2
A) +

(
∂�

∂dR

)2

σ 2(dR). (3.2)

The 68% confidence level (CL) results can be found in
Table V. The computed uncertainties are identical within the
showed digits for all the nuclear interactions considered. The
reason is that the values of the derivatives in Eq. (3.2) are con-
stant and almost independent of the interactions (∂�/∂r2

A =
−24 s−1 fm−2 and ∂�/∂dR = 0.66 s−1). The uncertainty we
obtain is slightly smaller respect to Ref. [15] (4.4 s−1). This
is due to the fact the single-nucleon axial form factor is asso-
ciated to each term in our axial current and charge operators,
while in Ref. [15] it appears only at LO. This slightly reduce
the absolute value of the derivative respect to r2

A in Eq. (3.2)
and therefore the error associated with it. For example, re-
moving the axial form factor from the higher-order terms in
the current using the NVIa interaction, we obtain an error of
4.3 s−1 consistent with Ref. [15].

The impact of the dR error on σLECs is of the order of 1%
and therefore completely negligible. This is a consequence of
the small contribution that the contact term of the axial current
at N3LO gives to the total muon capture. We also tested the
impact of the errors on the LECs appearing at N4LO in the
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TABLE V. Total muon capture rate on deuteron for all the interactions considered in this work. With �1/2(3/2)(J � 4) we indicate the
computed value using the currents and the interactions at N3LO with partial waves up to J = 4 in the singlet (triplet) hyperfine state. σ

C(I )
k=3(4)

is the standard deviation of the truncation error computed using the Bayesian framework of Ref. [17] for the current (interaction). For the
truncation error associated to the current we report the values obtained using both the Bochum group (BPC) and the JLab-Pisa group power
counting (JPPC). The values between parenthesis in the fifth, sixth, and seventh columns are the ones obtained using the prescription of
Ref. [31]. Finally in the eighth column we report the error computed propagating the uncertainties associated with the LECs appearing in the
currents. All the uncertainties are reported at 68% confidence level (CL). The star on the truncation error indicates that the emulator failed the
statistic tests for some specific cases (see text for more details).

Name Pot. Curr. �1/2 σC
k=3[BPPC] σC

k=3[JPPC] σ I
k=4 σLECs �3/2

NVIa N3LO N3LO 393.5 5.1∗(3.0) 1.1(0.7) n.a. 3.9 13.3
NVIb N3LO N3LO 393.7 5.1(3.0) 1.1(0.7) n.a. 3.9 13.5
NVIIa N3LO N3LO 392.5 5.1(3.0) 1.1∗(0.7) n.a. 3.9 13.3
NVIIb N3LO N3LO 392.6 5.1(3.0) 1.1(0.7) n.a. 3.9 13.3
EMN450 N3LO N3LO 396.0 6.4(3.1) 2.2(0.7) 0.3∗(0.2) 3.9 13.7
EMN500 N3LO N3LO 397.3 6.0(3.1) 2.2∗(0.7) 0.3∗(0.2) 3.9 13.8
EMN550 N3LO N3LO 397.0 6.2(3.1) 2.1∗(0.7) 0.4∗(0.2) 3.9 13.8

vector part of the current (see Table IV) obtaining results
similar to dR.

B. Bayesian analysis of truncation error

The analysis of the uncertainties due to the truncation of
the chiral expansion for currents and interactions is performed
using the gsum package2 within the formalism introduced by
Melendez et al. in Ref. [17]. We first review the fundamental
points of the Bayesian analysis needed to present our specific
case.

1. Brief introduction

We introduce here the main concepts used in our Bayesian
analysis of the truncation error in χEFT. We will refer to
Ref. [17] for all the remaining theoretical and technical details
behind the analysis. Note that we assume that the chiral ex-
pansions of the currents and the interactions are independent.
Therefore, we are going to study them separately, keeping fix
the interaction order at N3LO when we study the truncation
error of the current expansion. In order to study the truncation
error of the chiral interaction expansion, we keep the order of
the chiral current fixed at N3LO when the interaction order
is N2LO and N3LO and at N2LO when the interaction is
used at LO and NLO. This choice is made because dR is not
defined for the interaction at LO and NLO. We are going to
indicate with a superscript C(I) the specific quantities that are
relative to the analysis of the truncation error of the current
(interaction). The equation where these indexes are missing
are valid for both the cases.

The observable we consider for this analysis is the differen-
tial radiative capture �(E ′

1) defined in Eq. (2.7) which depends
on the kinetic energy of the neutron E ′

1. This is directly
connected with the neutron momentum p1 =

√
E ′

1
2 + 2E ′

1mn ,
which we are using as independent variable (see Ref. [17]).

2Some of the libraries where slightly modified for addressing the p
dependence when computing the truncation error.

For notation clarity in the next two subsections we are going
to write the quantity � as function of the momentum of the
neutron p1 only.

The kth order EFT prediction can be written as

�k (p1) = �ref (p1)
k∑

n=0

cn(p1)Qn(p1), (3.3)

where �ref (p1) is a dimension-full overall scale that is selected
such that the dimensionless coefficients cn are of order 1. As
in Ref. [17] we take

Q(p1) = 1

b

p8
1 + m8

π

p7
1 + m7

π

, (3.4)

with mπ the mass of the pion and b the breakdown scale of
the theory. In this work we follow Refs. [17,34] taking b =
600 MeV, which is a reasonable value between the cutoffs of
the interactions and the formal breaking scale energy of chiral
effective field theory (i.e., 1 GeV). The EFT truncation error
is then defined as

δ�k (p1) = �ref (p1)
∞∑

n=k+1

cn(p1)Qn(p1). (3.5)

Our goal is then to determine this truncation error and the
uncertainty associated with it.

The idea of Ref. [17] is to build a stochastic representation
of the cn(p1) based on a Gaussian process (GP) that emulates
our order-by-order chiral calculation. The GP is then exploited
to emulate the missing cn that appears in the EFT truncation
error. The basic assumption is that cn(p1) are identical inde-
pendent draws of an underling GP, i.e.,

cn(p1)|μ, c̄2, �
iid≈ GP[

μ, c̄2r(p1, p1; �)
]
, (3.6)

where this is specified by the mean μ, the variance c̄2, and the
correlation length �. The correlation function r(p1, p1; �) is
assumed to have an exponential-squared form (see Ref. [17]).
The GP hyperparameters μ, c̄2, and � are then learned from
the training data set which contains order-by-order EFT
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calculations. The truncation error distribution is then given
by [17]

δ�k (p1)|μ, c̄2, �,b ≈ GP[mk (p1), c̄2Rk (p1, p1; �)], (3.7)

where

mk (p1) = �ref (p1)
Q(p1)k+1

1 − Q(p1)
μ, (3.8)

and

Rk (p1, p1; �) = �ref (p1)�ref (p1)

× [Q(p1)Q(p1)]k+1

1 − Q(p1)Q(p1)
r(p1, p1; �). (3.9)

Note that in Eq. (3.7) we assume that the truncation error
distribution depends only on b and not on the choice of
the functional form of Q(p1) which we assume fixed. The
distribution for the full observable will have then mean and
covariance respectively given by

�th(p1) = �k (p1) + mk (p1) (3.10)

and

�th(p1, p1, �) = c̄2Rk (p1, p1; �). (3.11)

Finally, the total capture rate is the integral of �(p1) on p1

(this can be directly derived from Eq. (2.7) after changing
variables). For all practical purposes this integral can be writ-
ten as a discrete sum over M points, i.e.,

�th =
∑

i=1,M

ωi �th(p1(i)), (3.12)

where ωi are the specific weights of the chosen integra-
tion method. From Eq. (3.12) it follows immediately that
�th = �k + δ�k , with �k (δ�k ) the integration over p1 of
�k (p1)(δ�k (p1)). What we want is then to find the distribution
of

δ�k =
∑

i=1,M

ωi δ�k (p1(i)). (3.13)

Using the properties of Gaussian random variables we find

δ�k|μ, c̄2, �,b ≈ N [
Mk (μ), σ 2

k (c̄2, �,b)
]
, (3.14)

where N indicates the normal distribution and

Mk (μ) =
∑

i=1,M

ωi mk (p1(i)) (3.15)

and

σ 2
k (c̄2, �,b) = c̄2

∑
i, j=1,M

ωiω j Rk (p1(i), p1( j); �). (3.16)

Note that Eq. (3.14) is no longer a Gaussian process since we
now have a single random variable. With this final equation we
can discuss the specific details of our analysis.

2. Currents truncation errors

For the analysis of the truncation error of the chiral expan-
sion of the currents we consider the factorization

�C
k (p1) = �C

ref (p1)
∑

n

cC
n (p1)Qn(p1), (3.17)

where Qn(p1) has been defined in Eq. (3.4), n = {0, 2, 3} for
the Bochum group power counting and n = {0, 1, 2, 3} for the
JLab-Pisa one, and we select the reference scale as

�C
ref (p1) = �C

LO(p1)Q−3(p1)

10
. (3.18)

In such a way we reconstruct the correct power of Q(p1),
such that the calculation does not suffer of inversion problems,
and the cC

n (p1) are naturally sized (this is the reason for the
factor 1/10). We remove from the analysis the coefficient
cC

0 (p1) because the choice of the reference value makes it not
significant for training the emulator.

We decide to limit our analysis up to pmax
1 = 195 MeV.

This permits us to verify the hypothesis that the cC
n (p1) are

distributed as in Eq. (3.7) using the diagnostics presented in
Ref. [17]. Beyond pmax

1 the coefficients cC
n (p1) become very

large and the hypothesis of Eq. (3.7) is no onger statistically
valid. The most reasonable explanation is the fact that the
scale Q in Eq. (3.4) is not the proper one for this process at
such large p1. Note that the contribution to the total capture
rate of the tail beyond pmax

1 is � 2 s−1. Therefore, the impact
on the error computation is minimal.

The data set generated using the Bochum group power
counting consists of 195 data points on a grid that starts from
zero and has a step of 1 MeV. For training the emulator we
use 4(5) data points distant 50(40) MeV for the NV(EMN)
interactions. We used more points in the EMN case because
of the larger oscillations of the coefficients as function of p1.
As validation set we used 13 data points distant 15 MeV one
from each other. More data points in the validation data set
give rise to ill-defined covariance matrices. Finally, we use
10−4 as the value for the variance of the white noise needed to
stabilize the matrix inversion (i.e., the nugget). Smaller values
generate instabilities in the inversion of the covariance matri-
ces, while values larger than 10−3 generate too much noise in
the final results.

In Fig. 1(a) we report the value of the coefficients cC
n (p1)

together with the GP emulator results and their 2σ interval for
the EMN550 interaction using the Bochum power counting.
From a first inspection, the GP emulator is able to nicely
reproduce the χEFT calculation. To asses quantitatively the
quality of the emulation we performed the Mahalanobis dis-
tance (D2

MD) test presented in Fig. 1(b) and the pivoted
Cholesky decomposition (DPC) test presented in Fig. 1(c). The
Mahalanobis distance test is a generalization of the squared
residuals in the case of correlated data points (see Ref. [17]
for more details). The comparison with the reference χ2

distribution shows a compatibility of the emulation with the
data points within the 95% CL (whiskers) for both cC

2 and
cC

3 . This is evident also at the level of the more informa-
tive Cholesky decomposition (see Ref. [17]). The validation
points are distributed almost uniformly within 1σ , with only
a few points close to the 2σ line. Similar results on the two
diagnostics are obtained for all the other interactions, except
for the NVIa model. In this case, the casual cancellation of
the current contributions at N3LO give rise to coefficients cC

3
practically zero. Therefore, almost no stochastic fluctuations
are generated in the emulator. This gives rise to an anomalous
coincidence among the emulator and the simulator results,
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FIG. 1. The Gaussian process modeling of the current chiral expansion coefficients and its diagnostics for the EMN550 interaction using
the Bochum power counting. (a) The simulators (solid lines, i.e., our calculation) along with the corresponding Gaussian process emulators
(dashed lines) and their 2σ intervals (bands). The data used for training are denoted by dots. (b) The Mahalanobis distances compared to
the mean (interior line), 50% (box), and 95% (whiskers) credible intervals of the reference distribution. (c) The pivoted Cholesky diagnostics
versus the index along with 95% credible intervals (gray lines). (d) The credible interval diagnostics for the truncation error bands. The 1(2)σ
is represented with the dark (light) gray band. The steepness of the orange line indicates that the N2LO and the N3LO are very close to each
other (see text for more details).

making the emulator fail the Mahalanobis and the pivoted
Cholesky test for the NVIa interaction (i.e., the simulator
seems to work statistically too good). The final error is in any
case in reasonable agreement with the others and we report in
Table VI with a star.

In the credible interval diagnostic showed in Fig. 1(d)
we study if the truncation error computed at each order is
compatible with the correction at the next order within a
certain CL. The CL bands are constructed by sampling a large
number of emulators (1000) from the underlying process. The
credible intervals are then plotted against the percentage of
validation points found within the interval, i.e., if the emula-
tor contains only a small amount of the validation points is
overconfident (in the figure represented as horizontal lines)
and in the other case is underconfident (vertical lines). The
orange line in Fig. 1(d) is the credible interval for ��C

2 (p1) =
�C

2 (p1) − �C
3 (p1) compared with the reference distribution

of ��C
2 (p1), which is also the only one we can compute

performing this analysis. The credible interval for ��C
2 (p1)

shows us that the emulation is in general underconfident. That
is understandable since the differences among the simulated
spectra at N2LO and N3LO is minimal (see Fig. 3). The

TABLE VI. Absolute and relative contributions to the estimated
total theoretical error from the various uncertainty sources for both
the Bochum (BPC) and JLab-Pisa (JPPC) power counting.

Uncertainty source BPC JPPC

r2
A 5.6(30.8%) 5.4(75.2%)

Other current LECs Negligible
χEFT truncation–currents 8.1(65.2%) 2.4(14.6%)
χEFT truncation–interactions 0.5(0.3%) 0.5(0.7%)
Model dependence 1.9(3.7%) 1.9(9.5%)

results for the confidence interval diagnostics of the other
interactions are practically identical.

A similar analysis has been performed considering the
data generated using the JLab-Pisa power counting for the
NV(EMN) interaction up to 195(190) MeV with 1 MeV step.
For training the emulator we use 5 data points distant 35(40)
MeV. As validation set we used 13 data points distant 15 MeV
one from each other. The nugget we use is 10−4(2 × 10−4).

The results for the diagnostic of the EMN550 interaction
are shown in Fig. 2. Again the emulator seems able to
reproduce nicely the coefficients cC

n (p1). However, the
emulator starts to have difficulties for p1 > 150 MeV, since
the coefficients cn(p1) become very stiff, especially cC

3
[see Fig. 2(a)]. Consequently, the Mahalanobis distance
test is slightly failed by the emulator for the coefficient cC

3
[Fig. 2(b)]. This is confirmed also by the pivoted Cholesky
test where several blue points are out of the 2σ range
[Fig. 2(c)]. Note also the statistically anomalous coincidence
of the emulator with the simulator for the coefficients
cC

1 . The analysis of the EMN500 interaction give almost
identical results, while for the EMN450 the emulator pass all
the tests including the cC

3 coefficient. For the
NV interaction the emulator pass all the tests
again except in the case of the cC

3 coefficient for
the NVIIa interaction that present rather strong oscillation
that the emulator is not able to address completely.

In Fig. 2(d) we show the credible interval for ��C
1 (p1) =

�C
1 (p1) − �C

2 (p1) (green) and ��C
2 (p1) = �C

2 (p1) − �C
3 (p1)

(orange) compared with the reference distribution. The verti-
cal behavior for both cases indicate that the emulator is under-
confident, i.e., the error estimated is statistically larger than
expected. This indicate also that the error generated at given
order contain the result at next order. Even if the emulator is
not able to describe all the features of the coefficients cC

n , the
truncation error estimate is reliable even if rather conservative.
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FIG. 2. Same as Fig. 1 for the EMN550 interaction using the JLab-Pisa power counting.

The diagnostic gave us an overall good result on the quality
of the GP emulation. We computed then the truncation error
using Eq. (3.7). The order-by-order spectra obtained from the
EMN550 interaction with 95% CL truncation error for both
the Bochum and JLab-Pisa power counting are shown in Fig. 3
and Fig. 4, respectively. Finally, we compute the truncation
error on the total capture rate as in Eq. (3.16) for each interac-
tion. The 68% CL results are reported in Table V. Note that the
integration has been performed only up to pmax

1 = 195 MeV.
In order to estimate the error arising from the remaining part
of the spectra we used the Epelbaum et al. prescription (EP)
[31] as considered in Ref. [16]. By doing so, we have found
that the contribution to the total truncation error of this part of
the spectra is completely negligible. Similar results have been
obtained for all the other interactions.

FIG. 3. The differential capture rate as function of the neutron
energy E ′

1 computed with the EMN550 interaction fixed at N3LO for
various order of the current N2LO (orange) and N3LO (green) using
the Bochum power counting. The bands represent the 2σ truncation
errors at each order.

In Table V we report between parentheses also the errors
computed on the total capture rate using the EP exactly as in
Ref. [16]. To give a more statistical insight, we assume that the
expected decay rate is uniformly distributed within the limits
settled by the extreme values and so the 68% CL is given by
the value of the truncation error divided by

√
3. As it can be

seen from the table, in general the error estimated with the EP
is smaller than the one obtained using the Bayesian analysis.

3. Interaction truncation error

The other source of uncertainties we treat with the
Bayesian analysis is the one arising from the truncation of
the nuclear interaction chiral expansion. Unfortunately, we
do not have all the orders of the NV interactions. Therefore,
we limit the analysis only to the EMN interaction family.

FIG. 4. The differential capture rate as function of the neutron
energy E ′

1 computed with the EMN550 interaction fixed at N3LO for
various order of the current NLO(orange), N2LO (green), and N3LO
(blue) using the JLab-Pisa power counting. The bands represent the
2σ truncation errors at each order.
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FIG. 5. Same as Fig. 1 but for the truncation errors of the interaction chiral expansion. The results reported in the figure are obtained using
the EMN550 interaction fixing the order of the chiral current at N2LO for the interaction at NLO, and at N3LO in the remaining cases.

The procedure that we use is identical to the one used in the
analysis of the current truncation errors. The main difference
is in the factorization we use, chosen to be

�I
k (p1) = �I

ref (p1)
∑

n=0,2,3,4

cI
n(p1)Qn(p1), (3.19)

where Qn(p1) has been defined in Eq. (3.4) and �I
ref (p1) =

�I
LO(p1). This choice of the reference value makes the co-

efficient cI
0 useless for training the emulator since it results

identical to one. Therefore we exclude it in our analysis. A
similar choice was done in Refs. [17,34].

To obtain a reasonable result for the GP emulator we re-
strict the momentum range of the analysis to 180 MeV. For
training the emulator we use 8 points distant 25 MeV and we
take 21 test points 8 MeV apart from each other. The nugget
we used in this case is 2 × 10−4. Note that we need a higher
density of training points compared to the currents because of
the large oscillations of the coefficients cI

n.
In Figs. 5 we present the results of the emulation together

with the diagnostic performed to verify the quality of the em-
ulation trained on the EMN550 interaction model results. As
it can be observed from the figure, the Mahalanobis distance
[Fig. 5(a)] and the coefficient cI

3 show a slightly anomalous
coincidence among the simulator and the emulator, confirmed
by a high density of green points close to zero in the Cholesky
decomposition [Fig. 5(b)]. A similar behavior is present for
the coefficient cI

4 in the case of the EMN500 interaction. For
the EMN450 the emulator fails the Mahalanobis distance test
for the cI

4 as well. In this case the reason is the large oscilla-
tion of this coefficient at large momentum p1 that makes the
emulator very hard to train.

In order to check if we could improve the emulation, we
performed several other tests changing the parameters of the
analyses without finding any significant improvement on the
statistical tests. Despite this, the truncation errors obtained
with these other analysis are numerically identical to the one
obtained using the parameters shown in the text.

On the other hand, the credible interval diagnostic test
(Fig. 5) for all the EMN interactions a compatibility of more

than 95% between the truncation error at given order and
the prediction at the next one up to N3LO over all the
empirical coverage. This indicates that at each order the es-
timated error contains the next order correction. Therefore,
despite the emulator is not able to pass the statistical tests
for each cI

n, the estimate of the truncation error seems to
be reliable. We present in Fig. 6 the differential capture rate
spectrum computed order by order with the relative truncation
error for the EMN550 interaction. The truncation error on the
total capture rate obtained using Eq. (3.16) has been reported
in Table V. Once again we have verified, using the EP, that the
error arising from the tail of the spectra not analyzed in the
Bayesian procedure is negligible. The error obtained applying

FIG. 6. The differential capture rate as function of the neutron
energy E ′

1 computed with the EMN550 interaction at NLO (orange),
N2LO (green), and N3LO (blue). The bands represent the 2σ trunca-
tion errors at each order. Note that the chiral order of the current used
in this analysis is N2LO when the interaction is at NLO and N3LO
in the rest of the cases.
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the EP over all the spectrum can be found in Table V between
parentheses.

4. Discussion

Before concluding this section some remarks are in order.

(i) The power counting of the currents has a major impact
on the determination of the truncation errors. As can
be seen from our results the Bochum group power
counting gives larger error bands than the JLab-Pisa.
This has been seen already in Ref. [35] for the elec-
tromagnetic terms of the current.

(ii) Even if the results for all the interactions are compat-
ible within the error bars, the capture rates obtained
using the local interactions are systematically lower
than the ones obtained using the nonlocal interactions.
This is partially due to the different sign of the contact
terms in the axial current at N3LO.

(iii) In this work we chose to study separately the trun-
cation error associated to the interaction and the
currents. Clearly this is not completely correct be-
cause of precise relations between the Hamiltonian
and the currents such as current conservation. Even if
such relations exist, they are not completely fulfilled
order by order by the available currents yet. We did
some attempt to compute the truncation errors for
the Hamiltonian and the currents together. However,
we did not find any benefit for the analysis, obtain-
ing on the other side an error typically smaller than
the current truncation error reported here. Therefore
we decided to consider here the most conservative
approach.

V. FINAL RESULTS AND DISCUSSION

We consider now the last source of uncertainty, i.e., the
one arising from model dependence. Compared with previous
studies, where essentially a reference value was obtained as
the mean over all the interactions considered and the error
was estimated as the difference between the extreme cases, we
follow a slightly different approach as proposed in Ref. [36]
and often used in lattice QCD for model averaging.

We take for each of the model as our best estimate of the
total capture rate the one computed, i.e., we assume

�i(∞) = �i(comp), (4.1)

where i indicate the model used in the calculation. We con-
sider the worst scenario in which all the three sources of error
are fully correlated and so the total error is given by

σi = σC
i,k=3 + σ I

i,k=4 + σi,LECs. (4.2)

Note that as σC
i,k=3 we consider only the one obtained using

the Bochum power counting that represent the worst-case sce-
nario. For the NV interaction family we take σ I

k=4 = 0.4 s−1

as in the worst case of the EMN interactions.
Following Ref. [36] the average of the models is given by

〈�〉 =
∑

i

�i pr(i), (4.3)

FIG. 7. The recommended differential capture rate as function
of the kinetic neutron energy E ′

1. The green, blue, and red bands
represent respectively the 99%, 95%, and 68% CL. Note that the
difference among the bands can be appreciated only at the peak of
the spectra.

while the variance can be written as

σ 2
� =

∑
i

σ 2
i pr(i) + σ 2

�,syst, (4.4)

with the systematic error given by the model dependence
obtained as

σ 2
�,syst =

∑
i

�2
i pr(i) −

[∑
i

�i pr(i)

]2

. (4.5)

In these equations, with “pr” we have indicated the probabil-
ity of a certain model. Since there is no reason to privilege
local or nonlocal interactions, and no reason to privilege
any interaction within a given class, we assign the following
probabilities:

pr(i) =
{

1
8 , if i local
1
6 , if i nonlocal

. (4.6)

Using the Bochum group power counting we obtain

�th(BPC) = (395 ± 10) s−1 (68%CL), (4.7)

while using the JLab-Pisa power counting

�th(JPPC) = (395 ± 6) s−1 (68%CL). (4.8)

As recommended value we select the more conservative result
obtained using the Bochum group power counting.

An identical analysis have been performed on the differ-
ential capture rate for each value of E ′

1. Our recommended
spectra obtained using the Bochum group power counting is
shown in Fig. 7 with the bands at 68%, 95%, and 99% CLs.
A table with the numerical values of these final spectra is
provided as supplementary material [37].
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FIG. 8. Comparison of the theoretical results obtained in our
work using the Bochum (BPC) and JLab-Pisa (JPPC) power counting
with the χEFT results of Refs. [10,11,15]. The errors in the previous
works have been assumed to be the limit of a uniform distribution and
then divided by

√
3 to obtain the 68% CL. Note that only in Ref. [15]

and in the present work various sources of uncertainty besides the
model dependence were considered. The red dashed line represent
the arithmetic mean of all the theoretical results.

The comparison of our results with those present in the
literature still obtained within χEFT can be seen in Fig. 8.3

For the calculations in Refs. [10,15] we have assumed that
the errors represent the extreme of a uniform distribution. For
Ref. [11], we have considered as limit of the distribution the
minimal and the maximal reported results. Therefore, in Fig. 8
we report the error divided for

√
3, in order to obtain the 68%

CL. Note also that only in our work and in Ref. [15] the error
includes the uncertainty on r2

A.
The capture rates obtained in this work using the local

interactions are systematically smaller than the ones ob-
tained using the nonlocal ones. Therefore, the overall result is
slightly smaller compared with the world literature in which
only nonlocal chiral interactions have been used. On the other
hand, all the theoretical χEFT calculations are consistent
within 1σ . We do not proceed in comparing our results with
the available experimental data of Refs. [1–4] because of their
large uncertainties.

In order to appreciate the importance of the various uncer-
tainty sources in the total error budget, we list in Table VI
their absolute and relative weight in percentage for the two
considered power counting. In the JLab-Pisa power count-
ing the main source of uncertainty results r2

A while in the
case of the Bochum power counting the current truncation
error become the dominant source. The model dependence
slightly increases the total error but it is smaller than the error
generated by the current truncation error and r2

A. Note that
the truncation error obtained here using the Bochum power
counting is similar to truncation error estimated in Ref. [15],

3For the Marcucci et al. [10] we report the result in the Erratum.

FIG. 9. Capture rate as function of the value of cD for the NVIa
interaction. The green band represent the error on �3/2 due to the
truncation error on the chiral expansion of the current and the in-
teraction. The red dashed lines represent the present error bar on
cD. The blue horizontal line is the error band corresponding to an
hypothetical result of MuSun �3/2 = 393.5 s−1 with a 1.5% total
error.

using the prescription of Ref. [38], once properly rescaled for
the different value of b used in our work.

We want to underline that reducing the uncertainty on r2
A

is crucial for testing pure χEFT effects on the muon capture
on deuteron at a few-percentages level. In this sense recent
lattice QCD results on the computation of the nucleon axial
form factors are extremely encouraging (see Ref. [39] for a
review). However, while experimental efforts are on going to
reduce the experimental error, improvements on the theoreti-
cal side for reducing the truncation errors are crucial to extract
physical parameters from this observable.

VI. IMPACT ON THE MUSUN EXPERIMENT

In this section we present a minimal study of the impact of
our results in the analysis of the future experimental results
of MuSun. For our analysis we assume that the final error
of the experiment is the expected precision of ≈1.5% [5].
Since this is just a preliminary analysis we consider only
the nuclear interaction NVIa and the error associated to this
interaction reported in the first line of Table V. For this anal-
ysis we assume that the MuSun experiment finds a central
value for the total capture rate of 393.5 s−1 and an error of
5.9 s−1 (1.5%).

First, we study the dependence of the total capture rate as
function of the value of the LEC cD from which dR depends
linearly.

As can be seen in Fig. 9 the dependence of � on cD is linear
but with a very small slope. Indeed, just considering only the
chiral truncation errors (green band), the experimental value
with an uncertainty of ≈1.5% (blue horizontal band) would
not have any impact on the improvement of the present cD
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FIG. 10. Capture rate as function of the value of r2
A for the NVIa

interaction. The green band represent the error on � due to the trunca-
tion error on the chiral expansion of the current and the interaction.
The red dashed lines represent the 68% CL on � considering the
error on r2

A as reported in Ref. [14]. The blue dashed lines represent
the predicted 68% CL on � with an error of 10% on r2

A.

constraints (red vertical dashed lines). Indeed a 1.5% preci-
sion on the experimental result corresponds to a very large set
of values of cD, much larger than the present constrains.

We can perform a similar analysis varying r2
A. In this case

for simplicity we keep cD fixed. In Fig. 10 we plot the capture
rate as function of r2

A for the NVIa interaction. The red dashed
lines represents the present uncertainty on r2

A. The blue band
again is the hypothetical result of MuSun with a ≈1.5% error.
As can be seen, the overlap region of the blue and green
bands spans a region of values of r2

A much larger than the
present limits on it. This indicates that considering our most
conservative estimate on the theoretical errors, the MuSun
experiment with the present precision goal cannot be a useful
source for having an independent estimate of r2

A.
Although the present theoretical error bands does not allow,

with the expected precision of the MuSun experiment, to ob-
tain new determination of fundamental constants, the MuSun
experiment is still a fundamental test for the parameters of
chiral effective field theory. Indeed, MuSun will be the first
precise measurement of the rate for a weak process in the
two-nucleon system, which can be compared with theoreti-
cal predictions accompanied by fully quantified uncertainties.
Any strong deviation of the experimental results or inconsis-
tency with the present literature would imply the necessity
of a profound revision for the chiral electroweak currents.
Furthermore, we stress that the MuSun experiment remains
one of the best options to access with good accuracy the LEC

TABLE VII. Values for the LECs c1,3,4, cD, and cE at the chiral
orders N2LO, N3LO, and N4LO. The cD and cE LECs reproduce
the A = 3 binding energies and the GT matrix element in tritium
β-decay, as explained in the text.

 c1 c3 c4 cD cE

N2LO 450 −0.74 −3.61 2.44 −0.13(20) −0.09(4)
N2LO 500 −0.74 −3.61 2.44 −0.86(19) −0.32(4)
N2LO 550 −0.74 −3.61 2.44 −1.93(20) −0.73(4)

N3LO 450 −1.07 −5.32 3.56 −0.42(20) 0.06(5)
N3LO 500 −1.07 −5.32 3.56 −2.73(23) −1.03(5)
N3LO 550 −1.07 −5.32 3.56 −4.35(24) −2.16(5)

N4LO 450 −1.10 −5.54 4.17 0.17(20) 0.04(5)
N4LO 500 −1.10 −5.54 4.17 −3.02(25) −1.21(4)
N4LO 550 −1.10 −5.54 4.17 −4.48(24) −2.35(4)

L1A present (see, for example, the work of Chen et al. [40]),
within pionless EFT, in several two-nucleon processes, among
which, besides muon capture, also the proton-proton fusion
reaction, of paramount importance in astrophysics.
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APPENDIX: FIT OF THE cD LOW ENERGY CONSTANT
FOR THE EMN INTERACTIONS

We updated the fit of the values of the LECs cD and
cE using the updated value for gA = 1.2754 [33] and the
tritium β-decay Gamow-Teller matrix element GT =
0.9501 ± 0.0024 as in Fit-3 of Ref. [41] and also Ref. [42].
Note that we use as definition for dR

dR = − MN

4χgA
cD + 1

3
MN (c3 + 2c4) + 1

6
, (A1)

where MN is the nucleon mass, gA the nucleon axial coupling,
and c3, c4 are LECs with the values listed in the table. We refit-
ted the two LECs using the procedure of Ref. [10], i.e., fixing
the LECs cD and cE to reproduce the A = 3 binding energies
and the GT matrix element of tritium β-decay. In Table VII
we present the results of the fit together with the values of the
LECs c1,3,4 used in the currents and the interactions.
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[8] J. Golak, R. Skibiński, H. Witała, K. Topolnicki, A. E.
Elmeshneb, H. Kamada, A. Nogga, and L. E. Marcucci, Phys.
Rev. C 90, 024001 (2014); [90, 029904(E) (2014)].

[9] S. Ando, T.-S. Park, K. Kubodera, and F. Myhrer, Phys. Lett. B
533, 25 (2002).

[10] L. E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M.
Viviani, Phys. Rev. Lett. 108, 052502 (2012); [121, 049901
(2018)].

[11] J. Adam, M. Tater, E. Truhlik, E. Epelbaum, R. Machleidt, and
P. Ricci, Phys. Lett. B 709, 93 (2012).

[12] L. E. Marcucci, J. Dohet-Eraly, L. Girlanda, A. Gnech, A.
Kievsky, and M. Viviani, Front. Phys. 8, 69 (2020).

[13] B. Acharya, A. Ekström, and L. Platter, Phys. Rev. C 98,
065506 (2018).

[14] R. J. Hill, P. Kammel, W. J. Marciano, and A. Sirlin, Rep. Prog.
Phys. 81, 096301 (2018).

[15] J. Bonilla, B. Acharya, and L. Platter, Phys. Rev. C 107, 065502
(2023).

[16] L. Ceccarelli, A. Gnech, L. E. Marcucci, M. Piarulli, and M.
Viviani, Front. Phys. 10, 1049919 (2023).

[17] J. A. Melendez, R. J. Furnstahl, D. R. Phillips, M. T. Pratola,
and S. Wesolowski, Phys. Rev. C 100, 044001 (2019).

[18] “Buqeye collaboration” https://buqeye.github.io/publications/.
[19] V. A. Andreev, R. M. Carey, V. A. Ganzha, A. Gardestig, T. P.

Gorringe, F. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel,
B. Kiburg, S. Knaack, P. Kravtsov, A. Krivshich, K. Kubodera,
B. Lauss, K. R. Lynch, E. Maev, O. Maev, F. Mulhauser,
F. Myhrer, C. Petitjean, G. E. Petrov, R. Prieels, G. N.
Schapkin, G. G. Semenchuk, M. A. Soroka, V. Tishchenko,
A. A. Vasilyev, A. Vorobyov, M. Vznuzdaev, and P. Winter,
arXiv:1004.1754.

[20] W. Kohn, Phys. Rev. 74, 1763 (1948).

[21] J. Walecka, Theoretical Nuclear and Subnuclear Physics
(Imperial College Press, London, 1995).

[22] J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020).
[23] M. Piarulli, L. Girlanda, R. Schiavilla, R. N. Pérez, J. E. Amaro,

and E. R. Arriola, Phys. Rev. C 91, 024003 (2015).
[24] M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato,

L. E. Marcucci, S. C. Pieper, M. Viviani, and R. B. Wiringa,
Phys. Rev. C 94, 054007 (2016).

[25] D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96,
024004 (2017).

[26] A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, and M.
Viviani, Phys. Rev. C 93, 015501 (2016).

[27] A. Baroni, R. Schiavilla, L. E. Marcucci, L. Girlanda, A.
Kievsky, A. Lovato, S. Pastore, M. Piarulli, S. C. Pieper, M.
Viviani, and R. B. Wiringa, Phys. Rev. C 98, 044003 (2018).

[28] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, and R. B.
Wiringa, Phys. Rev. C 80, 034004 (2009).

[29] M. Piarulli, L. Girlanda, L. E. Marcucci, S. Pastore, R.
Schiavilla, and M. Viviani, Phys. Rev. C 87, 014006 (2013).

[30] H. Krebs, Eur. Phys. J. A 56, 234 (2020).
[31] E. Epelbaum, H. Krebs, and U.-G. Meissner, Eur. Phys. J. A 51,

53 (2015).
[32] C. Patrignani, Chin. Phys. C 40, 100001 (2016).
[33] P. D. Group, P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, D.

A. Dwyer, D. E. Groom, C.-J. Lin, K. S. Lugovsky, E. Pianori
et al., Progr. Theor. Exp. Phys. 2020, 083C01 (2020).

[34] B. Acharya and S. Bacca, Phys. Lett. B 827, 137011 (2022).
[35] J. D. Martin, S. J. Novario, D. Lonardoni, J. Carlson, S.

Gandolfi, and I. Tews, Phys. Rev. C 108, L031304 (2023).
[36] W. I. Jay and E. T. Neil, Phys. Rev. D 103, 114502 (2021).
[37] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevC.109.035502 for the differential muon cap-
ture rate on deuteron.

[38] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015).

[39] A. S. Meyer, A. Walker-Loud, and C. Wilkinson, Annu. Rev.
Nucl. Part. Sci. 72, 205 (2022).

[40] J.-W. Chen, T. Inoue, X. Ji, and Y. Li, Phys. Rev. C 72,
061001(R) (2005).

[41] B. Acharya, L. E. Marcucci, and L. Platter, J. Phys. G: Nucl.
Part. Phys. 50, 095102 (2023).

[42] A. Baroni, L. Girlanda, A. Kievsky, L. E. Marcucci, R.
Schiavilla, and M. Viviani, Phys. Rev. C 94, 024003
(2016).

035502-13

https://doi.org/10.1016/0375-9474(86)90253-8
https://doi.org/10.21468/SciPostPhysProc.5.018
https://doi.org/10.1142/S0217751X12300062
https://doi.org/10.1103/PhysRevC.83.014002
https://doi.org/10.1103/PhysRevC.90.024001
https://doi.org/10.1103/PhysRevC.90.029904
https://doi.org/10.1016/S0370-2693(02)01619-2
https://doi.org/10.1103/PhysRevLett.108.052502
https://doi.org/10.1103/PhysRevLett.121.049901
https://doi.org/10.1016/j.physletb.2012.01.065
https://doi.org/10.3389/fphy.2020.00069
https://doi.org/10.1103/PhysRevC.98.065506
https://doi.org/10.1088/1361-6633/aac190
https://doi.org/10.1103/PhysRevC.107.065502
https://doi.org/10.3389/fphy.2022.1049919
https://doi.org/10.1103/PhysRevC.100.044001
https://buqeye.github.io/publications/
https://arxiv.org/abs/1004.1754
https://doi.org/10.1103/PhysRev.74.1763
https://doi.org/10.1103/PhysRevC.102.045501
https://doi.org/10.1103/PhysRevC.91.024003
https://doi.org/10.1103/PhysRevC.94.054007
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1103/PhysRevC.93.015501
https://doi.org/10.1103/PhysRevC.98.044003
https://doi.org/10.1103/PhysRevC.80.034004
https://doi.org/10.1103/PhysRevC.87.014006
https://doi.org/10.1140/epja/s10050-020-00230-9
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/j.physletb.2022.137011
https://doi.org/10.1103/PhysRevC.108.L031304
https://doi.org/10.1103/PhysRevD.103.114502
http://link.aps.org/supplemental/10.1103/PhysRevC.109.035502
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1146/annurev-nucl-010622-120608
https://doi.org/10.1103/PhysRevC.72.061001
https://doi.org/10.1088/1361-6471/ace3e2
https://doi.org/10.1103/PhysRevC.94.024003

