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Ultrarelativistic heavy-ion collisions will first realize many nucleon-nucleon scatterings, happening instanta-
neously and therefore necessarily in parallel, due to the short collision time. An appropriate quantum mechanical
tool to treat that problem is S-matrix theory, and it has been known for a long time how to derive a simple
geometric probabilistic picture, still widely used, and here the Abramovskii-Gribov-Kancheli (AGK) theorem
plays a crucial role. All this is done in a scenario where energy conservation is not taken care of, but this
is needed, in particular for Monte Carlo simulations. When introducing energy-momentum sharing properly,
the AGK theorem does not apply anymore, nor do simple geometric concepts such as binary scaling. I will
discuss this (very serious) problem, and how it can be solved, in the EPOS4 framework. When connecting the
multiple-Pomeron approach (for parallel scatterings) and perturbative QCD, one is actually forced to implement
in a very particular way saturation scales in order to get an approach free of contradictions. One recovers a
generalized AGK theorem (gAGK), valid at large pt (larger than the relevant saturation scales). I discuss how
gAGK is related to factorization (in proton-proton scatterings) and binary scaling (in heavy-ion collisions). I
will show some applications, using this new approach as an initial condition for hydrodynamical evolutions, for
heavy-ion collisions at

√
sNN of 5.02 TeV and 200 GeV, to get some idea about the energy dependence.
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I. INTRODUCTION

It is of fundamental importance to realize that multiple
nucleon-nucleon scatterings in heavy-ion collisions must hap-
pen in parallel, and not sequentially, based on very elementary
considerations concerning timescales. The appropriate tool to
take this into account has been known for a long time: an
S-matrix approach, referred to as Gribov-Regge (GR) theory
[1–3]. A key property is the Abramovskii-Gribov-Kancheli
(AGK) theorem, also referred to as “AGK cancellations” [4],
which allows to make the link between the multiple scattering
approach and geometric properties such as binary scaling.

However, for a realistic scenario—in particular as a basis
for event-by-event Monte Carlo procedures—it is mandatory
to include energy-momentum conservation, which is not con-
sidered in the approach mentioned above. This sounds trivial,
but actually implementing it is a highly complex operation,
in a scenario where all NN collisions happen in parallel,
avoiding any ordering of these collisions, which would make
no sense. If a projectile nucleon interacts with several target
nucleons, there is nothing like a first and subsequent colli-
sions; they are all equal. Despite many technical difficulties,
an unbiased energy-momentum sharing can be dealt with [5],

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

but unfortunately it destroys the “AGK cancellations” and, as
a consequence, all the nice and simple geometric properties
which follow, in particular binary scaling.

The aim of this paper is to first discuss and finally un-
derstand the serious problems which arise (unavoidably) in
a scenario with appropriate energy-momentum sharing and at
the same time unbiased parallel scattering, which at the end
leads to an amazingly simple solution of all problems based
on a particular implementation of saturation.

The present paper is the fourth in a series of publica-
tions [6–8] about the EPOS4 framework. One distinguishes
between primary and secondary interactions. The former
refers to the multiple parallel scatterings happening (at high
energies) instantaneously and which result in complex config-
urations composed of many strings, whereas the latter refers
to subsequent interactions of the string decay products, which
amounts to first a core-corona separation based on the string
segments, and then the fluid formation, evolution, and decay
of the core part. It should also be mentioned that the discus-
sion of primary interactions covers two topics, namely, the
parallel scattering formalism, developed in terms of abstract
objects for single scatterings called “Pomerons”, and the in-
ternal structure of the Pomerons, showing how the Pomeron
is related to parton-parton cross sections expressed in terms
of QCD diagrams. Reference [6] represents an overview of
EPOS4; in Ref. [7], the internal Pomeron structure is treated,
with very detailed discussions of the parton-parton scatterings
based on perturbative QCD (which makes the link between
the multiple scattering formalism and QCD). Reference [8]
focuses on the secondary interactions, in particular on the
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core-corona procedure and microcanonical hadronization of
the fluid.

The present paper refers to the primary interactions, and
it focuses on a very detailed and rigorous treatment of the
multiple scattering aspect based on Pomerons, referring when
necessary to the internal structure discussed in Ref. [7]. The
aim is the presentation of a consistent multiple scattering for-
malism, which takes into account energy-momentum sharing
(which is mandatory) and rigorous unbiased parallel scatter-
ing (which is mandatory as well), and which finally solves the
problem of violating AGK (and simple geometrical pictures).
The key element is an appropriate implementation of dynam-
ical saturation scales.

In the following sections, I will first discuss the goal and
the philosophy of the formalism developed in this paper,
with precision concerning the assumptions and the limitations.
Then I will discuss timescales and the corresponding appli-
cability of parallel scattering as a function of the collision
energy. Since “AGK cancellations” are the key element in the
parallel scattering scheme, I will briefly review this concept
in the classical approach [1–4], before generalizing towards
a scenario including energy-momentum conservation. I will
discuss all the difficulties that show up, and eventually the
solution, based on saturation scales, leading to the generalized
AGK theorem (gAGK), valid at large pt , which allows to re-
store the above-mentioned geometrical properties like binary
scaling. Finally, I show results for PbPb at

√
sNN of 5.02 TeV

and AuAu at 200 GeV.

II. THE PHILOSOPHY, BASIC ASSUMPTIONS,
AND OBJECTIVES

Let me make some remarks about the philosophy be-
hind the present work, the main goals, and the assumptions
employed. The aim is not to construct an event generator,
but to provide a theoretical framework for “multiple scat-
terings”, where one considers multiple partonic scatterings
in proton-proton and multiple nucleon-nucleon scatterings in
nucleus-nucleus collisions.

A crucial point is the fact that one is aiming at a formalism
which allows access to event classes. Most theoretical work
based on QCD is devoted to inclusive cross sections, and
here factorization plays a dominant role. The approach in this
paper does not contribute to these admittedly very important
achievements, being very useful to study rare processes. But
one of the highlights at the LHC and a major activity for
(at least) the next decade are studies concerning particle
production as a function of the “event activity” (measured
in terms of multiplicity or transverse energy). Models are
requested to compute particle yields or two-particle correla-
tions, but with a very important additional condition: for given
event classes. And this makes life complicated. Minimum
bias results based on factorization are not able to provide
answers—or provide wrong answers, citing, for example, the
(experimentally well-known) increase of the mean transverse
momentum with multiplicity in proton-proton scattering.

From the huge amount of experimental data and
phenomenological attempts to interpret these, there is
strong evidence that event activity is very strongly correlated

with multiple parton interactions (MPIs). Reference [9]
discusses the role of multiple parton scatterings at the LHC:
one distinguishes between “hard MPI” and “soft MPI”,
where the former treats the scattering of two hard partons,
based on multiple parton distribution functions, generalizing
the factorization approach. But this does not address the
questions related to studies of properties for given event
classes, defined via “event activity”. This is discussed in
Ref. [9] in the part “soft MPI”, and here the situation is not
satisfactory; the “phenomenological approaches” have often
no solid theoretical basis, and here I am not even talking
about a first-principles basis.

The discussion of “event classes” is clearly also very rel-
evant for scattering of nuclei with mass numbers A and B
(A+B scattering). Nobody considers minimum bias results;
everything is presented again for event classes, again defined
via event activity. Also here many things are known from
phenomenological studies, like the (measurable) event activity
being very strongly correlated with the (nonmeasurable) im-
pact parameter and also with the (nonmeasurable) number of
nucleons being involved. There are also formulas concerning
factorization in nucleus-nucleus scattering, but also here one
needs a framework where one has access to information for
given event classes, and one needs to identify the theoretical
counterpart of these event activities.

It is completely out of reach to construct such a framework
(with access to event classes) from first principles (QCD), and
this is not at all what will be attempted in this paper. What
can be done (and this will be developed in this paper) is to
construct a scheme in the spirit of S-matrix theory, which was
the main theoretical tool to treat scatterings before the QCD
era. One assumes certain fundamental properties, like Lorentz
invariance and analyticity of the T-matrix, although it is not
possible to derive the particular T-matrix from first principles.
But at least the assumptions are very clear and transparent.
Here the same strategy is adopted. One starts with a certain
assumption about the form of the T-matrix, which is only
based on a qualitative (or phenomenological) understanding
of experimental data. It cannot be proven from first principles,
but it is well defined, and even very simple, and one respects
perfectly the framework of quantum mechanics (this is worth
noticing, because many “models” for heavy-ion scatterings
are based on purely classical considerations).

Before discussing more in detail the assumptions of the
present approach, some historical remarks are in order. In
his famous lecture [10], Glauber discusses the scattering of
high-energy protons with nuclei. There are several assump-
tions used, like a factorization of the wave function into a
plane wave times a slowly (in space) changing function. The
assumptions are clear and plausible, and one gets finally a
simple result with a nice interpretation, of a particle moving
on a straight line, accumulating phases (the so-called eikonal
phase is an integral over the potential along the longitudi-
nal axis). Another early (pre-QCD) approach is GR theory
[1–3]. Also here very strong assumptions are made about the
structure of the T-matrix, and the form of the sub-T-matrices.
But also here, the assumptions cannot be proven from some
fundamental theory, but they are plausible, clear, and transpar-
ent. Interesting enough, the Glauber and the GR approaches
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FIG. 1. Factorization in pp scattering.

(the latter being equal to the EPOS approach without energy
sharing and without saturation) give similar results.

The scheme to be developed in this paper has to be under-
stood in the spirit of these two (historical) approaches. It is
not attempted to “derive” the formalism from a fundamental
theory (QCD), but to construct a model, in the framework
of quantum mechanics (with the possibility to treat elastic
and inelastic scattering, related by the optical theorem), and
which is finally compatible with QCD. There are assump-
tions, which are purely based on a phenomenological (and
partly qualitative) understanding of experimental data. But,
the assumptions are very clear and transparent (for this pur-
pose I will try to summarize all the important points in the
following).

But let me first have some qualitative discussion. The usual
factorization picture where one attempts to separate “long
range (soft)” and “short range (hard)” parts of the interaction
may be graphically presented as shown in Fig. 1. In this plot
and all the following ones, I show for simplicity only gluons;
in reality all kinds of partons are present. The two light blue
thick lines represent the projectile and the target protons. The
proton structure and the so-called spacelike parton cascade are
taken care of by using parton distribution functions (PDFs)
f , which allow writing the jet cross section as a convolution
of these PDFs and an elementary QCD cross section for the
Born process in the middle. This approach provides excel-
lent results concerning inclusive particle production. From
studies of particle production for given event classes, for ex-
ample, charm production versus charged particle multiplicity,
it seems that the “real events” look more like that sketched
in Fig. 2, where one has not only several (three in the figure)
scatterings, but even several parallel “objects” (multiple scat-
tering). The fact of having several of these objects not only
increases (for example) the rate of heavy flavor production,
it also increases the charged particle multiplicity, and each

E

E

Born

E

E

Born

E

E

Born

FIG. 2. Multiple scattering.

FIG. 3. Modular structure of multiple scattering.

object produces particles over the whole range in rapidity.
This is why in the sketch of Fig. 2 the three objects are similar
to the one shown in Fig. 1, with parton emissions, but per ob-
ject. Some “evolution function” E is indicated which should
obey the same evolution equations as the f in Fig. 1. The
picture sketched in Fig. 2 suggests some modular structure, as
indicated in Fig. 3, where one first simply considers “objects”
indicated by the red boxes, where one might separate the
multiple scattering aspect (expressed in terms of the objects)
and the content of the objects, representing parton-parton scat-
tering based on QCD diagrams.

The main objective of this work (with this paper being an
important piece of) is to investigate (and understand) how a
picture as sketched in Fig. 2 breaks down to the one sketched
in Fig. 1 when it comes to inclusive particle production (in
minimum bias scattering). Even more drastic, one has to show
how in A+B scattering a picture of A × B possible interac-
tions, each one of the form of Fig. 2, breaks down as well to
the one sketched in Fig. 1, simply multiplied by a factor A × B
(which seems to be an experimental fact). These are crucial
questions; any multiple scattering approach, which claims to
describe observables “per event class”, must do this exercise.

The ideas sketched in the previous paragraph will be
realized based on a model, generalizing the GR approach
[to include energy-momentum sharing (GR+), and to make
it QCD compatible]. This is compatible with the picture
sketched in Fig. 3 and the experimental data which suggest
such a picture. There are serious problems coming up, for
which solutions can finally be proposed. But they might be
questioned. This is why I will present in the following all
the important assumptions and hypotheses (marked H1a, H1b,
etc.).

(H1a) The most important assumption says that the T-
matrix (first for pp elastic scattering) has a modular
structure: it is given in terms of products of sub-
T-matrices TPom referring to elementary scatterings
between “proton constituents” by the exchange of a
“Pomeron” (whatever this may be). I consider first
the case without energy-momentum sharing. This is
precisely what is done in Refs. [1–3]. One gets [see
Eq. (32)]

iT =
∞∑

n=0

1

n!
{iTPom}n. (1)
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(H1b) A fundamental assumption is the complete separa-
tion of the multiple scattering structure, expressed
in terms of the sub-T-matrices TPom and the under-
lying microscopic theory (QCD), which allows to
first develop the multiple scattering theory based on
TPom, and postpone the precise ‘internal structure”
of TPom in terms of QCD diagrams.

The optical theorem (in impact parameter representation;
see Sec. IV) allows to compute the inelastic cross section,
as σin = ∫

d2b cut T (b), with b being the impact parameter.
Cutting a complex diagram amounts to summing all possible
cuts.

(H1c) Here one assumes that a Pomeron is cut completely,
or not at all. Summing over all cuts then means
summing over all possibilities of cut and uncut
Pomerons. Assuming in addition TPom to be purely
imaginary, and defining the “cut Pomeron” G =
2 Im TPom, one gets

σin =
∫

d2b
∞∑

n=1

1

n!

n∑
m=0

(
n
m

)
Gm(−G)n−m. (2)

In principle the T-matrices depend on the collision energy
(expressed in terms of s) but for simplicity I will not write this
dependence explicitly here (but it will be done properly later).
In order to generalize towards A+B scattering, one defines bA

i
and bB

j being the transverse coordinates of the nucleons in the
nuclei A and B, and an integration∫

dbAB =
∫

d2b
∫ A∏

i=1

d2bA
i TA

(
bA

i

) ∫ B∏
j=1

d2bB
j TB

(
bB

j

)
,

(3)

with the nuclear thickness functions TA and TB [see Eq. (41)]
representing the nuclear geometry.

(H2a) It is assumed that the T-matrix expression for A+B
scattering is given as an integral

∫
dbAB · · · .

(H2b) The integrand is assumed to be a product of A × B
nucleon-nucleon expressions as Eq. (1), where the
impact parameter argument of the T-matrices cor-
responding to the kth nucleon-nucleon pair is bk =
|b + bA

π (k) − bB
τ (k)|. The functions π (k) and τ (k) re-

fer to the nucleons associated to the pair k. Defining
Gk = G(bk ), one gets

σ AB
in =

∫
dbAB

∑
m1l1

· · ·
∑

mABlAB

AB∏
k=1

1

mk!lk!
(Gk )mk (−Gk )lk .

(4)

What is discussed so far is essentially the GR approach, which
does not address energy-momentum sharing. To incorporate
that, one introduces the light-cone momentum fractions x±
with respect to the initial light-cone momenta of the nucleons,
with 0 � x+, x− � 1. One defines x±

kμ
to be the light-cone

momentum fractions of the external legs of the μth Pomeron
of pair k, all of them connected to projectile nucleon i = π (k)
and target nucleon j = τ (k). The light-cone momenta of the

projectile and target remnants are named x+
remn,i and x−

remn, j .
Energy-momentum conservation amounts to

x+
remn,i = 1 −

AB∑
k=1
π (k)=i

nk∑
μ=1

x+
kμ, x−

remn, j = 1 −
AB∑

k=1
τ (k)= j

nk∑
μ=1

x−
kμ, (5)

which means that the initial values (x± = 1) are shared among
Pomerons and remnants.

(H3a) One assumes that energy-momentum conservation
can be incorporated by simply using x±

kμ
as argu-

ments of the sub-T-matrices and
(H3b) by adding Pomeron-nucleon vertices V (x+

remn,i )
and V (x−

remn, j ) representing the coupling of the
Pomerons to the projectile and target remnants,
which ensures energy-momentum conservation.

As a consequence, defining Gkμ = G(x+
kμ

, x−
kμ

, bk ), and an in-
tegration

∫
dXAB over all light-cone momentum fractions [see

Eq. (53)], one gets (see Sec. VI C) σ AB
in = ∫

dbABGAB({bAB}),
with {bAB} being the multidimensional variable {b, {bA

i }, {bB
j }},

and with

GAB({bAB}) =
∞∑

n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

∫
dXAB

×
AB∏

k=1

1

nk!

(nk

mk

) mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ), (6)

with at least one nk being nonzero. This extension of the GR
approach (by including energy-momentum sharing) will be
referred to as GR+.

One may define an expression ḠAB({bAB}) as in Eq. (6),
but for all nk = 0, which represents the case excluded in
the summation of Eq. (6). One can prove [see Eq. (70)] the
following relation:

GAB({bAB}) + ḠAB({bAB}) = 1. (7)

In the case of A = B = 1 (pp scattering) one then gets

σ
pp

in =
∫

db{1 − Ḡ11(b)}. (8)

It is very tempting to interpret the expression {1 − Ḡ11(b)}
as the probability of an interaction at given impact parameter
b. In that case, Ḡ11(b) must be non-negative; otherwise one
exceeds the “black disk limit”. It is also very plausible that
this condition should hold for A > 1 and/or B > 1. So one
requires the following:

(H4) Whatever approximation might be employed, it is
mandatory that ḠAB({bAB}) is non-negative, for any
value of A and B. This is a fundamental expectation
which will guide the following hypotheses. It can
be proven in the case without energy sharing, and
is here expected to be true as well.
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This is a crucial requirement; it has enormous consequences,
as will be seen later. In order to investigate GAB and ḠAB

(and in particular the sign of the latter), one has to be more
specific. At this point the G functions are just abstract objects,
but eventually they should correspond to “real” expressions
based on QCD diagrams representing parton-parton scatter-
ing. Studying such expressions, it could be shown [5] that one
may obtain an almost perfect fit of the numerically computed
functions GQCD, with a parametrization being a sum of ex-
pressions of the form αN (x+x−)βN . This parametric form has
been inspired by the asymptotic expressions for T-matrices
(see Appendix A). So one postulates the following:

(H5a) With αN and βN being coefficients depending on
b in terms of a few parameters, the functions
G(x+, x−, b) can be written as (see Appendix B)

GQCDpar (x
+, x−, b) =

4∑
N=1

αN (x+x−)βN . (9)

(H5b) Furthermore, the vertices can be parametrized as
V (x) = xαremn , again motivated by the asymptotic
expressions for T-matrices.

These postulates are crucial; they allow one to do the integrals,
which could not be done numerically. Defining {mk} to be the
set of the mk variables, and {x±

kμ
} the set of the x±

kμ
variables,

one finds (see Sec. VI C)

GAB({bAB}) =
∑
{mk}

∫ AB∏
k=1

mk∏
μ=1

dx+
kμdx−

kμ P({mk}, {x±
kμ}), (10)

and ḠAB = P({mk} = 0), with

P({mk}, {x±
kμ}) =

AB∏
k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB, (11)

where the expression WAB is a function of the variables

x+
i = 1 −

AB∑
k=1
π (k)=i

mk∑
μ=1

x+
kμ, x−

j = 1 −
AB∑

k=1
τ (k)= j

mk∑
μ=1

x−
kμ, (12)

with 1 � i � A and 1 � j � B. One finds [see Eq. (88)]

WAB({x+
i }, {x−

j })

=
A∏

i=1

(x+
i )αremn

B∏
j=1

(x−
j )αremn

∑
{rNk}

⎧⎪⎨
⎪⎩

AB∏
k=1

4∏
N=1

(−αN )rNk

rNk!

×
A∏

i=1

⎡
⎢⎣ AB∏

k=1
π (k)=i

4∏
N=1

(�(β̃N )(x+
i )β̃N )rNk g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠
⎤
⎥⎦

×
B∏

j=1

⎡
⎢⎢⎣

AB∏
k=1
τ (k)= j

4∏
N=1

(�(β̃N )(x−
j )β̃N )rNk g

⎛
⎜⎜⎝

AB∑
k=1
τ (k)= j

4∑
N=1

rNkβ̃N

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭,

(13)

where
∑

{rNk} means summing all the indices rNk , with 1 �
N � 4 and with 1 � k � AB, from zero to infinity, where

FIG. 4. Nonlinear effects: ladders, which evolve first indepen-
dently and in parallel, finally fuse.

rNk refers to the number of uncut “Pomerons of type N”
of nucleon-nucleon pair k. It is useful for the discussion to
consider “Pomeron types” N , although they are not physical
objects, just coming from the parametrization in Eq. (84). I
use β̃N = βN + 1, and a function g defined as

g(z) = �(1 + αremn)

�(1 + αremn + z)
. (14)

All the integrals could be done (see Appendix B). One gets
ḠAB = WAB({x+

i = 1}, {x−
j = 1}), and since ḠAB({bAB}) has to

be non-negative, one has the requirement

WAB({x+
i = 1}, {x−

j = 1}) � 0. (15)

At least for A = B = 1 the numerical calculation of WAB can
be done. Although not written explicitly, this quantity de-
pends on b. For a large impact parameter b, one finds indeed
W11(1, 1) > 0, but below b = 1 fm, one gets negative values,
up to roughly −0.4 at b = 0 (see Sec. VI C).

(i) So here the requirement of Eq. (15) is violated.
(ii) The result one finds is “unreasonable”; it contradicts

common sense. Let me refer to this as the “sign
problem”.

What does this mean? It seems that something is miss-
ing. Here one needs again some input from a qualitative
understanding of high-energy scattering. It is known that with
increasing energy, partons with very small momentum frac-
tions x � 1 become increasingly important, the parton density
becomes very large, and therefore the linear Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution scheme
is not valid anymore. Nonlinear evolution takes over, con-
sidering explicitly gluon-gluon fusion. These phenomena are
known as “saturation” [11–24]. The diagrams for each scat-
tering actually look more like the one shown in Fig. 4. One
expect “nonlinear effects”, which means that two ladders,
which evolve first independently and in parallel, finally fuse.
And only after that, the (linear) DGLAP evolution might be
realized. So ideally one should generalize the framework; in
addition to simple exchanges of Pomerons, one should include
“Pomeron fusions”, i.e., triple Pomeron graphs, in an iterative
fashion up to infinite order. This “more realistic scenario”
should solve the sign problem. But to do that in a framework
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Saturation

Saturation

FIG. 5. Nonlinear effects (inside the red ellipses) are “summa-
rized” in the form of saturation scales.

with energy-momentum sharing (considered to be crucial)
seems impossible.

Here comes another important fact: nonlinear effects lead
to strong destructive interference, which may be summarized
in terms of a saturation scale [12,13]. So one might think
of treating these saturation phenomena not explicitly, but by
introducing saturation scales as the lower limit of the virtu-
alities for the DGLAP evolutions, as sketched in Fig. 5. So
the diagrams inside the red ellipses are replaced by two scales
Q2

sat,proj and Q2
sat,targ. Based on these considerations, one might

think of keeping the modular structure as presented above,
but introduce saturation via saturation scales, as sketched in
Fig. 6, where one still uses objects called Pomerons as basic
modules, but the intrinsic structure of these modules takes into
account saturation scales.

So far I have discussed the idea; in the following I will
discuss how to develop the corresponding formalism. But
before doing so, there is another important element to be
discussed, and this is related to binary scaling, which states
that the inclusive cross section concerning the production of
hard probes (high pt or heavy flavor particles) in A+B scat-
tering is AB times the corresponding pp cross section. This
is shown experimentally, and anyway it is difficult to imagine
how it could be different. Based on the formalism discussed
so far (the one which leads to the sign problem), one can
prove that binary scaling holds [see Eq. (65)]. One can as well
prove the AGK theorem, saying that the inclusive A+B cross
section is AB times the single Pomeron contribution, being an

FIG. 6. Modular structure of multiple scattering, including satu-
ration scales, indicated by the big red dots.

even stronger statement [see Eq. (64)]. These proofs are based
on a probability interpretation (like {1 − W11(1, 1)} being the
probability of an interaction at given impact parameter b). But
this makes no sense if W11(1, 1) has negative values.

One postulates that the qualitative picture discussed above
(and therefore a “realistic” description) can be achieved by the
following:

(H6a) Solve the sign problem by modifying g in Eq. (13)
such that one gets rigorously non-negative re-
sults for whatever choice of parameters, without
changing the large-b behavior (this will be called
“regularization”).

(H7a) Introduce saturation scales when connecting G
(used in the multiple scattering formalism) with
GQCD (the corresponding QCD expression) such
that for hard processes, binary scaling and the AGK
theorem are recovered [their very significant viola-
tion is an unavoidable consequence of H6a]. The
validity of AGK (proven for the case without energy
sharing) is a strong expectation which significantly
guides the proposed hypotheses.

Concerning H6a, one finds that the infinite sums in Eq. (13)
are finally simply a product of exponentials [see Eq. (B64)]
and therefore definitely always non-negative, leaving the
large-b behavior unchanged as required in H6a), if one pos-
tulates the following:

(H6b) For given coefficients β̃λ (arbitrary, but in prac-
tice of order unity) and three parameters cμ, the
g functions have to be modified as (referred to as
“g-factorization”)

g

(∑
λ

β̃λ

)
�→ c1

∏
λ

c2 g(c3 β̃λ). (16)

As shown in Figs. 23 and 24, this g-factorization looks like a
reasonable approximation, and for large b it does not change
results (concerning WAB, for example). But for small b this
modification is crucial; it changes results from “nonphysical”
to “physical” (WAB always non-negative). It is a fundamen-
tal change, forcing the expression to become “physical” (to
mimic the elements not treated explicitly.

This is clearly an ad hoc solution. But let me discuss some
analog to better understand what is done: consider the power
series f (x) = ∑∞

i=0 ai
1
i! (−x)i. Choosing ai = 1, one gets the

well-behaved exponential function shown in Fig. 7 as red
squares. If one changes the values ai = 1 randomly by 1% (let
me call the corresponding function f (1%)), one gets the result
shown as blue circles in Fig. 7: the values strongly fluctuate,
and beyond x = 5 one gets also negative ones. So even small
deviations of the coefficients from the “ideal ones” (namely,
1
i! ) lead to conceptual changes, namely, negative values where
the ideal case gives rigorously positive values. Or, the other
way around, if one takes the strongly fluctuating function
f (1%), and makes a small (1%) change of the coefficients (back
to ai = 1), then one gets the perfectly smooth and positive ex-
ponential function. One might see Eq. (13) similarly: one has
an “almost exponential” function (with negative arguments as
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FIG. 7. Exponential function (red squares) and “almost exponen-
tial” function (blue circles); see text.

well), and—not surprisingly—one gets negative results. And
a small correction (H6a) makes it well behaved. This is why I
use the term “regularization”.

But anyway, this regularization is not unique, and this
should be further investigated. Already in Eq. (16) one has
three parameters. The present choice is one “which works”,
but one might consider an optimized set of parameters which
minimizes the difference between the factorized expression
and the original g. One might also simply linearize g as
g(z) �→ g(0) + g′(0) × z and then use g(0) exp(g′(0)/g(0) ×
z) which “optimizes” g at small z. And then one should see
to what extent the final results are affected by these different
choices.

The regularization saves the probabilistic interpretation
or, to be more precise, expressions, which must represent
probabilities (as, for example, {1 − W11(1, 1)}) behave
properly (values between 0 and 1, correct normalization).
One has probability laws allowing to generate all possible
event configurations and compute all kinds of distributions,
all based on the assumption “G is equal to GQCD”, the latter
being the QCD expression, discussed in detail in Ref. [7]
(this is a preliminary assumption, to be changed later). One
finds quickly that binary scaling and more generally the AGK
theorem are badly violated, and this can be traced back to the
so-called deformation function Rdeform(x+, x−) being different
from unity in the case of event classes of high event activity.
Deformation functions are given as the inclusive distribution
of Pomeron light-cone momentum fractions considering

particular event classes (EC), { 1
σ EC

incl

dσ EC
incl

dx+dx− }, divided by the
corresponding expression for an event class with only isolated
Pomerons. Having understood the origin of the problem,
one parametrizes it; i.e., one parametrizes Rdeform(x+, x−)
as a function of a variable called the “connection number”,
Nconn = NP+NT

2 , with NP being the number of Pomerons
connected to i, and with NT being the number of Pomerons
connected to j, where i and j are the projectile and target
nucleons a given Pomeron is connected to (see Sec. VII).

One understands that because of energy-momentum shar-
ing, Rdeform(x+, x−) is unavoidably different from unity
(actually <1 at large x+x−), and therefore the AGK theorem
and binary scaling are unavoidably violated. There is only
one way out: giving up G = GQCD, which was thought to
be the natural choice. In addition, one needs to take care of

H7a, namely, incorporation of saturation scales. Putting all the
pieces together, in particular the quantitative understanding of
why AGK and binary scaling fail, and how this is related to
the deformation function, it is almost mandatory to postulate
the following:

(H7b) The G of the multiple scattering formalism and
GQCD are related as

G(x+, x−) = n

Rdeform(x+, x−)
GQCD

(
Q2

sat, x+, x−),
(17)

such that G itself does not depend on the envi-
ronment (the latter represented via the connection
number).

This means that the deformation does not affect G but it
changes (very much) the saturation scale Q2

sat, and since the
saturation scale affects eventually low-pt particle production,
the high-pt behavior will not be affected, and one recovers
binary scaling at high pt , as it should be. Going through the
proofs in Sec. VIII, the choice of H7b seems mandatory,

(H7c) based on the expectation that AGK must hold [lead-
ing to factorization (pp) and binary scaling (A+B)
at large pt ].

But still, H7b and H7c are assumptions.

Let me close this section with an important remark.
One should clearly distinguish between “multiple scatter-
ing formalism” and “Monte Carlo implementation”. A very
important aspect of this paper is the attempt to provide a
formalism which is 100% compatible with its Monte Carlo
implementation. This sounds obvious, but this is in general
not the case. If energy conservation is enforced in the code
(via if statements), then this should have a correspondence in
the theoretical formulas. It is easy to add an “if” in the code,
but very difficult to have the corresponding feature in the theo-
retical formalism. Concerning all aspects of the current work,
the model is completely defined via formulas (finally cross
sections expressed in terms of multidimensional integrals),
and the Monte Carlo implementation is only a numerical
procedure to solve mathematical equations.

To summarize this section: The present work tries to put
together theoretical knowledge on S-matrix theory, pertur-
bative QCD, and saturation, together with a large amount
of phenomenological (or even qualitative) understanding of
experimental data (in particular at the RHIC and LHC), to
construct a multiple scattering formalism, which goes beyond
factorization, and which allows to address particle production
per event classes (a major activity at the LHC for the next
decade). Multiple scatterings must happen in parallel, there is
no question about that, but the big assumption is the hypoth-
esis that saturation can be incorporated via saturation scales,
without any need to split Pomerons, so one can keep the pic-
ture of multiple parallel Pomerons. But the fact that saturation
is not treated explicitly clearly requires some corrections at
some stage. Doing cross-section calculations, one eventually
finds expressions, usually interpreted as probabilities, which
are negative at small impact parameters (one kind of exceeds
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t

z

FIG. 8. Sketch of a nucleus-nucleus collision in space-time.
Here, t is the time and z the longitudinal coordinate, and the blue
lines represent the nucleons.

the black disk limit). Being convinced that these “probability-
like” expressions must be positive, one forces them to be so.
One provides a method which sounds reasonable and which
works, but the solution is not unique; one can even propose
other possible solutions, and this should be explored further.
The final step is the redefinition of the relation between G
and GQCD by incorporating saturation scales. One proposes
Eq. (17), and from very detailed discussions about the ori-
gin of the violation of binary scaling, and the discussion of
why and how this proposal solves the problem, it looks like
this choice is mandatory. At the end one has constructed a
formalism that incorporates perturbative QCD (pQCD) and
saturation, does parallel scattering in pp and AA scattering
appropriately, can do analysis of particle production per event
class, and is perfectly compatible with the so-called QCD
Monte Carlo generators (with fewer hard processes imple-
mented though).

III. PARALLEL SCATTERING

One of the most important aspects of the formalism de-
veloped in this paper is the fact that collisions must happen
in parallel—at high energies. In the following the energy
dependence of this aspect will be studied. Let me con-
sider a central nucleus-nucleus collision in space-time in its
center-of-mass system, as sketched in Fig. 8. The points (in-
tersections between projectile and target nucleon trajectories,
assuming that they are close enough in the transverse di-
rection) represent possible interactions. But what precisely
happens depends on the relations between three crucial
timescales:

τcollision = 2R

γ v
, (18)

which is the duration of the AA collision,

τinteraction = 2R

nγ v
, (19)

which is the time between two NN interactions, and

τform = γhadronτform, CMS (20)

which is the particle (hadron) formation time, after an inter-
action of two nucleons, with R being the nuclear radius, v
the (average) velocity of the nucleons, γ the corresponding
Lorentz gamma factor, n the (average) number of nucleons
in a row, τform, CMS the (average) formation time of produced
particles in their rest frames, and γhadron their (average) gamma
factor. The collision energy enters essentially because of the

t

z

FIG. 9. Sketch of a nucleus-nucleus collision at very low ener-
gies, with sequential scatterings.

gamma factors in the denominators of τcollision and τinteraction,
which leads to strong Lorentz contractions at high energies.
At very low energies, defined by

τform < τinteraction, (21)

after each collision, the particles are formed before the next
interaction happens, so one has sequential scatterings (a cas-
cade), as sketched in Fig. 9. The blue lines are the trajectories
of projectile and target nucleons, and the red lines are pro-
duced hadrons. However, at very high energies, defined by

τcollision < τform, (22)

one has completely “parallel scatterings”; all nucleon-nucleon
scatterings are realized before particle production starts, as
sketched in Fig. 10. The blue lines are the trajectories of pro-
jectile and target nucleons; the red lines are produced hadrons.
At TeV energies, the longitudinal dimensions of the nuclei
are smaller than 0.01 fm/c, so the overlap area is essentially
pointlike. In the intermediate energy range, defined by

τinteraction < τform < τcollision, (23)

one needs a “partially parallel approach” : several (but not
all) NN scatterings are realized, before the particle production
starts, as sketched in Fig. 11. The blue lines are the trajectories
of projectile and target nucleons; the red lines are produced
hadrons.

Let me define the low and high energy (per nucleon-
nucleon pair) thresholds EHE by the identity τcollision = τform

and ELE by the identity τform = τinteraction. The high energy
value EHE is then obtained from 2R

γ v
= τform. For a rough nu-

merical estimate, I consider central rapidity hadrons (γhadron =
1) and τform = 1 fm/c, and a big nucleus with R = 6.5 fm,

z

t

FIG. 10. Sketch of a nucleus-nucleus collision at very high en-
ergies, with all nucleon-nucleon scatterings happening in parallel,
before particle production starts.
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t

z

FIG. 11. Sketch of a nucleus-nucleus collision at intermediate
energies, with only some (but not all) NN scatterings being realized,
before the particle production starts.

which gives γ v
c = 13, so one gets

EHE ≈ 24 GeV. (24)

The low energy value ELE is given as τform = 2R
nγ v

, and using

n = 7, one gets γ v
c = 2R

ncτform
≈ 13

7 , which gives

ELE ≈ 4 GeV. (25)

To conclude this part: For energies (in the sense of E = √
sNN )

beyond EHE ≈ 24 GeV one has to employ a “parallel scatter-
ing approach”, for energies below ELE ≈ 4 GeV a pure hadron
cascade is appropriate, and in between one needs a “partially
parallel scattering approach”. The estimates for ELE and EHE

are conservative in the sense that considering γhadron > 1 will
lead to even smaller values.

In the case of nucleon-nucleon scattering, multiple parton
scattering occurs with the corresponding weight increasing
with energy. Here again, the γ factor plays a crucial role,
forcing multiple scatterings to happen in parallel. Looking at
a single scattering, I sketch in Fig. 12 a typical example of
a hard scattering in the middle of the diagram, preceded by
successive parton emission from both sides. In particular, the
first emissions lead to very fast partons, with large γ factors,
and therefore long lifetimes γ τ , with τ of the order of 1 fm/c.
This means that at high energies with γ 	 1, the duration
of the scattering is very large, which makes it impossible to
have several such collisions one after the other. They must
occur in parallel; one needs a structure as shown in Fig. 13.
In principle, this is relevant for energies beyond several tens
of GeV, but really important at TeV energies, with a multiple
scattering weight being high.

From the above discussion, only based on elementary argu-
ments based on timescales, I conclude that a parallel scattering
scenario is mandatory, for pp and AA scattering, beyond
center-of-mass energies of several tens of GeV (see Fig. 14).

FIG. 12. Sketch of a nucleon-nucleon scattering, with successive
parton emissions before the hard process in the middle.

FIG. 13. Sketch of a parallel scattering in nucleon-nucleon
scattering.

So not only LHC energies are concerned, but even the energies
of the RHIC Beam Energy Scan (BES) program.

The appropriate framework to treat strictly parallel scat-
terings is S-matrix theory, and before coming to the multiple
scattering approach, I will first recall some basic facts about
the S-matrix.

IV. S-MATRIX THEORY: BASIC DEFINITIONS,
ASSUMPTIONS, FACTS

Let me recall some basic facts about S-matrix theory,
needed to understand the paper. The S-matrix is the represen-
tation of the scattering operator Ŝ, i.e., Sab = 〈a|Ŝ|b〉 for basis
states |a〉 and |b〉. The T-matrix is defined as

S f i = δ f i + i(2π )4δ(p f − pi )T f i, (26)

where i and f refer to initial and final state, respectively, and
pi and p f are the corresponding momentum four-vectors. The
operator Ŝ must be unitary, Ŝ†Ŝ = 1, which means that the
scattering does not change the normalization of a state. One
adds three “very plausible” hypotheses:

(i) Tii is Lorentz invariant (→ use Mandelstam variables
s, t).

(ii) Tii(s, t ) is an analytic function of s, with s considered
to be a complex variable (Hermitian analyticity).

(iii) Tii(s, t ) is real on some part of the real axis.

Using the Schwarz reflection principle (a theorem), Tii(s, t )
first defined for Ims � 0 can be continued in a unique fashion
via Tii(s∗, t ) = Tii(s, t )∗. The cross section is given as a sum

FIG. 14. Validity of the parallel scattering scenario. The “hybrid”
area refers to a partially parallel scenario.
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(a)

(b) 2
=

FIG. 15. (a) Elastic scattering diagram and (b) the corresponding
cut diagram.

over final states,

σtot = 1

w

∑
f

|T f i|2 (2π )4δ4(p f − pi ), (27)

with w = 2s for large s. Using unitarity and the Schwarz re-
flection principle, and using here and in the following T = Tii,
one gets

2s σtot =
∑

f

(2π )4δ(p f − pi )|T f i|2 = 1

i
disc T, (28)

with disc T = T(s + iε, t ) − T(s − iε, t ). Interpretation:
1
i disc T can be seen as a so-called “cut diagram” (I
will also use cut T = 1

i disc T) with modified Feynman
rules [complex conjugate expressions on the right side
of the cut, and “intermediate particles” on mass shell via
2πθ (p0)δ(p2 − m2)]; see Fig. 15, where I show an elastic
scattering diagram and the corresponding cut diagram, the
latter being equal to an inelastic amplitude squared.

For applications such as relativistic proton-proton and
heavy-ion scattering, one usually assumes purely transverse
momentum transfer, i.e., t = −p2

⊥, which allows to define a
Fourier transform with respect to p2

⊥. In addition, it is useful
to divide by 2s, so I define the so-called “impact parameter
representation” as

T (s, b) = 1

8π2s

∫
d2 p⊥e−i �p⊥�bT(s, t ), (29)

with b = |�b|. I also define

G(s, b) = 1

i
discT (s, b) = 2Im T (s, b) = cut T (s, b). (30)

Having t = 0 as the argument of T in Eq. (28), and using
T(s, 0) = ∫

d2b 2s T (s, b) obtained from Eq. (29), one finds

σtot =
∫

d2b cut T (s, b) =
∫

d2b G(s, b), (31)

which allows a simple geometrical interpretation:

(i) One may interpret G as the probability of an interaction
at impact parameter b, provided G � 1.

Throughout the paper, I will systematically use the symbols T,
T , and G, as defined above. For clarity, I recall the definitions
in Table I.

Let me finally recall that cutting a complex diagram [corre-
sponding to cut T (s, b)] amounts to summing over all possible

TABLE I. The symbols T, T , and G.

T Diagonal element of the elastic scattering
T-matrix as defined in standard quantum
mechanics textbooks, where the asymptotic state
is a system of two protons or two nuclei

T Fourier transform with respect to the transverse
momentum exchange of the elastic scattering
T-matrix T, divided by 2s (formulas are simpler
using this representation)

G Defined as G = cut T = 2ImT = 1
i discT (where

“disc” refers to the variable s), referring to the
inelastic process associated with the cut of the
elastic diagram corresponding to T

cuts (cutting rules [25]). I will illustrate what this means in the
next section.

V. AGK CANCELLATIONS, FACTORIZATION,
AND BINARY SCALING IN A SIMPLE SCENARIO

WITHOUT ENERGY SHARING

To better understand the importance of AGK cancellations,
and its relation with factorization and binary scaling, I first
discuss a simple scenario, without energy sharing.

A. A simple scenario

Let me consider the original Gribov-Regge approach for
multiple scattering, following Refs. [1–4]. For pp scattering,
the T-matrix is given in terms of products of sub-T-matrices,

iT =
∞∑

n=0

1

n!
{iTPom}n, (32)

with TPom referring to an elementary scattering between “pro-
ton constituents” by the exchange of a “Pomeron” (whatever
this may be). Originally, lacking an underlying microscopic
theory, one simply used asymptotic expressions (limit s/t →
∞) of the form TPom(s, t ) = AsB+Ct with parameters A, B,
and C (see Appendix A), which allows to easily compute
TPom(s, b) according to Eq. (29). The limit of infinite energy
implies that energy sharing plays no role, and the arguments
s, t of TPom refer to pp scattering, and not to parton-parton
scattering (I will come back to this later). The inelastic cross
section is given as [similar to Eq. (31)]

σin =
∫

d2b cut T (s, b) (33)

=
∫

d2b
∞∑

n=0

1

n!

∑
cuts

{iTPom}n. (34)

Summing all cuts simply means considering a graph with n
Pomeron exchanges, seen as a three-dimensional (3D) plot,
and considering all possibilities to cut them, with at least one
Pomeron being cut. The cuts are indicated by the dashed lines
in Fig. 16. A cut should be imagined as an infinite plane. One
usually assumes the sub-T-matrix to be purely imaginary, i.e.,
TPom = i G

2 , with some real function G = G(b), and a factor
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FIG. 16. Five-Pomeron graph, with two Pomerons being cut.

1/2 for convenience. Then one gets for the cut Pomeron
cut TPom = 2 Im TPom = G. Concerning the uncut Pomerons,
one sums up the contributions where the Pomeron is to the
left or to the right of the cut, which gives {iTPom} + {iTPom}∗ =
−G. So cut and uncut Pomerons have opposite signs, and one
gets

σin =
∫

d2b
∞∑

n=1

1

n!

n∑
m=0

(
n
m

)
Gm(−G)n−m, (35)

where m refers to the number of cut Pomerons. One may also
write

σin =
∫

d2b
∞∑

m=1

∞∑
l=0

1

m! l!
Gm(−G)l . (36)

B. AGK cancellations in pp scattering

Let me consider inclusive cross sections, like jet cross sec-
tions, where m cut-Pomeron events contribute m times more
than single Pomeron events, so one gets

σincl =
∫

d2b
∞∑

m=1

∞∑
l=0

m
1

m! l!
Gm(−G)l , (37)

which is equal to

σincl =
∫

d2b G
∞∑

m=0

∞∑
l=0

1

m!l!
Gm(−G)l

︸ ︷︷ ︸
1

, (38)

and so one finds

σincl =
∫

d2b G =
∫

d2b cut TPom, (39)

which is an amazing result:

(i) Only a single cut Pomeron (cut TPom) contributes to
the inclusive cross section.

(ii) All higher-order terms cancel each other (AGK can-
cellations).

(iii) This is the AGK theorem [4].

So although there is an infinite number of multiple
Pomeron exchange diagrams, with an infinite number of pos-
sibilities to cut, they all cancel each other, with the exception
of one diagram (see Fig. 17).

FIG. 17. The only diagram contributing to inclusive cross sec-
tions: a single cut Pomeron.

C. AGK cancellations in A+B scattering

Let me come to the scattering of two nuclei of mass num-
bers A and B. The inelastic cross section is a straightforward
generalization of the pp result of Eq. (37); one simply needs
to add the nuclear geometry in terms of an integration over the
positions (in the transverse plane) of the nuclei, in addition to
the integration over the nuclear impact parameter b, as

∫
dbAB =

∫
d2b

∫ A∏
i=1

d2bA
i TA

(
bA

i

) ∫ B∏
j=1

d2bB
j TB

(
bB

j

)
,

(40)

with the nuclear thickness function

TA(b) =
∫

dz ρA(
√

b2 + z2), (41)

where ρA is the nuclear density for nucleus A (and correspond-
ingly for B). Considering all AB possible nucleon-nucleon
pairs k, and summing over all possible numbers of cut (mk)
and uncut (lk) Pomerons, one gets for the cross section σ AB

in =∫
dbABcut T AB(s, b) the following expression:

σ AB
in =

∫
dbAB

∑
m1l1

· · ·
∑

mABlAB

AB∏
k=1

1

mk!lk!
(Gk )mk (−Gk )lk , (42)

with at least one mk being nonzero, and with Gk = G(bk ) and
bk = |b + bA

π (k) − bB
τ (k)| referring to the impact parameter of

the nucleon-nucleon pair number k.
The inclusive cross section (again like jet cross sections),

where pairs k with mk cut Pomerons count with a factor mk , is
given as

σ AB
incl =

∑
m1l1

· · ·
∑

mABlAB

{
AB∑

k′=1

mk′

}

×
∫

dbAB

AB∏
k=1

1

mk!lk!
(Gk )mk (−Gk )lk , (43)

where in {· · · } one sums up the cut-Pomeron numbers from
the different nucleon-nucleon collisions. Using mk′/(mk′ )! =
1/(mk′ − 1)!, and after renaming mk′ − 1 to mk′ in the product
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FIG. 18. The only diagram contributing to inclusive cross sec-
tions in A+B scattering: a single cut Pomeron (multiplied by AB).

∏AB
k=1, one gets

σ AB
incl =

AB∑
k′=1

∫
dbAB Gk′

×
⎧⎨
⎩∑

m1l1

· · ·
∑

mABlAB

AB∏
k=1

1

mk!lk!
Gmk

k (−Gk )lk

⎫⎬
⎭, (44)

without any constraint concerning the mk summations.
Therefore, the term {· · · } is unity, which means that the
different multiple Pomeron terms cancel each other (AGK
cancellations). The thickness functions are normalized as∫

d2bA
i TA(bA

i ) = 1, and correspondingly for B, so all the in-
tegrations

∫
d2bA

i TA(bA
i ) and

∫
d2bB

j TB(bB
j ) in

∫
dbAB give

unity, except for the indices i′ and j′ corresponding to k′. So
one finds

σ AB
incl =

AB∑
k′=1

∫
d2bA

i′ TA
(
bA

i′
) ∫

d2bB
j′ TB

(
bB

j′
)

×
∫

d2b G
(∣∣b + bA

i′ − bB
j′
∣∣). (45)

A variable change such as �b′ = �b + �bA
i′ − �bB

j′ allows one to
write

σ AB
incl =

AB∑
k′=1

∫
d2bA

i′ TA
(
bA

i′
) ∫

d2bB
j′ TB

(
bB

j′
) ∫

d2b′ G(b′).

(46)

After using the normalization
∫

d2bA
i′ TA(bA

i′ ) = 1 and∫
d2bB

j′ TB(bB
j′ ) = 1, one replaces

∑AB
k′=1 by simply AB,

and one gets

σ AB
incl = AB ×

∫
d2b G(b) = AB ×

∫
d2b cut TPom, (47)

which is again an amazing result:

(i) The inclusive A+B cross section is AB times the sin-
gle cut-Pomeron contribution (cut TPom) (see Fig. 18).

(ii) This is the AGK theorem [4] for (minimum bias) scat-
tering of nuclei with mass numbers A and B.

(iii) It also implies σ AB
incl = AB × σ

pp
incl, also referred to as

binary scaling.

So although there is an infinite number of multiple
Pomeron exchange diagrams, with an infinite number of pos-

FIG. 19. (a) A single cut Pomeron based on pQCD and (b) the
corresponding inelastic process.

sibilities to cut, they all cancel each other, with the exception
of one diagram.

D. Factorization

So I have shown that for pp scattering, and also for nuclear
collisions, the inclusive cross sections are given in terms of
one single cut Pomeron (G = cut TPom). What does this mean
concerning factorization? To answer this question, one needs
to specify the internal structure of the Pomeron. At the time
of Gribov et al., it was unknown, and one could not do more
than using parametrized expressions for the T-matrices, based
on their asymptotic behavior. But nowadays one knows more.
It is shown in Ref. [7] how to compute T-matrices and then
G = cut T , corresponding to (a single) parton-parton scatter-
ing, based on perturbative QCD. The result is named GQCD.
It is a sum of several terms, the most important one shown
in Fig. 19, representing an integration expressed in terms of
several modules (Fsea, Epsoft, EQCD, Born), with EQCD repre-
senting a spacelike parton evolution, and “Born” the QCD
Born process. Assuming that the G of the multiple scattering
formalism is equal to GQCD, i.e.,

G = GQCD, (48)

one gets for the inclusive pp cross section (using the AGK
theorem, and thererfore considering only one single Pomeron)
the following result (see Ref. [7]):

σ
pp

incl =
∫

d3 p3d3 p4

E3E4

×
{∑

klmn

∫∫
dξ1dξ2 f k

PDF

(
ξ1, μ

2
F

)
f l
PDF

(
ξ2, μ

2
F

)

× 1

32sπ2

∑̄
|Mkl→mn|2δ4(pin − pout )

1

1 + δmn

}
,

(49)

with f k
PDF being a convolution of modules like Fsea, Epsoft,

and EQCD, with Mkl→mn being the QCD matrix element for
elementary parton-parton 2 → 2 scatterings (Born process),
and with �p3, E3 and �p4, E4 being the momenta and energies of
the outgoing partons. This amounts to factorization.

034918-12



PARALLEL SCATTERING, SATURATION, AND … PHYSICAL REVIEW C 109, 034918 (2024)

E. Conclusion

It is interesting that one can derive in a quantum mechan-
ical multiple scattering approach important features such as
binary scaling and factorization, as a consequence of AGK
cancellations. It is very useful to understand these phenom-
ena in a simple approach where calculations can be easily
done. But the main problem is the fact that energy sharing
is not present. The cut-Pomeron expressions G should depend
explicitly on the Pomeron energy sPom, i.e., G = G(sPom, b),
and when one has ten Pomerons in a pp scattering, then the
available energy has to be shared among these ten Pomerons.
It is also known that binary scaling fails at low pt , whereas
here binary scaling is always true. So the scenario discussed
in this section is a first step, but not the final solution.

But even in more realistic scenarios, to be discussed later,
one feature remains always correct: the fundamental property
is the “validity of AGK cancellations”, for pp scatterings, and
for AA scatterings, whereas binary scaling and factorization
are merely consequences.

To summarize this section:

(i) In a simplified parallel scattering S-matrix approach,
without energy sharing (and consequently simple for-
mulas), one can prove the “AGK theorem”, in pp and
AA scattering (first shown in Ref. [4]).

(ii) “AGK theorem” means for pp scattering that inclu-
sive cross sections σ

pp
incl are given in terms of a single

cut Pomeron, although the real events represent mul-
tiple scatterings.

(iii) “AGK theorem” means for A+B scattering that in-
clusive cross sections σ AB

incl are given as AB times the
single cut-Pomeron contribution.

(iv) As a consequence, one gets σ AB
incl = AB × σ

pp
incl, which

is called binary scaling. So it is a direct consequence
of the AGK theorem.

(v) One can make statements about factorization, but
only when one specifies the internal structure of
the Pomeron, more precisely the microscopic pic-
ture underlying TPom and G = cut TPom. Assuming
G = GQCD, the latter being based on a QCD calcula-
tion of parton-parton scattering, including a DGLAP
evolution as defined in Ref. [7], one can deduce
“factorization”.

(vi) The AGK theorem is the fundamental feature; others
(like binary scaling and factorization) are just conse-
quences.

(vii) The simple scenario of this section is useful for un-
derstanding the relation between the AGK theorem,
binary scaling, and factorization. However, a major
problem is the fact that energy sharing is not present,
but it should be.

In the following, I will discuss a scenario including energy
sharing.

(a)

B

A
i=1

i=2

j=1

j=2

(b)

+
remn,ixi
+xk1

xk2
+

xk3
+

remn,iV(x        )+

FIG. 20. (a) Multiple scattering with energy sharing, for two col-
liding nuclei A and B, with Pomerons (cyan vertical lines), remnants
(pink horizontal lines), vertices (magenta dots), and cuts (black,
vertical). (b) Detailed view of a vertex connected to projectile i,
associated to pair k, with remnants light-cone momentum fraction
x+

remn,i and Pomeron leg momenta x+
kμ.

VI. MULTIPLE SCATTERING S-MATRIX APPROACH
WITH ENERGY SHARING AND “SIGN PROBLEM”

In this section, I take over the S-matrix approach discussed
in Sec. V (GR approach), but I add energy-momentum sharing
(GR+). I will discuss right away collisions of nuclei with mass
numbers A and B, where pp is just a special case (A = B = 1).

A. Scenario with energy-momentum sharing

I generalize Eq. (42) by taking into account energy-
momentum sharing, as sketched in Fig. 20(a). In general, one
considers all possible interactions between the A projectile
and the B target nucleons, and one therefore introduces a
“pair index” k, going from 1 to AB. I define i = π (k) and
j = τ (k) to be the associated nucleon indices on the projectile
and target sides. In Fig. 20(a), I consider A = B = 2 (for sim-
plicity), and I consider multiple (three) Pomeron interactions
between i = 1 and j = 1 and between i = 2 and j = 2, which
means zero Pomerons exchanged between i = 1 and j = 2
and between i = 2 and j = 1. In general, one sums over any
number of Pomerons for all possible pairs. In Fig. 20(b), I
show a detailed view of one of the projectile vertices con-
nected to projectile i, with the associated pair numbering k.
For the different components, one uses light-cone momentum
fractions x± with respect to the initial light-cone momenta
of the nucleons, with 0 � x+, x− � 1. I define x±

kμ
to be the

light-cone momentum fractions of the external legs of the
μth Pomeron of pair k, all of them connected to projectile
nucleon i = π (k) and target nucleon j = τ (k). For each cut
Pomeron one has a term G (equal to cut TPom = 2Im TPom;
see Sec. IV for basic definitions), and for each uncut Pomeron
one has a term −G, both with arguments x±

kμ
. The light-cone

momenta of the projectile and target remnants are named
x+

remn,i and x−
remn, j . In Fig. 20(b), I only show the projectile part.
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Energy-momentum conservation amounts to

x+
remn,i = 1 −

AB∑
k=1
π (k)=i

nk∑
μ=1

x+
kμ, x−

remn, j = 1 −
AB∑

k=1
τ (k)= j

nk∑
μ=1

x−
kμ,

(50)

which means that the initial values (x± = 1) are shared among
Pomerons and remnants. The nuclear geometry will be taken
care of by using

∫
dbAB, defined in Eqs. (40) and (41), which

integrates over the impact parameter and the transverse co-
ordinates bA

i and bB
j of projectile and target nucleons. With

all these definitions, one may write the expression for the
inelastic cross section being a sum over all possible numbers
of Pomerons per pair k and a sum over all possibilities to cut
them, as

σ AB
in =

∞∑
n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

∫
dbAB

×
∫

dXAB

AB∏
k=1

1

nk!

(
nk

mk

) mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ) (51)

[generalizing Eq. (42)], with at least one nk being nonzero,
with

∏mk
μ=1 Gkμ = 1 for mk = 0, and with

Gkμ = G(x+
kμ, x−

kμ, s, bk ), (52)

with bk = |b + bA
π (k) − bB

τ (k)| referring to the impact param-
eter of the nucleon-nucleon pair number k. The indices nk

refer to the numbers of Pomerons (cut and uncut) for pair k,
whereas the indices mk refer to the number of cut Pomerons.
The symbol

∫
dXAB represents the integration over light-cone

momentum fractions:∫
dXAB =

∫ AB∏
k=1

nk∏
ν=1

dx+
kνdx−

kν . (53)

Equation (50) ensures energy-momentum conservation. If one
would remove the vertex part (replace V by unity), the

∫
dXAB

could be done, and one recovers Eq. (42), the case without
energy sharing (I just organize the summations somewhat
differently). With the vertex part, and full energy-momentum
conservation, the up to 10 000 000 dimensional integrations
are not separable, but this “technical problem” can be handled:
see Ref. [5] for a detailed discussion about how to compute
expressions like Eq. (51).

B. AGK theorem

As discussed in Sec. V, a crucial feature of any multiple
scattering approach is the validity of the AGK theorem, which
is needed to get for inclusive cross sections binary scaling in
AA collisions and factorization in pp. Therefore I am going to
investigate this in the following.

Again I am considering collisions of nuclei with mass
numbers A and B, where pp is just a special case (A = B = 1).
The inclusive cross section is a modification of the inelastic
cross section in Eq. (51). In the case of “no energy sharing”

as discussed in Sec. V, I simply added a factor {∑AB
k′=1 mk′ },

which amounts to counting the number of cut Pomerons. Now,
I introduce energy-momentum sharing, and each Pomeron is
characterized by the light-cone momentum fractions x+ and
x−, such that the squared (transverse) mass of the Pomeron is
given by x+x−s, with s being the Mandelstam s of the nucleon-
nucleon collisions. So one needs to count the Pomerons for
given x+ and x− intervals, which can be done by adding a
factor

AB∑
k′=1

mk′∑
μ′=1

δ(x+ − x+
k′μ′ )δ(x− − x−

k′μ′ )dx+dx− (54)

into Eq. (51), and after dividing by dx+dx−, one gets

d2σ AB
incl

dx+dx− =
AB∑

k′=1

∞∑
n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

mk′∑
μ′=1

∫
dbAB

∫
dXAB

×
{

AB∏
k=1

[
1

mk!(nk − mk )!

mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

]
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ) δ(x+ − x+

k′μ′ )δ(x− − x−
k′μ′ )

}
, (55)

with at least one nk being nonzero. The δ functions make some
of the integrations of

∫
dXAB trivial. Integrating over x+

k′μ′ and
x−

k′μ′ allows one to replace Gk′,μ′ by G(x+, x−, s, bk′ ), which
may be written in front of

∫
dXAB. Then one may rename the

integration variables such that the variables x±
k′μ′ disappear (to

have cut-Pomeron variables x±
k′μ with μ � mk′ − 1 and uncut-

Pomeron variables x±
k′μ with mk′ � μ � nk′ − 1). In x+

remn,i for
i = π (k′) and in x−

remn, j for j = τ (k′) one replaces 1 by 1 − x+

and 1 − x−, respectively. The same procedure applies for all

values of μ′, giving identical expressions, so the sum
∑mk′

μ′=1
gives simply a factor mk′ , which one uses to replace mk′ ! by
(mk′ − 1)!. The expression [· · · ] in the second line of Eq. (55)
for k = k′ may then be written as

1

(mk − 1)!(nk − 1 − (mk − 1))!

mk−1∏
μ=1

Gkμ

nk−1∏
μ=mk−1+1

−Gkμ.

(56)
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I then rename (mk − 1) to mk and (nk − 1) to nk , which al-
lows one to drop the condition “at least one nk nonzero”. In
addition, one may now write

∑
m1�n1

· · ·
∑

mAB�nAB

· · ·
AB∏

k=1

=
AB∏

k=1

∑
mk�nk

, (57)

and so one gets

d2σ AB
incl

dx+dx− =
AB∑

k′=1

∞∑
n1=0

· · ·
∞∑

nAB=0

∫
dbAB G(x+, x−, s, bk′ )

×
∫

dXAB

AB∏
k=1

1

nk!

nk∏
μ=1

Gkμ

∑
mk�nk

(nk

mk

)
(−1)nk−mk

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ), (58)

without any constraints on the nk . The relation∑
mk�nk

(nk

mk

)
(−1)nk−mk = (1 − 1)nk = δ0nk , (59)

for all values of k, means that only one term in the sum∑
n1

· · ·∑nAB
contributes, namely, the one with n1 = n2 =

· · · = nAB = 0, and one gets

d2σ AB
incl

dx+dx− =
AB∑

k′=1

∫
dbAB G(x+, x−, s, bk′ )

× V (1 − x+)V (1 − x−). (60)

Note that only one pair of vertices V contributes, namely, that
corresponding to the projectile i = π (k′) and to the target j =
τ (k′); for all others one has V = V (1) which is per definition
unity. All the integrations

∫
d2bA

i TA(bA
i ) and

∫
d2bB

j TB(bB
j ) in∫

dbAB give unity (normalization of the thickness functions),
except for the indices i′ and j′ corresponding to k′, so one gets

d2σ AB
incl

dx+dx− =
AB∑

k′=1

∫
d2bA

i′ TA
(
bA

i′
) ∫

d2bB
j′ TB

(
bB

j′
)

×
∫

d2b G(x+, x−, s, bk′ )V (1 − x+)V (1 − x−),

(61)

with �bk′ = �b + �bA
i′ − �bB

j′ . A variable change such as �b′ = �b +
�bA

i′ − �bB
j′ allows one to separate the three integrations, to use

again the normalization of the thickness functions, and to
replace

∑AB
k′=1 by AB, to get

d2σ AB
incl

dx+dx− = AB
∫

d2b G(x+, x−, s, b)V (1 − x+)V (1 − x−).

(62)

One recalls that G(x+, x−, s, b) is a single cut Pomeron, so
one may write

d2σ AB
incl

dx+dx− = AB ×
∫

d2b cut TPom × V (1 − x+)V (1 − x−),

(63)

FIG. 21. The only diagram contributing to inclusive cross sec-
tions in A+B scattering: a single cut Pomeron (multiplied by AB).

and again one finds this important result:

(i) The inclusive A+B cross section is AB times the sin-
gle cut-Pomeron contribution (cut TPom) including a
vertex part (i.e., the single Pomeron inclusive cross
section).

(ii) So one has

dσ AB
incl

dx+dx− = AB × dσ
single Pom
incl

dx+dx− (64)

(see Fig. 21), referred to as the AGK theorem (actu-
ally being an extension of the original AGK theorem,
taking into account energy-momentum sharing).

(iii) As a direct consequence, one gets

dσ AB
incl

dx+dx− = AB × dσ
pp

incl

dx+dx− , (65)

referred to as binary scaling.

So I have proven in the scenario with energy sharing, for
(minimum bias) scattering of nuclei with mass numbers A and
B: (i) the validity of the AGK theorem, and (ii) binary scaling.
So although there is an infinite number of multiple Pomeron
exchange diagrams, with an infinite number of possibilities
to cut, they all cancel each other, with the exception of one
diagram.

I have been discussing the inclusive cross section
dσ AB

incl/dx+dx−, which counts the number of Pomerons with
given values of x+ and x−. This is kind of a “master distribu-
tion”, which allows one to obtain the inclusive cross section
for the production of measurable quantities like transverse
momentum, provided the nature of the Pomeron is known, as
discussed in Sec. V.

But before implementing the microscopic structure of the
Pomeron, one has to confront a quite serious problem, related
to probabilistic interpretations, as discussed in the following.

C. The sign problem

Let me consider again the inelastic cross section for
the scattering of two nuclei, which may be written as [see
Eq. (51)]

σ AB
in =

∫
dbAB cut T AB(s, {bAB}) =

∫
dbABGAB(s, {bAB}),

(66)
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bA
i

bB
j

A B

b

FIG. 22. The multidimensional variable {b, {bA
i }, {bB

j }}, with b
being the impact parameter, and with bA

i and bB
j being the transverse

coordinates of the projectile and target nucleons, respectively (they
are meant to be two-dimensional vectors).

where one employs the usual relation G = cut T . Here, {bAB}
is the multidimensional variable {b, {bA

i }, {bB
j }} (see Fig. 22),

and
∫

dbAB the corresponding integration, defined in Eqs. (40)
and (41). Equation (66) indicates that GAB may be interpreted
as the probability of having an interaction for a given impact
parameter b and given transverse coordinates {bA

i } and {bB
j } of

the nucleons. Comparing with Eq. (51), one gets

GAB(s, {bAB}) =
∞∑

n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

∫
dXAB

×
AB∏

k=1

1

nk!

(nk

mk

) mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ), (67)

with at least one nk being nonzero, and with the momentum
fraction integrations

∫
dXAB being defined in Eq. (53). One

may define an expression ḠAB(s, {bAB}) as Eq. (67), but for all
nk = 0, which represents the case excluded in the summation
of Eq. (67), which might be interpreted as the probability of
“no interaction”. One then gets

GAB + ḠAB =
∞∑

n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

∫
dXAB

×
AB∏

k=1

1

nk!

(nk

mk

) mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ), (68)

without any constraint for the nk . Using similar manipulations
as for the dσ AB

incl/dx+dx− calculation above, one gets

GAB(s, {bAB}) + ḠAB(s, {bAB}) =
A∏

i=1

V (1)
B∏

j=1

V (1), (69)

and with (by definition) V (1) = 1, one finds that the right-
hand side (rhs) of this equation is unity.

So I have proven

GAB(s, {bAB}) + ḠAB(s, {bAB}) = 1, (70)

with GAB(s, {bAB}) and ḠAB(s, {bAB}) being interpreted as
probabilities to interact for a given impact parameter b and
given transverse coordinates {bA

i } and {bB
j } of the nucleons,

and to not interact, respectively. This sounds promising. So
far the interpretations seem to be consistent.

From Eqs. (70) and (68), one gets

1 =
∞∑

n1=0

· · ·
∞∑

nAB=0

∑
m1�n1

· · ·
∑

mAB�nAB

∫
dXAB

×
AB∏

k=1

1

nk!

(nk

mk

) mk∏
μ=1

Gkμ

nk∏
μ=mk+1

−Gkμ

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ). (71)

Let me rename the light-cone momentum variables: let x±
kμ

be
the light-cone momenta of the μth cut Pomeron for pair k,
and x̃±

kλ
those of the λth uncut Pomeron for pair k. Instead of∫

dXAB, one has
∫

dXAB
∫

dX̃AB, where now∫
dXAB =

∫ AB∏
k=1

(
mk∏

μ=1

dx+
kμdx−

kμ

)
(72)

refers to cut Pomerons and∫
dX̃AB =

∫ AB∏
k=1

(
lk∏

λ=1

dx̃+
kλdx̃−

kλ

)
(73)

to uncut Pomerons. I use G′
kλ = G(x̃+

kλ
, x̃−

kλ
, s, bk ). All this

allows one to reorganize the sums in Eq. (71), and one may
write

1 =
∞∑

m1=0

· · ·
∞∑

mAB=0

∞∑
l1=0

· · ·
∞∑

lAB=0

∫
dXAB

∫
dX̃AB

×
AB∏

k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦ AB∏

k=1

⎡
⎣ 1

lk!

lk∏
λ=1

−G′
kλ

⎤
⎦

×
A∏

i=1

V (x+
remn,i )

B∏
j=1

V (x−
remn, j ), (74)

where mk refers to the number of cut Pomerons and lk to
the number of uncut ones, for pair k. One recalls that Gkμ

is defined as G(x+
kμ

, x−
kμ

, s, bk ) with bk = |b + bA
π (k) − bB

τ (k)|. I
define “cut Pomeron configurations”

K = {{mk}, {x±
kμ}}, (75)

with {mk} being the set of the mk variables, and {x±
kμ

} the set
of the x±

kμ
variables, for given values of the nuclear impact

parameter b and the transverse coordinates bA
i and bB

j of all
the nucleons in nuclei A and B. The sum

∑∞
m1=0 · · ·∑∞

mAB=0
is then simply the sum over all possible values of {mk}, and
Eq. (74) becomes

1 =
∑
{mk}

∫
dXABP, (76)
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or explicitly

1 =
∑
{mk}

∫ AB∏
k=1

mk∏
μ=1

dx+
kμdx−

kμ P({mk}, {x±
kμ}), (77)

with

P({mk}, {x±
kμ}) =

AB∏
k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB, (78)

with

WAB =
∞∑

l1=0

· · ·
∞∑

lAB=0

∫
dX̃AB

AB∏
k=1

⎡
⎣ 1

lk!

lk∏
λ=1

−G′
kλ

⎤
⎦

×
A∏

i=1

V

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠ B∏

j=1

V

⎛
⎜⎜⎝x−

j −
AB∑

k=1
τ (k)= j

lk∑
λ=1

x̃−
kλ

⎞
⎟⎟⎠,

(79)

with

x+
i = 1 −

AB∑
k=1
π (k)=i

mk∑
μ=1

x+
kμ, x−

j = 1 −
AB∑

k=1
τ (k)= j

mk∑
μ=1

x−
kμ. (80)

The term WAB is a function of the variables {x+
i } with 1 � i �

A and {x−
j } with 1 � j � B, i.e., WAB = WAB({x+

i }, {x−
j }). It

also depends on s and b and the transverse coordinates bA
i and

bB
j of all the nucleons, not written explicitly.

One concludes:

(i) the equation 1 = ∑
{mk}

∫
dXABP allows the interpre-

tation of

P =
AB∏

k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB({x+

i }, {x−
j }) (81)

to be the probability of the “configuration” K ,
(ii) where K = {{mk}, {x±

kμ
}} represents mk cut Pomerons

per pair k, with light-cone momentum fractions x±
kμ

.

This would be a perfect basis for Monte Carlo applications:
one “simply” needs to generate configurations according to
that law. But what is still missing: one needs to prove that all
the P({mk}, {x±

kμ
}) are non-negative, and, to do so, one has to

prove that WAB is non-negative.
As a side remark (just to understand the meaning of the

quantity WAB), one has

WAB({x+
i = 1}, {x−

j = 1}) = P({mk = 0}), (82)

corresponding to no cut Pomerons at all, which means “no
interaction” in the sense of inelastic scattering. The expres-
sion (1 − WAB), with all momentum fractions x+

i and x−
j

being unity, corresponds to inelastic scattering, summed over
all possible configurations, and the inelastic cross section is

obtained by integrating
∫

dbAB · · · , as

σin =
∫

dbAB{1 − WAB({x+
i = 1}, {x−

j = 1})}. (83)

For example, the pp inelastic cross section is an integral over
the impact parameter of 1 − W11(1, 1). This again confirms
the probabilistic interpretation, but still, under the condition
WAB � 0.

Let me now discuss how to calculate WAB. To do so,
one needs to specify G(x+, x−, s, b). Using G = GQCD [see
Eq. (48) and the discussion before], one can show [5] that one
may obtain an almost perfect fit of the numerically computed
functions GQCD, with a parametrization of the form

GQCDpar (x
+, x−, s, b) =

Npar∑
N=1

αN (x+x−)βN , (84)

where αN and βN depend on s and b given in terms of a
few parameters, as shown in Appendix B. This parametric
form has been inspired by the asymptotic expressions for
T-matrices (see Appendix A). So I will use in the following

G = GQCDpar. (85)

Furthermore, the vertices are parametrized as

V (x) = xαremn , (86)

again motivated by the asymptotic expressions for T-matrices.
Now one has all the ingredients to compute WAB. All the

formulas will be given with the current choice of Npar = 4;
it is straightforward to change this value. From Eq. (79), one
gets

WAB({x+
i }, {x−

j }) =
∑
{lk}

∫ AB∏
k=1

⎛
⎝ lk∏

λ=1

dx̃+
kνdx̃−

kν

⎞
⎠

×
⎧⎨
⎩

AB∏
k=1

⎡
⎣ 1

lk!

lk∏
λ=1

−GQCDpar (x̃
+
kλ, x̃−

kλ, s, bk )

⎤
⎦

×
A∏

i=1

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠

αremn

×
B∏

j=1

⎛
⎜⎜⎝x−

j −
AB∑

k=1
τ (k)= j

lk∑
λ=1

x̃−
kλ

⎞
⎟⎟⎠

αremn
⎫⎪⎪⎬
⎪⎪⎭, (87)

where
∑

{lk} means summing all the indices lk , with 1 � k �
AB, from zero to infinity, where lk refers to the number of
uncut Pomerons of nucleon-nucleon pair k. Remember that
computing WAB amounts to summing over and integrating out
all uncut Pomerons. As proven in Appendix B [see Eq. (B56)],
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one finds

WAB({x+
i }, {x−

j })

=
A∏

i=1

(x+
i )αremn

B∏
j=1

(x−
j )αremn

∑
{rNk}

⎧⎪⎪⎨
⎪⎪⎩

AB∏
k=1

4∏
N=1

(−αN )rNk

rNk!

×
A∏

i=1

⎡
⎢⎣ AB∏

k=1
π (k)=i

4∏
N=1

(�(β̃N )(x+
i )β̃N )rNk g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠
⎤
⎥⎦

×
B∏

j=1

⎡
⎢⎢⎣

AB∏
k=1
τ (k)= j

4∏
N=1

(�(β̃N )(x−
j )β̃N )rNk g

⎛
⎜⎜⎝

AB∑
k=1
τ (k)= j

4∑
N=1

rNkβ̃N

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭,

(88)

where
∑

{rNk} means summing all the indices rNk , with 1 �
N � 4 and with 1 � k � AB, from zero to infinity, where
rNk refers to the number of uncut Pomerons of type N of
nucleon-nucleon pair k. It is useful for the discussion to
consider “Pomeron types” N , although they are not physical
objects, just coming from the parametrization in Eq. (84). I
use β̃N = βN + 1, and a function g defined as

g(z) = �(1 + αremn)

�(1 + αremn + z)
. (89)

The result in Eq. (88) is remarkable in the sense that all the
integrations could be done analytically, expressed in terms of
gamma functions �.

One cannot simplify Eq. (88) any further, without approx-
imations. Looking at this expression, one sees that the two
terms g(· · · ) “make the problem”. Without them, the sums
could be done, and one would get products of exponentials.
But of course, one cannot simply drop these terms. However,
if the g functions would have a particular property, namely, a
factorization such as

g

(∑
λ

β̃λ

)
= c1

∏
λ

c2 g(c3 β̃λ), (90)

for given coefficients β̃λ (arbitrary, but in practice of order
unity) and three parameters cμ, then the expression in Eq. (88)
can be factorized such that the infinite sums are finally just a
product of exponentials, and as proven in Appendix B [see
Eq. (B64)], and one gets

WAB =
A∏

i=1

c1(x+
i )αremn

B∏
j=1

c1(x−
j )αremn

×
AB∏

k=1

exp
(−G̃

(
x+
π (k)x

−
τ (k)

))
, (91)

for any choice of the parameters cμ, where G̃ is given as

G̃(x) =
4∑

N=1

α̃N xβ̃N , (92)

FIG. 23. Comparing g(
∑

λ β̃λ) and c1
∏

λ c2 g(c3 β̃λ) for ran-
domly created sequences β̃λ, for the parameter choice (A) c1 = 2,
c2 = 0.65, and c3 = 1.

with

α̃N = αN

(
�(β̃N ) c2 �(1 + αremn)

�(1 + αremn + c3 β̃N )

)2

, (93)

β̃N = βN + 1. (94)

What is very nice: WAB as given in Eq. (91) is strictly non-
negative, and this was the missing piece which allows a
probabilistic interpretation of the formulas [see the discussion
around Eq. (81)], which is extremely important for any Monte
Carlo application.

But the question arises: Is the property in Eq. (90) re-
ally true? To answer this question, I make some simulations,
where I take αremn = 1 (currently used), so one has g(z) =
�(2)/�(2 + z). In principle, Eq. (90) should be valid for any
choice of sequences β̃λ. So I generate randomly integer num-
bers λMAX between zero and some upper limit (20), and then
I generate a sequence β̃1, β̃2, . . . , β̃λMAX of λMAX uniformly
distributed random numbers. For each sequence, I compute
g(
∑

λ β̃λ) and c1
∏

λ c2 g(c3 β̃λ), and then I compare the two.
In Fig. 23, I plot the two quantities as a function of

∑
λ β̃λ,

for the parameter choice (A) c1 = 2, c2 = 0.65, and c3 = 1.
In Fig. 24, I show the comparison for a second parameter
choice (B) c1 = 2, c2 = 1.5, and c3 = 2.8. Neither of the two
choices is perfect (one will understand later that a perfect
choice cannot exist). Choice A is somewhat better for small∑

λ β̃λ, but then deviates for large values, whereas choice B
gives an overall good description, but with bigger fluctuations.
In the following, I will take choice A, mainly because B has
only been discovered recently, and all EPOS4 simulations
are based on A. A g-factorization similar to choice A was
employed in Ref. [26].

The next obvious question is: How does the g-factorization
[see Eq. (90)] compare to the exact result, concerning WAB? By
exact result I mean a numerical calculation of Eq. (88), which
at least for pp scattering (A = B = 1) can be easily done, since
the infinite sums converge fast. One recalls that W11 depends
also on the impact parameter, and on the collision energy.

034918-18



PARALLEL SCATTERING, SATURATION, AND … PHYSICAL REVIEW C 109, 034918 (2024)

FIG. 24. Same as Fig. 23, but for the parameter choice (B) c1 =
2, c2 = 1.5, and c3 = 2.8.

In Fig. 25, I show W11(
√

x,
√

x) divided by the trivial factor
xαremn , as a function of x = x+x− (so I use here x+ = x−), for
pp scattering at 13 TeV, for the impact parameters b = 3.5,
2.5, and 1.5 fm. The solid curves refer to the exact results, and
the dotted ones to the calculations based on g-factorization
[see Eq. (90)]. The two methods give very similar results, and
they look reasonable: at very large b, one gets for x = 1 unity,
as it should be, since W11(1, 1) is interpreted as the probability
of no interaction. With decreasing b, the probability of no
interaction decreases.

The situation changes completely when one considers
small values of the impact parameter b. In Fig. 26, I show
W11(

√
x,

√
x) divided by xαremn as a function of x = x+x−,

for impact parameters b = 0.5 and 0 fm. Again the solid
curves refer to the exact results, and the dotted ones to the
calculations based on g-factorization. The results are amazing:
Not only are the curves from the two methods substantially

FIG. 25. W11(
√

x,
√

x)/xαremn as a function of x = x+x−, for pp
scattering at 13 TeV, for the impact parameters b = 3.5, 2.5, and
1.5 fm. The solid curves refer to the exact results, and the dotted
ones to the calculations based on g-factorization [Eq. (90)].

FIG. 26. As Fig. 25, but for impact parameters b = 0.5 and 0 fm.

different, but W11 even becomes negative at large x for the
exact calculations, whereas the g-factorized results converge
towards zero, as it should be.

I will now focus on the large-x behavior, and consider
1 − W11 for x+ = x− = 1. As discussed earlier, 1 − W11(1, 1)
is interpreted as the probability of an inelastic interaction
(summed over all possible numbers of exchanged Pomerons).
I plot 1 − W11(1, 1) as a function of the impact parameter
b, as shown in Fig. 27, where the solid curve refers to the
exact results, and the dotted one to the calculations based on
g-factorization [see Eq. (90)]. The two curves are very close
for large impact parameters but differ for small b (compati-
ble with Figs. 25 and 26). For small b, the curve based on
g-factorization approaches unity, as it should, but the exact
calculation (solid curve) exceeds unity.

D. Conclusion

So one observes some “unphysical behavior” in the sense
that 1 − W11(1, 1), interpreted as the “probability of an in-
elastic scattering”, exceeds unity at small impact parameter
b, or the other way around, the quantity W11(1, 1), interpreted
as “probability of no interaction”, becomes negative. This is

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5
  impact parameter b (fm)

  1
-W

11
(1

,1
)

 E =  13000 GeV

EPOS4

FIG. 27. 1 − W11(1, 1) as a function of b, for pp scattering at
13 TeV. The solid curve refers to the exact result, and the dotted one
to the calculations based on g-factorization [see Eq. (90)].
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what I refer to as the “sign problem”. Imposing g-factorization
[see Eq. (90)] provides an excellent approximation to the exact
solution at large impact parameter, but deviates at small b by
correcting the sign problem. Therefore, it is a “regularization”
(which fixes a problem) rather than a simple approximation.

Let me summarize this section (containing a large amount
of information):

(i) One generalizes the Gribov-Regge (GR) S-matrix
approach, to include energy-momentum sharing
(GR+).

(ii) One writes an expression for the inelastic nucleus-
nucleus cross section σ AB

in summing over all possible
numbers of cut and uncut Pomerons for each
nucleon-nucleon pair, integrating over all Pomeron
momenta, imposing strict energy-momentum shar-
ing. The elementary object representing a single
Pomeron is G (cut T-matrix element).

(iii) One proves the validity of the AGK theorem, which
is an extremely important issue, since it allows one
to deduce binary scaling in AA scattering and factor-
ization in pp scattering.

(iv) From the expression for σ AB
in , one deduces an

equation 1 = ∑
{mk}

∫
dXABP, which allows the in-

terpretation of

P =
AB∏

k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB({x+

i }, {x−
j }) (95)

to be the probability of the “configuration” K =
{{mk}, {x±

kμ
}}, representing mk cut Pomerons per

pair k, with light-cone momentum fractions x±
kμ

.
This is very important since it allows Monte Carlo
applications perfectly compatible with the theoreti-
cal S-matrix-based formulas. But one has to prove
WAB � 0.

(v) The computation of WAB is challenging due to
a very high-dimensional nonseparable integra-
tion. Introducing a particular (and well-justified)
parametrization of the x± dependence of G as∑Npar

N=1 αN (x+x−)βN , the integration can be done, and
one deduces an analytic formula for WAB.

(vi) WAB is still a complex expression, given as∑
{rNk} · · · , which means summing indices rNk (from

0 to ∞), with 1 � N � 4 and with 1 � k � AB.
Doing a “small” manipulation (let me call it “reg-
ularization”), the sums can be done, one gets a
simple product of exponentials, and, most impor-
tantly, WAB � 0, as it should be.

(vii) For pp scattering, the regularized results and the
exact results can be shown to be identical, for
small values of the remnant momentum fractions x±
(1 minus the sum of the Pomeron momentum frac-
tions) and always for large impact parameters.

(viii) But for small impact parameter, for large x±, and
in particular for x± = 1, the value of W11 becomes
negative. And 1 − W11, to be interpreted as the prob-
ability of an inelastic interaction, exceeds unity.
Here, the regularized results deviate from the ex-

act ones, since for the former one gets strictly 1 −
W11 = 1 for small impact parameters.

Imposing this regularization seems to solve the problem of
negative probabilities, but also indicates that there still is
something missing, and the theoretical framework is not yet
complete. This will be discussed in the next section.

VII. AGK VIOLATION AND DEFORMATION FUNCTIONS
IN THE REGULARIZED THEORY

In the last section, I developed the parallel scattering
S-matrix approach for heavy-ion scattering, with energy-
momentum sharing, the latter being crucial for any realistic
application. I could prove the validity of the AGK theorem,
which is an essential property, the condition for binary scaling
and factorization. An expression [see Eq. (81)]

P(K ) =
AB∏

k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB({x+

i }, {x−
j }) (96)

could be derived, to be interpreted as a probability law for par-
ticular multi-Pomeron configurations K = {{mk}, {x±

kμ
}}. The

WAB term turned out to be negative, for certain values of the
arguments, which is unphysical. A “regularization” allowed
one to solve this problem, and all WAB (and the P’s) are
finally non-negative. In addition, this regularization changes
σ AB

in only little compared to the exact calculation (at least for
A = B = 1).

A. AGK theorem in the regularized approach

One has the impression that after the regularization the
problem is solved, but before coming to this conclusion, at
least the (very important) AGK theorem has to be checked.

Based on the (reestablished) probability interpretation of
the P(K ) expressions, one may generate corresponding con-
figurations, and assuming

G = GQCD (97)

with GQCD being discussed in detail in Ref. [7] [see also
Fig. 19 and Eq. (48)], one may generate partons, and employ-
ing the EPOS method to translate partons into strings and then
hadrons (as well discussed in Ref. [7]), one finally produces a
final state of hadrons. This allows the computation of inclusive
cross sections with respect to the transverse momenta of par-
tons or of hadrons. But I will first consider the inclusive cross
section with respect to the light-cone momentum fractions x±
of the Pomerons, obtained from P(K ) defined in Eq. (96) by
summing over all {mk} and an integrating over bAB and {x±

kμ
},

and by adding a factor

AB∑
k′=1

mk′∑
μ′=1

δ(x+ − x+
k′μ′ )δ(x− − x−

k′μ′ )dx+dx− (98)

[see Eqs. (54) and (55)]. One gets

d2σ AB
incl

dx+dx− =
AB∑

k′=1

∑
{mk}�=0

mk′∑
μ′=1

∫
dbAB

∫
dXAB

× {P(K )δ(x+ − x+
k′μ′ )δ(x− − x−

k′μ′ )}, (99)
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FIG. 28. RAGK as a function of the pt of partons for minimum
bias PbPb and pp scatterings at 5.02 TeV.

where
∫

dXAB represents the integration over {x±
kμ

} [see
Eq. (72)], and

∫
dbAB, defined in Eqs. (40) and (41), integrates

over the impact parameter and the transverse coordinates bA
i

and bB
j of projectile and target nucleons. The weight P is

given in Eq. (96), with WAB from Eq. (91), and with the
arguments {x+

i }, {x−
j } of WAB from Eq. (80). Equation (99) can

be evaluated numerically, based on Monte Carlo simulations
using Markov chains [5].

Let me make some checks. The “regularization” affects
σ AB

in very little, but this is not necessarily true for other quanti-
ties, and most important is the validity of AGK theorem. Does
it still hold in the regularized theory? Validity of the AGK
theorem means that inclusive cross sections in the full nuclear
(A+B) scattering is AB times the result for a single Pomeron,

dσ AB
incl

dx+dx− = AB × dσ
single Pom
incl

dx+dx− (100)

[see Eq. (64) and Fig. 21]. But since for a given x± distri-
bution, and knowing the structure of a Pomeron (G = GQCD),
one obtains from dσincl/dx+dx− in a unique fashion dσincl/dq
for any single-particle variable q, like for example the trans-
verse momentum pt of partons. So validity of the AGK
theorem implies

dσ AB
incl

d pt
= AB × dσ

single Pom
incl

d pt
. (101)

And this is easy to check: One computes dσ
single Pom
incl /d pt

based on G = GQCD (see Ref. [7]). Then one runs the full
Monte Carlo simulation and computes dσ AB

incl/d pt for mini-
mum bias scatterings. Finally, one computes the ratio

RAGK(pt ) = dσ AB
incl

d pt

/{
AB × dσ

single Pom
incl

d pt

}
. (102)

Validity of the AGK theorem then simply means RAGK(pt ) =
1; everything else means violation of AGK. In Fig. 28, I plot
RAGK for PbPb and for pp at 5.02 TeV, and one sees that in
both cases one is far from unity, so AGK is badly violated, and
the violation is much stronger for PbPb compared to pp, and
it increases with pt . One should keep in mind that one has for
the moment just primary scatterings, no final state effects, and

0

0.25

0.5

0.75
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10 15 20 25 30 35 40 45 50
 transv. momentum pt (GeV/c)
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Pb
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EPOS4
E = 5.02 TeV

FIG. 29. RPbPb as a function of the pt of partons for minimum
bias PbPb scatterings at 5.02 TeV.

one expects therefore at least at large pt a value of RAGK equal
to unity. The commonly used “nuclear modification factor”
RPbPb is given as the ratio of the two RAGK curves,

RPbPb = RPbPb
AGK/Rpp

AGK, (103)

shown in Fig. 29. The result is way below unity, around 0.4 at
50 GeV/c, and it decreases with pt . As a side remark: Usually
RPbPb is considered for given centrality classes, and the ratio is

computed as dσ AB
incl/d pt/{Ncoll × dσ

single Pom
incl /d pt }}, but Ncoll

is not a measurable quantity, whereas rescaling with AB is
well defined. The PbPb result at 5.02 TeV is just an example;
similar results can be found for many different systems at
many different energies. The effect increases with increasing
nuclear mass and with energy.

B. Deformation functions

So one has clearly a problem. RPbPb is not as it should
be, and this is a consequence of the violation of the AGK
theorem, with RAGK < 1, actually substantially less than unity.
As mentioned above, the pt distributions can be derived from
x± distributions dσ AB

incl/dx+dx−. Validity of AGK would mean

RAGK(x+, x−) = dσ AB
incl

dx+dx−

/{
AB × dσ

single Pom
incl

dx+dx−

}
= 1,

(104)

and this is what one needs, to have RAGK(pt ) = 1. The latter
is expected for large pt , which corresponds to large values
of x+x−. In the following, I will investigate how the x± de-
pendence of dσ AB

incl/dx+dx− changes (gets “deformed”) with
respect to the reference curve for a single Pomeron, so I define
the ratio of the normalized distributions,

Rdeform(x+, x−)

=
{

1

σ AB
incl

dσ AB
incl

dx+dx−

}/{
1

dσ
single Pom
incl

dσ
single Pom
incl

dx+dx−

}
, (105)

referred to as the “deformation function”. It is useful to define
the Pomeron squared energy fraction xPE and the Pomeron
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FIG. 30. Rdeform(xPE ) as a function of xPE for PbPb (central,
0–5%) and pp (event class 16–20 Pomerons) scatterings at 5.02 TeV.

rapidity yPE as

xPE = x+x− = M2
Pom

s
, yPE = 0.5 ln

x+

x− . (106)

The quantity MPom is the transverse mass of the Pomeron. The
corresponding distributions (for σ AB

incl and σ
single Pom
incl ) are

dσincl

dxPEdyPE
= J × dσincl

dx+dx− , (107)

with J being the corresponding Jacobian determinant. This
defines Rdeform(xPE, yPE) as the corresponding ratio. The
Pomeron rapidity yPE turns out to be close to zero, so one
usually integrates over yPE, which gives (again for σ AB

incl and
σ

single Pom
incl ) the distribution dσincl/dxPE, and the ratio of the

A+B cross section over the single Pomeron one provides,
Rdeform(xPE).

In Fig. 30, I show results for Rdeform(xPE) in PbPb (central,
0–5%) and pp (event class 16–20 Pomerons) scatterings at
5.02 TeV. These curves should be unity, but they are far from
that. At large xPE, the ratios are much smaller than unity,
whereas they exceed unity at small xPE. Many simulations
were done to compute Rdeform(xPE) for different energies and
systems; see Fig. 31, where I show the results for PbPb at
5.02 TeV, XeXe at 5.44 TeV, AuAu at 0.2 TeV (centralities 0–
5%, 5–10%, 10–20%, 30–40%, 50–60%, 70–80%, 80–90%,
90–100%), and pp at 13 TeV (number of Pomerons: 51–60,
31–40, 21–25, 16–20, 10–15, 5–9, 2–4, 1). In all cases, one
sees a suppression at large xPE, and the effect gets bigger with
increasing event activity. The effect is actually biggest in pp,
for rare events with very large Pomeron numbers (the average
number is around two).

The current status is as follows: Whereas originally one
could prove the validity of AGK, one needed to introduce
a “regularization” to avoid negative probabilities, which in
turn ruined this very important AGK property: for all systems,
energies, and centralities, one gets deformed xPE distributions
with respect to the reference distribution of a single Pomeron,
which leads to AGK violation with respect to xPE, which as
a consequence violates AGK with respect to pt , which finally
leads to a violation of binary scaling in AA scattering. It also
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FIG. 31. Rdeform(xPE ) as a function of xPE for different systems,
different energies (in TeV), different event classes “Mi” (M1 =
highest and M8 = lowest multiplicity). See text.

leads to a violation of factorization in pp, but this requires in
addition to consider the internal structure of G.

So at the heart of all these problems are the “deformed”
x± or xPE distributions. In the following, I will try to better
understand and eventually parametrize these deformations, as
a first step towards a solution. Let me consider in AA collisions
(including pp as a special case) a particular multi-Pomeron
configurations K = {{mk}, {x±

kμ
}}, with mk cut Pomerons per

nucleon-nucleon pair k, with Pomeron light-cone momentum
fractions x±

kμ
. And let me consider a particular Pomeron,

connected to projectile nucleon i and target nucleon j (see
Fig. 32). In the configuration K , there might be other
Pomerons, connected to one (or both) of these nucleons. The
corresponding Pomeron-nucleon connections are marked as
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i

FIG. 32. A Pomeron connected to projectile nucleon i and target
nucleon j, together with other Pomerons connected to one (or both)
of these nucleons.
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red and blue dots. It is obvious that the additional Pomerons
connected to the same nucleons i and j compete with each
other; they have to share the initial energy-momentum of the
two nucleons. The more Pomerons are connected, the less
energy is available for one particular Pomeron. To quantify
this statement, I define the “connection number”

Nconn = NP + NT

2
, (108)

with NP being the number of Pomerons connected to i, and
with NT being the number of Pomerons connected to j (the
variable Nconn corresponds to half of the number of red and
blue points in Fig. 32).

In the following, I will discuss the effect of energy sharing
related to the connection number. One wants to understand the
dependence of the x± distributions on the connection number
Nconn, so rather than Eq. (99), I will compute

d2σ
AB (Nconn )
incl

dx+dx− =
AB∑

k′=1

∑
{mk}�=0

mk′∑
μ′=1

δ
Nconn
Nconn (k′,μ′ )

∫
dbAB

∫
dXAB

× {P(K )δ(x+ − x+
k′μ′ )δ(x− − x−

k′μ′ )}, (109)

where δb
a is the Kronecker delta. So I only consider Pomerons

k′, μ′ with connection number Nconn(k′, μ′) equal to Nconn.
Equation (109) can be easily evaluated numerically, based on
Monte Carlo simulations.

Although the above method to compute the inclusive x±
cross sections for given Nconn is perfectly doable, I proceed
somewhat differently. I define event classes (centrality in AA
scattering, number of Pomerons in pp), and then compute the
average values of the cross sections d2σ AB

incl/dxPE and Nconn

per event class. This allows to compute and then investigate
Rdeform(xPE) for particular event classes, with the associated
mean Nconn, in different collision systems at various energies.
Studying the corresponding plots, one realizes that all curves
Rdeform(xPE) can be parametrized in the following way. One
first defines

w = ln(Rdeform )/20,

u = − ln(xPE)/20, (110)

and then uses

v = |u − a1|/0.5,

w = a2 − va3 a4,

if (u > a1)w = max(0,w),

w = max(a5,w). (111)

In Fig. 33, I plot Rdeform(xPE) as a function of xPE, for PbPb at
5.02 TeV, for the centralities M1 to M8, i.e., 0–5%, 5–10%,
10–20%, 30–40%, 50–60%, 70–80%, 80–90%, 90–100%.
The red solid curves refer to the simulated results, the black
dotted ones to the parameterized curves.

In Table II, I report the values of 〈Nconn〉 for the different
centrality classes, as well as the values for the parameters.
Somewhat unexpectedly, the deformations do not change
much with centrality in the range 0–20% (M1–M3), explained
by a correspondingly little change in 〈Nconn〉. As a side remark,
the average number of Pomerons or the average number of
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FIG. 33. Rdeform(xPE ) as a function of xPE for PbPb at 5.02 TeV,
for the centralities M1 to M8. See text.

collisions do change considerably from M3 to M1, but not the
connection number, and it is the latter that counts concerning
energy sharing.

Tables like Table II are considered to define the Nconn de-
pendence of Rdeform(xPE) for a given system at a given energy,
first for the Nconn values in the table, but also for arbitrary
values via interpolation or extrapolation.

At this point one should discuss some important details:
In order to compute Rdeform(xPE), one needs to do simula-
tions based on the probability law in Eq. (96), and to do so
one needs to know the single Pomeron function G(x+, x−),
which Eq. (96) is based upon. As discussed in Sec. VI, and
actually needed to derive the final formulas for the laws, one

TABLE II. Rdeform parameters for PbPb at 5.02 TeV. See text.

Class 〈Nconn〉 a1 a2 a3 a4 a5

M1 7.69 0.49 0.076 2.28 0.38 −0.15
M2 7.68 0.49 0.076 2.28 0.38 −0.15
M3 7.63 0.49 0.076 2.28 0.38 −0.14
M4 7.25 0.49 0.075 2.26 0.36 −0.13
M5 6.12 0.47 0.067 2.12 0.33 −0.12
M6 4.18 0.45 0.054 2.08 0.26 −0.11
M7 3.23 0.44 0.046 2.00 0.22 −0.10
M8 2.21 0.42 0.040 1.90 0.20 −0.07
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FIG. 34. Rdeform(xPE ) as a function of xPE for XeXe at 5.44 TeV,
for the centralities M1 to M8. See text.

parametrizes the x± dependence of G as [see Eq. (84)]

G(x+, x−, s, b) =
Npar∑
N=1

αN (x+x−)βN , (112)

inspired by asymptotic form of T-matrices (see Appendix A).
I argued that this form provides an excellent fit to numerically
computed expressions of GQCD, based on pQCD, discussed in
detail in Ref. [7]. However, in the present work, one does not
require G = GQCD anymore—it is just a starting point—and
one is free to change parameters to get an appropriate behavior
of elementary quantities as total and elastic cross sections.
At this point, one does not need (yet) to specify the internal
structure of G (the relation between G and GQCD). One only
needs to know the parametric form [Eq. (112)] of G; this is
enough to compute the deformations.

I now continue to show the results concerning the simula-
tion and parametrization of Rdeform(xPE) for other systems.

In Fig. 34, I present results for XeXe at 5.44 TeV, for the
centralities M1 to M8, i.e., 0–5%, 5–10%, 10–20%, 30–40%,
50–60%, 70–80%, 80–90%, 90–100%. The red solid curves
refer to the simulated results, the black dotted ones to the
parametrized curves. These results are very similar to the 5.02
TeV PbPb ones, and also the table corresponding to Table II
is almost identical. Also here, the deformations (and the Nconn

values) vary little with centrality.
In Fig. 35, I show results for AuAu at 200 GeV, for the

centralities M1 to M8, i.e., 0–5%, 5–10%, 10–20%, 30–40%,
50–60%, 70–80%, 80–90%, 90–100%. As already observed
at higher energies, the deformations are as well varying only
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FIG. 35. Rdeform(xPE ) as a function of xPE for AuAu at 200 GeV,
for the centralities M1 to M8. See text.

slowly with centrality. Here, the values for 〈Nconn〉 evolve
between 1 (M8) and 5 (M1). Obviously the covered xPE range
is smaller because the collision energy is smaller.

In Fig. 36, I finally show results for pp at 13 TeV, where the
different event classes M1–M8 refer to ranges in the number
of Pomerons: 51–60, 31–40, 21–25, 16–20, 10–15, 5–9, 2–4,
1. Contrary to the heavy-ion results, the values for 〈Nconn〉 vary
strongly: they go from unity up to 28.5. And correspondingly
the deformations are huge. This will have important conse-
quences, concerning measurable observables.

C. Conclusions

Let me summarize this section.

(i) Reminder: Validity of the AGK theorem means in-
clusive cross sections of collisions of nuclei of mass
numbers A and B are equal to AB times the cross sec-
tion of a single Pomeron exchange. The most “basic”
inclusive cross section is the one with respect to the
variables x± (or xPE and yPE); everything else can be
derived from this.

(ii) As a first test of the “regularized theory”, I check
the validity of AGK. Doing a PbPb simulation at
5.02 TeV, one finds that AGK fails badly, and indeed
also binary scaling does not work at all.

(iii) To understand the problem, I study the ratio of in-
clusive cross sections with respect to xPE for A+B
scattering divided by the single Pomerons result, the
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FIG. 36. Rdeform(xPE ) as a function of xPE for pp at 13 TeV, for
the event classes M1 to M8. See text.

latter being the reference curve. Both cross sections
are normalized. The ratio is called the “deformation
function” Rdeform(xPE).

(iv) Many simulations are done, for different systems
and energies. In all cases, Rdeform(xPE) deviates from
unity; one sees always a suppression at large xPE, and
the effect gets bigger with increasing event activity.

(v) I define for a given Pomeron a quantity called connec-
tion number Nconn, counting the number of Pomerons
connected to the same projectile or target, strongly
correlated with the deformations: large Nconn means
large deformation (due to energy sharing). The vari-
able Nconn represents the “environment” of a given
Pomeron; it states if the Pomeron is isolated or com-
petes with others with respect to energy-momentum
sharing.

(vi) I study the dependence of the deformations on 〈Nconn〉
for different event classes, and one finds simple
parametrizations for Rdeform(xPE) in terms of five
Nconn-dependent parameters. This allows one to define
Rdeform(xPE) for arbitrary Nconn values via interpola-
tion and extrapolation.

So deformations Rdeform(xPE) �= 1 represent the problem
(AGK violation), but at least one understands the origin of
the problem (energy-momentum sharing), and one is able
to parametrize it. This will be useful for the next step: the
solution of the problem.

FIG. 37. A single cut Pomeron.

VIII. THE SOLUTION VIA SATURATION
AND GENERALIZED AGK THEOREM

One has seen in Sec. VII that the validity of the AGK
theorem is badly violated, with respect to the variable xPE.
There is nothing one can do about it; it is an unavoidable con-
sequence of energy-momentum sharing, and the effect can be
quantified in terms deformation functions Rdeform(x+, x−) [in
practice Rdeform(xPE)], it being the ratio of A+B inclusive cross
sections over the single Pomeron one, using normalized distri-
butions. Here validity of AGK would mean Rdeform(x+, x−) =
1, which is not at all observed; one has always a suppression
at large xPE = x+x−. This invalidity of AGK has important
consequences, like the violation of binary scaling in nuclear
collisions.

Let me recall that by AGK theorem I mean some extension
of the original one, in the sense that an inclusive cross section
with respect to some variable q in A+B scattering is equal to
AB times the corresponding single Pomeron cross section.

A. The role of saturation

But does one really need AGK for inclusive cross sections
with respect to the variables x± (or xPE)? Not necessarily: one
expects binary scaling to be valid not always, but only for
high-pt processes, and the variable pt is related to x±, but
how precisely depends on the internal structure of G. One
remembers that the single cut Pomeron G is the fundamental
building block of the multiple scattering formalism; in the
graphs I use simply a vertical line (in cyan) as shown in
Fig. 37, where the vertical black dashed line represents the
cut. All the multiple scattering formulas depend on G, but not
on the internal structure. Only when it comes to statements
concerning, for example, pt of produced partons does one
need to specify how G is expressed in terms of QCD diagrams.
So far I am assuming

G = GQCD, (113)

where GQCD is essentially a DGLAP parton ladder, discussed
in detail in Ref. [7] [see also Fig. 19 and the discussion before
Eq. (48)]. But the assumption in Eq. (113) is obviously wrong,
because it leads to a strong violation of binary scaling at large
pt , as shown in Sec. VII.

There is another serious problem with Eq. (113): As dis-
cussed in detail in Ref. [7], the essential part of GQCD is a cut
parton ladder, based on DGLAP parton evolutions. But this
is certainly not the full story: With increasing energy, partons
with very small momentum fractions x � 1 become increas-
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FIG. 38. Cut diagram (a) with nonlinear effects via triple
Pomeron vertices and (b) with the nonlinear effects (inside the red
circles) “summarized” in the form of saturation scales, which replace
these nonlinear parts.

ingly important, since the parton density becomes large, and
therefore the linear DGLAP evolution scheme is not valid
anymore, and nonlinear evolution takes over, considering ex-
plicitly gluon-gluon fusion. These phenomena are known as
“saturation” [11–24].

At least for scatterings carrying a large value of x+x−, one
expects “nonlinear effects”, which means that two ladders,
which evolve first independently and in parallel, finally fuse.
And only after that, the (linear) DGLAP evolution is realized.
In the “Pomeron language”, this corresponds to diagrams with
triple (and more) Pomeron vertices, as sketched in Fig. 38(a).
Such nonlinear effects lead to strong destructive interference
at low transverse momentum (pt ), which may be summarized
in terms of a saturation scale [12,13]. This suggests treating
these “saturation phenomena” not explicitly, but by introduc-
ing saturation scales as the lower limits of the virtualities for
the DGLAP evolutions, as sketched in Fig. 38(b). Also in
Refs. [27,28] saturation scales “summarize” nonlinear effects,
but based on the assumption that the partons exactly cover
the transverse size of the nucleon (or nucleus). In the present
paper, the criterion is quite different, as discussed below.

So one has two problems—a wrong association G = GQCD

and a missing treatment of saturation—but fortunately, the
two problems are connected, and there is an amazingly simple
solution based on saturation scales that solves both problems.

B. The solution

Instead of the “naive” assumption G = GQCD, one postu-
lates

G(x+, x−) = n

Rdeform(x+, x−)
GQCD

(
Q2

sat, x+, x−), (114)

such that G itself does not depend on the environment. By
environment I mean, for a given Pomeron in a given configura-
tion of multiple Pomeron exchanges, the connections of other
Pomerons to the same projectile and target nucleons as the
given Pomeron. The environment is here quantified in terms
of Nconn. The quantity Rdeform is the Nconn-dependent deforma-
tion function discussed in Sec. VII, and n is a constant, not

FIG. 39. The saturation scale Q2
sat as a function of xPE = x+x−,

for several NPom event classes (from top to bottom, 10–15, 5–9, and
2–4 Pomerons).

depending on xPE. As discussed earlier, one first parametrizes
G as in Eq. (84), with the parameters being fixed by comparing
simulation results to elementary experimental data, and then
uses Eq. (114) to determine Q2

sat. In this way, Q2
sat depends on

Nconn and on x±, as does Rdeform:

Rdeform = Rdeform(Nconn, x+, x−), (115)

Q2
sat = Q2

sat (Nconn, x+, x−), (116)

but G independent of Nconn. (117)

The Nconn dependence of Q2
sat means that the low virtuality

cutoff for the DGLAP evolutions in GQCD is not a constant, but
its value depends on the environment in terms of Nconn and on
the energy of the Pomeron. I will refer to this as “dynamical
saturation scales”.

The fundamental relation in Eq. (114), together with
Eqs. (115)–(117) and in particular the dynamical saturation
scales, will solve the problems related to the AGK theorem,
as will be discussed in the following sections.

To get some idea about the x± dependence of Q2
sat, obtained

from Eq. (114), I show in Fig. 39 results for pp scattering
at 7 TeV, for several event classes defined via the number of
Pomerons, NPom. I also indicate the average values of Nconn for
the three event classes. One sees that 〈Nconn〉 varies consider-
ably between the different classes, and so does Q2

sat.
In Fig. 40, I show results for PbPb at 2.76 TeV. Here, the

variation of the average Nconn values is quite moderate, and
towards central collisions Q2

sat even “saturates” (no variation
anymore). Correspondingly, Q2

sat varies little from semipe-
ripheral towards central events, in particular compared to the
strong variation of Q2

sat with the event activity in pp scattering.

C. Dynamical saturation scales

In order to understand how these dynamical satura-
tion scales work, let me investigate the inclusive cross
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FIG. 40. The saturation scale Q2
sat as a function of xPE, for several

event classes (from top to bottom 5–10%, 10–20%, 30–40%, 50–
60% centrality).

section

d2σ
AB (Nconn )
incl

dx+dx− =
AB∑

k′=1

∑
{mk}�=0

mk′∑
μ′=1

δ
Nconn
Nconn (k′,μ′ )

∫
dbAB

∫
dXAB

× {P(K )δ(x+ − x+
k′μ′ )δ(x− − x−

k′μ′ )} (118)

[see Eqs. (109) and (40), (41), (72), (81), and (91)]. Here,
K refers to a multi-Pomeron configuration K = {{mk}, {x±

kμ
}},

with mk cut Pomerons per nucleon-nucleon pair k and with
Pomeron light-cone momentum fractions x±

kμ
. In the case of

a single Pomeron in pp scattering, the expression simplifies
enormously, and one gets

dσ
single Pom
incl

dx+dx− =
∫

d2b G(x+, x−, b) W11
(
(1 − x+)(1 − x−)

)
.

(119)

Employing Eqs. (114)–(117), using Nconn = 1 and Rdeform =
1, this expression may be written as∫

d2b GQCD
(
Q2

sat (1, x+, x−), x+, x−)
× W11((1 − x+)(1 − x−)). (120)

Since the saturation scale is playing a crucial role in the
formalism, I write the above result for a single Pomeron pp
scattering as

dσ
single Pom
incl

dx+dx− = dσ
single Pom
incl

dx+dx−
[
Q2

sat (1, x+, x−)
]
, (121)

with the general definition (for any f )

dσ
single Pom
incl

dx+dx− [ f (x+, x−)]

=
∫

d2b GQCD

(
f (x+, x−)︸ ︷︷ ︸

sat. scale

, x+, x−
)

× W11((1 − x+)(1 − x−)). (122)

Let me consider the general case d2σ
AB (1)
incl /dx+dx−, i.e.,

an A+B scattering with Nconn = 1, where one has only

isolated Pomerons, and there is never more than one Pomeron
connected to a projectile and a target nucleon, for all nonzero
contributions. Concerning

∫
dXAB{· · · }, for given k′ and μ′,

the x±
k′μ′ integration is trivial thanks to the δ functions, and

one gets a factor

G(x+, x−, bk′ ) W11((1 − x+)(1 − x−)), (123)

multiplied by P(K ′), where K ′ is simply the configuration
K minus the μ′th Pomeron of pair k′ (with actually μ′ = 1,
always). The quantity W is defined in Eq. (91). Although
usually not written explicitly, G depends also on the impact
parameter, in this case bk′ = |b + bA

i′ − bB
j′ |, where i′ = π (k′)

and j′ = τ (k′) are the projectile and target nucleons, respec-
tively, associated to pair k′. The term P(K ′) does not depend
on x+ and x−, because there are no other Pomerons connected
to i′ and j′. The term P(K ′) does also not depend on bA

i′ and
bB

j′ . Let me define
∫

dX ′
AB the integration except for the x±

k′μ′

integrations (already done), and
∫

db′
AB the impact parameter

integrations except for d2bA
i′ TA(bA

i′ )
∫

d2bB
j′ TB(bB

j′ ). Then the
integrations

∫
db′

AB

∫
dX ′

AB P(K ′) provide a factor indepen-
dent of x+, x−, bA

i′ , and bB
j′ . So finally, for the case Nconn = 1,

one finds

d2σ
AB (1)
incl

dx+dx− ∝
AB∑

k′=1

∑
{mk}�=0

δ
Nconn
Nconn (k′,1)

×
∫

d2bA
i′ TA

(
bA

i′
) ∫

d2bB
j′ TB

(
bB

j′
)

×
∫

d2b G
(
x+, x−,

∣∣b + bA
i′ − bB

j′
∣∣)

× W11((1 − x+)(1 − x−)), (124)

where the symbol “∝” means proportional. A variable change
as �b′ = �b + �bA

i′ − �bB
j′ , and then replacing b′ by b, and us-

ing
∫

d2bA
i′ TA(bA

i′ ) = 1 and
∫

d2bB
j′ TB(bB

j′ ) = 1, allows one to
write

d2σ
AB (1)
incl

dx+dx− ∝
AB∑

k′=1

∑
{mk}�=0

δ
Nconn
Nconn (k′,1)

∫
d2b G(x+, x−, b)

× W11((1 − x+)(1 − x−)), (125)

which is up to a factor equal to∫
d2b G(x+, x−, b) W11((1 − x+)(1 − x−)). (126)

Employing Eqs. (114)–(117), using Nconn = 1 and Rdeform =
1, this expression becomes identical to what one found for
dσ

single Pom
incl /dx+dx− [see Eqs. (121) and (122)], and one may

write

d2σ
AB (1)
incl

dx+dx− ∝ dσ
single Pom
incl

dx+dx−
[
Q2

sat (1, x+, x−)
]
. (127)

So even in nuclear collisions, when one restricts oneself to
Nconn = 1, one recovers the cross section of a single isolated
Pomeron.
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In the case of Nconn > 1, one has [see Eqs. (105) and (119)]

d2σ
AB (Nconn )
incl

dx+dx− ∝ Rdeform(Nconn, x+, x−)
dσ

single Pom
incl

dx+dx− (128)

= Rdeform(Nconn, x+, x−)
∫

d2b G(x+, x−, b)

×W11((1 − x+)(1 − x−)). (129)

One may now use Eqs. (114)–(117), so the rhs of Eq. (129) is
given as

Rdeform(Nconn, x+, x−)∫
d2b

n

Rdeform(Nconn, x+, x−)

× GQCD
(
Q2

sat (Nconn, x+, x−), x+, x−)
×W11((1 − x+)(1 − x−)). (130)

Here, Rdeform(Nconn, x+, x−) cancels out. Note that this quan-
tity does not depend on b. So one finds

d2σ
AB (Nconn )
incl

dx+dx− ∝
∫

d2b GQCD
(
Q2

sat (Nconn, x+, x−), x+, x−)
× W11((1 − x+)(1 − x−)), (131)

and using Eq. (122), one gets

d2σ
AB (Nconn )
incl

dx+dx− ∝ dσ
single Pom
incl

dx+dx−
[
Q2

sat (Nconn, x+, x−)
]
, (132)

where the rhs is again the single Pomeron (pp scattering) ex-
pression, just with Q2

sat (Ncoll, x+, x−) as saturation scale. The
crucial point of Eq. (132) is the fact that, thanks to Eq. (114)
and since G does not depend on Nconn, the Rdeform expressions
disappear. So I have shown the following:

(i) For A+B scattering as well as for pp scattering,
even with large Nconn, the inclusive cross sections
with respect to x± are always expressed in terms
of single Pomeron cross sections, depending on an
Nconn-dependent saturation scale (“dynamical satura-
tion scale”).

The Nconn dependence of x± distributions is guided by the
saturation scale, and nothing else.

D. Generalized AGK theorem

Equations (132) and (122) tell us that also in A+B scatter-
ings, the partonic structure is given by GQCD, and therefore
also the pt distribution of the outgoing partons is encoded in
the single Pomeron expression GQCD, for any Nconn. Only the
saturation scales Q2

sat depend on Nconn, and these saturation
scales suppress small-pt particle production, but should not
affect high-pt results, as sketched in Fig. 41. To be a bit
more quantitative: As discussed in detail in Sec. 3 of Ref. [7],
in the case of pp scattering with a single Pomeron (of the
form GQCD) involved, one can deduce an inclusive dijet cross

FIG. 41. Sketch of the suppression of low-pt partons with in-
creasing Q2

sat for a single Pomeron, where the red line corresponds
to some minimum value Q2

sat min.

section of the form

E3E4
d6σ

single Pom
incl

d3 p3d3 p4

[
Q2

0

]
=
∑
klmn

∫∫
dx+dx− f k

PDF

(
x+, Q2

0, μ
2
F

)
f l
PDF

(
x−, Q2

0, μ
2
F

)

× 1

32sπ2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3−p4)

1

1 + δmn
,

(133)

with explicit expressions for the PDFs given in terms of
elements (or modules) of GQCD, like vertices and evolution
functions. I indicate explicitly the dependence on the low
virtuality cutoff Q2

0. The differential cross section in Eq. (133)
and the one in Eq. (132) refer to the same cross section
σ

single Pom
incl , just in Eq. (133) one integrates over x±, whereas

in Eq. (132) the momenta p3 and p4 are integrated out. These
momenta refer to the outgoing partons, from the Born process,
and μ2

F is the factorization scale, being of the same order
as the outgoing momenta. Assuming f k

PDF(x+, Q2
0, μ

2
F) to be

independent of Q2
0 for μ2

F > Q2
0, then the only effect of Q2

0
is a reduction of particles with p2

t below Q2
0. In the case of

A+B scattering for given Nconn [see Eq. (132)], one has (up
to a factor) the same formula, just Q2

0 has to be replaced
by Q2

sat (Ncoll, x+, x−), with correspondingly a reduction of
particle production below this scale. The minimum bias (MB)
inclusive cross section may be written as a superposition of the
different contribution for given values of Nconn with weights
w(Nconn ),

E3E4
d6σ

AB (MB)
incl

d3 p3d3 p4
∝

∞∑
Nconn=1

w(Nconn ) E3E4

× d6σ
single Pom
incl

d3 p3d3 p4

[
Q2

sat (Nconn, x+, x−)
]
.

(134)

If one is only interested in p2
t values bigger than

the saturation scales, then one may replace the satura-
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FIG. 42. The ratio RAGK (see text) for minimum bias PbPb colli-
sions at 5.02 TeV.

tion scales with some constant value, say Q2
0, and us-

ing
∑∞

Nconn=1 w(Nconn ) = 1, one finds the “generalized AGK
theorem”,

E3E4
d6σ

AB (MB)
incl

d3 p3d3 p4
= AB × E3E4

d6σ
single Pom
incl

d3 p3d3 p4

[
Q2

0

]
(at large pt ),

(135)

where the “normalization constant” n in Eq. (114) has been
used to ensure the factor AB. The term “large pt ” means p2

t
values bigger than all the “relevant” Q2

sat values (with non-
negligible weights w(Nconn )).

In the following, it will be shown that AGK really works
in practice. One defines pt to be the transverse momentum of
particle 3 in Eq. (135), and one integrates over the longitudinal
momentum of particle 3 and the three momentum components
of particle 4. Then one computes the ratio of the full Monte
Carlo simulation over AB times the single Pomeron distribu-
tion,

RAGK = dσ
AB (MB)
incl

d pt

∣∣∣∣∣
Full MC

/{
AB

dσ
single Pom
incl

d pt

[
Q2

0

]}
,

(136)

showing the result in Fig. 42. The single Pomeron result is
calculated numerically (without Monte Carlo). The simula-
tions are done for minimum bias PbPb collisions at 5.02 TeV.
One can see that the ratio is close to unity for large values
of pt , whereas low pt values are suppressed. In other words,
AGK holds at high pt . Not shown here, but also in pp, the full
simulation over the single Pomeron reference curve is close to
unity at large pt and one gets therefore RAA ≈ 1.

E. Conclusion

Let me summarize this (crucial) section:

(i) It is first recalled that the validity of the AGK theorem
(needed to get binary scaling) is badly violated, which

manifests itself by Rdeform(x+, x−) �= 1, and one un-
derstands that this is unavoidable.

(ii) It is also recalled that binary scaling is not always
expected, but only at high pt (concerning the outgoing
partons), and that the behavior of pt distributions de-
pends on the internal structure of the single Pomeron
G. So far, I was using G = GQCD, with GQCD (ex-
plained in Ref. [7]) essentially based on DGLAP
evolutions preceding a hard QCD scattering. This as-
sociation seems to be wrong.

(iii) It is pointed out that a well-known feature is com-
pletely missing—saturation—and this problem seems
to be related to the before-mentioned problem of a
wrong association G = GQCD.

(iv) It is proposed to solve both problems, by postulating
the association G = k × GQCD(Q2

sat, x+, x−), with k
being inversely proportional to the deformation func-
tion, which defines a saturation scale Q2

sat, depending
on the “environment” in terms of the Pomeron con-
nection number Nconn, which replaces the virtuality
cutoff Q2

0 usually used in DGLAP evolutions. In this
way, one incorporates saturation.

(v) One can prove that for A+B scattering, inclusive cross
sections—with respect to x±—are always expressed
in terms of the single Pomeron cross section, but
depending on an Nconn-dependent saturation scale.

(vi) One can prove that for minimum bias A+B scatter-
ing, the inclusive cross section—with respect to the
transverse momenta of the outgoing partons, for large
transverse momenta—is equal to AB times the one of
the corresponding single Pomeron cross section. One
refers to this as the “generalized AGK theorem”, valid
at high pt , in a scenario with energy sharing.

As a final remark: Within a rigorous parallel scattering
scenario (which seems mandatory), and respecting energy
conservation (which seems mandatory as well), the only way
to not get in contradiction with factorization and binary scal-
ing seems to be the consideration of saturation via G = k ×
GQCD(Q2

sat ) with k being inversely proportional to the de-
formation function. In this sense, parallel scattering, energy
conservation, saturation, and factorization (and binary scaling
in A+B) are deeply connected.

IX. HIGH- AND LOW-pt DOMAIN

In Sec. VIII, I have discussed in great detail the
“asymptotic behavior”, i.e., the fact that one recovers in
the new formalism the validity of the AGK theorem at
high transverse momenta, saying that for inclusive cross
sections everything breaks down to the single Pomeron case
(see Fig. 43), although one has in reality many scatterings
happening in parallel.

To compute the inclusive cross section versus pt (of the
outgoing partons), one needs to consider the internal structure
of GQCD, which is discussed in detail in Secs. 2 and 3 of
Ref. [7], where I show that GQCD is given as a sum of several
contributions: There is the “sea-sea” contribution, where one
has a “pseudosoft block” preceding the first perturbative par-
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FIG. 43. The only diagram contributing to inclusive cross sec-
tions in A+B scattering: a single cut Pomeron (multiplied by AB).

ton, as indicated in Fig. 44(a). Here, a sea quark or a gluon
is the first parton entering the parton ladder. The vertices
Fsea represent couplings to the projectile and target nucleons.
Then there is the “val-val” contribution where on both sides
a valence quark is the first parton entering the parton ladder,
as shown in Fig. 44(b). The vertices Fval represent couplings
to the projectile and target nucleons. In both cases, the central
part is a parton ladder based on DGLAP parton evolutions
[3,29,30]. The inelastic processes corresponding to the two
cut diagrams of Fig. 44 are shown in Fig. 45. In addition to
sea-sea and val-val, one has also the mixed contributions “sea-
val” and “val-sea”. In Ref. [7], one finds explicit expressions
for the four cases, expressed in terms of the modules Fsea,
Fval, Epsoft, EQCD, and “Born” (the QCD matrix elements of
the Born process). As shown in Ref. [7], one may rearrange
the integrations such that one may define parton distribution
functions fPDF, corresponding to the sum of two diagrams as
shown in Fig. 46, which allows one to write jet cross sections
as an integral over PDFs and a QCD matrix element [see
Eq. (133)], which amounts to factorization.

FIG. 44. The contributions (a) Gsea-sea
QCD and (b) Gval-val

QCD .

FIG. 45. The two inelastic processes corresponding to the two
cut diagrams of Fig. 44.

I use these PDFs to compute the jet (parton) cross sec-
tion for pp at 13 TeV, using Eq. (133), integrating out the
momentum of the second parton and the azimuthal angle of
the first parton, which finally gives (see Ref. [7])

d2σ

dy d p2
t

=
∑
klmn

∫
dx f k

PDF

(
x1, μ

2
F

)
f l
PDF

(
x2, μ

2
F

)

× πα2
s

s2

{
1

g4

∑̄
|Mkl→mn(s, t )|2

}
1

1+δmn
x1x2

1

x
,

(137)

with x1 = x + pt√
spp

ey, x2 = x1

x

pt√
spp

e−y,

s = x1x2
√

spp, t = −pt x1
√

sppe−y, (138)

with {· · · } being the form in which the squared matrix ele-
ments are usually tabulated, with αs = g2/4π . I define the
parton yield dn/d pt dy as the cross section dσ/dy d p2

t , di-
vided by the inelastic pp cross section, times 2 pt , showing
the result in Fig. 47. In addition to the results based on EPOS
PDFs (red solid line), I show the corresponding curves based
on “The Coordinated Theoretical-Experimental Project on
QCD” (CTEQ) PDFs [31] (green dashed line), the full EPOS
simulation (blue circles), and experimental data from ATLAS
[32] (black triangles). At large values of pt , all the different
distributions agree, whereas at low pt the EPOS Monte Carlo
simulation results (using the full multiple scattering scenario)
are significantly below the PDF results, as expected due to
screening effects.

The possibility of using factorization is extremely useful,
when one is interested in rare processes such as particle pro-
duction at large transverse momentum, and it is very important
that in EPOS4 one recovers factorization at large pt , since it is
a crucial element and its violation would simply disqualify

FIG. 46. The two contributions of the parton distribution func-
tion (a common remnant vertex factor V is not shown).
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FIG. 47. Parton yield dn/d pt dy for pp at 13 TeV. I show results
based on EPOS PDFs (red solid line), CTEQ PDFs (green dashed
line), the full EPOS simulation (blue circles), and experimental data
from ATLAS (black triangles).

the model. However, the majority of all particles are pro-
duced at low pt , and even when one is interested in high-pt

particles, one needs to worry about possible interactions with
the “bulk” of low-pt particles. And here, one needs to em-
ploy the full multiple scattering machinery, and this concerns
pp and nuclear scatterings. Multiple Pomeron configura-
tions are generated using the probability law [see Eqs. (81)
and (91)]

P(K ) =
AB∏

k=1

⎡
⎣ 1

mk!

mk∏
μ=1

Gkμ

⎤
⎦× WAB({x+

i }, {x−
j }), (139)

with Gkμ = G(x+
kμ

, x−
kμ

, s, bk ) [see Eq. (52)] being expressed
in terms of GQCD via the fundamental equation (114), by intro-
ducing dynamical saturation scales, as discussed in Sec. VIII.
In Sec. 3 of Ref. [7], it is explained in detail how to generate
partons, based on the explicit expressions for GQCD, which
will allow to obtain “partonic configurations”, as shown in
Fig. 48 for the example of a collision of two nuclei A and
B, where (for simplicity) each nucleus is composed of two
nucleons. Dark blue lines mark active quarks, red dashed
lines active antiquarks, and light blue thick lines projectile
and target remnants [nucleons minus the active (anti)quarks].
There are two scatterings of sea-sea type, and one of val-sea
type. One considers each incident nucleon as a reservoir of
three valence quarks plus quark-antiquark pairs. The “ob-
jects” which represent the “external legs” of the individual

A

B

ha
dr

on
s

ha
dr

on
s

1 3

4 52

seaseasea

sea sea val
6

FIG. 48. Partonic configuration of two colliding nuclei, each one
composed of two nucleons, with three scatterings (from three cut
Pomerons). Dark blue lines mark active quarks, red dashed lines
active antiquarks, and light blue thick lines projectile and target
remnants. One of the target nucleons is just a spectator.

scatterings are colorwise “white”: quark-antiquark pairs in
most cases as shown in the figure, but one may as well have
quark-diquark pairs, or even antiquark-antidiquark pairs—in
any case, a 3 and a 3̄ color representation.

The transition from partonic configurations (as in Fig. 48)
to strings, based on color flow diagrams, is discussed in detail
in Sec. 4 of Ref. [7]. A short summary will be given in the
following.

Let me for simplicity consider the quark-antiquark option
for the 3 and the 3̄ color representations, and first of all
look at the “sea” cases (on the projectile or the target side)
of Fig. 48. In each case, a quark-antiquark pair is emitted
as final state timelike (TL) parton pair (marked 1, 2, 3, 4,
and 5) and a spacelike (SL) “soft Pomeron” (indicated by a
thick cyan line), which is meant to be similar to the QCD
evolution, but emitting only soft gluons, which one does not
treat explicitly. Then emerging from this soft Pomeron, one
sees a first perturbative SL gluon (another possibility is the
emission of a quark), which initiates the partonic cascade. In
the case of “val”, one also has a quark-antiquark pair as an
external leg, but here first an antiquark is emitted as a TL final
particle (marked 6), plus an SL quark starting the partonic
cascade.

In the case of multiple scattering as in Fig. 48, the projectile
and target remnants remain colorwise white, but they may
change their flavor content during the multiple collision pro-
cess. The quark-antiquark pair “taken out” for a collision (the
“external legs” for the individual collisions), may be u − s̄,
then the remnant for an incident proton has flavor uds. In
addition, the remnants get massive, much more than simply
resonance excitation. One may have remnants with masses of
10 GeV/c2 or more, which contribute significantly to particle
production (at large rapidities).

034918-31



K. WERNER PHYSICAL REVIEW C 109, 034918 (2024)

val

sea

sea

sea

sea

sea

FIG. 49. Configuration colorwise equivalent to the one of
Fig. 48. The outgoing antiquarks are drawn as incoming quarks
(arrows towards vertices).

In the following, I discuss the color flow for a given con-
figuration, for example, the one in Fig. 48. Since the remnants
are by construction white, one does not need to worry about
them; one just considers the rest of the diagram. In addi-
tion, colorwise, the “soft Pomeron” part behaves as a gluon.
Finally, I use the following convention for the SL partons
which are immediately emitted: one uses for the quarks an
array away from the vertex, and for the antiquarks an array
towards the vertex. The diagram equivalent to Fig. 48 is then
the one shown in Fig. 49. Based on Fig. 49, considering
the fact that, in the parton evolution and the Born process,
the gluons are emitted randomly to the right or to the left, I
show in Fig. 50 a possible color flow diagram for the three
scatterings. Horizontal lines refer to TL partons, which later
undergo a timelike cascade, while the vertical lines refer to
spacelike intermediate partons. I added integers just to mark
the different TL partons. For the leftmost scattering, starting
from one end, say “1”, one follows the color flow to “5”, and
then starting from 6 to 10, so one gets two chains: 1-2-3-4-5
and 6-7-8-9-10. The end partons of each chain are always
quarks or antiquarks; the inner partons are gluons. Similar
chains are obtained for the second scattering, 11-12-13-14-15
and 16-17-18-19-20, and for the third scattering, 21-22-23-24
and 25-26-27-28-29.

In the above example, I considered (for simplicity) only
gluons, and no timelike cascade. In general, the situation is
a bit more complicated, as shown in Fig. 51. Here, one of
the gluons emitted in the Born process splits into a gluon
(3), a quark (4), and an antiquark (5). Two gluons emitted
in the SL cascade, split into the partons 9,10 and 12,13. One
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FIG. 50. A possible color flow diagram for the three scatterings
of Fig. 49.
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FIG. 51. A color flow diagram with SL and TL cascades.

again follows the color flow, always starting and ending with a
single arrow, and one identifies the following chains: 1-2-3-4,
then 5-6-7, then 8-9-10-11-12, and finally 13-14.

All these chains of partons will be mapped (in a unique
fashion) to kinky strings, where each parton corresponds to a
kink, and the parton four-momentum defines the kink proper-
ties, as already done in earlier EPOS versions as described in
Ref. [5], where one also discusses the string decay.

X. SECONDARY INTERACTIONS: THE ROLE OF CORE,
CORONA, AND REMNANTS, AT RHIC

AND LHC ENERGIES

The S-matrix part discussed so far concerns “primary scat-
terings”, happening instantaneously at t = 0. As a result,
one obtains multiple Pomeron configurations, which trans-
lates into complex partonic configurations, and eventually
into kinky strings and remnants, as discussed in Sec. IX (for
details see Ref. [7]). String decay traditionally produces string
segments which correspond to hadrons. But one considers the
possibility of having a dense environment, and here the string
segments cannot “evolve” into hadrons. So one uses the term
“prehadrons” for these segments, and they either “fuse” to
produce the core, or become hadrons if they escape the core.
A similar argument is used for excited remnants, which may
decay into hadrons (see Fig. 48), but again this may happen in
a dense area, so one names them prehadrons as well. Based on
these prehadrons from string or remnant decay, a core-corona
procedure will be employed, which allows identifying the
core, which will then be treated as a fluid that evolves and
eventually decays into hadrons, which still may collide with
each other. In the present paper, I focus on PbPb collisions
at 5.02 TeV and AuAu scattering at 200 GeV. In Sec. 3 of
Ref. [8], one shows explicitly partonic configurations (similar
as Fig. 48) but for both LHC and at RHIC energies. They are
similar, but with decreasing energy, it becomes simply more
and more likely that the Pomerons are replaced by purely soft
ones. Also, the Pomerons get less energetic, producing fewer
particles. A dedicated paper on lower RHIC energies is in
preparation.

Let me discuss some more details about core and corona.
Based on the prehadrons from strings and remnants, one
employs a so-called core-corona procedure (introduced in
Ref. [33], updated in Ref. [34]), at some given (early) proper
time τ0, to separate “core prehadrons” from “corona pre-
hadrons”. The former constitute bulk matter and will be
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FIG. 52. The prehadron yield as a function of space-time ra-
pidity, for different centralities in PbPb collisions at 5.02 TeV.
The curves refer to all prehadrons (red solid curve), all core pre-
hadrons (red dotted curve), prehadrons from remnant decay (blue
solid curve), and core prehadrons from remnant decay (blue dotted
curve).

treated via hydrodynamics; the latter become simply hadrons
and propagate with reduced energy (due to the energy loss).
For details, see Sec. 3 of Ref. [8].

In the following, it will be tried to understand the relative
importance of the core part, and of the fraction coming from
remnant decay. In Fig. 52, I show results for different cen-
tralities in PbPb collisions at 5.02 TeV, namely (from top to
bottom), 0–10%, 30–40%, 70–80%, and 80–100% (based on
the distribution of the impact parameter). I plot four different
curves: all prehadrons (red solid curve), all core prehadrons
(red dotted curve), prehadrons from remnant decay (blue solid
curve), and core prehadrons from remnant decay (blue dotted
curve). The remnant contributions show up preferentially at
large rapidities, and in all cases, they do contribute to the core.
Comparing the red solid and dotted curves, one sees that the
core fraction (ratio of dn/dηs of the core contribution over all)
is in all cases substantial: 0.97 for 0–10%, 0.95 for 30–40%,
0.85 for 70–80%, and 0.78 for 80–100%. One also sees that
this “core dominance” extends over a wide rapidity range.

In Fig. 53, I show results for different centralities in AuAu
collisions at 200 GeV. One sees that the core still dominates,
but the core fractions are significantly smaller compared to
PbPb at 5.02 TeV. Since the overall yields decrease with
decreasing energy, the relative importance of the remnant

FIG. 53. Same as Fig. 52, but for AuAu at 200 GeV.

contributions (remnant over all) increases. But the remnant
contribution at central rapidities remains small.

Having identified core prehadrons, one computes the cor-
responding energy-momentum tensor T μν and the flavor flow
vector at some space-time position x at initial proper time
τ = τ0 as

T μν (x) =
∑

i

pμ
i pν

i

p0
i

g(x − xi ) (140)

and

Nμ
q (x) =

∑
i

pμ
i

p0
i

qi g(x − xi ), (141)

with qi ∈ u, d, s being the net flavor content and pi the four-
momentum of prehadron i. The function g is some Gaussian
smoothing kernel (see Ref. [8] for more details). The Lorentz
transformation into the comoving frame provides the energy
density ε and the flow velocity components vi, which will be
used as the initial condition for a hydrodynamical evolution
[34,35]. This is based on the hypothesis that equilibration
happens rapidly and affects essentially the space components
of the energy-momentum tensor.

In Fig. 54, I show the energy density at the initial proper
time τ0 as a function of the transverse coordinate r for dif-
ferent centralities (defined via impact parameter) in PbPb
collisions at 5.02 TeV (upper plot) and in AuAu collisions
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ε
ε

FIG. 54. Energy density at the initial proper time τ0 as a function
of the transverse coordinate r, for an azimuthal angle φ = 0 (red
solid curve) and φ = π/2 (red dotted curve). The blue dashed lines
represent the freeze-out energy density. I show results for different
centralities (defined via impact parameter) in PbPb collisions at
5.02 TeV (upper plot) and in AuAu collisions at 200 GeV (lower
plot).

at 200 GeV (lower plot). The blue dashed lines represent
the freeze-out energy density. For each event, one determines
(based on the energy density distribution) the event plane
angle ψ and rotates the system accordingly (to have after ro-
tation event plane angles zero). The plots in Fig. 54 represent
averages over such rotated events; the solid lines correspond
to azimuthal angles φ = 0, and the dotted lines to φ = π/2.
The difference between the two lines reflects the azimuthal
asymmetry. Even in peripheral PbPb collisions, there is some
core production, and one gets actually an energy density of
about 4−5 GeV/fm3 for 70–80% centrality, but the radial
extension is small, and the lifetime as well. The numerical
values in fm/c used for τ0 are between 1 (peripheral) and 1.5
(central) for PbPb and always 1 for AuAu.

It follows a viscous hydrodynamic expansion. Starting
from the initial proper time τ0, the core part of the system
evolves according to the equations of relativistic viscous hy-
drodynamics [34,35], where one uses presently η/s = 0.08.
The “core-matter” hadronizes on some hypersurface defined
by a constant energy density εH (presently 0.57 GeV/fm3).
In earlier versions [36], one used a so-called Cooper-Frye
procedure. This is problematic in particular for small systems:
not only do energy and flavor conservation become important,
but one also encounters problems due to the fact that one
gets small “droplets” with huge baryon chemical potential,
with strange results for heavy baryons. In EPOS4, one uses
systematically microcanonical hadronization, as discussed in
Ref. [8]. After the hadronization of the fluid, the created
hadrons as well as the corona prehadrons (having been pro-
moted to hadrons) may still interact via hadronic scatterings,
and here one uses UrQMD [37,38].

In the following, I will study core and corona contributions
to hadron production. I will distinguish the following:

(A) The core+corona contribution: primary interactions
(S-matrix approach for parallel scatterings), plus
core-corona separation, hydrodynamic evolution, and
microcanonical hadronization, but without hadronic
rescattering.

(B) The core contribution: as case A, but considering only
core particles.

(C) The corona contribution: as case A, but considering
only corona particles.

(D) The full EPOS4 scheme: as case A, but in addition
hadronic rescattering.

In cases A, B, and C, one needs to exclude the hadronic
afterburner, because the latter affects both core and corona
particles, so in the full approach, the core and corona con-
tributions are not visible anymore.

In Fig. 55 (upper plot), I show ratios X/“core+corona”
versus pt , with X being the “corona” contribution (blue), the
“core” (green), and the “full” contribution (red), for PbPb
collisions at 5.02 TeV, for (from top to bottom) pions (π±),
kaons (K±), protons (p and p̄), and lambdas (� and �̄).
The four columns represent four different centrality classes,
namely, 0–5%, 20–40%, 60–80%, and 80–100%. Looking
at the green (core) and blue (corona) curves, one observes
that the core contribution increases with centrality, but it
also increases with the hadron mass (from top to bottom).
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FIG. 55. The X/“core+corona” ratio as a function of pt (for
|η| < 1), with X being the “corona” contribution (blue), the “core”
(green), and the “full” contribution (red), for four centrality classes
and four different particle species, for PbPb at 5.02 TeV (upper plot)
and AuAu at 200 GeV (lower plot).

Concerning the pt dependence, one observes a maximum of
the green core curves around 1−2 GeV/c; at very low pt

the core contribution goes down, so even at very small pt

values the corona contributes. The crossing of the green core

and the blue corona curves (core = corona) occurs between
around 2 GeV/c (mesons, peripheral) and 5 GeV/c (baryons,
central). The red curve, “full” over “core + corona”, repre-
sents the effect of the hadronic cascade in the “full” case.
The pions are not much affected, but for kaons and even
more for protons and lambdas, rescattering makes the spectra
harder. One should keep in mind that rescattering involves
particles from fluid hadronization, but also corona particles
from hard processes. Concerning the baryons, rescattering re-
duces (considerably) low pt yields, due to baryon-antibaryon
annihilation.

In Fig. 55 (lower plot), I show the corresponding results for
AuAu collisions at 200 GeV, being similar compared to PbPb
at 5.02 TeV, but the “core” contributions are weaker.

XI. RESULTS

In this section, I show simulation results compared to data.
I will not add too many comments to each curve; the main
purpose is to check if the concepts discussed in the previous
sections give a coherent picture (and reproduce the data) or
not.

Although the pt spectra cover usually many orders of mag-
nitude, I have chosen the dimensions such that differences of
10% between data and simulations are always visible.

I will show many results for AuAu collisions at 200 GeV
and some results for PbPb at 5.02 TeV. From the theory point
of view, the high-energy case contains in principle everything
(as discussed in the preceding sections); one does not need to
add “features” at lower energies, simply certain phenomena
“die out” when reducing the energy: The number of Pomerons
per nucleon-nucleon collision gets smaller, the Pomerons get
less energetic, and the remnant contributions get relatively
more important.

A. Spectra for AuAu at 200 GeV

In this section, I will show particle spectra for AuAu colli-
sions at 200 GeV. From Fig. 53, one knows that at this energy
the remnant contribution is important, in particular beyond
space-time rapidities |ηs| of 2 (ηs is numerically similar to
the pseudorapidity η). One also knows from Fig. 55 that at
central rapidity the core largely dominates, up to pt values of
3−5 GeV/c.

In Fig. 56, I show pseudorapidity distributions of charged
particles in AuAu collisions at 200 GeV, comparing EPOS4
simulations (lines) to BRAHMS data [39] (points). I show
results for different centralities, from top to bottom: 0–5%,
5–10%, . . ., 40–50%.

In Figs. 57 and 58, I show transverse mass distributions
of π+, π−, K+, K−, p, and p̄ for different centrality classes
(as indicated in the figures), comparing EPOS4 simulations
(lines) to data from STAR [40]. From top to bottom (for each
subplot), the curves are multiplied by 3−i (i = 0, 1, 2, 3, . . .).

In Fig. 59, I show transverse momentum distributions of
π+, π−, K+, and K− in central (0–5%) AuAu collisions at 200
GeV for different rapidities (as indicated in the plots). EPOS4
simulations (lines) are compared to data from BRAHMS [41].
From top to bottom, the curves are multiplied by 3−i (i =
0, 1, 2, 3, . . .).
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FIG. 56. Pseudorapidity distributions of charged particles in
AuAu collisions at 200 GeV, comparing EPOS4 (lines) to BRAHMS
data (points).

FIG. 57. Transverse mass distributions of π+, π− in AuAu colli-
sions at 200 GeV for different centrality classes. EPOS4 simulation
(lines) are compared to data from STAR. From top to bottom, one
multiplies the curves by 3−i (i = 0, 1, 2, 3, . . .).

π
π

FIG. 58. Same as Fig. 57, but for K+, K−, p, and p̄.
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π

π π

π

FIG. 59. Transverse momentum distributions of π+, π−, K+, and
K− in central (0–5%) AuAu collisions at 200 GeV for different
rapidities. EPOS4 simulations (lines) are compared to data from
BRAHMS. From top to bottom, the curves are multiplied by 3−i

(i = 0, 1, 2, 3, . . .).

π

π π

FIG. 60. Transverse momentum distributions of π+, π− in AuAu
collisions at 200 GeV at central rapidity for different centralities.
EPOS4 simulations (lines) are compared to data from PHENIX
[42]. From top to bottom, the curves are multiplied by 3−i (i =
0, 1, 2, 3, 4).

In Figs. 60 and 61, I plot transverse momentum distribu-
tions of π+, π−, K+, K−, p, and p̄ at central rapidity for
different centralities. EPOS4 simulations (lines) are compared
to data from PHENIX [42]. From top to bottom, the curves are
multiplied by 3−i (i = 0, 1, 2, 3, 4).

In Fig. 62, I show transverse momentum distributions of
K0, �, �̄ �−, �̄+, and � at central rapidity for different
centralities. EPOS4 simulations (lines) are compared to data
from STAR [43] (for K0, �, �̄) and [44]. From top to bottom,
the curves are multiplied by 3−i (i = 0, 1, 2, 3, 4).

In general, the simulation results are close to the data,
concerning identified particles as pions, kaons, and protons,
as well as hyperons.

Concerning protons and antiprotons in Fig. 61, the data
drop remarkably at low pt which is not seen in the simulations,
and as well not in other proton and antiproton data (see, for
example, Fig. 58).

In all cases, one suppresses (or not) feed-down from de-
cays, to be consistent with the corresponding experimental
data.

B. Flow harmonics for AuAu at 200 GeV

The so-called flow harmonics vn are important observables,
characterizing anisotropic azimuthal flow, defined as

vn = 〈cos (n(φ − ψn))〉, (142)
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π
π

FIG. 61. Same as Fig. 60, but for K+, K−, p, and p̄.

with n being the order of the flow harmonic, φ the azimuthal
angle, and ψn the event plane angle of harmonic n. Several
methods have been developed over the years to determine vn

from the momentum vectors of the observed particles. In the
following, I will compare EPOS4 vn results with experimental
data, employing exactly the same methods as used in the

π

FIG. 62. Transverse momentum distributions of K0, �, �̄ �−,
�̄+, and � in AuAu collisions at 200 GeV at central rapidity for
different centralities. EPOS4 simulations (lines) are compared to data
from STAR. From top to bottom, one multiplies the curves by 3−i

(i = 0, 1, 2, 3, 4).
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FIG. 63. Pseudorapidity dependence of v2 of charged particles
for different multiplicity classes in AuAu collisions at 200 GeV. I
compare the simulations (red lines) with data from PHOBOS (black
points).

experiments, with details being found in the corresponding
citations.

In Fig. 63, I plot the pseudorapidity dependence of v2

for different multiplicity classes in AuAu collisions at 200
GeV. I compare the simulations (red lines) with data from
PHOBOS [45] (black points). In Fig. 64, I plot the centrality
dependence (using Npart) of v2 in AuAu collisions at 200 GeV.
I compare the simulations (red lines) with data from PHOBOS
[45] (black points). In Fig. 65, I plot the transverse momentum
dependence of v2 for pions (left column), kaons (middle col-
umn), and protons (right column) in AuAu collisions at 200
GeV, for different centralities (from top to bottom): 0–10%,
10–20%, 20–30%, 30–40%, 40–50%, and 50–60%. I compare
the full simulations (red lines) and those without hadronic
cascade (yellow lines) with data from PHENIX [46] (black
points). In Fig. 66, I show results for v3 (upper plot) and v4

(lower plot), comparing full simulations (red lines) with data
from PHENIX [46] (black points).

C. Spectra for PbPb at 5.02 TeV

I will show some pt spectra of identified particles, in PbPb
collisions at 5.02 TeV. In Figs. 67 and 68, I show transverse
momentum distributions at central rapidity of pions, kaons,
and protons in PbPb collisions at 5.02 TeV for different
centrality classes (from top to bottom: 0–5%, 5–10%, . . ., 80–
90%). EPOS4 simulations (lines) are compared to data from

FIG. 64. Centrality dependence (using Npart) of v2 of charged
particles in AuAu collisions at 200 GeV. I compare the simulations
(red lines) with data from PHOBOS (black points).

FIG. 65. Transverse momentum dependence of v2 for pions (left
column), kaons (middle column), and protons (right column) in
AuAu collisions at 200 GeV, for different centralities (from top to
bottom): 0–10%, 10–20%, 20–30%, 30–40%, 40–50%, and 50–60%.
I compare the full simulations (red lines) and those without hadronic
cascade (yellow lines) with data from PHENIX (black points).
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FIG. 66. Transverse momentum dependence of v3 (upper plot)
and v4 (lower plot) for pions (left column), kaons (middle column),
and protons (right column) in AuAu collisions at 200 GeV, for
different centralities. I compare the full simulations (red lines) with
data from PHENIX (black points).

FIG. 67. Transverse momentum distributions of pions in PbPb
collisions at 5.02 TeV for different centrality classes. EPOS4 simu-
lation data (lines) are compared to data from ALICE. From top to
bottom, one multiplies the curves by 2−i (i = 0, 1, 2, 3, 4, . . .).

ALICE [47]. From Fig. 55, one knows that corona particles
dominate beyond 2−3 GeV/c for peripheral collisions and
beyond 4−5 GeV/c for central ones. They are affected by the
energy loss parameter in the core-corona procedure, and allow
one to determine it. Concerning the kaons and protons, one
clearly sees the “flow effect”, i.e., an increase at intermediate
pt , compared to pions.

The picture looks consistent, although there is a systematic
excess of protons at intermediate pt . It should be emphasized
that EPOS4.0.0 has been “tuned” to thousands of experimen-
tal results (with only a small fraction shown in this paper), and
the aim is to see to what extent one gets a consistent overall
picture, and not to optimize a particular curve.

D. Flow harmonics for PbPb at 2.76 and 5.02 TeV

In the following, I show results for the flow harmonics
v2 and v3 in PbPb collisions at LHC energies. In Fig. 69, I
plot the pseudorapidity dependence of v2{2} and v2{4} (see
Ref. [48] for the definitions) for different multiplicity classes
(using percentiles) in PbPb collisions at 2.76 GeV. I compare
the EPOS4 simulations (red lines) with data from ALICE
[48] (black points). In Fig. 70, I plot the pt dependence
of v2 for different multiplicity classes (using percentiles) in
PbPb collisions at 5.02 TeV, for (from left to right) pions,
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FIG. 68. Same as Fig. 67, but for kaons (upper plot) and protons
(lower plot).

FIG. 69. Pseudorapidity dependence of v2{2} and v2{4} for dif-
ferent multiplicity classes (using percentiles) in PbPb collisions at
2.76 GeV. I compare the EPOS4 simulations (red lines) with data
from ALICE (black points).

protons, kaons (Ks), φ mesons, and lambdas. I compare the
simulations (red lines) with data from ALICE [49] (black
points). In Fig. 71, I show the corresponding plots for v3. The
simulations give in general a decent description of the data,
but the simulation results for v2 at high pt are significantly
below the data, pointing to some possible problem related
to parton energy loss, which is presently realized as energy
loss of prehadrons during the core-corona procedure. Some
real parton energy loss procedure in the EPOS4 framework is
presently developed.

XII. SUMMARY AND CONCLUSION

It was first recalled that it is of fundamental importance
to realize that multiple nucleon-nucleon scatterings in high-
energy nucleus-nucleus (A+B) collisions must happen in
parallel, and not sequentially. There is nothing like a first,
second, third, etc., collision; they are all equal and simultane-
ous. In this context, I presented a discussion about timescales,
and the corresponding applicability of this “parallel scattering
scenario” as a function of the collision energy. It was esti-
mated that beyond a collision energy of 24 GeV the parallel
scattering scenario is mandatory. The term “parallel scatter-
ing” actually refers to both nucleon-nucleon scatterings and
parton-parton scatterings in each nucleon-nucleon collision.
I then reviewed early work on parallel scattering based on
S-matrix theory, using the concept of subprocesses referred
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FIG. 70. pt dependence of v2 for different multiplicity classes
(using percentiles) in PbPb collisions at 5.02 TeV, for (from left to
right) pions, protons, kaons (Ks ), φ mesons, and lambdas. I compare
the simulations (red lines) with data from ALICE (black points).

FIG. 71. pt dependence of v3 for different multiplicity classes in
PbPb collisions at 5.02 TeV. I compare the simulations (red lines)
with data from ALICE (black points).

to as Pomerons, and I showed the importance of the AGK
theorem, which allows one to make the link between the
multiple scattering approach and simple geometric properties
as binary scaling. But this early work considers an “infinite
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energy limit”, so energy sharing among the Pomerons is not an
issue. However, in a realistic scenario—in particular when it is
used as a basis for event-by-event Monte Carlo procedures—it
is mandatory to include energy-momentum sharing.

I showed how to implement energy-momentum sharing in
the S-matrix approach, and how to prove the validity of the
AGK theorem, which means that the inclusive cross section
(with respect to the Pomeron energy) for A+B scattering is
AB times the inclusive cross section of a single Pomeron. As
a direct consequence, one gets binary scaling, which means
that the inclusive cross section for A+B scattering is AB times
the inclusive cross section for pp scattering. Starting from the
expression for the inelastic A+B scattering cross section, I
showed how to derive a probability law

∑
{mk}

∫
dXABP(K ) =

1, with a “configuration” K = {{mk}, {x±
kμ

}} representing mk

cut Pomerons per pair k, with light-cone momentum frac-
tions x±

kμ
, where P is given as a product of single Pomeron

expressions G times some known function WAB (being the
result of integrating out all elastic scatterings, i.e., uncut
Pomerons). The symbol G refers to a cut diagram representing
a single scattering. The calculation WAB (multidimensional
integral) could be done, showing that it is not strictly
non-negative, which ruins the probability interpretation
of P.

I showed that is possible to regularize WAB to make it
strictly non-negative, which allows recovering the probabil-
ity interpretation of P, and which allows generating multiple
scattering (or multiple Pomeron) configurations. In order to
generate partons, one needs to specify the internal structure of
the Pomeron G. I use the simplest choice, namely, G = GQCD,
where GQCD refers to a pQCD diagram, with the main element
being a parton-parton scattering graph with parton evolutions
on both sides and QCD matrix element in the middle. Comput-
ing the inclusive cross section (with respect to the variable pt )
in A+B scattering, one finds that the AGK theorem is badly
violated (which as a consequence ruins binary scaling). So the
model is not usable as it is.

In order to understand the problem, I defined a quantity
Rdeform(x+, x−), referred to as the “deformation function”,
being the ratio of the normalized inclusive A+B cross sec-
tion over the single Pomeron one, considering the Pomeron
light-cone momentum fractions x± as variables. One needs
Rdeform(x+, x−) = 1 in order to validate the AGK theorem,
at least in the case G = GQCD. But Rdeform is far from unity,
which is the origin of the violation of AGK. I investigated
Rdeform more in detail, and it was understood that a quantity
called “connection number”, Nconn, which counts the number
of Pomerons connected to a given pair i, j of projectile and
target nucleons, plays an important role. The bigger Nconn,
the bigger the number of Pomerons which need to share the
given initial energy of the pair, and therefore, with increas-
ing Nconn, the deformation function Rdeform decreases more
and more below unity, at large values of x±. This is un-
avoidable, and therefore a violation of AGK is unavoidable.
At least, one could “quantify the problem”, being able to
find a simple parametrization of Rdeform, for given values of
Nconn, for all systems and all energies, with tabulated param-
eters. So in the following, Rdeform could be considered to be
known.

At this point, I realized that there were two problems:
(a) the assumption G = GQCD, making the link between the
“Pomeron approach” and QCD, seemed to be wrong; (b)
saturation was not implemented, which has been known since
a long time to play an important role. But fortunately, the
two problems are connected, and there is an amazingly simple
solution based on saturation scales that solves both problems.
Instead of the “naive” assumption G = GQCD, I postulated

G(x+, x−) = n

Rdeform(x+, x−)
GQCD

(
Q2

sat, x+, x−), (143)

such that G itself does not depend on the environment, in
terms of Nconn, which means that the Nconn dependence of
Rdeform is “absorbed” by the saturation scale Q2

sat, which in this
way depends on Nconn and also on x±. Based on Eq. (143), I
could prove the validity of the AGK theorem, saying that the
inclusive cross section (with respect to pt ) for A+B scattering
is AB times the inclusive cross section of a single Pomeron—
but only at large pt (bigger than the relevant saturation scales).
In this way, I was finally able to connect the multiple Pomeron
approach (for parallel scatterings) and pQCD, by introducing
saturation scales. The latter seem indispensable for getting a
consistent picture.

I discussed consequences of having, on one hand, a multi-
ple scattering approach for instantaneous parallel scatterings,
and on the other hand, the validity of the AGK theorem. The
latter allows one to define parton distribution functions and
do simple calculations of inclusive cross sections at very high
pt (the same way as models based on factorization do). The
former does allow one to do much more, treating problems far
beyond the factorization scheme, by using the full multiple
scattering machinery.

An important application is the study of collective effects
in A+B or pp scattering. Form the multiple (parallel) scat-
tering approach (referred to as primary interactions) one gets
first of all a (more or less) large number of prehadrons, which
are then subject to secondary interactions, in the form of
core-corona separation, hydrodynamic evolution of the core,
and microcanonical decay of the plasma. All this has been
discussed briefly, not being the main subject of this paper.
Finally, I showed some results on heavy-ion collisions at LHC
and RHIC energies, covering pt spectra and flow harmonics of
identified hadrons, in order to show to what extent the model
works.
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APPENDIX A: ASYMPTOTIC BEHAVIOR
OF T MATRICES FOR pp SCATTERING

Consider a reaction (all particles having mass m)

1 + 2 → 3 + 4 (A1)
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in the x-z plane. In the c.m. system, one has (P = | �p|)
P1 = P2 = P3 = P4, (A2)

and

E1 = E2 = E3 = E4. (A3)

The vectors (E , px, pz ) are given as (for particles 1,2,3,4)

(E , px, pz ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
√

P2 + m2, 0, P)

(
√

P2 + m2, 0,−P)

(
√

P2 + m2, P sin θ, P cos θ )

(
√

P2 + m2,−P sin θ,−P cos θ ),

(A4)

which gives

s = 4(P2 + m2), (A5)

t = 0 − P2 sin2 θ − P2(1 − cos θ )2 = −2P2(1 − cos θ ),

(A6)

u = 0 − P2 sin2 θ − P2(1 + cos θ )2 = −2P2(1 + cos θ ).

(A7)

Defining z = cos θ , one gets

t = 2

(
s

4
− m2

)
(z − 1), (A8)

u = 2

(
s

4
− m2

)
(−z − 1), (A9)

which gives for zero masses the relation

z = 1 + 2t

s
. (A10)

One may always expand the T-matrix (partial wave expansion)

T(s, t ) =
∞∑
j=0

(2 j + 1)T ( j, s)Pj (z) (A11)

with

T ( j, s) = 1

2

∫ 1

−1
dz T(s, t )Pj (z) (A12)

due to the orthogonality property of Legendre polynomials,

2n + 1

2

∫ 1

−1
dx Pn(x)Pm(x) = δmn. (A13)

One analytically continues to the unphysical region of the
1 + 2 → 3 + 4 process, with

T1+2→3+4(s < 0, t > 0), (A14)

corresponding to the physical region of the 1 + 3̄ → 2̄ + 4
(t-channel) process, with

T1+3̄→2̄+4(t > 0, s < 0), (A15)

and after exchanging s and t , one gets

T1+3̄→2̄+4(s > 0, t < 0). (A16)

FIG. 72. Contour integrations in j plane.

With this new definition of T, the partial wave expansion reads

T(s, t ) =
∞∑
j=0

(2 j + 1)T ( j, t )Pj (z), (A17)

with

T ( j, t ) = 1

2

∫ 1

−1
dz T(s, t )Pj (z), (A18)

and with

z = 1 + 2s

t
. (A19)

The Watson-Sommerfeld transform [50,51] amounts to writ-
ing the partial wave expansion as

T(s, t ) = 1

2i

∫
C

d j
1

sin π j
(2 j + 1)T ( j, t )Pj (z), (A20)

with a contour integration in the complex j plane, as shown
in Fig. 72(a). Opening the contour [see Fig. 72(b)] to integrate
along the imaginary axis (with Re j = − 1

2 ), one picks up poles
of T at j = αn(t ), with residues β ′

n(t ), so one gets

T(s, t ) = 1

2i

∫
C′

d j
2 j + 1

sin π j
T ( j, t )Pj (z)

+
∑

π
2αn(t ) + 1

sin παn(t )
β ′

n(t )︸ ︷︷ ︸
βn(t )

Pαn (t )(z). (A21)

As one will see, the partial wave amplitudes have contribu-
tions which alternate in sign, so there is a factor

(−1) j = exp(iπ j) (A22)

which diverges on the imaginary axis. The problem will be
solved by separating even and odd terms. To see this problem,
let me first investigate T ( j, t ). One considers T(s, t ) as a
function of z and t , and writes (Cauchy)

T(z, t ) = 1

2π i

∫
c

T(z′, t )

z′ − z
dz′, (A23)

where one chooses C as in Fig. 73. One finds (assuming the
semicircles do not contribute)

T(z, t ) = 1

2π i

∫ ∞

z+
0

disc T (z′, t )

z′ − z
dz′

+ 1

2π i

∫ −z−
0

−∞

disc T (z′, t )

z′ − z
dz′. (A24)
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C

Re z

Im z

FIG. 73. Contour integration in z plane.

This so-called dispersion relation may be inserted into
Eq. (A18):

T ( j, t ) = 1

2π i

∫ ∞

z0

disc T(z′, t )
1

2

∫ 1

−1

Pj (z)

z′ − z
dzdz′

+ 1

2π i

∫ −z0

−∞
disc T(z′, t )

1

2

∫ 1

−1

Pj (z)

z′ − z
dzdz′.

(A25)

One may use Neumann’s formula

1

2

∫ 1

−1

Pj (z)

z′ − z
dz = Qj (z

′), (A26)

with Legendre functions Qj of the second kind, and get

T ( j, t ) = 1

2π i

∫ ∞

z0

disc T(z′, t )Qj (z
′)dz′

+ 1

2π i

∫ ∞

z0

disc T(−z′, t )Qj (−z′)dz′. (A27)

Using the symmetry property Qj (−z) = (−1) j+1Qj (z) and
the definition D±

j = 1
2π i

∫∞
z0

disc T(±z′, t )Qj (z′)dz′, one gets

T ( j, t ) = {D+
j + (−1)j+1D−

j }, (A28)

which shows the above-mentioned (−1) j problem. Writing

T ( j, t ) =
∑

η∈{−1,1}

1 + η(−1) j

2
{D+

j + (−1)j+1D−
j } (A29)

allows one to separate even and odd terms,

T 1( j, t ) = D+
j − D−

j , T −1( j, t ) = D+
j + D−

j , (A30)

as

T ( j, t ) =
∑

η∈{−1,1}

1 + η(−1) j

2
T η( j, t ) (A31)

with a so-called signature η. The Watson-Sommerfeld trans-
form then reads

T(s, t ) =
∑

η

1

2i

∫
C′

d j 1+η(−1) j

2

1

sin π j
(2 j + 1)T η( j, t )Pj (z)

+
∑

η

∑
nη

1 + η(−1)αnη (t )

2
βnη

(t ) Pαnη (t )(z), (A32)

and there is no (−1) j problem any more. The poles αn(t ) are
called (i) even-signature Regge poles (η = +1) or (ii) odd-
signature Regge poles (η = −1). Asymptotically, for s 	 |t |,
i.e., |z − 1| = | 2s

t | 	 1, the Legendre polynomial

Pj (z) =
j∑

k=0

(
j

k

)(
j + k

k

)(
z − 1

2

)k

(A33)

is dominated by its leading term,

Pj (z) →
(

2 j

j

)(
z − 1

2

) j

, (A34)

so one has in this limit

Pj (z) = Pj

(
1 + 2s

t

)
→ �(2 j + 1)

�2( j + 1)

(
s

t

) j

. (A35)

The contour integration (along j = − 1
2 + iy) for s 	 t van-

ishes, because of factor (s/t )−1/2, and one gets (absorbing the
� functions and t− j into β), for s 	 t :

T(s, t ) =
∑

η

∑
nη

1 + η(−1)αnη (t )

2
βnη

(t ) sαnη (t ). (A36)

With α(t ) being the rightmost (leading) pole, one gets

T(s, t ) = 1 + ηe−iπα(t )

2
β(t ) sα(t ) (A37)

viewed at the time to correspond to the exchange of some hy-
pothetical “particle” called Reggeon or Pomeron. Absorbing
(1 + ηe−iπα(t ) )/2 into β, and (because of t � s)

α(t ) = α(0) + α′t,

and neglecting the t dependence of β, one gets finally

T(s, t ) = β sα(0)+α′t , (A38)

with α(0) called intercept, and α′ called slope. This is referred
to as Regge pole expression for the T-matrix [52].

APPENDIX B: EXPLICIT FORMULAS FOR WAB

The WAB expression is given as [see Eqs. (79) and (80)]

WAB =
∞∑

l1=0

· · ·
∞∑

lAB=0

∫
dX̃AB

AB∏
k=1

⎡
⎣ 1

lk!

lk∏
λ=1

−G′
kλ

⎤
⎦

×
A∏

i=1

V

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠ B∏

j=1

V

⎛
⎜⎜⎝x−

j −
AB∑

k=1
τ (k)= j

lk∑
λ=1

x̃−
kλ

⎞
⎟⎟⎠,

(B1)

with

x+
i = 1 −

AB∑
k=1
π (k)=i

mk∑
μ=1

x+
kμ, x−

j = 1 −
AB∑

k=1
τ (k)= j

mk∑
μ=1

x−
kμ. (B2)

Using G = GQCD [see Eq. (48) and the discussion before], one
can show [5] that one may obtain an almost perfect fit of the
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numerically computed functions GQCD, of the form

GQCDpar (x
+, x−, s, b) =

Npar∑
N=1

αN (x+x−)βN , (B3)

αN = (αDN + α∗
DN

) s(βDN +γDN b2 ) e
− b2

δDN ,

(B4)

βN = βDN + β∗
DN

+ γDN b2 − αpart, (B5)

with α∗
DN

�= 0 and β∗
DN

�= 0 only if αDN = 0, and with Npar

being a small number (4). This parametric form has been
inspired by the asymptotic expressions for T-matrices (see
Appendix A). So I will use G = GQCDpar in the following.
Furthermore, the vertices are parametrized as

V (x) = xαremn . (B6)

1. Doing the integrals

In the following discussion, I use explicitly the (current)
value Npar = 4, for simplicity, but the results can be eas-
ily adapted to other values. Using G = GQCDpar and V (x) =
xαremn , and defining GNkλ = αN (x̃+

kλ
x̃−

kλ
)βN , one gets

WAB =
∞∑

l1=0

· · ·
∞∑

lAB=0

∫
dX̃AB

AB∏
k=1

⎡
⎣ 1

lk!

lk∏
λ=1

4∑
N=1

−GNkλ

⎤
⎦

×
A∏

i=1

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠

αremn

×
B∏

j=1

⎛
⎜⎜⎝x−

j −
AB∑

k=1
τ (k)= j

lk∑
λ=1

x̃−
kλ

⎞
⎟⎟⎠

αremn

. (B7)

One has for any k, using simply l = lk ,

∞∑
l=0

· · · 1

l!

l∏
λ=1

4∑
N=1

−GNkλ=
∞∑

l=0

· · · 1

l!

4∑
N1=1

· · ·
4∑

Nl =1

l∏
λ=1

−GNλkλ.

(B8)

Keeping in mind that this is an integrand, and one may ex-
change integration variables x̃±

kλ
and x̃±

kλ′ , one may exchange
for a given value of N the terms GNkλ and GNkλ′ with-
out changing the result, which means that in the sum over∏l

λ=1 −GNλkλ there are ( l!
r1!r2!r3!r4!) identical expressions with

rN times Nλ = N , for N = 1, . . . , 4, which one may write as

r1∏
λ=1

−G1kλ

r1+r2∏
λ=r1+1

−G2kλ

r1+r2+r3∏
λ=r1+r2+1

−G3kλ

r1+r2+r3+r4∏
λ=r1+r2+r3+1

−G4kλ,

(B9)

with the constraint r1 + r2 + r3 + r4 = l , which will be re-
leased when one does the sum

∑∞
l=0. Putting it all together,

one gets (using lk = l and rNk instead of rN )

∞∑
lk=0

· · · 1

lk!

lk∏
λ=1

4∑
N=1

−GNkλ

=
∞∑

r1k=0

· · ·
∞∑

r4k=0

· · · 1

r1k! · · · r4k!

r1k∏
λ=1

− G1kλ · · ·
r1k+r2k+r3k+r4k∏
λ=r1k+r2k+r3k+1

−GNkλ. (B10)

Inserted into Eq. (B7), using GNkλ = αN (x̃+
kλ

x̃−
kλ

)βN , one
gets

WAB =
∞∑

r11=0

· · ·
∞∑

r41=0

· · ·
∞∑

r1 AB=0

· · ·
∞∑

r4 AB=0

×
∫

dX̃AB

AB∏
k=1

[
1

r1k! · · · r4k!

r1k∏
λ=1

−α1(x̃+
kλx̃−

kλ)β1

· · ·
r1k+r2k+r3k+r4k∏
λ=r1k+r2k+r3k+1

−α4(x̃+
kλx̃−

kλ)β4

]

×
A∏

i=1

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠

αremn

×
B∏

j=1

⎛
⎜⎜⎝x−

j −
AB∑

k=1
τ (k)= j

lk∑
λ=1

x̃−
kλ

⎞
⎟⎟⎠

αremn

. (B11)

This will allow one to separate the x+ and x− integrations. I
will use∫

dX̃AB =
∫ AB∏

k=1

(
lk∏

λ=1

dx̃+
kλdx̃−

kλ

)

=
∫ AB∏

k=1

(
lk∏

λ=1

dx̃+
kλ

)
︸ ︷︷ ︸

dX̃ +
AB

∫ AB∏
k=1

(
lk∏

λ=1

dx̃−
kλ

)
︸ ︷︷ ︸

dX̃ −
AB

, (B12)

where the upper limit lk is defined as

lk = r1k + r2k + r3k + r4k. (B13)

In addition, I define four intervals of integers, as

I1k = [1.. r1k], (B14)

I2k = [r1k + 1.. r1k + r2k], (B15)

I3k = [r1k + r2k + 1.. r1k + r2k + r3k], (B16)

I4k = [r1k + r2k + r3k + 1.. r1k + r2k + r3k + r4k], (B17)

such that

[1.. lk] = I1k ∪ I2k ∪ I3k ∪ I4k . (B18)
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Although writing the Pomeron expression as a sum of four
terms is a purely mathematical operation, it is nevertheless
useful for the discussion to associate the indices in the interval
INk to “Pomerons of type N”. This allows one to consider rNk

as the number of Pomerons of type N associated to nucleon-
nucleon pair k. With the above definitions and interpretations,
one gets

WAB =
∞∑

r11=0

· · ·
∞∑

r41=0

· · ·
∞∑

r1 AB=0

· · ·
∞∑

r4 AB=0

×
AB∏

k=1

(−α1)r1k

r1k!

(−α2)r2k

r2k!

(−α3)r3k

r3k!

(−α4)r4k

r4k!

× U +({rNk}, {x+
i }) U −({rNk}, {x−

i }), (B19)

seen as the sum over all possible numbers of Pomerons of all
possible types (1,2,3,4), with

U +({rNk}, {x+
i }) =

∫
dX̃ +

AB

AB∏
k=1

[ ∏
λ∈I1k

(x̃+
kλ)β1 · · ·

∏
λ∈I4k

(x̃+
kλ)β4

]

×
A∏

i=1

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠

αremn

. (B20)

The expression for U −({rNk}, {x−
i }) is identical, just with x−

j

instead of x+
i , with

∏B
j=1 instead of

∏A
i=1, and with τ (k) = j

instead of π (k) = i. Using

AB∏
k=1

=
A∏

i=1

AB∏
k=1
π (k)=i

, (B21)

and defining

ελk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 for λ ∈ I1k

β2 for λ ∈ I2k

β3 for λ ∈ I3k

β4 for λ ∈ I4k,

(B22)

one may separate the contributions for the different nucleons
i as

U +({rNk}, {x+
i }) =

A∏
i=1

U +
i ({rNk}, x+

i )

with an expression for given i,

U +
i ({rNk}, x+

i ) =
∫ AB∏

k=1
π (k)=i

(
lk∏

λ=1

dx̃+
kλ

)
AB∏

k=1
π (k)=i

[
lk∏

λ=1

(x̃+
kλ)ελk

]

×

⎛
⎜⎝x+

i −
AB∑

k=1
π (k)=i

lk∑
λ=1

x̃+
kλ

⎞
⎟⎠

αremn

. (B23)

Let me rename, for given i, the x̃+
kλ

linked to nucleon i as
x1, x2, . . . , xL, the ελk as ε1, ε2, . . . , εL, where L is per defi-
nition the number of Pomerons linked to i, and let us define

x = x+
i . Then one gets

U +
i ({rNk}, x) =

∫ L∏
�=1

dx�

L∏
�=1

(x�)ε� (x −
L∑

�=1

x�)αremn .

(B24)

I define new variables,

u� = x�

x − x1 − · · · − x�−1
, (B25)

du� = dx�

x − x1 − · · · − x�−1
, (B26)

which have the property

�−1∏
a=1

(1 − ua) =
�−1∏
a=1

x − · · · − xa

x − · · · − xa−1
= x − · · · − x�−1

x
,

(B27)

and therefore

x� = xu�

�−1∏
a=1

(1 − ua), dx� = xdu�

�−1∏
a=1

(1 − ua). (B28)

This leads to

U +
i ({rNk}, x) = xαremn+∑� ε̃�

∫ L∏
�=1

du�

×
{

L∏
�=1

[
uε�

�

�−1∏
a=1

(1 − ua)ε̃� (1 − u�)αremn

]}
,

(B29)

where I used ε̃� = ε� + 1, for convenience. One has

L∏
�=1

�−1∏
a=1

(1 − ua)ε̃� =
L∏

a=1

L∏
�=a+1

(1 − ua)ε̃� (B30)

=
L∏

�=1

L∏
a=�+1

(1 − u�)ε̃a (B31)

=
L∏

�=1

(1 − u�)
∑L

a=�+1 ε̃a , (B32)

which provides

U +
i ({rNk}, x) = xαremn+∑� ε̃�

∫ L∏
�=1

du�

×
{

L∏
�=1

[
uε�

� (1 − u�)
∑L

a=�+1 ε̃a (1−u�)αremn
]}

.

(B33)

Defining

α = αremn +
L∑

�=1

ε̃�, (B34)

γ� = αremn +
L∑

a=�+1

ε̃a, (B35)
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one finds

U +
i ({rNk}, x) = xα

L∏
�=1

∫ 1

0
du�uε�

� (1 − u�)γ� . (B36)

The integral can be done [
∫ 1

0 t x−1(1 − t )y−1dt is the Euler beta
function], and one gets, with x = x+

i ,

U +
i ({rNk}, x+

i ) = (x+
i )α

L∏
�=1

�(1 + ε�)�(1 + γ�)

�(2 + ε� + γ�)
. (B37)

Using the relation 1 + ε� + γ� = γ�−1, one gets

U +
i ({rNk}, x+

i ) = (x+
i )α

L∏
�=1

�(1 + ε�)�(1 + γ�)

�(1 + γ�−1)
. (B38)

In the following, the different factors in this expression will
be discussed. One has

L∏
�=1

=
AB∏

k=1
π (k)=i

lk∏
λ=1

, (B39)

which actually indicates the relation between the indices �

and the pair of indices k and λ. So one gets

L∏
�=1

�(1 + ε�) =
AB∏

k=1
π (k)=i

lk∏
λ=1

�(1 + ελk ) (B40)

=
AB∏

k=1
π (k)=i

4∏
N=1

∏
λ∈INk

�(1 + βN ), (B41)

where I split
∏lk

λ=1 into four products corresponding to the
four Pomeron types 1–4, and where I used Eq. (B22). So one
finds

L∏
�=1

�(1 + ε�) =
AB∏

k=1
π (k)=i

4∏
N=1

�(1 + βN )rNk . (B42)

Concerning (x+
i )α , I use Eq. (B34) and ε̃� = ε� + 1, and I

define β̃N = βN + 1, to get

α = αremn +
L∑

�=1

ε̃� (B43)

= αremn +
AB∑

k=1
π (k)=i

lk∑
λ=1

ε̃λk (B44)

= αremn +
AB∑

k=1
π (k)=i

4∑
N=1

∑
λ∈INk

β̃N (B45)

= αremn +
AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N , (B46)

which gives

(x+
i )α = (x+

i )αremn

AB∏
k=1
π (k)=i

4∏
N=1

(x+
i )rNk β̃N . (B47)

Furthermore, one has

L∏
�=1

�(1 + γ�)

�(1 + γ�−1)
= �(1 + γL )

�(1 + γ0)
(B48)

= �(1 + αremn)

�
(
1 + αremn +∑L

�=1 ε̃�

) (B49)

= �(1 + αremn)

�
(
1 + αremn +∑AB

k=1
π (k)=i

∑4
N=1 rNkβ̃N

) .
(B50)

Defining a function g(z) as

g(z) = �(1 + αremn)

�(1 + αremn + z)
, (B51)

one gets

L∏
�=1

�(1 + γ�)

�(1 + γ�−1)
= g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠. (B52)

Inserting Eqs. (B42), (B47), and (B52) into Eq. (B38), one
gets

U +
i ({rNk}, x+

i ) = (x+
i )αremn

AB∏
k=1
π (k)=i

4∏
N=1

(x+
i )rNk β̃N

×
AB∏

k=1
π (k)=i

4∏
N=1

�(1 + βN )rNk g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠.

(B53)

A corresponding expression can be found for U −
j ({rNk}, x−

j ).
The two expressions

U +({rNk}, {x+
i }) =

A∏
i=1

U +
i ({rNk}, x+

i ), (B54)

U −({rNk}, {x−
j }) =

B∏
j=1

U −
j ({rNk}, x−

j ), (B55)
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may be inserted into Eq. (B19), using Eq. (B53) and the
corresponding U −

j expression, and one gets

WAB =
A∏

i=1

(x+
i )αremn

B∏
j=1

(x−
j )αremn

∑
{rNk}

⎧⎪⎪⎨
⎪⎪⎩

AB∏
k=1

4∏
N=1

(−αN )rNk

rNk!

×
A∏

i=1

⎡
⎢⎣ AB∏

k=1
π (k)=i

4∏
N=1

(�(β̃N )(x+
i )β̃N )rNk g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠
⎤
⎥⎦

×
B∏

j=1

⎡
⎢⎢⎣

AB∏
k=1
τ (k)= j

4∏
N=1

(�(β̃N )(x−
j )β̃N )rNk g

⎛
⎜⎜⎝

AB∑
k=1
τ (k)= j

4∑
N=1

rNkβ̃N

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭,

(B56)

where
∑

{rNk} means summing all the indices rNk , with 1 �
N � 4 and with 1 � k � AB, from zero to infinity. I use β̃N =
βN + 1. A similar formula (with different notations) has been
found in Ref. [5].

2. Doing the infinite sums

Equation (B56) is the best one can do, without further
assumptions. At least the integrations could be done, and
(although time consuming) the infinite sums can be performed
on a powerful computer (they converge).

However, a “small” modification would allow one to
simplify the expression enormously, and this modification
concerns the function g(z) = �(1 + αremn)/�(1 + αremn + z).
The argument of g is of the form

∑
λ β̃λ with given coefficients

β̃λ. If one would have

g

(∑
λ

β̃λ

)
= c1

∏
λ

c2 g(c3 β̃λ), (B57)

with three parameters cμ, then one obtains

g

⎛
⎜⎝ AB∑

k=1
π (k)=i

4∑
N=1

rNkβ̃N

⎞
⎟⎠ = c1

AB∏
k=1
π (k)=i

4∏
N=1

(c2 g(c3 β̃N ))rNk , (B58)

g

⎛
⎜⎜⎝

AB∑
k=1
τ (k)= j

4∑
N=1

rNkβ̃N

⎞
⎟⎟⎠ = c1

AB∏
k=1
τ (k)= j

4∏
N=1

(c2 g(c3 β̃N )rNk , (B59)

and one finds for WAB the expression

WAB =
A∏

i=1

c1(x+
i )αremn

B∏
j=1

c1(x−
j )αremn

∑
{rNk}

AB∏
k=1

4∏
N=1

×
{

(−αN )rNk

rNk!
[(�(β̃N )(x+

π (k) )
β̃N )rNk (c2 g(c3 β̃N ))rNk ]

× [(�(β̃N )(x−
τ (k) )

β̃N )rNk (c2 g(c3 β̃N )rNk ]

}
. (B60)

Defining

DN = �(β̃N ) c2 g(c3 β̃N ) = �(β̃N ) c2 �(1 + αremn)

�(1 + αremn + c3 β̃N )
, (B61)

one gets

WAB =
A∏

i=1

c1(x+
i )αremn

B∏
j=1

c1(x−
j )αremn

∑
{rNk}

AB∏
k=1

4∏
N=1

1

rNk!

× [−αN (x+
π (k) )

β̃N (x−
τ (k) )

β̃N D 2
N

]rNk
. (B62)

Exchanging sum and product, one gets

WAB =
A∏

i=1

c1(x+
i )αremn

B∏
j=1

c1(x−
j )αremn

AB∏
k=1

4∏
N=1

∑
rNk

1

rNk!

× [−αN (x+
π (k) )

β̃N (x−
τ (k) )

β̃N D 2
N

]rNk
, (B63)

where one recognizes the power series of the exponential
function, and so one gets finally

WAB =
A∏

i=1

c1(x+
i )αremn

B∏
j=1

c1(x−
j )αremn

AB∏
k=1

exp(−G̃(x+
π (k)x

−
τ (k) )),

(B64)

with

G̃(x) =
4∑

N=1

α̃N xβ̃N (B65)

and with

α̃N = αN D 2
N = αN

(
�(β̃N ) c2 �(1 + αremn)

�(1 + αremn + c3 β̃N )

)2

, (B66)

β̃N = βN + 1. (B67)

So the property in Eq. (B57) for the function g provides
infinite sums of the form of power series of the exponential
function, and the exponentials make sure that one always has
WAB � 0.
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