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We investigate the transverse momentum distribution (TMD) statistics from three different theoretical ap-
proaches. In particular, we explore the framework used for string models, wherein the particle production is
given by the Schwinger mechanism. The thermal distribution arises from the Gaussian fluctuations of the string
tension. The hard part of the TMD can be reproduced by considering heavy tailed string tension fluctuations, for
instance, the Tsallis q-Gaussian function, giving rise to a confluent hypergeometric function that fits the entire
experimental TMD data. We also discuss the QCD-based Hagerdon function, another family of fitting functions
frequently used to describe the spectrum. We analyze the experimental data of minimum bias pp collisions
reported by the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC)
experiments (from

√
s = 0.2 TeV to

√
s = 13 TeV). We extracted the corresponding temperature by studying the

behavior of the spectra at low transverse momentum values. For the three approaches, we compute all moments,
highlighting the average, variance, and kurtosis. Finally, we compute the Shannon entropy and the heat capacity
through the entropy derivative with respect to the temperature. We found that the q-Gaussian string tension
fluctuations lead to a monotonically increasing heat capacity as a function of the center-of-mass energy, which
is also observed for the Hagedorn fitting function. This behavior is consistent with the experimental observation
that the temperature slowly rises with increments of the collision energy.

DOI: 10.1103/PhysRevC.109.034915

I. INTRODUCTION

The study of high energy ion collisions has been a signifi-
cant area of research in nuclear and particle physics, providing
insights into the properties of strongly interacting matter
under extreme conditions [1]. One relevant experimental mea-
surement is the transverse momentum distribution (TMD),
which is a histogram built with the transverse momentum
(pT ) of the produced charged particles per momentum space
unit and contains information on the processes involved in
all scales of events, leading to the final state of produced
particles [2]. The importance of the TMD necessitates the
study of theoretical models and empirical fitting functions that
adequately describe part or all the spectrum. Earlier efforts
to achieve this assume that the TMD follows an exponential
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distribution, where the inverse of the exponential decay is
frequently associated with the temperature of the collision
system [3,4]. This fitting function reasonably described the
experimental data at the lower center-of-mass energies but
deviated as experiments reached higher energies, revealing a
nonexponential tail [5,6]. This approach is valid when most
of the contribution to the spectra comes from soft scattering
processes, leading to a soft thermal-like pT distribution [6–8].

In the early 1980s, Hagedorn introduced a QCD-based
fitting function described by a power law of the transverse
momentum shifted by a threshold that comes from the elastic
scattering momentum scale [9–11]. Interestingly, this pro-
posal reproduced both behaviors of the TMD: thermal and
a power law tail at low and high pT values, respectively.
Later, the high energy community presented a new fitting
function based on the Tsallis q-exponential function, which
generalizes the thermal distribution by introducing a certain
nonextensivity degree of the systems formed in high energy
collisions [12,13]. However, these fitting functions are shown
to be equivalent [14].

On the other hand, for string models, the production of
charged particles is described by creating neutral color pairs
through the breaking of the strings stretched between the
partons. These subsequently decay, producing the observed
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hadrons [15]. In these cases, the transverse momentum dis-
tribution is governed by the Schwinger mechanism [16].

In the latter 1990s, Bialas reconciled this approach with the
thermal distribution by considering that the string tension un-
dergoes Gaussian fluctuations with zero average and variance
proportional to the string tension [17]. Later, Pajares resumed
this idea to incorporate a temperature-like parameter in the
color string percolation model, and thus he provided a way to
compute the string density from experimental data [18–20].
Recently, in Refs. [21,22], the authors used the original Bialas
idea to extend the string tension fluctuations to a heavy tailed
distribution. In particular, if the tensions fluctuate according to
a q-Gaussian distribution, then the TMD becomes a confluent
hypergeometric function that correctly fits the experimental
data [21,22].

In this paper, we analyze the TMD data of minimum bias
pp collisions reported by the experiments at the BNL Rel-
ativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC) under the three schemes discussed
above, namely, the thermal distribution, the Hagedorn, and
the confluent hypergeometric fitting functions. In this way,
we discuss the thermal temperature estimated in each scenario
as a function of the center-of-mass energy. Since each fitting
function has a different degree of accuracy in reproducing
the spectrum, we compute some statistics to compare them,
such as the average of transverse momentum, variance, and
kurtosis. Additionally, we compute the Shannon entropy for
each fitting function and estimate the heat capacity. The latter
determination helps estimate the energy increment necessary
to heat the collision systems.

The plan of the paper is as follows. In Sec. II, we comment
on different approaches to describe the TMD and their main
features. In Sec. III, we show the fits to the TMD of minimum
bias pp collisions and give a description of the fit parameters
as a function of the center-of-mass energy. In Sec. IV, we
compute the moments of the TMD in the approaches dis-
cussed in Sec. II. Section V contains our computations of
the Shannon entropy and the heat capacity of the analyzed
TMD data. Finally, in Sec. VI, we write our final comments,
conclusions, and perspectives.

II. THEORETICAL DESCRIPTION OF THE TMD

In this section, we discuss the particularities of the trans-
verse momentum distribution, which can be obtained from
different approaches. In particular, we are interested in dis-
cussing the cases of the TMD for color string systems and
the QCD-based fitting function proposed by Hagedorn. In
what follows, the TMD is denoted as dN/d p2

T , meaning the
invariant yield of produced particles.

A. TMD from the Schwinger mechanism

The Schwinger mechanism explains the generation of
particle-antiparticle pairs from the quantum vacuum under
the influence of an intense gauge field, which supplies the
necessary energy to convert the field’s energy into particle
neutral pairs. This phenomenon occurs upon the gauge field

surpassing a certain critical intensity, enabling the field’s en-
ergy to materialize as mass [16].

In terms of the resultant particle dynamics, the Schwinger
mechanism describes a pT -Gaussian distribution of the pro-
duced particles TMD. This behavior arises due to the
exponential damping linked to the energy barrier imposed
by the vacuum [23]. As the transverse momentum magni-
fies, the likelihood of particle-antiparticle pair production
diminishes exponentially. Initially, the Schwinger mechanism
was conceived to explain the emergence of electron-positron
pairs within a potent electromagnetic field [16]; then, it was
broadened to the creation of quark-antiquark and quark-
quark–antiquark-antiquark pairs within the framework of
QCD. These pairs promptly amalgamate into color-neutral
hadrons, yielding the transverse momentum distribution of the
observed particles.

Taking these ideas into consideration, the probability of ob-
serving a produced hadron with momentum pT is proportional
to [16,24]

dN

d p2
T

∼ e−π p2
T /x2

, (1)

where x2 is the string tension associated with the energy
supplied to the vacuum in the context of QCD color string
models.

B. Thermal TMD

As we commented in Sec. II A, the Schwinger mechanism
has been adequately adapted to describe the production of
charged particles in high energy physics and relates the energy
supplied to the vacuum for the pair creation with the string
tension in QCD [25]. First, it was proposed that the tension
of the color string was taken as a constant. Later, Bialas
introduced the string tension fluctuations based on a stochastic
QCD-vacuum approach [17]. In this way, if the tension of
the strings is considered as a random variable described by
a probability density function P(x), then the appropriate com-
putation of the spectrum should consider these fluctuations,
which can be done by performing the following convolution:

dN

d p2
T

∝
∫ ∞

0
e−π p2

T /x2
P(x)dx. (2)

Assuming that the string tension fluctuations are described by
a Gaussian distribution, the Schwinger mechanism becomes

dN

d p2
T

∝ e−pT /Tth , (3)

where Tth = 〈pT 〉/2 [17]. Equation (3) can be interpreted as
a thermal distribution because it is similar to the Boltzmann
distribution. Tth can be understood as the temperature linked
to the TMD, computed over the ensemble of collision events
occurring under identical conditions [26].

C. Soft and hard scales of the TMD from string
tension fluctuations

In Sec. II B, we discussed the origin of the TMD thermal
distribution from the fluctuations of the string tension. This
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FIG. 1. Gaussian and q-Gaussian string tension fluctuations for pp collisions at different center-of-mass energies. The tail of the q-Gaussian
distribution becomes less tilted as the center-of-mass energy increases, which means that the probability of observing a string with a higher
tension rises.

approach reproduces the thermal behavior of the TMD but
fails to describe the power-like law of the TMD tail at high
pT values.

Recently, it was shown that the spectrum can be adequately
described by replacing the Gaussian fluctuations of the string
tension with a q-Gaussian distribution [21,22], which reads

P(x) = N
(

1 + (q − 1)x2

2σ 2

) 1
1−q

, (4)

with zero mean value, scale parameter σ , and N being the
normalization constant. To allow variations in the string ten-
sion across a range from zero to infinity, it is necessary that the
parameter q lies between 1 and 3 [22,27,28]. In general, this
q-Gaussian distribution is heavy tailed, which means that, in
the collision system the probability of observing a string with
higher tensions is greater than in the Gaussian case, as we
depict in Fig. 1 for pp collisions at different center-of-mass
energies (further analyzed below).

Following the same procedure as in Sec. II B, and by intro-
ducing the variable t = 2σ 2/[(q − 1)x2], the convolution (2)
now reads

dN

d p2
T

∝
∫ ∞

0
e− π p2

T (q−1)

2σ2 t t
1

q−1 − 3
2 (1 + t )

1
1−q dt . (5)

By comparing Eq. (5) with the confluent hypergeometric func-
tion defined as

U (a, b, z) = 1

�(a)

∫ ∞

0
e−zt t a−1(1 + t )b−a−1dt, (6)

we identify

a = 1

q − 1
− 1

2
, b = 1/2, and z = π p2

T

q − 1

2σ 2
. (7)

Therefore, the spectrum (5) becomes

dN

d p2
T

∝ �

(
1

q − 1

)
U

(
1

q − 1
− 1

2
,

1

2
, π p2

T

q − 1

2σ 2

)
. (8)

In particular, Eq. (8) reproduces the exponential decay at
low pT region, reaching the asymptotic behavior

dN

d p2
T

∼ e−pT /TU , (9)

where the thermal temperature TU is defined as

TU = σ
�

(
1

q−1 − 1
2

)
√

2π (q − 1)�
(

1
q−1

) . (10)

On the other hand, for high pT values, the TMD (8) be-
haves as a power law in p2

T

dN

d p2
T

∼
�

(
1

q−1

)
√

π

(
π p2

T (q − 1)

2σ 2

) 1
2 − 1

q−1

, (11)

from where we define the hard scale

TH,U = σ

√
2

π (q − 1)

( √
π

�
(

1
q−1

)) q−1
q−3

. (12)

Note that the soft (10) and hard (12) scales only depend on the
q-Gaussian parameters.

It is worth mentioning that, from (9) and (11), the U fitting
function reproduces the well-known soft and hard behaviors
of the TMD [29].

D. Hagedorn-like fitting functions

A different description of the TMD comes from a formula
inspired by QCD. The Hagedorn function is concerned with
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describing the hard part of the spectrum at high pT values.
This fitting function is given by

dN

d p2
T

∝
(

p0

p0 + pT

)m

. (13)

It is straightforward to show that the latter is a Tsallis q-
exponential function by doing the following parametrization:
m = 1/(qe − 1) and p0 = λ/(qe − 1). Therefore, the Hage-
dorn spectrum becomes

dN

d p2
T

∝
(

1 + pT

p0

)−m

=
(

1 + (qe − 1)
pT

λ

) 1
1−qe

, (14)

where we have added the subscript e to qe in order to avoid
confusion with the q parameter of the string tension fluctua-
tions (4).

Other authors consider a fitting function similar to (14),
where the exponent m is replaced with q′

e/(q′
e − 1). They use

as variable the transverse mass m2
T = p2

T + m2
0, where m0 is

the mass of the produced particle [30–33]. The Tsallis distri-
bution has been used to fit the TMD by experiments such as
those of the STAR Collaboration [34] at RHIC and the ALICE
[35] and CMS [36] Collaborations at LHC. It is convenient to
replace mT with pT . In this case, the TMD is given by

dN

d p2
T

∝
(

1 + (q′
e − 1)

pT

τ

) q′
e

1−q′
e , (15)

which also can be expressed as a Tsallis q-exponential if we
replace qe and λ with 2 − 1/q′

e and τ/q′
e, respectively. Notice

that Eqs. (13), (14), and (15) are equivalent, and they must
describe the same behaviors of the TMD at low and high pT

values. For instance, in the limit of low pT

dN

d p2
T

∝ 1 − pT

THag
+ O(

p2
T

) ∼ e−pT /THag , (16)

where THag is the slope of the spectrum at low pT , which
is given by p0/m, λ, and τ/q′

e for (13), (14), and (15),
respectively. Nevertheless, it is worth mentioning that, for
the cases of the q-exponential (15), τ is usually used as a
temperature parameter [30,32,33]. However, this parameter
does not consider the complete slope in the argument of the
thermal distribution, leading to an overestimation of thermal
temperature when q′

e > 1, as observed in the cases discussed
in this paper.

On the other hand, at high values of pT , it is found that

dN

d p2
T

∝
(

pT

TH,Hag

)α

, (17)

where TH,Hag is identified in (17) as p0 [11], λ/(qe − 1),
and τ/(q′

e − 1) for (13), (14), and (15), respectively. Usually,
TH,Hag is referred to as the hard scale of the TMD [37–41].
Moreover, the α parameter corresponds to the exponent of the
TMD fitting function of each case.

III. EXPERIMENTAL TMD DATA ANALYSIS

We analyze the experimental transverse momentum spectra
of charged particles of minimum bias pp collisions at dif-
ferent center-of-mass energies. By using Eqs. (3), (8), and

TABLE I. pT ranges for the thermal fit and their corresponding
temperatures.

√
s (TeV) pT,min (GeV) pT,max (GeV) Tth (GeV)

0.20 0.40 0.90 0.197(31)
0.90 0.15 0.70 0.199(10)
2.76 0.15 0.50 0.202(20)
5.02 0.15 0.60 0.203(13)
7.00 0.15 0.55 0.202(16)
8.00 0.15 0.60 0.204(14)
13.00 0.15 0.60 0.205(13)

(13), we fit the experimental data reported on Refs. [42–44]
using the ROOT 6 software. The fits were performed by using
different pT ranges. For instance, we adjust the pT range
for the thermal fits, finding the minimization of χ2 (see
Table I). However, for the Hagedorn and U functions, the
fit was done for the entire pT range reported by the experi-
ments [42–44]. In all cases, the value of the quotient χ2/NDF
does not exceed 1 for the fits performed to the TMD data.
Nevertheless, χ2/NDF 	 1 in the case of the thermal fits
extrapolated to the entire range of pT . This means that the
three functions can provide a good description of the exper-
imental data in the appropriate pT range. As seen in Fig. 2,
the thermal fit reproduces only the low pT region. Mean-
while, the Hagedorn function was proposed to describe the
high pT region of the spectrum (0.3 < pT < 10 GeV [11])
but is capable of reproducing the complete range of exper-
imental data. Finally, the confluent hypergeometric function
successfully describes the behavior of the whole TMD for the
data sets.

It is found that the q-Gaussian parameters rise as the center-
of-mass energy increases. We propose the following scaling
laws to describe these behaviors:

q(
√

s ) = aq

(√
s

s0

)cq

, (18a)

σ (
√

s ) = aσ

(√
s

s0

)cσ

, (18b)

with
√

s0 = 1 GeV, aq = 1.253(3), cq = 0.0154(14), aσ =
0.388(8) GeV, and cσ = 0.037(11). In Fig. 3 we plot the q
and σ dependence on

√
s described by Eqs. (18).

For the Hagedorn function, the fitting parameters m and p0

are described by

m(
√

s ) = am

(√
s

s0

)cm

, (19a)

p0(
√

s ) = ap0

(√
s

s0

)cp0

, (19b)

with am = 8.45(17), cm = −0.082(11), ap0 = 1.22(5)
GeV, and cp0 = −0.03(3). Figure 4 shows the Hagedorn
parameters’ dependence on

√
s. The parameter qe =

(1 + m)/m is also shown in Fig. 4(a) in the y axis on
the right side.

We recall that the three different approaches to analyzing
the TMD provide their estimation of the thermal temperature.
We found that Tth, TU , and THag scale with the center-of-mass
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FIG. 2. Fits (lines) to the experimental data (figures) for minimum bias pp collisions at different center-of-mass energies by using (a) the
thermal distribution, (b) the hypergeometric confluent U function, and (c) the Hagedorn function. Shaded regions correspond to the 95%
uncertainty propagation.

energy as [22]

T (
√

s ) = aT

(√
s

s0

)cT

. (20)

The obtained parameters of Eq. (20) for the three approaches
are shown in Table II, and the temperatures are plotted in
Fig. 5.

We recall that the temperature parameter is given by the
TMD behavior at low pT . The experimental TMD data exhibit
a thermal behavior at low pT for identified species of produced
particles, including the Higgs boson [21]. For higher masses,
higher temperature values are expected. The collisions may
also produce heavy resonances which decay into lower mass
particles, enhancing the low pT spectrum, but they cannot
be considered as formerly produced by the fragmentation
of color string clusters. Notice that the parameters q and m
control the tail of the TMD, exhibiting a monotonic behavior
with the center-of-mass energy, as shown in Figs. 3(a) and
4(a). Similar behaviors are expected as a function of the
multiplicity. Additionally, in the heavy-tailed string tension
fluctuations approach, the high pT particle production can be
considered as rare events, including jets. This information is
implicitly incorporated in the tail of the q-Gaussian fluctua-

FIG. 3. Values of the parameters (a) q and (b) σ obtained from
the confluent hypergeometric U fits as a function of center-of-mass
energy for minimum bias pp collisions. The scaling law dependences
(18) are shown in solid lines. Shaded regions correspond to the
uncertainty propagation.

tions. Nevertheless, this approach is not able to distinguish
the longitudinal and transverse jet structure.

IV. MOMENTS OF THE TMD

We compute the nth moment of the transverse momentum
spectra in the standard form

〈Pn
T

〉 =
∫ ∞

0 pn
T TMDd pT∫ ∞

0 TMDd pT
, (21)

for all the fitting functions discussed in Sec. II. Here, we have
introduced the notation 〈Pn

T 〉 to avoid confusion with the com-
putation of the moments reported by the high energy physics
community. In those cases, the TMD must be integrated by
considering the differential contributions of the longitudinal
momentum component [11,38]. Then

〈
pn

T

〉 =
∫

pn
T TMD2π pT d pT∫
TMD2π pT d pT

=
〈Pn+1

T

〉
〈PT 〉 . (22)

This latter definition is also equivalent to considering p2
T as

the random variable.
The calculation of (21) is immediate for the thermal distri-

bution, which gives 〈Pn
T 〉exp = n!T n.

FIG. 4. Parameters (a) m and (b) p0 obtained from Hagedorn fits
(13) to minimum bias pp collisions data as a function of the center-
of-mass energy. Dashed lines are the parameters described by (19).
The shaded regions correspond to the propagation of uncertainty.
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TABLE II. Fit parameter values of the temperature behavior as a
function of the center-of-mass energy (20) for each model.

Model aT (GeV) cT

Thermal 0.199(8) 0.011(24)
Hypergeometric U 0.172(4) 0.046(11)
Hagedorn 0.145(7) 0.051(28)

Let us explain the computation of 〈Pn
T 〉 for the Hagedorn

and confluent hypergeometric U functions in detail. In both
cases, we define the auxiliary function

In =
∫ ∞

0
pn

T TMD d pT . (23)

In this way, 〈Pn
T 〉 = In/I0. For the Hagedorn function (13), we

found

In =
∫ ∞

0
pn

T

(
1 + pT

p0

)−m

d pT

= pn+1
0

∫ 1

0
ym−n−2(1 − y)ndy

= pn+1
0 B(m − n − 1, n + 1),

where B is the beta function, which is well defined for m >

n + 1. Therefore〈Pn
T

〉
Hag = (m − 1)pn

0B(m − n − 1, n + 1). (24)

Similarly, for the U function, we need to compute the
integral

In =
∫ ∞

0
pn

T U (a, b, z)d pT ,

where a, b, and z correspond to Eq. (7). By following the
definition of the confluent hypergeometric function (6), we

FIG. 5. Temperature extracted from (squares) thermal, (circles)
confluent hypergeometric U , and (triangles) Hagedorn fitting func-
tions. Lines are the trend of the (dotted) Tth, (solid) TU , and (dashed)
THag described by Eq. (20). Shaded regions correspond to the uncer-
tainty propagation.

rewrite In as

In =
∫ ∞

0

∫ ∞

0
pn

T e−π p2
T

q−1
2σ2 t t a−1(1 + t )b−a−1dt d pT . (25)

To simplify notation, we omitted writing the factor 1/�(a),
which appears in the denominator and numerator of Eq. (21).
Note that the integral over pT in Eq. (25) is a Gaussian inte-
gral, ∫ ∞

0
pn

T e−π p2
T

q−1
2σ2 t d pT

= 1

2
�

(
n + 1

2

)(
π

q − 1

2σ 2

)−(n+1)/2

t−(n+1)/2. (26)

By plugging this into Eq. (25) and performing the change of
variable y = (t + 1)−1, the remaining integral becomes∫ 1

0
(1 − y)a−1−(n+1)/2y−(b−(n+1)/2)dy

= B

(
1 −

(
b − n + 1

2

)
, a − n + 1

2

)
. (27)

Finally, the In integrals are given by

In = 1

2
�

(
n + 1

2

)(
π

q − 1

2σ 2

)−(n+1)/2

× B

(
n + 2

2
,

1

q − 1
− n + 2

2

)
, (28)

which are well defined if q < (4 + n)/(2 + n). So, the mo-
ments of the distribution are expressed as

〈Pn
T

〉
U = 1√

π
�

(
n + 1

2

)(
2 − q

q − 1

)(
2σ 2

π (q − 1)

)n/2

× B

(
n + 2

2
,

1

q − 1
− n + 2

2

)
. (29)

It is worth mentioning that some experiments report the
TMD without the functional normalization by dividing by
pT . In those cases, the function describing the transverse
momentum spectra is pT (dN/d p2

T ), and the moments of the
distribution are calculated as discussed above. Notice that the
moments (22) can also be expressed in terms of the In integrals
as In+1/I1. Moreover, the ratio 〈Pn

T 〉/〈pn
T 〉 is given by〈Pn

T

〉
th〈

pn
T

〉
th

= 1

n + 1
, (30a)〈Pn

T

〉
Hag〈

pn
T

〉
Hag

= m − n − 2

(n + 1)(m − 2)
, (30b)

〈Pn
T

〉
U〈

pn
T

〉
U

=
B
(

1
q−1 − 3

2 , 1
q−1 − n+2

2

)
(n + 1)B

(
1

q−1 − 1, 1
q−1 − n+3

2

) , (30c)

for the thermal, Hagedorn, and confluent hypergeometric U
functions, respectively. Nevertheless, in what follows, we will
continue to discuss the computation of observables consider-
ing pT as the random variable.
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FIG. 6. (a) 〈PT 〉 and (b) 〈pT 〉 as a function of the center-of-mass
energy for pp collisions for the three different fitting functions with
their corresponding parameter dependence. Lines, figures, and colors
are the same as in Fig. 5.

A. Average of transverse momentum

The first moments of pT of the three different approaches
are given by

〈PT 〉th = Tth, (31a)

〈PT 〉Hag = m

m − 2
THag, (31b)

〈PT 〉U = 4 − 2q

5 − 3q
TU . (31c)

The transverse momentum averages are

〈pT 〉th = 2Tth, (32a)

〈pT 〉Hag = 2m

m − 3
THag, (32b)

〈pT 〉U = (q − 1)(3q − 5)

(2 − q)(2q − 3)

(
�

(
1

q−1

)
�

(
1

q−1 − 1
2

))2

TU . (32c)

We recall that the fit parameters q, σ , m, p0, and Tth exhibit
a particular dependence with the center-of-mass energy for
the case of minimum bias pp collisions. This behavior can
be incorporated into the average of pT by plugging Eqs. (18),
(19), and (20) into Eqs. (31), and (30) for n = 1. Figure 6
shows the behaviors of 〈PT 〉 and 〈pT 〉 as a function of the
center-of-mass energy of minimum bias pp collisions for the

FIG. 7. Absolute percentile deviations of (a) 〈PT 〉 and (b) 〈pT 〉
for the confluent hypergeometric U (circles), Hagedorn (triangles)
and thermal (squares) fitting functions. Figures and colors are the
same as in Fig. 5.

three different approaches with their corresponding estima-
tions discussed above.

It is worth mentioning that the average of pT is propor-
tional to the thermal temperature in the three approaches,
given by simple combinations of q and m for the U and
Hagedorn functions, respectively. These parameters are the
exponents that modulate the hard part of the TMD. Equa-
tions (32b) and (32c) lead to an enhancement of the 〈pT 〉 when
compared with the thermal function, as seen in Fig. 6, but they
recover Eq. (32a) in the limit q → 1 and m → ∞.

Additionally, we can compare the average of the transverse
momentum statistics computed directly from the experimental
TMD data. Thus, the n-moment is calculated as discussed
above, but now we compute the In integrals as follows:

Ihist
n =

∑
k

pn
T k TMDk 	pT k, (33)

where k is the bin number, pn
T k is the conservative pT value of

the k bin, TMDk is the TMD value reported for the k bin,
and 	pT k is the bin width. We also added the superscript
“hist” to differentiate the In integrals computed from the TMD
histogram. Moreover, to compare the predictions of the fitting
function, we define the absolute percentage of deviation as

η = |〈PT 〉hist − 〈PT 〉trunc|
〈PT 〉hist , (34)

where 〈PT 〉hist = Ihist
1 /Ihist

0 , and

〈PT 〉trunc = 1

Ihist
0

∫
R

pT TMD d pT , (35)

with R being the pT range reported by experiments. Similarly,
we define the absolute percentage of deviation of the pT

average by replacing 〈PT 〉 with 〈pT 〉 in Eq. (34). Figure 7
shows our comparison for the first moment and the average
of pT . Notice the agreement between the estimations of the
Hagedorn and U fitting functions and the value computed
from the experimental data.

B. Variance of the transverse momentum

The variance of the TMD is immediately calcu-
lated as var(PT ) = 〈P2

T 〉 − 〈PT 〉2 for the three approaches
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FIG. 8. Variance of the TMD as a function of the center-of-mass
energy for minimum bias pp collisions for the three different ap-
proaches. Lines, figures, and colors are the same as in Fig. 5.

considered:

varth(PT ) = T 2
th, (36a)

varHag(PT ) = m2(m + 1)

(m − 3)(m − 2)2
T 2

Hag, (36b)

varU (PT ) = F (q)T 2
U , (36c)

with F (q) = 2(q−1)
3−2q (

�( 1
q−1 )

�( 1
q−1 − 1

2 )
)2 − ( 4−2q

5−3q )2.

The dependences of q, σ , m, p0, and Tth with the center-
of-mass energy are considered in the Eqs. (36) via Eqs. (18),
(19), and (20). Figure 8 shows the variance of the TMD as
a function of the center-of-mass energy of minimum bias pp
collisions for the three different approaches with their corre-
sponding estimations. Similarly to the 〈PT 〉 case, the variance
is proportional to the squared thermal temperature in the three
cases, given by combinations of the exponent parameters of
Hagedorn and U fitting functions. The expressions (36) reveal
that the widths of the TMD for the Hagedorn and U functions
are larger than that of the thermal function, as seen in Fig. 8.

It is worth mentioning that the computation of 〈p2
T 〉 is cru-

cial for the phenomenology calibration of some models, such
as the color string percolation model (CSPM) [19,20]. In this
model, the average of p2

T and the multiplicity of the produced
charged particles comes from the color interaction between
strings. It has been shown that overlapping the color string
leads to a suppression of the color field. An immediate con-
sequence is that the clusters of strings produce fewer particles
per string but enhance their transverse momentum. Finally, the
estimation of 〈p2

T 〉 allows the CSPM to be fine-tuned with the
experimental data [45–48].

C. Kurtosis of the TMD

The kurtosis is calculated as usual:

μ̃ = 〈PT 〉4

[var(PT )]2

[ 〈P4
T

〉
〈PT 〉4 − 4

〈P3
T

〉
〈PT 〉3 + 6

〈P2
T

〉
〈PT 〉2 − 3

]
, (37)

FIG. 9. Excess of kurtosis calculated with respect to the ther-
mal distribution as a function of the center-of-mass energy for pp
collisions. Lines, figures, and colors for the Hagedorn and U fitting
functions are the same as in Fig. 5.

which for the thermal case is exactly 9. For the Hagedorn
and U functions, we substitute the needed moments from
Eqs. (24) and (29) into the Eq. (37). We also consider the
dependence of the fitting parameters on the center-of-mass
energy, as discussed in Sec. III. Figure 9 shows the excess
of kurtosis, defined as 	μ̃ = μ̃ − 9, for the Hagedorn and
hypergeometric U fitting functions.

Notice that both the Hagedorn and U fitting functions
reveal that their descriptions contain more information about
heavy tails since 	μ̃ > 0. Furthermore, 	μ̃ increases as the
center-of-mass energy rises. In fact, the q-Gaussian fluctua-
tions induce a TMD with more information in the tail than
the Hagedorn function, despite the latter being a QCD based
function. Remarkable, the U function encodes information
related to both soft and hard scales.

V. SHANNON ENTROPY AND HEAT CAPACITY

Let us delve into a fundamental concept in information
theory, the Shannon entropy. It provides a way to quantify the
uncertainty and information of the TMD [49]. This observable
can shed light on the characteristics of the final state particles
of collision systems. Since the temperature-like parameter
T is extracted from the TMD in each approach, the natural
way of computing the Shannon entropy is by considering the
normalized TMD as the probability density function of the
random variable pT , as is usually done in the generalized
ensemble theory [50,51]. Then, the Shannon entropy is com-
puted as [49]

H = −
∫ ∞

0
(TMD/I0) ln [TMD/I0]d pT , (38)

where I0 is the normalization constant given by Eq. (23).
The Shannon entropy (38) can be expressed in terms of

elementary functions for the thermal and Hagedorn fitting
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FIG. 10. Shannon entropy dependence on the (a) center-of-mass energy and (b) temperature. Heat capacity as a function of the (c) center-
of-mass energy and (d) temperature scaled by aT . The shaded regions correspond to the uncertainty propagation of the corresponding equations.
Lines, figures, and colors for the thermal, Hagedorn, and U fitting functions are the same as in Fig. 5.

functions. For these cases, we obtain

Hth = 1 + ln(Tth). (39a)

HHag = m

m − 1
+ ln

(
m

m − 1

)
+ ln(THag), (39b)

respectively.
On the other hand, the Shannon entropy of the confluent

hypergeometric function is explicitly given by

HU = −
∫ ∞

0
(U (a, b, z)/I0) ln [U (a, b, z)/I0]d pT , (40)

with

I0 = σ

(2 − q)�(a)

√
q − 1

2
, (41)

which can be rewritten as

H = ln(I0) + H1

I0
, (42)

where

H1 = −
∫ ∞

0
U (a, b, z) ln [U (a, b, z)]d pT . (43)

As far as we know, Eq. (43) cannot be solved analytically.
Then, we computed H1 by using numerical methods. Fig-
ure 10 shows our estimations of the Shannon entropy for

minimum bias pp collisions as a function of the center-
of-mass energy and the corresponding temperature for each
approach.

We also compute the heat capacity using its thermody-
namic definition [52]

C = T
dH
dT

. (44)

In this context, Eq. (44) is a measure of how much “heat”
is necessary to “warm” the TMD. “Heating” the TMD must
be understood as a global change of the TMD shape, flat-
tening the soft part together with an enhancement of the
TMD tail.

To compute Eq. (44), we must take into account that the
fitting parameters may depend on the temperature. In these
cases, the computation of the heat capacity must be done using
the chain rule. In particular, for the thermal case, we found
Cth = 1. In the case of the Hagedorn fitting function, the heat
capacity is given by

CHag = 1 + THag
1 − 2m

m(m − 1)2

dm

dTHag
, (45)

where the derivative dm/dTHag for minimum bias pp colli-
sions is computed through Eq. (19a) and using the inverse
relation of the temperature with the center-of-mass energy in
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Eq. (20), which reads

dm

dTHag
= cmm(THag)

cT THag
. (46)

Plugging Eq. (46) into (45), the heat capacity is

CHag = 1 + cm[1 − 2m(THag)]

cT [m(THag) − 1]2
, (47)

with m(THag) = am(THag/aT )cm/cT .
On the other hand, for the calculation of the heat capacity

of the confluent hypergeometric U function, we start replacing
σ in favor of TU through Eq. (10). Thus, the normalization
constant I0 and the z parameter [see (7)] in the third argument

of the U functions are rewritten as follows:

I0 = √
π

(q − 1)�
(
a + 1

2

)
(2 − q)�(a)

TU = I0q(q)TU , (48)

z =
(

�(a)

�
(
a + 1

2

))2
p2

T

2T 2
U

. (49)

Therefore, the heat capacity for the U fitting function is

CU =
(

1 − H1

I0

)(
1 + TU

I ′
0q

I0q

dq

dTU

)

− TU

I0

∫ ∞

0
(ln U + 1)

dU

dTU
d pT . (50)

In Eq. (50), the remaining integral is

∫ ∞

0
(ln U + 1)

dU

dTU
d pT =

√
2πa(q − 2)�

(
a + 1

2

)(
a − 1

2

)2
(q − 3)�(a)

⎧⎨⎩
(

�
(
a + 1

2

)
�(a)

)2

−
(

a + 1

2

)2[
ψ (0)

(
a + 1

2

)
− ψ (0)(a)

]
TU

dq

dTU

⎫⎬⎭
−

(
a + 1

2

)
dq

dTU

∫ ∞

0
[ln U (a, 1/2, z) + 1]U (1,0,0)(a, 1/2, z)d pT + a

T 2
U

(
�(a)

�
(
a + 1

2

))2

×
{

1

TU
−

[
ψ (0)

(
a + 1

2

)
− ψ (0)(a)

]
dq

dTU

} ∫ ∞

0
p2

T U (a + 1, 3/2, z) ln U (a, 1/2, z)d pT , (51)

where ψ (0)(x) is the zeroth-order polygamma function. We
also added the superscript to the U function to denote its
first derivative with respect to the first argument. Notice that
there are two remaining integrals, which are done by means
of numerical methods. Similarly to the case of the Hagedorn
fitting function, q is expressed as a power law as a function
of TU , i.e., q(TU ) = aq(TU /aT )cq/cT , and its derivative with
respect to the temperature is

dq

dTU
= cq

cT

q(TU )

TU
. (52)

The heat capacities of the three different schemes as a
function of the center-of-mass energy and the temperature are
plotted in Fig. 10.

VI. CONCLUSIONS

In this work, we discussed the statistics of three different
fitting functions that describe the TMD data, namely, the ther-
mal pT -exponential, the confluent hypergeometric, and the
Hagedorn functions. The first two arise from the string tension
fluctuation in the QCD color string picture; meanwhile, the
last is a power law inspired by the foundations of QCD. All of
them predict a temperature parameter at the low pT regime.

The temperature estimated for minimum bias pp colli-
sions as a function of the center-of-mass energies reflects
the physical motivation of the different approaches. The ther-
mal distribution adequately describes the soft part because it
assumes an exponential decay (similar to a Boltzmann dis-

tribution), resulting in overestimating the temperature for the
complete TMD. In contrast, the power law proposed by Hage-
dorn establishes a description of the hard processes, leading
to a power law tail of the spectrum. This means that the
thermal temperature may not precisely incorporate the soft
part of the TMD. In fact, Hagedorn suggests that their fit
must be performed in the pT interval from 0.3 to 10 GeV
[11]. On the other hand, we must emphasize that the confluent
hypergeometric U adequately combines the information of the
soft and hard scales to predict the temperature.

We also discussed the statistics of the normalized TMD
by computing the moments of the distribution and, thus,
the variance and kurtosis for the three different approaches.
This analysis lets us distinguish the particularities of each
fitting function. For example, the Hagedorn and U functions
reveal more dispersion than the thermal one because of the
information coming from the TMD tail. In all cases, we found
an increasing trend of the first moment and variance with the
center-of-mass energy, as seen in Figs. 6 and 8. Moreover, the
power law tail absence in the thermal distribution leads to a
constant kurtosis, which was taken as a reference to measure
the excess of kurtosis in the Hagedorn and U functions, both
increasing as the center-of-mass energy rises, highlighting that
the U grows more substantially (see Fig. 9). This means the
TMD derived from the q-Gaussian string tension fluctuations
contains more information in the tail than the Hagedorn
approach. This is important because the U fitting function
adequately reproduces the power law behavior associated
with the QCD hard processes from the color string picture.
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In addition, we compare the average of the transverse mo-
mentum estimated from the fitting function and that computed
from the experimental data. It was found that the Hagedorn
and U functions precisely reproduce the value of 〈pT 〉hist,
but the predictions of the thermal distribution considerably
deviate (15%–25%).

Other observables that we computed are the Shannon en-
tropy and the heat capacity. The Shannon entropy increases
as the center-of-mass energy grows. This is consistent with
the TMD variance, which exhibits a similar behavior. This
happens because the probability of observing particles with
high pT rises with an increment on the center-of-mass energy.
Then, the TMD suffers a global widening and an enhancement
of its tail. Moreover, we observed sharp differences between
the entropy computed for the Hagedorn and hypergeometric
confluent U functions. These subtle deviations may come
from the shape of the TMD at very low pT , which can be
inferred from the temperature estimated by each model.

Moreover, the computation of the heat capacity for the ther-
mal fitting function reveals that the system does not change
its requirements to heat up. From a classical thermodynamics
point of view, this means that collision systems described by
a thermal distribution resemble an ideal gas of monoatomic
(or rigid diatomic) molecules. In contrast, for the Hagedorn
and U functions, the heat capacity grows as the temperature
does, similar to a thermodynamic system that can manifest
other degrees of freedom when heating. This implies that,
to heat up the collision system, it is necessary to reach in-

creasingly higher center-of-mass energies. This is a direct
consequence of the TMD tail, since it is required to heat not
only the thermal part but also the hard one for the discussed
minimum bias pp collisions. From our results, we infer that
the higher the TMD temperature, the more energetic collision
is required. This observation is consistent with the analysis
of the experimental data of the temperature saturation as a
function of the center-of-mass energy (see Fig. 5).

This work can be extended in several ways. For instance,
it would be interesting to analyze the TMD and compute the
Shannon entropy and heat capacity of pp collisions as a func-
tion of the multiplicity, heavy ion collisions, production of
identified particles, and other processes. Part of these results
are currently under discussion, and we will report our findings
in a future paper.
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