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Effect of Coriolis force on the shear viscosity of quark matter: A nonrelativistic description
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Shear viscosity becomes anisotropic in a rotating medium. It is discovered here that for rotating thermalized
quantum systems such as those created in relativistic heavy-ion collisions, the coefficient of shear viscosity
breaks up into five independent components. Similar phenomena were also discovered for quark-gluon plasma
in the presence of the magnetic field. Like the Lorentz force at a finite magnetic field, the Coriolis force also
creates anisotropic viscosity at nonzero rotation. As a first approach, for simplicity, the calculations are done in
the nonrelativistic prescription, with a future proposal to extend it toward a relativistic description. Introducing
the Coriolis force term in relaxation time approximated Boltzmann transport equation, we have found different
effective relaxation times along the parallel, perpendicular, and Hall directions in terms of actual relaxation time
and rotating time period. Comparing the present formalism with the finite magnetic field picture, we have shown
the equivalence of roles between the rotating and cyclotron time periods, where the rotating time period is inverse
of twice the angular velocity.
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I. INTRODUCTION

In off-central heavy-ion collisions (HIC), a very high or-
bital angular momentum (OAM) can be deposited. In a typical
collision, OAM created from torque at the time of collision
could be of the order of ≈(103–107) h̄. The magnitude of this
OAM depends on the impact parameter, collision energy, and
system size [1–3]. A fraction of this initial OAM is transferred
to the created quark-gluon plasma (QGP) medium in the form
of local vorticity. The impact of such a huge initial OAM or
later time vorticity on various observables and polarization
has been calculated from various theoretical viewpoints. The
Refs. [3–10] have studied the statistical properties with keen
interest on the polarization of particles in HIC by demands
of angular momentum conservation, whereas the Refs. [2,11–
15] have taken the approach of the spin-orbit coupling under
strong interactions to explain the polarization observed in
HIC. On the other hand, the authors of the Refs. [16–32] have
taken the approach of quantum kinetic theory to obtain chiral
anomalies and polarization effects observed in HIC. More re-
cently, a new theoretical framework has been proposed where
the complete evolution of spin has been taken care of through
explicit incorporation of polarization in a hydrodynamic
framework [33–43]. People have calculated the evolution of
vorticity and the polarization of particles with a particular
focus on � hyperon by various transport and hydrodynamical
models [44–55]. There have also been studies on the evolution
and thermodynamic properties of QGP and hadronic medium
in the presence of rotation [56,57]. See Refs. [36,58] for recent
review papers on the topic related to the vorticity of QGP
and polarization of hadrons. The effect of Coriolis force in
a rotating frame and Lorentz force in an inertial frame are
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similar. An analogy was shown between the effect of rota-
tion (Coriolis force) and the magnetic field (Lorentz force)
in Refs. [59,60]. Both magnetic fields and rotation can be
produced in the peripheral HIC. Thus, one can observe similar
effects on the medium in the presence of rotation as one
observes in the presence of magnetic fields. Now, the medium
constituents of HIC (quarks and hadrons) have two fundamen-
tal quantities, momentum, and spin, which will be affected
by both angular velocity and the magnetic field. Momentum
will be affected directly via the Lorentz force and Coriolis
force. However, spin gets modified through different mecha-
nisms, which is a primary interest to the spin-hydrodynamics
community [36,58]. The spin evolution in the medium is ulti-
mately connected with the experimental quantity, polarization
of hadrons. The present paper focuses only on the former
quantity, momentum, which will be affected by the angular
velocity of the medium through the Coriolis force. Our future
aim will be to go for a more realistic picture by considering
other ingredients such as the effect of different (pseudo)forces
due to rotation, the impact of angular velocity on the spin, etc.

Before going to address our work, we have distinct knowl-
edge of three physical quantities connected with the medium
rotation: (i) local vorticity ( ��l ), (ii) global vorticity ( ��g),
and (iii) angular momentum density (�l), which are frequently
discussed in the literature of rotating QGP topics. They can be
briefly defined as follows.

(1) Local vorticity ( ��l ): This is defined as ��l ≡ 1
2
�∇ × �u,

where �u is the fluid velocity. This quantifies the amount
of local rotation or circulation around a loop of the
velocity field �u, similar to the curl of an electric field,
which quantifies the circulation of an electric field in
electromagnetism.

(2) Global vorticity ( ��g): This corresponds to a situation
where fluid as a whole rotates rigidly with angular
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velocity ��, which gives rise to fluid velocity �u = �� ×
�r. The local vorticity for a fluid evaluated in such a
situation merges with ��, i.e., ��l = 1

2
�∇ × �u = 1

2
�∇ ×

( �� × �r) = ��. Therefore, in this particular case, the
fluid is said to have a global vorticity ��g ≡ ��.

(3) Angular momentum density (�l): Angular momentum
density for a fluid may be defined as �l = ρ(�r × �u),
where ρ is the mass density. For example, the an-
gular momentum density for a rigidly rotating fluid
with global vorticity ��g is �l = ρ �r × ( ��g × �r) ⇒ li =
ρ(|�r|2δi j − xix j ) �gj = Ii j�gj , where Ii j ≡ ρ(|�r|2δi j −
xix j ) is the moment of inertia density. However, one
may generally have angular momentum density with-
out local vorticity and vice versa.

In this paper, to simplify the analysis, we will suppose that
the particles have an additional random part of the velocity �v
on top of a rigid rotation velocity �� × �r. This seems to us as a
simple way of incorporating angular momentum density into
a system by replacing more realistic situations. Adopting this
background of including angular momentum into the system,
the present paper is planned to concentrate only on the topic
of the effect of Coriolis force on the shear viscosity (see
Ref. [61] for the calculation of electrical conductivity under
the same background). To fulfill this purpose, we will use the
Boltzmann transport equation (BTE)-based kinetic theory as
our microscopic model. The BTE will be written in the frame
rotating with angular velocity �� to include our background
choice implicitly. Again, for simplicity, we will start with the
nonrelativistic matter with the future aim to extend it towards
a relativistic description.

Recently, Refs. [62–68] have gone through a systematic
and step-by-step study on the problem of the effect of Lorentz
force on the shear viscosity of magnetized matter. Connecting
the similarity between Lorentz force and Coriolis force, the
effect of Coriolis force on the shear viscosity of rotating
matter is explored here. In the absence of magnetic fields,
there is only one velocity gradient term. As a result, the shear
viscosity of the medium is isotropic. At a finite magnetic field,
the shear stress tensor breaks up into five independent com-
ponents as one can build five independent velocity gradient
tensors in terms of fluid velocity ui and magnetic field unit
vector bi. Similarly, the viscous stress tensors can have five
independent velocity gradient components for a fluid under
finite rotation in terms of fluid velocity ui and angular velocity
unit vector ωi. We have developed a detailed formalism to cal-
culate the shear viscosity in the presence of rotation (detailed
in Sec. II). Consequently, in Sec. III, we have described the
numerical outcomes on temperature and angular velocity de-
pendency of shear viscosity with graphical visualization and
interpretation. Ultimately, we have summarized our findings
in Sec. IV.

II. FORMALISM

In classical mechanics, if we have a system rotating with
an angular velocity ��, one can write the following operator

FIG. 1. Schematic picture of rotating cylinder with fluid on the
left side, whose one of the (cubical) fluid elements is zooming in the
right side, where particles inside the fluid element box are randomly
moving and facing Coriolis force.

equation holding for any arbitrary vector [69],(
d

dt

)
s

≡
(

d

dt

)
r

+ ��×, (1)

where s and r in the subscripts of the expression mean, the
time derivative of a vector has to be performed with respect
to space-fixed and rotating frames, respectively. If one substi-
tutes the position vector �r in the operator equations one gets
the relation, �vs = �vr + �� × �r, where one identifies �vs and �vr

with velocity in space-fixed and rotating frame, respectively.
Again substituting this in general Eq. (1) we have

�as = �ar + 2( �� × �vr ) + �� × ( �� × �r) + �̇� × �r. (2)

We will ignore the subscripts s and r on the vectors for sim-
plicity of notation, so, from now onwards, we will call �vr and
its component as �v and vi respectively. The terms of Eq. (2)
can be rearranged to write Newton’s equation in a rotating
frame. The second term in Eq. (2) is known as the Coriolis
acceleration. In Fig. 1, we have schematically presented a
cylinder containing fluid rotating with angular velocity ��.
For simple visualization, the geometry of the fluid system
has been chosen as cylindrical. If we take any fluid element
and look at it closely, the particles inside it have a random
part of the velocity �v on top of the rotational velocity �� × �r.
All the particles inside any fluid element feel the Coriolis
force 2m(�v × ��). For the case of constant angular velocity
(as is assumed here), the Euler force vanishes, but the other
two forces, i.e., Coriolis and centrifugal, remain nonzero. In
the present calculation, we will consider only the effect of
Coriolis force on particle motion to keep our expressions
simple to understand. In a realistic system, both forces should
be considered, but one may ignore the centrifugal force for
the particular domain where particle (average) velocity is
quite larger than the fluid element’s angular velocity (more
explicitly v � �r/2). We can find a similarity or equivalence
between finite magnetic fields and finite rotation pictures. For
example, at finite magnetic field (B), a particle with charge q
and velocity v will face the Lorentz force �F = q�v × �B, while
at angular velocity � of medium, a particle with mass m and
velocity v will face the Coriolis force �F = 2m�v × ��. The dis-
sipative part of the energy-momentum tensor is modified at the
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microscopic level through the Lorentz force. A similar kind of
modification can be expected for the finite rotation case. The
similarity between this finite B and finite � in microscopic
descriptions inspires us to build a similar kind of macroscopic
description. References [62–68] have prescribed that macro-
scopic expressions of dissipative energy-momentum tensor at
finite B can be built by the basic tensors: fluid velocity (ui ),
Kronecker delta (δi j ), and the component of magnetic field
unit vector, bi(Bi ≡ Bbi ). The same macroscopic structure
can be expected in finite rotation by replacing bi by angular
velocity unit vector ωi(�i ≡ �ωi ). Following the structure
similar to the finite magnetic field case, we can write viscous
stress tensor for finite angular velocity as

τ i j = ηi jklUkl , (3)

where Ukl = 1
2 ( ∂uk

∂xl
+ ∂ul

∂xk
) is the velocity gradient and ηi jkl

is the viscosity tensor. Here, total energy-momentum tensor
(T i j) is symmetric in nature, and for having finite contribution
of viscosity in the entropy production, velocity gradient term
is also symmetric in nature [70–73]. We ignored the antisym-
metric part of the gradient 1

2 ( ∂uk
∂xl

− ∂ul
∂xk

) in writing Eq. (3)
because it does not contribute to the viscous stress tensor if
one only considers first-order deviations of the system from
equilibrium.

Now we can make seven independent tensor components
with the properties that they remain symmetric under the
exchange of indices i ↔ j and k ↔ l [71]. These tensor com-
ponents are given below

δikδ jl + δ jkδil ,

δi jδkl ,

δikω jωl + δ jkωiωl + δilω jωk + δ jlωiωk,

δi jωkωl + δklωiω j,

ωiω jωkωl ,

ωikδ jl + ω jkδil + ωilδ jk + ω jlδik,

ωikω jωl + ω jkωiωl + ωilω jωk + ω jlωiωk, (4)

where ωi j ≡ εi jkωk . We can make seven independent tensors
Cn

i jkl , (n = 0 to 6) with the help of the linear combination of
basis given in Eq. (4). The first five tensors Cn

i jkl , (n = 0–4)
when contracted with Ukl gives five traceless tensors Cn

i j, (n =
0–4), and the last two tensors, Cn

i jkl , (n = 5, 6) upon contrac-
tion, give two nonzero trace tensors Cn

i j, (n = 5, 6). Similar to
the structure of five traceless tensors and two nonzero trace
tensors for finite magnetic field case [62–67,74], Cn

i jkl can be
expressed as

C0
i jkl = (3ωiω j − δi j )

(
ωkωl − 1

3δkl
)
,

C1
i jkl = δilδ jk + δ jlδik − δi jδkl + δi jωkωl − δ jlωiωk,−δ jkωiωl + δklωiω j − δikω jωl − δilω jωk + ωiω jωkωl ,

C2
i jkl = δikω jωl + δilω jωk + δ jkωiωl + δ jlωiωk − 4ωiω jωkωl ,

C3
i jkl = δilω jk + δ jlωik − ωikω jωl − ω jkωiωl ,

C4
i jkl = ωikω jωl + ωilω jωk + ω jkωiωl + ω jlωiωk,

C5
i jkl = δi jδkl ,

C6
i jkl = δi jωkωl + δklωiω j, (5)

with

C0
i j = (3ωiω j − δi j )

(
ωkωlUkl − 1

3
�∇ · �u

)
,

C1
i j = 2Ui j + δi jUklωkωl − 2Uikω jωk − 2Ujkωkωi,+(ωiω j − δi j ) �∇ · �u + ωiω jωkωlUkl ,

C2
i j = 2(Uikω jωk + Ujkωiωk − 2Uklωiω jωkωl ),

C3
i j = Uikω jk + Ujkωik − Uklωikω jωl − Uklω jkωiωl ,

C4
i j = 2(Uklωikω jωl + Uklω jkωiωl ),

C5
i j = δi j ( �∇ · �u),

C6
i j = δi jωkωlUkl + ωiω j ( �∇ · �u), (6)

where Cn
i j = Cn

i jklUkl . The viscous tensor can be written as a
combination of seven basis tensors given in Eq. (5) as

ηi jkl = η0C
0
i jkl + η1C

1
i jkl + η2C

2
i jkl + η3C

3
i jkl + η4C

4
i jkl

+ ζ0C
5
i jkl + ζ1C

6
i jkl , (7)

where η0 to η4 are designated as shear viscosities, whereas
ζ0, and ζ1 are categorized as bulk viscosities of the medium.
From now onwards, we will concentrate on the shear viscosi-
ties of the medium, ignoring the bulk part of the viscous stress
tensor.
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So, the viscous stress tensor given in Eq. (3) becomes the
shear stress tensor, which can be written as

πi j = ηnC
n
i jklU

kl ,

= ηnC
n
i j . (8)

This Eq. (8) is the macroscopic expression of shear stress
tensor πi j . For its microscopic expression, we have used the
kinetic theory framework, which defines the dissipative part
of the stress tensor as

πi j = g
∫

d3 �p
(2π )3

mviv jδ f , (9)

where g is the degeneracy factor of the medium constituent
particle with mass m and velocity vi = pi/m.

In order to ascertain the nature of δ f , the Boltzmann trans-
port equation (BTE) will be employed

�v · ∂ f

∂�r + �F · ∂ f

∂ �p + ∂ f

∂t
=

(
∂ f

∂t

)
coll

, (10)

where f and �F are the nonequilibrium distribution function of
the particles and the force acting on the particles, respectively.
The BTE in relaxation time approximation (RTA) can be
written as

�v · ∂ f

∂�r + �F · ∂ f

∂ �p + ∂ f

∂t
= −δ f

τc
, (11)

where the system has been assumed to be slightly out of equi-
librium. The total distribution function comprises two parts:
the part corresponding to local equilibrium f0 and a perturbed
part δ f , i.e., f = f0 + δ f . τc is the so-called relaxation time
for the system. Substituting the expression of Coriolis force in
place of �F and keeping the terms, which are first order in δ f
in the left-hand side (LHS) of Eq. (11) we have

�v · ∂ f0

∂�r + 2(�v × ��) · ∂δ f

∂�v + ∂ f0

∂t

= −δ f

τc
− f0(1 − f0)�v · ∂

∂�r
E − μ(�r, t ) − �u(�r, t ) · �p

T (�r, t )

+ 2(�v × ��) · ∂δ f

∂�v − f0(1 − f0)
∂

∂t

× E − μ(�r, t ) − �u(�r, t ) · �p
T (�r, t )

= −δ f

τc
, (12)

where the local equilibrium distribution f0 =
[ exp ( E−μ(�r,t )−�u(�r,t )· �p

T (�r,t ) ) + 1]
−1

and �u is the fluid velocity.
The space-time gradient of chemical potential (μ) from
the LHS of Eq. (12) can be replaced with the space-time
gradients of pressure (P) and temperature (T ) by the use
of Gibbs-Duhem relation. Subsequently, the conservation
equations of ideal fluid can also be used to eliminate the
time derivative of P, T , and �u. Eventually, one is left with
only the space gradients of temperature ∂T

∂xi
, and fluid velocity

∂ui
∂x j

in the LHS of Eq. (12) [75,76]. Similarly, δ f can be
thought to be made up of two parts, i.e., δ f = δ fη,ζ + δ fκ .
The δ fη,ζ corresponds to corrections of f0 due to bulk and
shear stresses in the fluid. It gives rise to shear viscosity η

and bulk viscosity ζ . The δ fκ corresponds to the correction

of f0 due to temperature gradient. It gives rise to thermal
conductivity κ . The gradients that give rise to shear or bulk
viscosities ( ∂ui

∂x j
or ∂ui

∂xi
) and the gradients corresponding to

thermal conductivity ( ∂T
∂xi

) are independent. Therefore, each
case can be analyzed separately. We will consider only δ fη in
the present paper even though, due to notational simplicity,
we will call it δ f onwards. By only keeping the terms that
correspond to stress in the fluid, the LHS of Eq. (12) can be
written as:

mviv j

T

∂u j

∂xi
f0(1 − f0) + 2(�v × ��) · ∂δ f

∂�v = −δ f

τc
, (13)

where we have followed Einstein’s summation conven-
tion. Using the identity Ui j ≡ 1

2 ( ∂u j

∂xi
+ ∂ui

∂x j
), we can express

Eq. (13) as:

m

T
viv jUi j f0(1 − f0) + 2(�v × ��) · ∂δ f

∂�v = −δ f

τc
. (14)

To access πi j , we need δ f , which can be acquired by
solving Eq. (14). We will guess the solution of Eq. (14) as:

δ f =
4∑

n=0

CnC
n
klvkvl . (15)

We will see in the following calculation that the above-written
guess solution in the form of Eq. (15) actually works. This
justifies the validity of Eq. (3) with only the symmetric part
of the velocity gradient Ukl . As we have anticipated, the
validity of the guess solution in the form of Eq. (15) can
be traced back to the approximation we used in obtaining
Eq. (12) from Eq. (11). But if one considers higher orders of
the approximation, the viscous stress tensor can also contain
the antisymmetric part of the gradient [72,73].

The Eq. (14) can be rewritten as:

m

T
viv jUi j f0(1 − f0) + 2εi jkv jωk�

∂δ f

∂vi
= −δ f

τc

⇒ m

T
viv jUi j f0(1 − f0) + 1

τ�

ωi jv j
∂δ f

∂vi
= −δ f

τc
, (16)

where τ� = 1
2�

. We will see later that this τ� will play the
same role as the cyclotron time period τB = m/qB plays on
the transport coefficient expressions at finite magnetic field.
Now,

∂δ f

∂vi
= ∂

∂vi

4∑
n=o

CnC
n
klvkvl .

Using this result of Eq. (16),

m

T
viv jUi j f0(1 − f0) + 2

τ�

ωi jv j

4∑
n=o

CnC
n
ikvk

= − 1

τc

4∑
n=0

CnC
n
klvkvl

⇒ m

T
viv jUi j f0(1 − f0)

=
4∑

n=0

Cn

(
− 2

τ�

ωi jv jvkC
n
ik − 1

τc
Cn

klvkvl

)
, (17)
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where ωi jviv j = 0. The Eq. (17) can be further simplified
explicitly by expressing Cn

ikv jvk and Cn
klvkvl in terms of el-

ementary tensor structures. All the Cn’s can be calculated
by equating the coefficients of the independent tensor blocks
that appeared in Eq. (17) to zero. By equating the coeffi-
cients viv jUi j,Ui jv jvkωik,Ui jvkω jωik (�v · ��) and Ui jviω j (�v ·
��), which occurs in the Eq. (17) to zero, the following set of
equations can be attained:

viv jUi j : −4C3

τ�

− 2C1

τc
= m

T
f0(1 − f0),

Ui jv jvkωik : −4C1

τ�

+ 2C3

τc
= 0,

Ui jvkω jωik (�v · ��) :
4C1

τ�

− 4C2

τ�

− 2C3

τc
+ 4C4

τc
= 0,

Ui jviω j (�v · ��) :
8C3

τ�

− 4C4

τ�

+ 4C1

τc
− 4C2

τc
= 0. (18)

Solving the above set of linear equations, we have

C1 = − m

2T
f0(1 − f0)

τc

1 + 4(τc/τ�)2
,

C2 = − m

2T
f0(1 − f0)

τc

1 + (τc/τ�)2
,

C3 = −m

T
f0(1 − f0)

τc(τc/τ�)

1 + 4(τc/τ�)2
,

C4 = − m

2T
f0(1 − f0)

τc(τc/τ�)

1 + 4(τc/τ�)2
. (19)

Substituting the value of δ f in Eq. (9), and using the re-
sult

∫
viv jvkvl d3�v = v4

15 (δi jδkl + δikδ jl + δilδ jk )d3v, (d3v ≡
4πv2dv) we have

πi j = g
∫

d3 �p
(2π )3

m
4∑

n=0

CnC
n
klviv jvkvl

= g
∫

d3v
m4

(2π )3

4∑
n=0

CnC
n
kl (δi jδkl + δikδ jl + δilδ jk )

v4

15

= 2gm4

15

4∑
n=0

Cn
i j

∫
d3v

(2π )3
v4Cn, (20)

where Cn
kl (δi jδkl + δikδ jl + δilδ jk ) = 2Cn

i j . Substituting the
values of C’s from Eq. (19) in Eq. (20), we get the correspond-
ing viscosities as

ηn = −2gm4

15

∫
d3v

(2π )3
v4Cn. (21)

The η0 is the viscosity in the absence of rotation, which will
be the same as the expression in the absence of magnetic field
case; therefore, it is given by [65,67]

η0 = gτc

15T

∫
d3 p

(2π )3

p4

m2
f0(1 − f0).

From the Eq. (21), we get

η1 = g

15T

τc

1 + 4(τc/τ�)2

∫
d3 p

(2π )3

p4

m2
f0(1 − f0),

η2 = g

15T

τc

1 + (τc/τ�)2

∫
d3 p

(2π )3

p4

m2
f0(1 − f0),

η3 = 2g

15T

τc(τc/τ�)

1 + 4(τc/τ�)2

∫
d3 p

(2π )3

p4

m2
f0(1 − f0),

η4 = g

15T

τc(τc/τ�)

1 + (τc/τ�)2

∫
d3 p

(2π )3

p4

m2
f0(1 − f0). (22)

Comparing the final expressions of ηn at finite � with the
same for finite B, addressed in Refs. [65,67], the reader can
find the similarities in mathematical structure if he equates
τ� ≡ τB, i.e., 1

2�
≡ m

qB , which may be understood as an equiv-
alence between Coriolis and Lorentz forces

�v × 2m �� ≡ �v × q �B, ⇒ 2m� ≡ qB. (23)

The above expressions of viscosities can be cast in terms of
the Fermi function as follows:∫ ∞

0
d p p6 f0(1 − f0) =

∫ ∞

0
d p p6

(
T

∂ f0

∂μ

)

= T
∂

∂μ

∫ ∞

0
d p f0 p6

= 4
√

2T m7/2 ∂

∂μ

∫ ∞

0
dE f0E5/2

= 4
√

2T m7/2 ∂

∂μ

∫
E (7/2)−1dE

e(E−μ)/T + 1

= 4
√

2T 7/2m7/2

(
T

∂

∂μ

∫
x(7/2)−1dx

A−1ex + 1

)
,

(24)

where x = E/T and A = eμ/T . The Fermi function is de-
fined as f j (A) ≡ 1

�( j)

∫ ∞
0

x j−1

A−1ex+1 dx, with the property that
∂

∂ (μ/T ) f j (A) = f j−1(A). Using the above definition, we have
∫ ∞

0
d p p6 f0(1 − f0) = 15

2

√
2πm7/2 f5/2(A)T 7/2. (25)

Using the result of Eq. (25) in Eq. (24) we have

η1 = g
( m

2π

)3/2 τc

1 + 4(τc/τ�)2
T 5/2 f5/2(A),

η2 = g
( m

2π

)3/2 τc

1 + (τc/τ�)2
T 5/2 f5/2(A),

η3 = g
( m

2π

)3/2 τc(2τc/τ�)

1 + 4(τc/τ�)2
T 5/2 f5/2(A),

η4 = g
( m

2π

)3/2 τc(τc/τ�)

1 + (τc/τ�)2
T 5/2 f5/2(A). (26)

Following the similarity in the definition of parallel, per-
pendicular, and Hall shear viscosity components η‖,⊥,× at
finite magnetic field [65,67], one can define η‖ = η1, η⊥ = η2,
η× = η4.
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FIG. 2. Normalized parallel (n =‖), perpendicular (n =⊥), and
Hall (n = ×) components of shear viscosity as well as shear viscosity
without rotation are plotted against temperature.

III. RESULTS

In Sec. II, we got general expressions of different shear vis-
cosity components for nonrelativistic fermionic matter, which
can apply to any temperature values (T ), chemical potential
(μ) and angular velocity (�). One may readily apply the
expression for nonrelativistic fluid, belonging to the subject of
condensed matter physics and mechanical engineering, where
the quantities T , μ, and � will be the order of eV in the natural
unit. However, our destined system belongs to the subject
of high-energy nuclear physics and astrophysics, where MeV
will be the order of magnitude for the quantities T , μ, and �.
Imagining the quark-hadron phase transition T − μ diagram,
we can expect two extreme domains: (i) the early universe
scenario of net quark/baryon-free domain (i.e., at μ = 0),
which can be produced in LHC and RHIC experiments, and
(ii) the compact star scenario of degenerate electron or neutron
or quark matter (i.e., at T = 0), expected in white dwarfs and
neutron stars. Our microscopic expressions of shear viscos-
ity components at finite rotation can be easily applicable to
RHIC/LHC matter by putting μ = 0 and to compact star by
putting T = 0 in the general forms of Eq. (26). However,
we have limitations for using nonrelativistic matter, which
can provide some overestimation with respect to the actual
relativistic matter expected in RHIC/LHC experiments and
compact stars. Our future goal is to reach that actual scenario
by developing the framework step by step. By putting μ = 0
and A = eμ/T = 1 in Eq. (26), we get

η‖ = η1 = 0.64g
( m

2π

)3/2 τc

1 + 4(τc/τ�)2
T 5/2ζ (5/2),

η⊥ = η2 = 0.64g
( m

2π

)3/2 τc

1 + (τc/τ�)2
T 5/2ζ (5/2),

η× = η4 = 0.64g
( m

2π

)3/2 τc(τc/τ�)

1 + (τc/τ�)2
T 5/2ζ (5/2), (27)

as Fermi function become f5/2(A = 1) = (1 − 1
23/2 )ζ (5/2).

Using Eq. (27), we have plotted η||,⊥,×/τcm3/2T 5/2 against T
axis in Fig. 2 and we get horizontal lines as all components

FIG. 3. Relative percentage of parallel (n =‖), perpendicular
(n =⊥), Hall (n = ×) components of shear viscosity vs angular
velocity.

are proportional to T 5/2. We consider quark matter with mass,
m = 0.005 GeV and relaxation time τc = 5 fm and angular
time period τ� = 35 GeV−1 = 6.8 fm for angular velocity
� = 1

2τ�
= 0.014 GeV. We keep comparable values of two-

time scales, for which we can get a noticeable difference
between parallel and perpendicular components of shear vis-
cosity. We can understand the η‖,⊥,× in terms of effective
relaxation time,

τ‖ = τc

1 + 4(τc/τ�)2
,

τ⊥ = τc

1 + (τc/τ�)2
, (28)

τ× = τc(τc/τ�)

1 + (τc/τ�)2
,

as η‖,⊥,× ∝ τ‖,⊥,×, while η0 ∝ τc only. So we can easily un-
derstand that the nonzero ratio τc/τ� for finite rotation will
create the inequality τ‖,⊥,× < τc and the ratio is also the
deciding factor for the ranking among η‖, η⊥, η×. In Fig. 2,
for present set of parameters τc = 5 fm, τ� = 6.8 fm and ratio
τc/τ� = 0.73, we get the ranking η‖ > η× > η⊥ but it can be
changed for different values of the ratio τc/τ�. This fact will
be more clear in the next plot.

In Fig. 3, we have plotted the percentage of normalized
viscosities (ηn/η0) with respect to � at τc = 5 fm. It is clearly
seen in the plot that the relative magnitude of η⊥,|| decreases
with � in the whole range, whereas η× initially increases
and then decreases with �. In the lower range of �, η⊥,||
are more dominant than η×, on contrary in higher range of
�, η× is more dominant than η⊥,||. One can identify both
η⊥,|| will merge to η0 in the absence of angular velocity, i.e.,
η⊥,||(� −→ 0) = η0. From this fact, we can conclude that the
finite angular velocity can create anisotropy in shear viscosity
components, as we have noticed in the finite magnetic field
picture.

Let us visualize the different shear viscosity components
by means of a schematic diagram, Fig. 4. The picture resem-
bles the finite magnetic field picture described in Ref. [77].
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FIG. 4. Velocity gradients along XY, ZX, and ZY plane.

Only the direction of the magnetic field along the z direction
will be replaced by the direction of angular velocity. In Fig. 4,
the arrows represent the velocity direction, and their lengths
represent their order of magnitudes, so changing the arrow
lengths map the velocity gradient picture. The right and left
panels of Fig. 4 represent the gradient of velocity in the planes,
which are parallel (ZX and ZY plane) and perpendicular (XY
plane) to the angular velocity, respectively.

Apart from the rotating quark matter system at μ = 0, we
can apply the microscopic expressions in Eq. (27) for rotating
hadronic matter at μ = 0, although the magnitude of angular
momentum will be reduced to a smaller value in hadronic
phase expansion. Considering the T → 0 limit of Eq. (26),
we can get

η‖ = η1 = 8g

15
√

π

( m

2π

)3/2 τc

1 + 4(τc/τ�)2
μ5/2

η⊥ = η2 = 8g

15
√

π

( m

2π

)3/2 τc

1 + (τc/τ�)2
μ5/2

η× = η4 = 8g

15
√

π

( m

2π

)3/2 τc(τc/τ�)

1 + (τc/τ�)2
μ5/2, (29)

which may be applicable for rotating compact star sys-
tems such as white dwarfs, neutron stars, and quark matter
(expected in the core of a neutron star). However, an overesti-
mation of shear viscosity components of those rotating media
can be expected by considering the nonrelativistic description
of relativistic matter. This fact can be understood from Fig. 5,
where the relativistic and nonrelativistic velocity (v) of u
quark, pion, and nucleon are plotted against momentum (p).
From this simple picture, one can see the noticeable difference
between relativistic (R) and nonrelativistic (NR) curves be-
yond the threshold momenta 1 MeV, 30 MeV, and 300 MeV
for u quark, π meson, and nucleon, respectively. Overestima-
tion in NR description with respect to R description, will come
in the momentum integral beyond those threshold values. Our
future aim is to go for that relativistic description with an
appropriate relativistic extension of the present framework.

Regarding the fluidity of the medium, quantified by shear
viscosity to entropy density ratio, we can find a possibility
of violation of KSS bound [78] due to rotation of medium
through Coriolis force just like finite magnetic field picture by
means of Lorentz force. The entropy density of nonrelativistic

matter in two extreme limits follow the relations s ∝ T 3/2

at μ → 0 and s ∝ μ3/2 at T → 0. The ratio between shear
viscosity to entropy density will be η/s = τcT

5 at μ → 0 and
η/s = τcμ

5 at T → 0, which can reach to the KSS bound
1

4π
[78] for relaxation time τc(T ) = 5

4πT and τc(μ) = 5
4πμ

,
respectively. At finite rotation, we can expect lower limit
expressions for parallel, perpendicular, and Hall components
of shear viscosity to entropy density ratio as,

η‖
s

= 1

4π

1

1 + 4
(

5
4πT τ�

)2

η⊥
s

= 1

4π

1

1 + (
5

4πT τ�

)2

η×
s

= 1

4π

(
5

4πT τ�

)
1 + (

5
4πT τ�

)2 . (30)

The above expressions are for μ = 0. By replacing T by μ

in Eq. (30), one can get their corresponding expression for
T = 0. So, one can notice that by increasing angular velocity
or decreasing τ� of the medium, η‖,⊥/s can go below 1

4π
. The

FIG. 5. Velocity (v) vs momentum (p) relation for u quark, π

meson, and nucleons.

034913-7



AUNG, DWIBEDI, DEY, AND GHOSH PHYSICAL REVIEW C 109, 034913 (2024)

η‖/s < 1/(4π ) is also expected and pointed out by Ref. [79]
for finite magnetic field. As a matter of fact, a quantum ver-
sion extension of the present formalism may be required to
comment something on the lower bounds of η‖,⊥/s.

IV. SUMMARY

In summary, we have explored the equivalence role of
magnetic field and rotation on shear viscosity using Lorentz
force and Coriolis force, respectively. In the absence of mag-
netic fields or rotation, we get an isotropic shear viscosity
coefficient, which is proportional to relaxation time only.
Meanwhile, at a finite magnetic field or rotation, we get
anisotropic shear viscosity coefficients proportional to effec-
tive relaxation time along the parallel, perpendicular, and Hall
directions. This effective relaxation time can be expressed
in terms of actual relaxation time and cyclotron-type time
period due to magnetic field or rotation. The physics and
mathematical steps of the microscopic calculation of shear
viscosity at a finite magnetic field or rotation are similar. The
fluid velocity gradient is a macroscopic quantity that leads to
deviating the total single-particle distribution function out of
equilibrium, which is a microscopic quantity. The solution
of the Boltzmann equation yields the microscopic expres-
sion of the shear stress tensor. Finally, we obtained different
components of shear viscosity coefficients in terms of mi-
croscopic variables by comparing the microscopic expression
with the hydrodynamic expression of the shear stress tensor, a
macroscopic expression. This approach obtained anisotropic
(or isotropic) shear viscosity components in the presence (or

absence) of rotation or magnetic field. At a finite magnetic
field, anisotropy is introduced by the Lorentz force term in
the Boltzmann equation, and for the finite rotation case, it
is the Coriolis force. The present paper has only explored
the detailed calculation of the finite rotation case. During the
description, we have also mentioned the equivalence with the
finite magnetic field case. For simplicity, we have attempted it
for nonrelativistic matters. However, our immediate plan is to
extend it toward a relativistic description. To our knowledge,
it is the first time we have addressed this anisotropic structure
of shear viscosity of rotating matter due to the Coriolis force.
We have noticed an equivalence role between the rotating time
period for the finite rotation case and the cyclotron time period
for the finite magnetic field case, where the rotating time
period is defined as the inverse of twice the angular velocity.
The factor two propagates from the basic definition of the
Coriolis force.
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