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Polarized photons from the early stages of relativistic heavy-ion collisions
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The polarization of real photons emitted from early-time heavy-ion collisions is calculated, concentrating on
the contribution from bremsstrahlung and quark-antiquark annihilation processes at leading order in the strong
coupling. The effect of an initial momentum space anisotropy of the parton distribution is evaluated using a
model for the nonequilibrium scattering kernel for momentum broadening. The effect on the photon polarization
is reported for different degrees of anisotropy. The real photons emitted early during in-medium interactions will
be dominantly polarized along the beam axis.
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I. INTRODUCTION

The theory of the nuclear strong interaction, quantum chro-
modynamics (QCD), features a transition from a phase where
the relevant degrees of freedom are quarks and gluons—at
high temperature—to one where the appropriate basis consists
of composite hadrons at a lower temperature. This transition
has been predicted by several theoretical approaches, includ-
ing the nonperturbative field-theoretical framework of lattice
QCD [1]. Decades of intense theoretical effort have revealed
that the transition from confined hadrons to partons is not
a thermodynamic phase transition in the proper sense but
rather an analytic crossover [2]. On the experimental side,
this exotic state of strongly interacting matter—the quark-
gluon plasma (QGP)—has been observed in the relativistic
collisions of nuclei (“heavy-ions”) performed at the BNL
Relativistic Heavy-Ion Collider (RHIC), and its existence has
been later confirmed by experiments performed at the CERN
Large Hadron Collider (LHC) [3]. There also is strong evi-
dence supporting the presence of QGP in smaller systems [4].

The theoretical tools developed to study the dynamics
of nuclear collisions and the formation of the QGP typi-
cally consist of multistage models, rendered necessary by the
complexity of the nuclear reaction [5–9]. As this multistage
modeling of relativistic heavy-ion collisions covers a variety
of dynamical conditions ranging from far from equilibrium
initial states to almost ideal fluid dynamics, it is important
to critically examine its different eras. In searching for ob-
servables capable of revealing the different modeling epochs,
penetrating probes such as real and virtual photons impose
themselves. Electromagnetic variables are emitted at all stages
of the collision and as such can report on local conditions
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at their creation point [10]. The largest uncertainty in the
chain of models currently lie at the beginning, in the time
span preceding “hydrodynamization”. Early in the history of
the collision, photon emission is liable to occur in media far
from equilibrium, and this necessitate a dedicated theoretical
treatment [11,12].

This study will consider those photons emitted in the early
stages of heavy-ion collisions, and will focus more specifi-
cally on their polarization state as a probe of the medium at
early times. As our calculation only relies on the medium
having a pressure anisotropy, or equivalently a momentum
anisotropy in parton distribution, it holds both before hydro-
dynamization as well as in the beginning of the hydrodynamic
stage while pressure anisotropy still persists. Some previous
estimates for photon polarization at early times considered
leading order direct photon production channels like those
of the Compton process and qq̄ annihilation [13–15]. It is
known that an equally important contribution as those two—
at the same order in αs, the strong coupling constant—is
that associated with the Landau-Pomeranchuk-Migdal effect
(LPM) [16–18]. That contribution, evaluated for a medium
out of equilibrium forms the basis of this work. It is fair to
remind readers that the measurement of real photon polariza-
tion states is challenging, owing to the complications related
to the external conversions into lepton pairs in experimental
detectors. The angular distribution of this pairs will reflect
the polarization state. A more realistic proposition is a mea-
surement of virtual photon polarization states, as measured
through an internal conversion process leading to a dilepton
final state. Consequently, the goal of our work is to first set
the foundations for subsequent such evaluations and to per-
form a first estimate of the polarization signature of an early,
nonequilibrium, strongly interacting medium.

Our paper is organized as follows. Section II lays out the
building blocks of our nonequilibrium formalism. The sec-
tion following that one discusses the collision kernel used to

2469-9985/2024/109(3)/034902(11) 034902-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0445-1584
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.034902&domain=pdf&date_stamp=2024-03-04
https://doi.org/10.1103/PhysRevC.109.034902


SIGTRYGGUR HAUKSSON AND CHARLES GALE PHYSICAL REVIEW C 109, 034902 (2024)

FIG. 1. Photon radiation through medium-induced
bremsstrahlung off a quark.

model the medium interactions. The numerical methods used
to obtain the production rate of polarized photons are dis-
cussed in Sec. IV. Results and conclusion constitute Secs. V
and VI, respectively. We present analytical and numerical
details in the Appendices.

II. POLARIZED PHOTON EMISSION

The quark-gluon plasma radiates photons through two
different processes at leading order in perturbation theory.
(See [19] for higher order corrections.) These processes are
two-to-two scattering with a photon in the final state [20,21],
and bremsstrahlung and pair annihilation with a resulting
photon [16,18]. Two-to-two scattering on one hand and
bremsstrahlung and pair annihilation on the other hand give
roughly equal contribution to photon yield in the plasma [17].
While photons from two-to-two scattering have been studied
extensively in an anisotropic medium and have been shown
to be polarized [13], bremsstrahlung and pair annihilation
photons have been studied much less in an anisotropic plasma
due to the more complicated physics involved. We consider
this now. Polarized photon emission has also been studied
in other contexts, including in holography where a back-
ground magnetic field is included [22–24], due to vortical
flow in the plasma [25], and due to the chiral magnetic
effect [26,27]. Dilepton polarization has furthermore been
considered in [28–30].

In bremsstrahlung an on-shell photon is emitted collinearly
off a quark or an antiquark, see Fig. 1. In vacuum this process
would be kinematically forbidden as an on-shell quark cannot
emit an on-shell photon. However, in a medium the process is
made possible due to soft gluon kicks from the medium that
bring the quark slightly off-shell. These kicks have momen-
tum ∼g�, where � is a hard scale akin to temperature and
g is the coupling constant. The off-shellness of the quark is
therefore of order P2 ∼ g2�2 meaning that the emission takes
time t ∼ p/P2 ∼ 1/g2�, where p is the quark momentum.
During this time the quark can receive arbitrarily many soft
gluon kicks. While each of these kicks only takes time 1/g�,
the mean-free time between two such kicks is of order 1/g2�

which is comparable to the emission time of the photon. Any

FIG. 2. Photon radiation through medium-induced quark-
antiquark pair annihilation.

FIG. 3. Our choice of coordinate system. The z axis is chosen
to be along the beam axis. For a photon emitted at midrapidity we
choose the x axis to be along its momentum. The photon (in red)
can either be transversely polarized along the beam axis (z axis) or
transversely polarized orthogonal to the beam axis, i.e., along the y
axis.

number of kicks can thus be imparted on the quark during
the emission of the photon, meaning that at leading order in
perturbation theory one needs a dressed vertex that resums
arbitrarily many soft gluon kicks [16,18,31]. In an analogous
fashion a quark-antiquark pair can annihilate and radiate a
photon due to medium kicks, see Fig. 2.

Calculating the polarized rate of photon emission through
bremsstrahlung and pair annihilation requires extending the
framework developed in [11,16,18] for unpolarized photon
emission. To fix ideas we choose the coordinate system in
Fig. 3. The z axis lies along the beam axis in a heavy-ion
collision. We consider a photon at midrapidity and orient the
coordinate system so that the x axis lies along its momentum
k. The momentum of the photon can of course have any
direction in the plane transverse to the beam axis; aligning
it with the short axis of the plasma as in Fig. 3 is simply for
illustration.1 As an on-shell photon is transversely polarized,
the polarization basis can be chosen as εz = (0, 0, 0, 1) and
εy = (0, 0, 1, 0). The photon is thus polarized along the beam
axis or transverse to the beam axis.

The derivation of polarized photon emission is similar to
that for unpolarized emission found in [11,16,18]. In both
cases one evaluates the diagram in Fig. 4 which includes
arbitrarily many soft gluon kicks. These soft kicks do not
have enough energy to flip the helicity of quarks and therefore
their resummation is done in the same way for polarized
and unpolarized photon emission. This resummation happens
on the level of the three-point function in Fig. 5 which we
call f = ( fz, fy), see [16,18] for further details. It solves the

1In this work, the net polarization of photons emitted from a fluid
cell is independent of the angular orientation in the transverse plane
as we focus on the effect of longitudinal expansion. This could
be generalized to include transverse expansion which breaks this
symmetry. Our formalism could also easily be extended to photons
at finite rapidity.
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FIG. 4. Diagram for medium-induced photon emission. The
gluon rungs are responsible for momentum broadening.

integrodifferential equation

2p⊥ = iδE f (p⊥) +
∫

d2q⊥
(2π )2

C(q⊥)[f (p⊥) − f (p⊥ + q⊥)],

(1)
where

δE = k

2p(p + k)
[p2

⊥ + m2
∞]. (2)

The central ingredient in this equation is the collision kernel
C(q⊥) which is defined as

C(q⊥) = g2CF

∫
dq0dqx

(2π )2
Dμν

rr (Q)vμvν 2πδ(v · Q), (3)

where vμ = (1, 1, 0, 0) is the four-velocity of the quark emit-
ting a photon and Dμν

rr (Q) is the statistical propagator for
gluons in the medium. The collision kernel gives the rate for
a quark to receive soft gluon kicks of transverse momentum
q⊥. It gives rise to a gain term and a loss term in Eq. (1). This
equation furthermore has a source term 2p⊥ which denotes
the transverse momentum at the hard emission vertex.

We have shown that the effect of soft gluon kicks on pho-
ton emission is described by Eq. (1) which takes the same
form for polarized or unpolarized emission. On the contrary,
the hard emission vertices must be treated differently for
polarized emission. We first consider a bare quark loop
stripped of soft gluon kicks, see Fig. 6. Here, the spinor trace
for hard emission vertices with a z-polarized photon takes the
form

Hzz := εz
μεz ∗

ν Tr [γ μ( /K + /P)γ ν /P], (4)

FIG. 5. Definition of f in terms of the resummed three-point
vertex. See [16,18] for further details.

FIG. 6. Definition of momenta in photon emission.

where εz
μ is the photon polarization tensor for z polarization.

This trace is most easily evaluated by using that, e.g.,

/P =
∑

s

us(p)us(p), (5)

where the sum is over spin states and

us(p) =
√

2p

[
1−σ ·̂p

2 ξ s

1+σ ·̂p
2 ξ s

]
(6)

are helicity states of quarks [32]. Here, ξ s form a basis for
two-component spin states. An explicit calculation shows that

Hzz =
∑
s,t

[γ zus(p + k)us(p + k)γ zut (p)ut (p)]

= 8px(px + k)

(px )2(px + k)2

[
(2px + k)2 p2

⊥ z + k2 p2
⊥ y

]
. (7)

Similarly, the spinor trace for emission of y-polarized photons
is

Hyy = 8px(px + k)

(px )2(px + k)2

[
(2px + k)2 p2

⊥ y + k2 p2
⊥ z

]
. (8)

This is the same as Eq. (7), except that p2
⊥ z and p2

⊥ y have been
interchanged.

An explicit calculation of the diagram in Fig. 6 then shows
that it gives rate2

k
d�z

d3k
= 6αEM

∑
s q2

s

(2π )2

1

8
Re

∫
d4P

(2π )4
F (k + p)[1 − F (p)]Hzz

× 1

2Ep

1

p0 − Ep + iε

1

2Ek+p

1

p0 + k0 − Ek+p − iε
.

(9)

The last line in this expression has the propagator for the two
quarks with momenta P and P + K . This expression further-
more includes the spinor trace Hzz and momentum factors3

F (px ) = θ (px )n f (p) + θ (−px )(1 − n f (−p)). (10)

2As we take the real part of a purely imaginary number this diagram
evaluates to zero as expected for the rate of on-shell quarks emitting
an on-shell photon with no medium kicks. Our purpose here is simply
to explain the structure of such calculations before going to the full
case that includes medium kicks.

3We have assumed that there is no chiral imbalance in the medium
and that the baryon chemical potential vanishes, so that quarks and
antiquarks of both helicities have the same momentum distribution
nf .
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The momentum factor in Eq. (10) can be easily understood.
Bremsstrahlung off a quark corresponds to px > 0 as then the
momentum factor is

F (kx + px )[1 − F (px )] = n f (kx + px )(1 − n f (px )) (11)

which describes a quark with momentum kx + px that emits
a photon with momentum kx and thus has momentum px

left in the final state. Similarly, px < −k corresponds to
bremsstrahlung off an antiquark. Furthermore, −k < px < 0
corresponds to quark-antiquark pair annihilation with momen-
tum factor

F (kx + px )[1 − F (px )] = n f (kx + px )n f (−px ), (12)

where both the quark and the antiquark are in the initial state.
Continuing with our evaluation of Fig. 6, we do the p0

integral in Eq. (9) with contour integration. A rewriting using
that δE = Ep + k0 − Ep+k at leading order, then shows that

k
d�z

d3k
= 6αEM

∑
s q2

s

(2π )3

∫ ∞

−∞
d pz F (k + p)[1 − F (p)]

× 1

2

1

4(px )2(px + k)2

[
(2px + k)2A0

z + k2A0
y

]
. (13)

Here,

A0
z = Re

∫
d2 p⊥
(2π )2

2pz f 0
z , (14)

where f 0
z = 2pz/iδE is the solution of Eq. (1) without any soft

gluon kicks, and similarly for A0
y .

A full calculation of the rate of polarized photon emission
requires evaluating the diagram in Fig. 4. This is obtained in
the same way as the bare quark loop in Fig. 6, except that one
replaces the bare vertex by a resummed vertex f (p⊥) which in-
cludes gluons rungs and obeys the integral equation in Eq. (1).
This means that in Eq. (13) one replaces Az

0 and Ay
0 by

Az = Re
∫

d2p⊥
(2π )2

2pz fz(p⊥),

Ay = Re
∫

d2p⊥
(2π )2

2py fy(p⊥), (15)

where f solves the full integrodifferential equation in Eq. (1).
Thus the total rate for polarized photon production through
bremsstrahlung and pair annihilation can be written as

k
d�z

d3k
= 6αEM

∑
s q2

s

(2π )3

∫ ∞

−∞
d pz F (k + p)[1 − F (p)]

×1

2

1

4(px )2(px + k)2

[
(2px + k)2Az + k2Ay

]
(16)

and

k
d�y

d3k
= 6αEM

∑
s q2

s

(2π )3

∫ ∞

−∞
d pz F (k + p)[1 − F (p)]

× 1

2

1

4(px )2(px + k)2
[k2Az + (2px + k)2Ay]. (17)

We can now easily see that in an anisotropic medium, these
processes give polarized photon emission. In an isotropic
medium, the collision kernel in Eq. (3) is by definition

FIG. 7. Definition of the quantities n (the vector between the
outgoing quark and photon) and φq (the angle defining a soft gluon
kick of magnitude q⊥). The photon can be polarized in the y or the
z directions which are transverse to its direction of motion, see also
Fig. 3.

isotropic, C(q⊥) = C(q⊥) and one can show that Eq. (1) is
solved by f = p⊥ f̂ (p⊥) for some function f̂ . Then Az = Ay

and one gets the same rate of emitting z-polarized and y-
polarized photons from Eqs. (16) and (17). In an anisotropic
medium, C(q⊥) depends not only on the magnitude of the kick
q⊥ but also on its orientation. In other words, when writing

q⊥ = (qz, qy) = q⊥(cos φq, sin φq) (18)

the collision kernel depends on both φq and q⊥, see Fig. 7.
This leads to f having more complicated angular depen-
dence so that Az �= Ay. Therefore, photon emission from an
anisotropic medium is polarized with d�z �= d�y.

To understand Eqs. (16) and (17) better, it is helpful to
focus on the case of bremsstrahlung off a quark. The rate of
producing a z-polarized photons with momentum k through
that process is

k
d�z

d3k
= 6αEM

∑
s q2

s

(2π )3
2

∫ ∞

0
d px

k

8p2
x(k + px )

× n f (k + px )[1 − n f (px )](Fin(ζ )Az + Fout (ζ )Ay),
(19)

where momenta are defined in Fig. 1 and ζ = k/(px + k) is
the momentum fraction of the photon. Similarly, the rate of
producing y-polarized photons is

k
d�y

d3k
= 6αEM

∑
s q2

s

(2π )3
2

∫ ∞

0
d px

k

8p2
x(k + px )

× n f (k + px )[1 − n f (px )](Fin(ζ )Ay + Fout (ζ )Az ),
(20)

where Az and Ay have been interchanged relative to Eq. (19).
Here,

Fin(ζ ) = (2 − ζ )2

ζ
(21)

and

Fout (ζ ) = ζ (22)
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are exactly the usual polarized splitting functions [33] for
photon emission.

Equations (19) and (20) for polarized photon emission can
be understood intuitively. We consider a z-polarized photon
for concreteness. As the photon travels in the x direction,
the splitting plane of the photon and the outgoing quark is
spanned by êx and a vector orthogonal to êx which we call
n̂, see Fig. 7. Equations (19) and (20) show that we can
project the vector n̂ on to the y and the z axes and sum over
the contributions. For n̂ in the z direction, the z-polarized
photon is polarized in the splitting plane and the hard splitting
function is Fin. Momentum broadening is quantified by the z
component Az. On the other hand, for n̂ in the y direction, the
z-polarized photon is polarized out of the splitting plane and
the hard splitting function is Fout. Momentum broadening is
then quantified by Ay.

III. MODEL OF THE COLLISION KERNEL
IN AN ANISOTROPIC PLASMA

As previously argued, the collision kernel for soft gluon
kicks C(q⊥) is anisotropic in heavy-ion collisions which leads
to polarization of photons emitted through bremsstrahlung.
The ultimate source of the anisotropy in the kernel is longi-
tudinal expansion of the medium along the beam axis. Such
a longitudinal expansion gives pressure anisotropy at early
and intermediate times with longitudinal pressure PL less than
transverse pressure PT . On a microscopic level, this means
that quark and gluon quasiparticles have an anisotropic mo-
mentum distribution with 〈p2

z〉 < 〈p2
x〉, 〈p2

y〉. This is captured
by the distribution introduced in Ref. [34]:

f (p) =
√

1 + ξ fiso
(√

p2 + ξ p2
z

)
, (23)

where fiso is an isotropic distribution, and ξ > 0 quantifies the
degree of anisotropy. The prefactor

√
1 + ξ ensures that the

number density of quarks and gluons is the same as in equi-
librium. A simple calculation gives the pressure anisotropy
PT /PL in terms of the momentum space anisotropy ξ , linking
the macroscopic and microscopic descriptions.4

Ideally, one would want to calculate the collision kernel for
momentum broadening, C(q⊥), directly from Eq. (23). Such a
calculation would use that the hard quasiparticles in Eq. (23)
radiate soft gluons which are then responsible for momentum
broadening. This would allow to quantify the degree of photon
polarization in a nonequilibrium medium from first principles.
Unfortunately, going from Eq. (23) to the collision kernel is
difficult in practice, partially due to instabilities that can be
present in an anisotropic plasma [36].

In this study, we will use a simple model of the colli-
sion kernel in a longitudinally expanding medium. We take
inspiration from results for the collision kernel in thermal
equilibrium at leading order in perturbation theory [37],

Ceq(q⊥) = g2CF T

(
1

q2
⊥

− 1

q2
⊥ + m2

D0

)
. (24)

4Specifically, PT /PL = 1
2

√
ξ+(ξ−1) arctan

√
ξ

arctan
√

ξ−√
ξ/(1+ξ )

, see, e.g., [35].

Here, m2
D0 is the equilibrium Debye mass which describes

screening of electric fields. (The equilibrium kernel has fur-
thermore been evaluated at next-to-leading order [38], as well
as on the lattice, see, e.g., [39,40].) In our anisotropic model,
we replace the equilibrium Debye mass by its anisotropic
extension5 found in [34]

m2
D(φq) =

(
1 − 2ξ

3

)
m2

D0 + ξm2
D0 cos2 φq, (25)

so that

C(q⊥) = g2CF �
( 1

q2
⊥

− 1

q2
⊥ + m2

D(φq)

)
. (26)

The anisotropic correction has an angular dependence with
more broadening in the z direction than in the y direction.
To simplify calculations, we expand the collision kernel in ξ ,
writing

C(q⊥) ≈ g2CF �

(
1

q2
⊥

− 1

q2
⊥ + m2

D0

+ −2ξm2
D0/3 + ξm2

D0 cos2 φq(
q2

⊥ + m2
D0

)2

)
, (27)

where � is a hard scale, akin to temperature.
Equation (27) is a toy model for the collision kernel,

intended to illustrate how an anisotropic kernel leads to po-
larized photon emission and to estimate the magnitude of this
effect. This toy model only includes changes to the screening
of electric fields in an anisotropic medium and not the myriad
other nonequilibrium effects that can arise. Nevertheless, this
collision kernel can be motivated by theoretical arguments
making us believe that it captures some of the salient features
of the full non-equilibrium kernel.

In general the collision kernel is defined by

C(q⊥) = g2CF

∫
dq0dqx

(2π )2
Dμν

rr (Q)vμvν 2πδ(v · Q), (28)

where vμ = (1, 1, 0, 0) is the four-velocity of the quark emit-
ting a photon. The kernel depends on the statistical correlator
for gluons in the medium,

Drr (Q) := 1
2 〈{A, A}〉(Q) = Dret (Q)�(Q)Dadv(Q) (29)

which characterizes the occupation density of a pair of soft
gluons. We have omitted Lorentz indices for simplicity. This
statistical correlator contains information on how the soft
gluons are emitted by hard quasiparticles with rate �(Q) and
then propagate in the medium according to the retarded prop-
agator Dret (Q) = i/(Q2 − �ret ) and the advanced propagator
Dadv = −D∗

ret.
Making some heuristic assumptions allows one to employ

a sum rule in [37] to motivate the toy model for the collision
kernel in Eq. (27), starting from the definitions in Eqs. (3)
and (29). The goal is to include anisotropic corrections to the

5In [34] this quantity is referred to as m2
+. We have expanded

in small ξ in Eq. (27) but this is simply for convenience and not
fundamental to the setup we use.
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screening of chromoelectric fields, while ignoring anisotropic
corrections to the density of gluons and to change in polariza-
tion that occurs during propagation. We work strictly at small
anisotropy ξ � 1, including only effects of order O(ξ ).

The first heuristic assumption is to employ the identity
�(Q) = �

q0 2Im �ret which is known as the KMS identity and
which expresses detailed balance between production and de-
cay of soft gluons. This is not strictly valid in a nonequilibrium
medium and amounts to ignoring anisotropic corrections to
the density of gluons. Then one can write

Drr (Q) := �

q0
(Dret − Dadv). (30)

At small anisotropy the retarded propagator in Eq. (30) is

Dμν
ret (Q) ≈ Pμν

T

Q2 − �T
+ Pμν

L

Q2 − �L
. (31)

Here, we have only included anisotropic corrections to the
screening as given by �T and �L, see Appendix A.

Our second heuristic approximation is to focus on the
anisotropic correction to �L and ignore those in �T . Com-
paring with the equilibrium calculation [37], this amounts to
calculating anisotropic corrections to the term 1/(q2

⊥ + m2
D0)

in Eq. (24) while leaving the term 1/q2
⊥ as is. This means that

we include anisotropic corrections to the screening of chro-
moelectric fields as given by a Debye mass but do not include
anisotropic corrections to the screening of chromomagnetic
fields.

The reason we use this approximation is that the sum
rule we employ does not work for the transverse screening
in �T . This is because the term 1/(Q2 − �T ) has a pole in
the upper half-complex plane of q0 corresponding to Weibel
instabilities [41]. A formal use of the sum rule would lead to
a contribution of the form 1/(q2

⊥ − m2) which is ill-defined
at q⊥ = m. The solution to this issue is to use a retarded
propagator for soft gluons that includes the mechanism by
which non-Abelian interaction caps the growth of the unstable
soft gluon modes. This is beyond the scope of this project.

Given these two approximations, one can use the sum rule
in [37] nearly directly. The longitudinal retarded self-energy
at small anisotropy ξ is

�L(Q) = �0
L(x) + ξ

[
1

6
(1 + 3 cos 2θn)

Q2

q2
m2

D0

+�0
L(x)

(
cos 2θn − x2

2
(1 + 3 cos 2θn)

)]
, (32)

where θn is the angle between q and the anisotropy vector
n = ez which defines a preferred direction in Eq. (23) [34].
Here,

�0
L(x) = (x2 − 1)m2

D0

[
x

2
log

x + 1 + iε

x − 1 + iε
− 1

]
(33)

is the equilibrium value. We next do a change of vari-

ables in Eq. (3) to x = q0/q = qx/

√
q2

x + q2
⊥ so that q2

x =
x2q2

⊥/(1 − x2) and q2 = q2
⊥/(1 − x2). Then one should sub-

stitute cos 2θn = 2(qz/q)2 − 1 = 2(1 − x2) cos2 φq − 1 to get
dependence only on x, q⊥ and φq. This gives that the

longitudinal contribution to the collision kernel is

�g2CF

π

∫ 1

0

dx

x

Im �̃L(x, φq)

(q2
⊥ + Re �̃L(x, φq))2 + (Im �̃L(x, φq))2

,

(34)
where

�̃L(x, φq) = �0
L(x) + ξ

[
1

6
(1 + 3 cos 2θn)(x2 − 1)m2

D0

+�0
L(x)

(
cos 2θn − x2

2
(1 + 3 cos 2θn)

)]
× |cos 2θn=2(1−x2 ) cos2 φq−1 (35)

has no explicit dependence on q⊥.
An argument nearly identical6 to the one in [37] then shows

that Eq. (34) is

g2CF �

[
1

q2
⊥ + limx→∞ �̃L(x, φ)

− 1

q2
⊥ + �̃L(0, φ)

]

= −g2CF �
1

q2
⊥ + m2

D(φq)
(36)

since �̃L(0, φ) = m2
D(φq). Our conclusion is therefore that

given our heuristic approximations, the collision kernel is
given by Eq. (27). We emphasize that this collision kernel
is not intended to capture all of the nonequilibrium physics
but to focus on anisotropic corrections to the screening of
chromoelectric fields.

IV. NUMERICAL METHOD

We wish to evaluate the rate of polarized photon emission
in an anisotropic medium such as that found in a longitu-
dinally expanding quark-gluon plasma. The starting point is
Eqs. (19) and (20) which require solving the integrodifferen-
tial equation in Eq. (1) numerically, assuming the model for
the collision kernel given in Eq. (27). To solve Eq. (1) we go
to impact parameter space, i.e., the space Fourier conjugate to
p⊥. Defining

f (b) =
∫

d2 p⊥
(2π )2

eip⊥·b f (p⊥), (37)

the equation we wish to solve becomes

−2i∇bδ
(2)(b) = ik

2p(p + k)

[ − ∇2
b + m2

∞
]
f (b) + C(b)f (b),

(38)

6The retarded propagator 1/[x2q2
⊥ − q2

⊥ − (1 − x2)�L (x, φ)] in
Eq. 7 in [37] has an extra pole in the upper half-complex plane
in the anisotropic case. This pole can be seen by taking the limit
x = k0/k → ∞ in which case the propagator becomes ∼1/(1 −
x2)/(q2

⊥ + ( 1
3 − 1

3 ξ cos2 φ)m2
D0 + ξ

3 x2 cos2 φ m2
D0) which has a pole

which is parametrically of the form x ∼ ±iq⊥/mD
√

ξ and thus far
from the real axis when ξ � 1. This is not in contradiction with
the usual properties of the retarded propagator as we have imposed
q0 = qx and then search for poles in q0. One can then show that the
correction due to this pole to the sum rule in Eq. 9 in [37] is O(ξ 3/2 )
which is subleading to the O(ξ ) contributions we consider.
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where

C(b) =
∫

d2 p⊥
(2π )2

[
1 − eip⊥·b ]C(p⊥). (39)

A straightforward calculation shows that the collision kernel
from Eq. (27) is

C(b) = C0(b) + ξ C (a)
1 (b) + ξ cos 2β C (b)

1 (b) (40)

in impact parameter space, where b = (bz, by) =
(cos β, sin β )b. The terms of the collision kernel are given by

C0(b) = g2CF T

2π

[
K0(mD0b) + γE + log

mD0b

2

]
, (41)

C (a)
1 (b) = g2CF T

1

8π

M2

m2
D0

(mD0bK1(mD0b) − 1), (42)

and

C (b)
1 (b) = g2CF T

M2b2

4π

[
2

(mD0b)4

− 1

2mD0b
K1(mD0b) − 1

(mD0b)2 K2(mD0b)

]
. (43)

In order to solve Eq. (38) we do an expansion in small ξ ,
giving

f (b) = f0(b) + ξ f1(b) + · · · . (44)

The zeroth order solution in ξ satisfies the usual isotropic
equation

ik

2p(p + k)

[ − ∇2
b + m2

∞
]
f0(b) + C0(b)f0(b) = −2i∇bδ

(2)(b)

(45)
and can be shown to have angular dependence f0(b) ∼
(cos β, sin β ). The first order satisfies

ik

2p(p + k)

[ − ∇2
b + m2

∞
]
f1(b) + C0(b)f1(b)

= −[C (a)
1 (b) + cos 2β C (b)

1 (b)
]
f0(b). (46)

Due to the angular dependence of the right hand side we can
write in full generality

f1z(b) = cos β f (1z)
1 (b) + cos 3β f (3)

1 (b) (47)

and

f1y(b) = sin β f (1y)
1 (b) + sin 3β f (3)

1 (b), (48)

where these functions solve

K[
f (1z)
1 (b)

] + C0(b) f (1z)
1 (b) = −[C (a)

1 (b) + 1
2C (b)

1 (b)
]

f0,

(49)

K[
f (1y)
1 (b)

] + C0(b) f (1y)
1 (b) = −[C (a)

1 (b) − 1
2C (b)

1 (b)
]

f0

(50)

with

K[f (b)] = − ik

2p(p + k)

[
d2

db2
+ 1

b

d

db
− 1

b2
− m2

∞

]
f (b).

(51)
(The differential equation for f (3)

1 is given in Appendix B.)

Our goal is to evaluate

Az = 2Im ∂bz fz(b)

∣∣∣∣
b=0

= 2Im
b̂ · f0 + ξ f (1z)

1

b

∣∣∣∣
b=0

(52)

and

Ay = 2Im ∂by fy(b)

∣∣∣∣
b=0

= 2Im
b̂ · f0 + ξ f (1y)

1

b

∣∣∣∣
b=0

(53)

which were defined in Eqs. (19) and (20). Thus, we only need
to know f (1z)

1 (b)/b and f (1y)
1 (b)/b in the limit b → 0 where it

must be finite. This gives the boundary condition that This is
done by demanding that f (1z)

1 and f (1y)
1 vanish at b = 0. The

other boundary condition is that the functions vanish as b →
∞ as can be seen from Eq. (37).

To evaluate f (1z)
1 (b)/b and f (1y)

1 (b)/b at b = 0, we demand
that the functions f (1z)

1 and f (1y)
1 vanish at very large b and

evolve the functions numerically to small b using Eqs. (49)
and (50). In practice, this means that we start the evolution at
a large but finite value of b, where f (1z)

1 and f (1y)
1 are initialized

to a small value. A typical numerical solution for f 1z
1 and

f 1y
1 then blows up as evolved towards b → 0. We must then

extract the finite part of our numerical solution. This is done
by matching with known, analytic solutions of the differential
equations in the small b limit.

For instance, focusing on Eq. (49), we call the particu-
lar solution w(b) and the two independent solutions of the
homogeneous equation w1(b) and w2(b). These are known
analytically at small b, see Appendix B. We can write our
numerical solution in full generality at small b as

f (1z)
1 (b) = w(b) + α1w1(b) + α2w2(b), (54)

where α1 and α2 are found numerically. To extract from this
a solution with the right behavior as b → 0, one must in
essence subtract a linear combination of w1 and w2 which
satisfies the boundary condition at b → ∞. Then one is left
with a solution which satisfies boundary conditions both at
b = 0 and b → ∞ and which gives f (1z)

1 (b)/b at b = 0. This
procedure is explained in further detail in Appendix B, see
also [37,42,43] for earlier work in the isotropic case. A major
difference with the isotropic case is that Eqs. (49) and (50)
have a nontrivial right hand side which complicates the match-
ing procedure. For instance, one must find an analytic solution
w(b) of the full differential equations at small b, including the
right hand side. Furthermore, cancellation errors between so-
lutions of the full differential equation and the homogeneous
equation must carefully be avoided to get reliable results, see
Appendix B.

V. RESULTS

Figures 8 and 9 are the main results of this work. They
show the rate of photon production through bremsstrahlung
and pair-annihilation in an anisotropic quark-gluon plasma
with fixed anisotropy ξ . The collision kernel is given by
Eq. (27) while the momentum distribution of medium quarks
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FIG. 8. Spectrum of photons coming from bremsstrahlung and
pair annihilation in a plasma at effective temperature �. The
anisotropic plasma has ξ = 1.0.

is

f (p) =
√

1 + ξ

e
√

p2+ξ p2
z /� + 1

, (55)

where � can be seen as an effective temperature. Figure 8
shows the total rate for producing photons at midrapidity and
with momentum k, i.e.,

k
d�

d3k
= k

d�z

d3k
+ k

d�y

d3k
, (56)

where k d�z

d3k is the rate of producing photons polarized along

the beam axis and k d�y

d3k is the rate for photons polarized
orthogonal to the beam axis and to the photon momen-
tum. Figure 9 shows the degree of polarization at different

FIG. 9. Degree of polarization of photons emitted from
bremsstrahlung and pair annihilation in an anisotropic plasma with
ξ = 1.0. The quantity R is defined in Eq. (57). We express it in
percentages.

momenta defined as

R = k d�z

d3k − k d�y

d3k

k d�z

d3k + k d�y

d3k

. (57)

These quantities are shown for three values of anisotropy
parameter, ξ = 0.3, ξ = 0.6, and ξ = 0.9, which correspond
to pressure anisotropy of PL/PT ≈ 0.81, PL/PT ≈ 0.68, and
PL/PT ≈ 0.57, respectively. These are rather moderate values
of pressure anisotropy which can be found in the early and
intermediate stages of heavy-ion collisions.

The spectrum in an anisotropic medium is higher than
that in an equilibrium medium at the same effective temper-
ature �, as can be seen in Fig. 8. This is due to the factor√

1 + ξ in the momentum distribution in Eq. (23) which in-
creases the number of quarks with pz = 0 which can emit
photons at midrapidity. This effect is partially compensated
by anisotropic corrections which reduce the collision kernel
C(q⊥) meaning that a given quark receives less momen-
tum broadening, reducing the rate at which it emits photons
collinearly.

More interesting is the polarization R as a function of
momentum k. As seen in Fig. 9, the polarization has different
signs for lower and higher values of the photon energy k:
it is along the beam axis for lower values of k while it is
orthogonal to the beam axis at higher values of k. This owes
to the interplay between bremsstrahlung and pair annihilation.
As can be seen from Eqs. (16) and (17), because of the
different polarized splitting functions, bremsstrahlung tends to
give photons polarized along the z axis, while pair annihilation
tends to give polarization along the x axis, see Fig. 3. As
bremsstrahlung is suppressed at high k (there are few medium
quarks with energy higher than k) x polarization dominates in
that regime. On the contrary, pair annihilation is suppressed at
low k since the number of quarks with energy less than k/2
is phase space suppressed. This gives z-polarized photons in
that regime.

Despite the complicated dependence of polarization on
photon momentum, polarization along the beam axis dom-
inates and is in principle an observable prediction of our
work. This is simply because there are many more photons at
lower k and thus their polarization is dominant. Furthermore,
in [13] it was shown that photons from two-to-two scatter-
ing, which are equally important as bremsstrahlung and pair
annihilation photons, are also predominantly polarized along
the beam axis, with an even greater magnitude of polariza-
tion. Thus a definite and robust prediction of our work is
that medium photons are polarized along the beam axis. To
go beyond this nevertheless important conclusion and to be
able to make a quantitative assessment useful for experiments,
more work is needed. First, all photon sources that cannot
be subtracted in experiments need to be included, such as
prompt photons and photons from the hadronic stage. Sec-
ond, all photon-producing channels (two-to-two, LPM) have
to be included coherently in a calculation that considers an
anisotropic medium, and then folded with hydrodynamics or
kinetic theory simulations of the medium to get a realistic
evolution of the anisotropy and temperature. This requires
improving on the calculation of polarized photon production
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through two-to-two scattering in [13] by relaxing the assump-
tion of static scatterers and by including HTL resummation in
quark mediators. We leave this for future work.

VI. CONCLUSION

In this work, we have calculated for the first time the
degree of polarization for photons emitted in bremsstrahlung
and off-shell pair annihilation processes in a hot medium
consisting of quarks and gluons. Our evaluation includes the
LPM regime and is at complete leading order in the strong
coupling. The polarization of the real photons originating
from bremsstrahlung and annihilation processes depends on
the anisotropy of the original parton distribution, and therefore
the polarization can instruct us on the dynamics in an envi-
ronment that is not accessible to the vast majority of probes
and observables measured in relativistic heavy-ion collisions.
Specifically, it gives a measure of the pressure anisotropy at
early times.

We trust that the methods and techniques developed and
used here will be useful in the evaluations of polarization sig-
natures of real and virtual photons, evaluated with scattering
kernels for momentum broadening derived from microscopic
theories and using time-evolution models based in QCD.
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APPENDIX A: THE RETARDED GLUON PROPAGATOR
AT SMALL ANISOTROPY

In a system whose hard quasiparticles have the momentum
distribution in Eq. (23), the retarded propagator for soft gluons
is [34,36]

Dμν
ret (Q) = (

Pμν
T − Cμν

)
DB

ret + [
(Q2 − �c)Pμν

L

+ (Q2 − �L )Cμν + �d Dμν
]
DA

ret, (A1)

where

DA
ret = 1

(Q2 − �L )(Q2 − �c) − Q2q2

q2
0

�2
d

(A2)

and

DB
ret = 1

Q2 − �e
. (A3)

The tensors Pμν
T and Pμν

L are the same as in thermal equilib-
rium while Cμν and Dμν are new tensors that depend on the
anisotropy vector n. The self-energy components �e, �L, �T ,
and �d are given in [36] which contains further details.

As �d = O(ξ ) we can approximate

DA
ret ≈ 1

(Q2 − �L )(Q2 − �c)
(A4)

up to order O(ξ ). We furthermore ignore O(ξ ) corrections in
the numerator as they do not describe anisotropic corrections

to screening which are the nonequilibrium corrections we
focus on. Then

Dμν
ret (Q) ≈ (

Pμν
T − Cμν

)
DB

ret

+ [
(Q2 − �c)Pμν

L + (Q2 − �L )Cμν
]
DA

ret

= Pμν
T − Cμν

Q2 − �e
+ Pμν

L

Q2 − �L
+ Cμν

Q2 − �c
. (A5)

The terms with the tensor Cμν are

Cμν

[ −1

Q2 − �e
+ 1

Q2 − �c

]
= Cμν �c − �e

(Q2 − �e)(Q2 − �c)
(A6)

which can be ignored as �c − �e = O(ξ ) in the numerator.
We are thus left with

Dμν
ret (Q) ≈ Pμν

T

Q2 − �e
+ Pμν

L

Q2 − �L
(A7)

at small anisotropy where we only include anisotropic cor-
rections in the denominators. The tensors PL and PT are the
same as in equilibrium while �e and �L have anisotropic
corrections. (We call �e = �T in the main text of the paper.)

APPENDIX B: DETAILS OF NUMERICAL METHOD

In this Appendix we discuss how to solve Eqs. (49)
and (50) numerically. Unlike the isotropic equation, Eq. (45),
the anisotropic equation has a nonvanishing source term on the
right hand side for all values of b. One thus needs a different
numerical solution method than that developed in [37,42,43]
for the equilibrium case. We note that the differential equa-
tion for the function f (3)

1 is

K[
f (3)
1 (b)

] + ik

2p(p + k)

8

b2
f (3)
1 (b) + C0(b) f (3)

1 (b)

= −1

2
C (b)

1 (b) f0 (B1)

but we will not discuss this function further as it is not needed
to evaluate Az and Ay in Eqs. (52) and (53).

For concreteness, we focus on solving Eq. (49). Defining a
scaled function

G = π

2

k

p(p + k)m2∞

f (1z)
1 (b)

b
, (B2)

as well as scaled collision kernels C(t ) = 2p(p+k)
k

1
m2∞

C(b) and
variable t = m∞b, this equation becomes

− i

[
d2G

dt2
+ 3

t

dG

dt
− G

]
+ C0(t )G

= −
[
C (a)

1 (t ) + 1

2
C (b)

1 (t )

]
f 0(t ), (B3)

where f 0(t ) = π
2

k
p(p+k)m2∞

b · f0/b2. As shown in [37], we can

write f 0(t ) = K1(t )/t + f
rest
0 (t ), where f

rest
0 (t ) is function that

is finite in the limit t → 0 and which we know numerically
using the methods of [37,42].

We need to solve Eq. (B3), imposing the boundary condi-
tions that G(t ) → 0 as t → ∞, as well as that G(t ) is finite
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as t → 0. These boundary conditions are difficult to satisfy
simultaneously for a numerical solution. Instead we find a
numerical solutions g(t ) of Eq. (B3) with g(t → ∞) = 0 and
a solution of the homogeneous equation without the source
term that also satisfies g0(t → ∞) = 0. In general, both g(t )
and g0(t ) blow up as t → 0. However, we know that the
solution we are seeking can be written as

G(t ) = g(t ) + Ag0(t ), (B4)

where A is chosen so that G(0) is finite.
We can find an explicit expression of A by using analytic

solutions of Eq. (B3) for t � 1. In that limit the right hand
side is [C (a)

1 (t ) + 1
2C

(b)
1 (t )

]
f 0(t )

≈ [C (a)
1 (t ) + 1

2C
(b)
1 (t )

]
K1(t )/t ≈ a + b log t, (B5)

where a and b are constants that depend on the momenta k
and p as well as the masses m2

D and m2
∞. The differential

equation becomes

−i

[
d2g

dt2
+ 3

t

dg

dt
− g

]
+ C0(t )g = a + b log t (B6)

which has general solution

g(t ) = w(t ) + α1w1(t ) + α2w2(t ), (B7)

where

w(t ) = −ia − ib

(
log t + 2

t2

)
(B8)

is an exact particular solution and w2(t ) = 2J1(it )/(it )
and w1(t ) = π

2 Y1(−it )/(−it ) − 1
4 (2γE − 2 log 2 + iπ )w2(t )

are solutions of the homogenous equation such that w1(t ) =
1/t2 + 1

2 log t + O(1) and w2(t ) = O(1) for small t . Simi-
larly, the homogeneous equation can be written as

g0(t ) = β1w1(t ) + β2w2(t ). (B9)

The coefficients α1, α2, β1, and β2 can be found from
Eqs. (B7) and (B9) by equating the numerical solutions g(t )
and g0(t ) and their derivatives with the analytic functions at
some small value tmin � 1.

The small t behavior of Eqs. (B7) and (B9) shows that

A = 2ib − α1

β1
(B10)

which makes

G(0) = −ia − 1

2
ib + α2 + (2ib − α1)β2

β1
(B11)

finite. This is the expression that we need in order to evaluate
Eq. (52). All quantities are known for numerical solutions g(t )
and g0(t ).

Equation (B11) suffers from numerical cancellation errors
in the terms α2 − α1β2/β1. It is thus better to rewrite these
terms using Eqs. (B7) and (B9) which shows that

α2 − α1β2

β1
= g′g0 − gg′

0 + g′
0w − g0w

′

g0w
′
2 − g′

0w2
, (B12)

where all quantities are evaluated at tmin � 1. The culprit
behind cancellation errors is the term g′g0 − gg′

0. It can be
evaluated more precisely by noting that

GW (t ) = g′(t )g0(t ) − g(t )g′
0(t ) (B13)

solves the equation

d (t3GW )

dt
= −it3

[
C (a)

1 (t ) + 1

2
C (b)

1 (t )

]
f 0(t )g0 (B14)

which can be integrated to give GW (tmin) and thus a reliable
value of G(0).
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