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Implementation of a microscopic nuclear potential in the coupled-channels calculations
to study the fusion dynamics of oxygen-based reactions
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We incorporate a microscopic relativistic nuclear potential obtained from the recently developed relativistic
R3Y NN potential in the coupled-channels code CCFULL to study fusion dynamics. The R3Y NN potential and
the densities of interacting nuclei are obtained for the relativistic mean-field approach for the NL3∗ parameter
set. Note that the R3Y NN potential can be expressed in terms of masses of the mesons and their couplings
by considering the meson degrees of freedom within the relativistic mean field, which has a form similar
to the widely used M3Y potential. We focused on the fusion cross sections for oxygen-based reactions with
targets from different mass regions of the periodic table, i.e., 16O + 24Mg, 18O + 24Mg, 16O + 148Sm, 16O + 176Hf,
16O + 176Yb, 16O + 182W, and 16O + 186W. A comparison is also made with the cross sections calculated using the
nuclear potential obtained from the traditional Woods-Saxon potential and the widely used M3Y NN potential
within CCFULL. The coupled-channels calculations are performed with shape and rotational degrees of freedom
to examine the fusion enhancement at below-barrier energies. It is observed from the calculations that the fusion
cross sections obtained using the R3Y NN potential with rotational degrees of freedom are found to be more
consistent with the experimental data than those for the M3Y and Woods-Saxon potentials, mainly at below
barrier energies.
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I. INTRODUCTION

The fusion reactions of heavy nuclei have been thoroughly
studied to comprehend the quantum tunneling phenomenon in
detailed studies of many-body systems [1–4]. Analyzing data
from fusion reactions gives ample insight into synthesizing
new elements or superheavy nuclei to extend the periodic
table. The one-dimensional (1D) barrier penetration model
(BPM) is used to compute the fusion cross section in the
most basic description of nuclear fusion reactions [5]. The
single fusion barrier can be viewed as breaking into the dis-
tribution of barriers. However, the coupling effects resulting
from the vibrational, rotational, and neutron transfer degrees
of freedom [2,6–11] must be considered when the collision
energy is in the sub-barrier energy regime. The description
of the fusion cross sections has been done with the help
of several coupled-channels (CC) codes [12–15], of which
the CCFULL code is frequently employed in fusion reaction
cross-section calculations [16–18]. Furthermore, the study of
fusion characteristics at extreme sub-barrier energies is crucial
for understanding the reaction mechanisms in astrophysics
and synthesizing superheavy nuclei [2,19,20]. While nuclear
structure effects dominate below the Coulomb barrier, the
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centrifugal potential suppresses these effects near or above
the barrier. Nevertheless, the nuclear interaction component
still needs to be understood [21–24]. The study of fusion
dynamics is crucially dependent on understanding the piv-
otal role played by the nuclear potential. Interestingly, the
nuclear potential determines both the shape of the potential
and the height of the Coulomb barrier as prescribed by the
well-known Wong formula [25]. Furthermore, the nuclear po-
tential of the ground state affects the nuclear coupling to the
excitation states of the colliding nuclei. Consequently, several
nuclear potentials have been used in the coupled-channels
approach to explain the fusion of heavy ions using the 1D
BPM [26–28].

Various theoretical approaches have been developed to
obtain and explain the nuclear potential between two col-
liding nuclei. One well-known method is the double-folding
approach, where the ion-ion optical potential is derived by
integrating an effective NN interaction and nuclear densities.
This approach has been successfully applied to study nuclear
clusters, proton-radioactivity, fusion, and elastic and inelas-
tic scattering [29–34]. The nuclear densities, obtained using
the Woods-Saxon ansatz, two-parameter Fermi (2pF), three-
parameter Fermi (3pF), and Skyrme Hartree-Fock (SHF)
models and the M3Y effective NN potential, are used to calcu-
late the nuclear potential within the double-folding approach;
see [35,36], among other works. The nonrelativistic M3Y
NN potential is expressed as the sum of one-pion exchange
potential (OPEP) and Yukawa terms, fitted to reproduce the
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G-matrix elements on an oscillator basis. In essence, the two
crucial inputs in the double-folding approach are the densities
of interacting nuclei and the NN potential (M3Y), obtained
from two independent approaches. On the other hand, the
nuclear potential for the interacting nuclei is generated via
the Woods-Saxon (WS) potential in the CCFULL code [14], a
simple empirical formula fitted for the known region of the nu-
clear chart. The Woods-Saxon potential, composed of depth,
range, and diffuseness parameters, is widely used for approxi-
mating the shape of the nuclear component of nucleus-nucleus
interactions [37,38]. The parameters of the WS potential are
chosen to fit the experimental fusion cross section, mainly at
above-barrier energies. However, the synthesis of exotic nu-
clei far from the β-stable region of the nuclear chart requires
the adoption of a microscopic nuclear potential to study the
fusion dynamics of the exotic region of the nuclear chart, as
discussed in our previous work [39] and references therein.

At the microscopic level, the Skyrme-Hartree-Fock (SHF)
and the relativistic mean-field (RMF) model [40] can be
used to construct a nuclear interaction potential from a
double-folding procedure. At low energy, nucleon-nucleon
interactions are instantaneous, allowing for the concept of an
interaction potential via an intermediate particle. The resulting
nucleon-nucleon (NN) interaction potential, derived through
particle exchange, is a significant tool for the understanding
of nuclear forces and structure properties [41,42]. A double-
folding procedure is used to calculate an optical potential
between two interacting nuclei using this fundamental NN
interaction [43–45]. Recently, the relativistic R3Y effective
NN potential has been used in terms of meson masses and
coupling constants and derived from the self-consistent rela-
tivistic mean-field (RMF) approach for a particular parameter
set. Further, the densities are also calculated for the same
parameter sets for both interacting nuclei, which are simulta-
neously used in the double-folding model. This enables the
advancement of the theoretical approach to obtain the nu-
clear potential through meson interaction and also keeps the
consistency of the parametrization for the NN potential and
densities. It is to be noted that RMF models have proved to
be highly predictive in the structural features of finite nuclei
for β-stable and also highly isospin asymmetric regions of the
nuclear chart [29,33,34,43,44,46–51].

Furthermore, applying the relativistic NN-interaction po-
tential along with nuclear densities from the RMF formalism
has proved successful in describing various nuclear phe-
nomena such as clustering, proton radioactivity, and nuclear
fusion [43–45]. Combining the relativistic R3Y potential with
the RMF density is a compelling approach for investigating
low-energy fusion reactions across various systems. In our
previous works, the M3Y and R3Y nucleon-nucleon poten-
tials were used to explore fusion hindrance phenomena in
selected Ni-based reactions and to calculate cross sections for
synthesizing heavy and superheavy nuclei. Specifically, the
fusion and/or capture cross sections calculated using the M3Y
NN potential were compared to the relativistic R3Y NN po-
tential for the NL3∗ parameter set in earlier studies. A similar
approach was employed using the �-summed Wong formula
in our previous work; see [33,34,52] and references therein.
These studies concluded that the relativistic R3Y potential

provides better agreement with experimental data than the
M3Y potential [33,34,43,44,53,54]. The novelty of the present
work lies in obtaining the nucleus-nucleus potential from a
double-folding model using a relativistic potential that has
not been used as input for coupled-channels calculations. Fur-
thermore, incorporating proper structural effects within the
microscopic approach using RMF cannot be underestimated
or undervalued, as it plays a vital role in reaction studies.
Therefore, the involvement of rotational degrees of freedom
with the microscopic R3Y NN interaction potential is consid-
ered for the target nuclei, but is limited to spherical symmetry
in our previous work [33,34,53]. Hence, the present study
represents a significant step forward in developing the nuclear
potential obtained using the RMF formalism and its appli-
cation within the coupled-channels approach for studying
fusion dynamics. The study includes reactions covering differ-
ent mass regions, i.e., 16O + 24Mg, 18O + 24Mg, 16O + 148Sm,
16O + 176Hf, 16O + 176Yb, 16O + 182W, and 16O + 186W. The
fusion cross sections for these reactions are analyzed at sub-
barrier energies using the M3Y and microscopic R3Y NN
potentials for the NL3∗ parameter set, and further compared
with the case of the static Woods-Saxon potential. A possible
comparison will be made between the theoretical results and
the experimental data [9,55–58] for the considered reaction
systems. Thus, implementing the microscopic nuclear poten-
tial in the CCFULL code to study fusion dynamics becomes
crucial and intriguing.

This paper is organized as follows: Section II gives an
overview of the theoretical formalism used for calculations.
Section III shows the findings of the coupled-channels calcu-
lations. The results and discussions of the current work are
summarized in Sec. IV.

II. THEORETICAL FORMALISM

The coupled-channels approach (CCFULL) is employed in
the present study, and offers a reasonable understanding of the
nuclear fusion dynamics at energy near the barrier. Instead of
focusing on single barrier penetration, this approach considers
multidimensional barrier penetration. This method considers
the influence of coupling between relative motion and in-
trinsic degrees of freedom of the interacting nuclei, mainly
for calculating mean angular momenta and the fusion cross
sections of the compound nucleus [2,11,14]. The standard
approach for addressing the impacts of the coupling between
relative motion and intrinsic degrees of freedom on fusion is
to numerically solve the coupled-channels equations, which
include all relevant channels [59,60]. The coupled-channels
equations solved numerically within the CCFULL are given as[

−h̄2

2μ

d2

dr2
+ J (J + 1)h̄2

2μr2
+ ZPZT e2

r
+ VN + εn − Ec.m.

]

× ψn(r) +
∑

m

Vnm(r)ψm(r) = 0. (1)

Here r represents the radial part of relative motion between
the colliding nuclei, and μ is known as the reduced mass
of the interacting system. εn is the excitation energy for
the nth channel and Ec.m. is the bombarding energy in the
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center of the mass frame. VN is the nuclear potential, and
Vnm represents the matrix elements of the coupled Hamil-
tonian. Since there are several coupled-channels equations,
their dimension is also significant. To reduce the dimension of
coupled-channels equations, rotating frame approximation or
no-Coriolis approximation is used [11,14,61]. The CC equa-
tions with nonlinear coupling are significant in studying the
heavy-ion fusion reactions mainly at sub-barrier energies. All
these sets of nonlinear coupling are taken into account.

The boundary condition for the incoming wave [62] is also
necessary for the solution of the coupled-channels equation as
it is sensitive to the potential pocket of the interaction fusion
barrier. The incoming wave of the entrance channel is at the
minimum position (r = rmin) of the barrier and the outgoing
wave of other channels is at an infinite position. By involving
the effect of the prominent intrinsic channels, the fusion cross
sections are calculated as∑

J

σJ (E ) = σ f us(E ) = π

k2
0

∑
J

(2J + 1)PJ (E ). (2)

Here, the isocentrifugal approximation is used, and the total
angular momentum J is substituted in place of � for each
channel by using the following equation:

〈�〉 =
∑

J

JσJ (E )

/ ∑
J

σJ (E )

=
(

π

k2
0

∑
J

J (2J + 1)PJ (E )

)/
(

π

k2
0

∑
J

(2J + 1)PJ (E )

)
, (3)

where PJ (E ) is the total transmission coefficient. The cru-
cial ingredient of the coupled-channels approach is the
nucleus-nucleus interaction potential, which is taken as a
Woods-Saxon form for the known region of the nuclear chart:

VN = −V0

1 + exp[(r0 − R0)/a0]
, (4)

where V0, r0, and a0 are the nuclear potential parameters. In
heavy-ion fusion reactions, the parameter of nuclear potential
is on equal footing with that of nuclear structure degrees of
freedom. Parallel to the traditional Woods-Saxon potential,
here we employ the nuclear potential obtained from widely
used M3Y [29] and relativistic R3Y [43–45] NN potentials
for the NL3∗ parameter set. It is worth mentioning that the
nuclear potential obtained from the relativistic mean field is
for the first time introduced in the CCFULL for the study of
fusion dynamics.

The recently developed R3Y NN potential can be obtained
from the static solution of the field equations for mesons
[33,43,45], and can be written as

V R3Y
eff (r) = g2

ω

4π

e−mωr

r
+ g2

ρ

4π

e−mρr

r
− g2

σ

4π

e−mσ r

r

+ g2
2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
+ J00(E )δ(r), (5)

Here, the parameters gσ , gω, and gρ denote the respective
coupling constants of the mesons having masses mσ , mω,
and mρ , respectively. g2 and g3 are the coupling constants
of the nonlinear terms of the self-interacting σ field. J00 is
the one-pion exchange potential (OPEP), and details can be
found in Ref. [29]. Here we have used a revisited version of
the widely used NL3 force [63], the so-called NL3∗ parameter
set [64]. In the same pattern, the M3Y NN potential can be
expressed as

V M3Y
eff (r) = 7999

e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E )δ(r). (6)

Here, the range unit is in fm and the strength is in
MeV. More details of Eqs. (5) and (6) can be found in
Refs. [29,33,43,44,65]. The interaction potential between the
projectile and target nuclei, considering their respective calcu-
lated nuclear densities ρp and ρt with the RMF approach for
the NL3∗ parameter, can be determined using

Vn( �R) =
∫

ρp(�rp)ρt (�rt )Veff (|�rp − �rt + �R|≡r)d3rpd3rt , (7)

the double-folding procedure [29] with the M3Y and relativis-
tic R3Y interaction potentials proposed in Refs. [33,43,44].
Additionally, single nucleon exchange effects can be included
through a zero-range pseudopotential.

The total nuclear interaction potential between the pro-
jectile and target nuclei can be obtained by combining the
Coulomb potential with the nuclear interaction potential
Vn(R) obtained from Eq. (7), which is the main ingredi-
ent in the coupled-channels approach (CCFULL). One can
generate the nuclear coupling Hamiltonian by changing the
target radius in the nuclear potential [1] to a dynamical
operator,

R0 → R0 + Ô = R0 + β2RT Y20 + β4RT Y40, (8)

where RT is rcoupA1/3 and β2 and β4 are the quadrupole and
hexadecapole deformation parameters of the deformed target
nucleus, respectively. Thus, the nuclear coupling Hamiltonian
is given by

VN (r, Ô) = −V0

1 + exp[(r0 − R0 − Ô)/a0]
. (9)

In order to connect the |n〉 = |I0〉 and |m〉 = |I ′0〉 states of
the target’s ground rotational band, we need matrix elements
of the coupling Hamiltonian. These are readily accessible
using matrix algebra [66]. In this algebra, the eigenvalues and
eigenvectors are of the operator Ô, which satisfies

Ô|α〉 = λα|α〉 (10)

This is implemented in the CCFULL program by diagonalizing
the matrix Ô, whose elements are given by

ÔII ′ =
√

5(2I + 1)(2I ′ + 1)

4π
β2RT

(
I 2 I ′

0 0 0

)2

+
√

9(2I + 1)(2I ′ + 1)

4π
β4RT

(
I 4 I ′

0 0 0

)2

. (11)
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The nuclear coupling matrix elements are then evaluated as

V (N )
nm = 〈I0 | VN (r, Ô) | I ′0〉 − V (0)

N (r)δn,m,

=
∑

α

〈I0 | α〉〈α | I ′0〉VN (r, λα ) − V (0)
N (r)δn,m. (12)

The last term is included in the equation to avoid the diag-
onal componentbeing counted twice. The CCFULL program
incorporates the Coulomb interaction of the deformed target
up to the second order in β2 and the first order in β4. The
higher-order couplings of the Coulomb interaction have a
relatively minor impact, unlike the nuclear couplings. The
matrix elements of the Coulomb interaction potential can be
expressed as follows:

V C
R(I,I ′ ) = 3ZPZT R2

T

5r3

√
5(2I + 1)(2I ′ + 1)

4π

×
(

β2 + 2

7
β2

2

√
5

π

)(
I 2 I ′

0 0 0

)2

+ 3ZPZT R4
T

9r5

√
9(2I + 1)(2I ′ + 1)

4π

×
(

β4 + 9

7
β2

2

)(
I 4 I ′

0 0 0

)2

, (13)

for rotational coupling. These coupled-channels equations are
used to calculate the fusion cross-section of the compound
nucleus by assuming the rotational degrees of freedom as
discussed in Sec. III.

III. RESULTS AND DISCUSSIONS

The coupled-channels calculations adequately account for
several degrees of freedom such as collective surface vibra-
tions, rotations, and neutron transfer to reasonably explain
the fusion crosssection with lower excitation energy. In the
present study, the coupled-channels calculations with micro-
scopic external potential are performed by using the following
steps:

(1) The nucleus-nucleus potential is obtained from a
double-folding model using the relativistic potential
that has not been used as input to coupled-channels
calculations, including low-lying rotational states of
the deformed target nucleus among the channels.

(2) The structural bulk properties such as binding energy,
nuclear radii, density distribution, and quadrupole (β2)
and hexadecapole (β4) deformationsare obtained from
relativistic mean field formalism, which gives a picture
of the nuclei that are involved in the reaction.

(3) The density, and the shape’s degrees of freedom, i.e.,
quadrupole (β2) and hexadecapole (β4), are incorpo-
rated through the nuclear potential to calculate the
fusion cross section within the coupled-channels cal-
culations.

(4) The rotational degrees of freedom up to 4+ states
are considered to examine the fusion enhancement at
below-barrier energies.

TABLE I. The Woods-Saxon (WS) parameters (V0, r0, and a0)
and quadrupole (β2) and hexadecapole (β4) deformations calculated
using RMF (with NL3∗ parameter set) are listed. The excitation
energy corresponding to quadrupole deformation of the target nuclei
is taken from Ref. [67].

Woods-Saxon potential Deformation target

V0 r0 a0 E+
2 β2 β4

System (MeV) (fm) (fm) (MeV)

16O + 24Mg 45.93 1.17 0.61 1.368 0.416 0.004
18O + 24Mg 47.20 1.17 0.62 1.368 0.416 0.004
16O + 148Sm 62.20 1.17 0.65 0.550 0.112 0.049
16O + 176Hf 63.63 1.18 0.65 0.088 0.284 −0.041
16O + 176Yb 60.00 1.17 0.65 0.082 0.298 −0.057
16O + 182W 63.99 1.17 0.65 0.100 0.273 −0.056
16O + 186W 70.00 1.18 0.65 0.122 0.241 −0.094

It is worth mentioning that the primary reason for choos-
ing the external nuclear potential obtained from RMF is that
it provides valuable information on bulk nuclear properties
such as binding energy, charge distributions, and single-
particle energy levels. Further details on the applicability of
the RMF model with various parametrizations can be found
in Refs. [33,43,45] and references therein. In parallel, the
Woods-Saxon (WS) potential within CC calculations is also
used for comparison. The reactions 16O + 24Mg, 18O + 24Mg,
16O + 148Sm, 16O + 176Hf, 16O + 176Yb, 16O + 182W, and
16O + 186W are considered within the CCFULL code to esti-
mate the fusion cross sections. Rotational degrees of freedom
were considered for the target nuclei [9,55–58], while 16O
and 18O are treated as spherical in the present analysis. The
Woods-Saxon (WS) parametrizations of the AkyüzWinther
(AW) potential, the excitation energy corresponding to the
first excitation state [67], and the values of the deformation pa-
rameters (calculated using RMF with the NL3∗ parameter set)
are listed in Table I. The potential parameters of the WS poten-
tial are chosen in such a way as to fit the experimental data at
above-barrier energies for 1D BPM. The fusion barrier char-
acteristics i.e., barrier height and position, are obtained using
the above-mentioned potentials, namely WS, M3Y, and R3Y
NN potentials. The variation of total interaction potential,
which is given by the sum of Coulomb and nuclear potential,
at � = 0h̄ with the separation distance r, is shown in Fig. 1
and inset of Fig. 3 for the considered choice of reactions.
The solid black and dotted blue line represents the interaction
potential corresponding to WS and R3Y NN potentials while
the dashed red line represents the M3Y NN potential. It can be
observed from these figures that the barrier formed in the case
of the M3Y NN potential and the WS potential is relatively
higher in comparison to the relativistic R3Y NN potential
(as discussed in our previous work [39]) for all the consid-
ered reactions. The results obtained from the above analysis
suggest that the R3Y effective NN potential, formulated in
terms of meson masses and coupling constants, generates a
more attractive interaction potential than the M3Y NN and
WS potentials. The fusion cross section of reaction systems is
significantly influenced by the properties of the fusion barrier,
highlighting the direct impact of barrier characteristics on the
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FIG. 1. The total interaction potential as a function of radial separation r for 16O + 24Mg, 18O + 24Mg, and 16O + 148Sm reactions calculated
using the M3Y (dashed red lines) and R3Y (dotted blue lines) NN potentials. The microscopic nuclear potential is further compared with the
traditional WS (solid black line) potential. See the text for details.

overall reaction dynamics. The higher the barrier height, the
lower will be the fusion cross section. The effect of the above-
discussed potentials on the fusion cross section is studied
further with the help of coupled-channels calculations.

Following Ref. [68], we obtain the �max values from
the sharp cutoff model [69] by using experimental data at
above-barrier energies wherever available, and extrapolated
for below barrier energies. As we mentioned above, the main
aim of our work is to use the microscopic nuclear potential in
the CCFULL code obtained from the recently developed R3Y
NN potential. The calculated results are further compared
with the cross section obtained using traditional WS and M3Y
NN potentials. The RMF with NL3∗ parameter set is used

to obtain the relativistic R3Y NN potential using the density
of the projectiles and targets, which are the main ingredients
for nuclear potential. It is worth mentioning that the self-
consistent relativistic mean-field formalism is successfully
applied in the fusion hindrance reaction phenomena in our
recent works [33,34,53]. Furthermore, the RMF with NL3∗
force parameter could provide the relativistic flavor to the
fusion characteristics analogously to nuclear structure studies.
We have used the relativistic R3Y NN potential and densities
from the RMF approach for NL3∗ in the CCFULL calculation.
The coupled-channels calculations are performed with rota-
tional degrees of freedom to examine the fusion enhancement
using the microscopic nuclear potential at below-barrier

FIG. 2. The fusion cross sections as a function of Ec.m. (MeV) for the Woods-Saxon potential (solid black line) and R3Y (dotted blue line)
and M3Y (dashed red line) NN interactions with the NL3∗ parameter set using coupled-channels code. The corresponding cross section for the
4+ excited state for R3Y (double-dotted–dashed grey line) and M3Y(dashed-dotted red line) potentials along with the inclusion of β2 and β4

deformations. The calculated results are compared with the experimental data [55,57] for 16O + 24Mg, 18O + 24Mg, and 16O + 148Sm reactions.
See the text for details.
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FIG. 3. Same as Fig. 2, but for β4 < 0, namely reactions 16O + 176Hf, 16O + 176Yb, 16O + 182W, and 16O + 186W. The experimental data
are taken from Refs. [9,56,58]. See the text for details.

energies. First we perform the one-dimensional barrier
penetration model calculations by ignoring the nuclear in-
trinsic excitations to reproduce the experimental fusion cross
sections at energies above the barrier [70]. The black (solid),
red (dashed) and blue (dotted) lines represent the fusion cross
sections obtained using WS, M3Y, and R3Y NN interaction
potentials, respectively, for 1D BPM as shown in Figs. 2 and 3.
The calculated fusion crosssections with 1D BPM underes-
timate the experimental data, particularly at below-barrier
energies. Note that, in the present CCFULL calculations, only
rotational degrees of freedom are considered to address the
fusion cross section for the above-mentioned reactions. The
two different conditions based on the shape (hexadecapole
deformation) of nuclei, β4 > 0 and β4 < 0, are considered in
the present work. Furthermore, it has been anticipated that the
reactions involving nuclei either having positive or negative

hexadecapole deformation exhibit an increase in the fusion
cross section at energies below the Coulomb barrier [71–76],
which demands further experimental study.

The fusion cross sections calculated for 16O + 24Mg,
18O + 24Mg, and 16O + 148Sm reactions having β4 > 0 are
shown in Fig. 2. To probe the possible generalizations con-
cerning the behavior of the heavy-ion fusion process, first we
discuss the fusion reaction of 16,18O + 24Mg. Another aspect
of nuclear structure that inspired research of the 16,18O + 24Mg
reaction is the significant deformation and strong collectively
of 24Mg, which can potentially affect the fusion cross section.
For example, the size of the nuclear surface density distri-
bution, where low-energy heavy-ion reactions occur, and the
deformation might enhance the fusion cross section. Further-
more, strong couplings to the collective degrees of freedom
create a more efficient approach for kinetic energy transfer
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to internal excitation and influence the fusion cross section.
From Fig. 2(a), one can notice that the fusion cross section ob-
tained for 16O + 24Mg reaction using the WS potential slightly
deviates from the M3Y interaction potential cross section at
near- and below-barrier energies. On the other hand, the fusion
cross-section obtained with the WS potential overlaps with
the R3Y NN potential cross section mainly at above-barrier
energies. Furthermore, the fusion cross-section obtained using
the R3Y NN interaction potential is comparatively larger than
WS and M3Y interaction potentials mainly at below-barrier
energies.

By including the excitation state of the target nuclei,
the fusion cross section is enhanced particularly at below-
barrier energies for M3Y (dotted-dashed green line) and R3Y
(double-dotted–dashed grey line) NN interaction potentials
and reasonably matches with the available experimental data
[55]. This can be correlated with the weak magnitude of the
β4 value causing the enhancement observed in the case of
M3Y and R3Y NN interaction potentials with the (0+ − 4+)
excitation state to be quite small compared to the 1D BPM.
Similar results can be pointed out for 18O + 24Mg reaction.
The cross section obtained using the WS potential overlaps
with the M3Y and R3Y NN interaction potential cross sec-
tions at energies above the Coulomb barrier. More detailed
inspections show a small increase in the fusion cross sec-
tion for the R3Y NN interaction potential in comparison to
the WS and M3Y interaction potentials and it is quite small
for the (0+ − 4+) excitation state as compared to the 1D BPM.
Theoretical results obtained for these two reactions are consis-
tent with the experimental data [55] over the available range
of energies. More elaborately, the graph for the fusion cross
section is plotted for 16O + 24Mg and 18O + 24Mg reactions
in the narrower energy range in the inset of Figs. 2(a) and
2(b). The enhancement in the fusion cross section with the
inclusion of a rotational excitation state is more clearly visible
at energies below the Coulomb barrier. As shown in Fig. 2(c)
for 16O + 148Sm reaction, the data obtained using WS and
M3Y interaction potentials do not even fit the experimental
cross section [57] data at the above-barrier energies. However
the calculated results with the R3Y NN potential best match
the experimental data near and above the Coulomb barrier en-
ergies. Also, the enhancement in the fusion cross sections with
the inclusion of (0+ − 4+) excitation channel can be observed
with respect to the 1D BPM. It can be observed from the
above-mentioned results with β4 > 0 that the positive values
of β4 > 0 significantly affect the fusion cross section, and
the results obtained using the R3Y NN potential with rota-
tional excitation state are slightly superior to the M3Y and
WS potentials for these considered systems. Further, with the
inclusion of higher channels, a negligible effect on the fusion
cross sections is observed.

A similar effect of the R3Y NN interaction nuclear poten-
tial can be observed for the reactions having negative values
of the hexadecapole deformation of the target nuclei, β4 <

0. The calculated fusion crosssection for all the considered
systems, namely 16O + 176Hf, 16O + 176Yb, 16O + 182W, and
16O + 186W, having β4 < 0 with WS, M3Y, and R3Y NN
potentials (without coupling terms) gives the best match with
the experimental data, especially at above-barrier energies.

However, fusion hindrance is still observed at energies below
the Coulomb barrier. Therefore, the rotational excitation state
of the target nuclei is included in the CC calculations. A
detailed observation shows that the fusion cross-section ob-
tained from M3Y potential exactly overlaps with the results
obtained using the WS potential at energies below and above
the Coulomb barrier for 16O + 176Hf as shown in Fig. 3(a).
However, the fusion cross section obtained using the R3Y NN
potential is more comparable to the M3Y and WS potential,
mainly at sub-barrier energies. The fusion cross section ob-
tained for the excitation state (0+ − 4+) is higher than the 1D
BPM for both M3Y and R3Y NN potentials below barrier
energies. 1D data overestimated the excitation fusion cross-
section for the M3Y potential at energies near and above the
Coulomb barrier, which is related to the sharp cutoff model
(choice of �max values). On the same footing, the results with
the R3Y NN potential match well with the experimental data
[56] even at below-barrier energies. Moreover, similar calcu-
lations were done for other reactions, namely 16O + 176Yb,
16O + 182W, and 16O + 186W, as shown in Figs. 3(b), 3(c),
and 3(d). The experimental data are given for comparison
[9,56,58]. From the figures, one can observe that for β4 < 0
the significant effect of the (0+ − 4+) excitation state on the
fusion cross section can be observed for R3Y NN potential
as compared to the 1D BPM with M3Y and WS potentials.
In other words, the fusion cross sections obtained with the
inclusion of the (0+ − 4+) excitation state in the R3Y NN
potential are relatively closer to the experimental data at
below- and above-barrier energies. As predicted above, we
again observed that the fusion cross section obtained from
the R3Y NN interaction potential with NL3∗ parameter set
is found to be more consistent than those of WS and M3Y
potentials mainly at below-barrier energies, except for the
16O + 148Sm reaction at energies below the Coulomb bar-
rier. In contrast, the M3Y interaction only fits the data at
above-barrier energies. Notably, the R3Y nuclear interaction
explains the fusion cross section reasonably well at lower
energies and consistently yields larger cross sections than
the M3Y potential. Furthermore, we observe that with the
inclusion of higher-order channels beyond 4+ the higher-
order channels cease to contribute significantly towards the
fusion cross section around and below the Coulomb barrier.
By the above analysis, it is evident from Figs. 2 and 3 that
the recently established R3Y interaction for the NL3∗ force
parameter with rotational degrees of freedom is a better choice
than the WS and M3Y interaction potentials for the consid-
ered systems in fusion studies. Further, the implementation
of the nuclear potential from RMF in the coupled-channels
approach removes its dependency on the parameters of the
Wood-Saxon potential, i.e., V0, r0, and a0, as the potential here
is obtained in a self-consistent way which makes the coupled-
channels model more reliable. The Woods-Saxon parameters
are otherwise tuned manually at the above-barrier energies
for 1D BPM.

IV. SUMMARY AND CONCLUSIONS

In the present study, we have considered two different
nucleon-nucleon interaction potentials: the widely used M3Y
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potential and the relatively new relativistic R3Y interaction
to estimate the fusion characteristics at low energies. The
nuclear interaction potential is obtained for relativistic R3Y
and M3Y NN potentials and corresponding interacting den-
sities from the relativistic mean field approach for the NL3∗
parameter set by adopting the double-folding procedure. The
coupled-channels CCFULL code is used to calculate the fusion
cross section at below-barrier energies for these two kinds
of nuclear potentials and to compare with the traditional
Woods-Saxon (WS) potential. We considered seven reactions,
namely 16O + 24Mg, 18O + 24Mg, 16O + 148Sm, 16O + 176Hf,
16O + 176Yb, 16O + 182W, and 16O + 186W, in which target
nuclei are rotational and 16O, 18O are considered as spher-
ical in shape. In contrast to the expectation of 1D BPM,
the sub-barrier fusion cross section is enhanced because of
the coupling between the relative motion and the intrinsic
degrees of freedom. The values of β2 and β4 deformation
are calculated from the relativistic mean-field formalism for

the NL3∗ parameter set used in CCFULL to estimate the cross
section. Interestingly, even a small change in the barrier height
of the R3Y potential has a significant impact on the cross sec-
tion, leading to a considerable increase in energies below the
Coulomb barrier. From the fusion reactions at below-barrier
energies, we observed that the R3Y interaction for the NL3∗
parameter set with rotational excitation state has proved to be
a better option than the WS and M3Y potentials. As a result, it
can be concluded that the R3Y interaction with NL3∗ causes
interacting nuclei to recline, which lowers the barrier and
raises the cross section at energies below the Coulomb barrier.
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