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Angular momentum in fission fragments
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We suggest that the angular momentum in fission fragments is generated by statistical excitation at scission.
The magnitude of the angular momentum is determined by excitation energy and shell structure in the level
density. Treating the prescission shape evolution as a diffusive process, implemented as a Metropolis walk on a
five-dimensional potential-energy surface, the average magnitudes of the fission fragment angular momenta are
calculated for 235U(nth, f), assuming that they are perpendicular to the fission axis. The sawtooth behavior of the
average angular momentum magnitude as function of mass number is discussed in connection with the similar
observed behavior of the average neutron multiplicity, and a good understanding is achieved. The magnitudes of
the angular momenta of light and heavy fragments are found to have a weak negative correlation, in accordance
with recent experimental results. This correlation arises from the microcanonical sharing of excitation energy by
the fragments at scission, where each energy provides a distribution of angular momenta.
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I. INTRODUCTION

A large variety of degrees of freedom may be excited in
the fission process, eventually contributing to the excitation
energy and the angular momenta of the fission fragments.
Energy may be stored as distortion energy, caused by the devi-
ation of the fragment shapes at scission from the equilibrium
shapes of the freely moving fragments, which typically carry
tens of MeV of intrinsic excitation energy. Furthermore, the
fragments are subjected to nuclear and Coulomb potentials at
scission and as they move apart.

During the motion of the fully accelerated fragments, after
the distortion acquired at scission has been converted to addi-
tional internal excitation energy, they undergo decay cascades
that have the character of compound nucleus decays. What
remains after relaxation of the fission and scission process
are the conserved quantities within the fragments, especially
the energy and the angular momentum, including both the
magnitude and direction of the angular momentum.

Investigations of the decay products from fission fragments
give important insight into the fission process. The angu-
lar momentum of a fission fragment primarily reveals itself
through the γ cascade following neutron evaporation. Early
angular correlation experiments [1,2] of ground-band rota-
tional E2 transitions show that the angular momentum points
preferentially perpendicular to the direction of motion of the
fission fragments. Studies of the overall shape of the γ -ray
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spectrum and the γ -ray multiplicity [3–6] confirm the com-
pound nature of the decay and they also provide a measure of
the sum of the two angular momentum magnitudes. The mag-
nitude of the angular momenta of individual fragments can be
determined through the side-feeding patterns into low-lying
yrast states. In particular, a recent study by Wilson et al. [7]
yields important information about the angular momentum.
The average angular momentum magnitude was found to vary
with the fragment mass number A in a sawtooth pattern similar
to that displayed by the average neutron multiplicity 〈ν〉 [8,9].

Theoretical descriptions of the angular momenta of fission
fragments have put different emphasis on the single-particle
and collective degrees of freedom. The statistical excitation
of nucleons, with dynamical restrictions on the angular mo-
mentum coupling, can be framed in terms of the angular
momentum carrying modes [10,11]. Conversely, some early
studies relate all the excitation energy of the fission fragments
to very large deformations of the fragments [12], and a re-
cent study considers most of the angular momentum of the
fragments to be generated by this distortion [13]. An early
study describes the angular momentum as being generated by
vibrations of the nuclei around their tips of contact at scission
[14]. A calculation based on time-dependent density func-
tional theory [15] includes both collective and single-particle
excitations in generating the angular momentum of fission
fragments [16].

A sawtooth behavior of the average angular momen-
tum magnitude versus fragment mass number was obtained
in data-based simulation codes [17,18] with certain as-
sumptions on the variation of the moment of inertia with
fragment mass number. By projecting angular momentum
from Hartree-Fock-Bogoliubov calculated solutions of fission
fragments also some kind of sawtooth behavior was obtained
in Ref. [19].
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We here suggest that the observed strong correlation
between the average neutron multiplicity and the average an-
gular momentum magnitude implies that a substantial part of
the energy used for neutron evaporation is already available at
scission, when the angular momenta of the fission fragments
are determined. It follows that the amount of energy stored
in fragment distortions at scission (and later on recovered as
additional intrinsic energy) plays no role in the determination
of angular momenta in the fission fragments.

The dynamics of the nuclear shape is assumed to be
strongly damped and the resulting diffusive evolution from
the compact equilibrium shape to scission is simulated by
Metropolis walks on a potential-energy landscape defined in
terms of five shape parameters.

This treatment was introduced in Ref. [20] for calcu-
lating fission fragment mass distributions and it has been
further developed and applied [21–24]. In those treatments,
the statistical weights guiding the random walk were taken as
Fermi-gas level densities which are insensitive to the shape of
the nuclear system and its specific microscopic structure. By
replacing these by microscopic pairing- and shape-dependent
level densities [25], it has become possible to not only make
more refined studies of mass yields but also to address ad-
ditional observables in detail, such as the partitioning of the
excitation energy between the two fragments [26] and the
neutron multiplicities [27]. The present study is concerned
with the angular momenta of the fission fragments.

One of the five shape parameters is the neck radius c, the
radius of the shrinking connection between the two fledging
fragments. The diffusive evolution of the shape, as simulated
by the Metropolis walk, is continued until the neck radius
has shrunk to a specified critical value, ccrit = 1.5 fm, at
which point it is assumed that scission occurs. While the
fragment mass yields and the fragment deformations are not
very sensitive to the precise value of ccrit , the particular value
adopted in this study has been found to give the best ac-
count of the final kinetic energies of the fragments [26]. At
scission, the acquired internal excitation energy is divided
between the fragments according to their microscopic level
densities with summation over the statistical distribution of
the angular momenta in both of the fragments. The micro-
scopic shape-dependent level densities take into account both
internal energy and angular momentum of the fragments.

As the originally distorted shape of a fission fragment
relaxes towards its equilibrium form, the associated distor-
tion energy is converted to additional internal energy of the
fragment. Subsequently neutrons may be emitted, and finally
the residual excitation is carried away by a cascade of γ rays.
Experiments such as Ref. [7] seek to deduce the fragment an-
gular momenta from the observed γ rays. Model calculations
of the angular momentum removed by neutron evaporation
have yielded values from less than 1h̄ [28] to (2–3)h̄ [17]. The
present study assumes that the neutron emission on the aver-
age does not change the magnitude of the angular momentum
of the fission fragment.

This assumption can be justified within the framework of
the Hauser-Feshbach description of statistical decay cascades
[29]. After a neutron evaporation, the relative probability of
the daughter nucleus having a particular angular momentum

I is given by the product of the transmission coefficient and
the level density. If the level density decreases as a function
of I the nuclear angular momentum will decrease on average,
and vice versa if the level density increases with I . For the
fragment excitation energies and angular momenta relevant to
the present study, shown below in Figs. 2, 5, 8, 10, and 11, the
level density is close to a maximum as a function I and there
will be no preference for smaller or larger angular momenta in
the daughter nucleus after neutron emission. The assumption
of little modification of the angular momentum distribution
by neutron evaporation is supported by experiments compar-
ing fragment combinations with relatively few and relatively
many neutrons evaporated [30,31].

Below, we first discuss, in Sec. II, restrictions on fission
fragments angular momenta. Then, in Sec. III, Fermi-gas level
densities are provided for two-dimensional angular momen-
tum distributions of fission fragments and a simple analytical
relation is obtained between the average angular momentum
magnitude and the average neutron multiplicity. Properties of
the fledging fragments at scission are discussed in Sec. IV.
We apply the calculated results from Ref. [26] of fragments
at scission in the reaction 235U(nth, f). In Sec. V the com-
binatorial level-density approach, which provides the energy
dependence of pairing and shell structure, is used for more
accurate calculations of the average angular momentum mag-
nitude for spherical as well as deformed fragments at scission.
These results, both the average angular-momentum magnitude
versus fragment mass and the correlation between them, are
compared with experimental data from Ref. [7] in Sec. VI. In
Sec. VII, the results are summarized, and finally in Sec. VIII
we discuss the result, the size of angular momentum removed
by neutrons, and also some desired experiments.

II. FISSION FRAGMENT ANGULAR MOMENTA

In the present study, the angular momenta of the fission
fragments, IL and IH , are assumed to be perpendicular to the
fission axis, and the relevant density of states is then reduced
accordingly. For the cases considered here (spontaneous or
thermal fission), the magnitude of the angular momentum of
the fissioning system is rather small, I0 ≈ 0, and the asymp-
totic direction of the relative fragment motion, is then equal
to the fission direction, except for an insignificant Coulomb
rotation of 1–2 degrees [28]. Consequently, the fragments
emerge with angular momenta that are practically perpen-
dicular to the direction of their relative motion. This feature
contrasts with that of an unrestricted scenario in which the
fragment angular momenta can point in any direction and
where, therefore, the full state density would be relevant.

Figure 1 illustrates how the fragment angular momenta are
balanced by the angular momentum of their relative motion,
the orbital angular momentum L,

IH + IL + L ≈ 0, (1)

with all the angular-momentum vectors being perpendicular
to the fission axis. The rotational modes of a dinuclear system
were characterized and named by Nix and Swiatecki [32]
and by Moretto [10]. The modes of rotation perpendicular to
the fission axis in which the fragment angular momenta are
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FIG. 1. Illustration of the angular momentum vectors at scission.
Both the individual fragment angular momenta, IL and IH, and the
orbital angular momentum L are perpendicular to the fission axis.
The left drawing presents a side view, while the right drawing shows
a view along the fission direction.

perpendicular to the dinuclear axis are wriggling and bending,
each mode being doubly degenerate because there are two
independent perpendicular directions. In wriggling, the two
fragments rotate in the same direction and in bending the
fragments rotate in opposite directions. A recent discussion
of these modes in fission was given in Ref. [11].

Measurements of low-lying E2 transitions have shown that
the fragment angular momenta are predominantly perpendic-
ular to the direction of fission fragments [1,2]. [Although
those experiments were carried out for 252Cf(sf), this feature
is expected to hold also for the reaction 235U(nth, f) considered
here.]

Furthermore, recent experiments have shown that the mag-
nitudes of the two fragment angular momenta are at most
weakly correlated [7]. This finding shows that both wriggling
and bending must be populated [18].

III. FERMI-GAS LEVEL DENSITY

Fermi-gas models provide an important background
knowledge of level densities and spin distributions. Expres-
sions for a two-dimensional (2D) angular momentum distri-
bution are derived from the Fermi-gas model in Sec. III A. In
Sec. III B these expressions are used to obtain a simple analyt-
ical expression of the average angular-momentum distribution
versus fragment mass number, invoking the experimental data
on the average neutron multiplicity to estimate the average ex-
citation energy in the fragments. Important excitation-energy
dependent effects from pairing and shell structure are consid-
ered in later sections.

A. Fermi-gas distribution of angular momentum

Consider a spherical fission fragment. For a Fermi-gas
approximation to the intrinsic fragment excitations, with the
condition that the angular momenta be perpendicular to the z
axis, I = (Ix, Iy, 0), their distribution is

P(Ix, Iy) = 1

2πσ 2
e−I2/2σ 2

,

∫
P(Ix, Iy)dIxdIy = 1. (2)

The variance σ 2 (often called the spin cutoff parameter)
is given as the product of the temperature and the rigid-
body moment of inertia, σ 2 = TJrigid. We use standard
parameters, T = √

E∗/a, where E∗ is the intrinsic exci-
tation energy and a = A/(11 MeV) is the level-density
parameter. The rigid-body moment of inertia employed here,
Jrigid = 0.014A5/3 h̄2/MeV, corresponds to a sphere of radius
1.20A1/3 fm.

In terms of the magnitude I of the angular momentum, the
probability distribution (2) corresponds to the spin cutoff level
density,

ρlevel(E
∗, I ) = 1

24
√

2

2I + 1

σ 3
e−I (I+1)/2σ 2

× 1

(aE∗)1/4

1

E∗ e2
√

aE∗
. (3)

For spherical nuclei, the spin cut-off level density is usually
discussed in terms of the Bethe subtraction procedure [33].
In experimental measures of the level density, such as for
example in thermal neutron resonances, each level of angular
momentum I encompasses (2I + 1) states with angular mo-
mentum projection M = −I, . . . , I . The state density is then
obtained by multiplying by this degeneracy,

ρstate(E∗, I ) = (2I + 1)ρlevel(E
∗, I ) (4)

corresponding to a 3D angular-momentum distribution,
P(Ix, Iy, Iz )dIxdIydIz ∼ exp(−I2/2σ 2)dIxdIydIz.

FIG. 2. Estimates of the average angular-momentum magnitude
from Eq. (8) (dashed curves in upper parts) calculated at excitation
energies derived from estimated/measured average neutron multi-
plicities (lower parts) for 238U(nth, f)/ 252Cf(sf). The experimental
data were taken from Ref. [7] for panels (a) and (b), and the estimates
for 238U from thermal fission of 233U and 235U from Ref. [34] for
(c) and from Ref. [35] for (d).
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In Sec. V, where the combinatorial level density is applied,
it will be apparent that the spin cutoff estimate (3) with
the indicated parameters accounts for the smooth angular-
momentum dependence of the level density (see Figs. 4
and 5).

B. Estimates of angular momenta in fission fragments

A recent experimental investigation of several fission cases
[7] found that the average angular-momentum magnitude dis-
plays a sawtooth pattern as function of the fragment mass
number. This behavior is very similar to the observed pattern
of the mean neutron multiplicities; see, e.g. [8,9] and Fig. 2.
From the average neutron multiplicity 〈ν〉, we first make a
straightforward estimate of the excitation energy E∗

tot of the
fragments. Each neutron emission will decrease the excitation
energy in the fragment by the separation energy Sn plus the
kinetic energy of the neutron, En. Neutron evaporation will
eventually not be possible when the excitation energy is below
the separation energy, which then leaves the fragment with an
average energy of about Sn/2 to be emitted by γ rays. For
a schematic estimate with few parameters,we insert an aver-
age separation energy 〈Sn〉 = 6 MeV, kinetic energy 〈En〉 =
1 MeV, and energy for γ rays 〈Sn〉/2 = 3 MeV, yielding the
estimate

E∗
tot = 7

(〈ν〉 + 3
7

)
MeV. (5)

This is then a measure of the total excitation energy of
the fully accelerated fragment, E∗

tot, which is the sum of the
intrinsic excitation energy at scission, E∗

intr , and the energy
stored in the shape, the distortion energy E∗

dist:

E∗
tot = E∗

intr + E∗
dist. (6)

From the Metropolis random-walk simulations of the shape
evolution, it was found that E∗

intr accounts for 60–90% of E∗
tot

[26]. The distortion energy does not contribute to the rota-
tional energy of the fragments since it is recovered only after
scission. We schematically account for this effect by applying
the average fraction over all mass numbers: E∗

intr/E∗
tot = 0.8.

One more effect should be accounted for, namely the en-
ergy of the relative orbital angular momentum of the two
fragments at scission. The excitation of the wriggling mode
implies the presence of an orbital angular momentum (see
Fig. 1), which in the present Fermi-gas approximation also
has a Gaussian distribution. This makes it a little more costly
in energy to excite the wriggling mode, and the variances of
the fragment angular momenta are reduced by the factors fL

and fH , respectively [18],

fL,H = 1 − JL,H

JR + JL + JH
. (7)

Generally, the moment of inertia for the relative motion, JR =
μR2 is much larger than those of the individual fragments,
JL,H , so the reduction is rather small. Thus f = 6

7 ≈ 0.86 for
two equal touching spheres.

Using the touching-sphere correction factor and the fact
that the average angular momentum for the spin cutoff approx-
imation (3) is 〈I〉 = √

π
2 σ , we obtain the following simple

expression for the average angular-momentum magnitude in

a fission fragment, as a function of the mass number A and the
average neutron multiplicity 〈ν〉,

〈I〉 = 0.81/4
√

6
7

√
π
2 σ = 0.38A7/12

(
〈ν〉 + 3

7

)1/4

h̄, (8)

where we have inserted the excitation energy E∗
tot = 7(〈ν〉 +

3
7 ) MeV for each mass number, together with the standard
level-density parameters mentioned above. This simple equa-
tion relates the average neutron multiplicity to the average
angular-momentum magnitude, which are both properties that
can be obtained from experimental data.

The rough estimate (8) is compared to data in Fig. 2. Since
neutron multiplicity data do not exist for 238U, we show result
from an extrapolation of measured data from 233U and 235U,
as suggested in [34]. As can be seen, this simple calculation
yields an overall good agreement with the experimental re-
sults. While 〈ν〉 + 3

7 varies by about a factor of four between
minima and maxima, 〈I〉 varies only within a factor of 1.5 due
to the quarter power in Eq. (8), 〈I〉 ∝ (〈ν〉 + 3

7 )1/4h̄.
Equation (8) was obtained from simple approximations.

A more precise result is obtained in Sec. V using the av-
erage angular-momentum magnitudes obtained from detailed
calculations with the combinatorial level density for realistic
scission shapes generated by Metropolis simulations of the
shape evolution.

IV. PROPERTIES AT SCISSION

We consider the neutron-induced fission reaction
235U(nth, f) studied in [26]. In that work, the diffusive
shape evolution was followed by means of random walks
until the neck radius has fallen below the specified critical
value, ccrit = 1.5 fm, where scission is assumed to occur.
The masses (AL and AH ) and shapes (εL and εH ) of the two
fragments are then extracted, together with the total intrinsic
excitation energy, E∗

intr , and the CM distance between the
fragments, Rsciss. The partitioning of E∗

intr between the two
fragments is governed by the shape-dependent combinatorial
level densities of the distorted fragments as described in
Ref. [26],

P(E∗
L , E∗

H ) ∝ ρ(E∗
L , εL ) ρ(E∗

H , εH ), (9)

with E∗
H + E∗

L = E∗
intr .

The present study focuses on even-even fission fragments,
selecting 15 even-even nuclei with Z/A ratios close to that of
236U. This covers the mass range from A = 82 to A = 154
and includes all even charge numbers from Z = 32 to Z = 60.
Their properties are listed in Table I. It may be noted that
the quadrupole deformations of the fragments at scission are
generally rather small, typically smaller than the ground-state
values. Such rather compact scission shapes were also found
in early macroscopic calculations of strongly damped fission
dynamics [36] as well as in modern Langevin treatments
[37]. The fairly small differences between scission shapes
and ground-state shapes result in relatively small distortion
energies, as discussed above.

Figure 3 displays the energies at scission. The average total
excitation energy, solid blue curve in panel (a), is determined
by the Metropolis walks, governed by the level density of the
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TABLE I. The even-even nuclei included in the present calcula-
tion as fragments from the reaction 235U(nth, f), with the symmetric
split shown in bold. For each fragment is shown its ground-state
shape [38] and the average values of its end-cap deformation at
scission, its intrinsic excitation energy [26] at scission, and the CM
distance between the fragment partners at scission. (The ground
state shapes for 14456 and 14858 also have octupole deformations,
ε3 = 0.09 and 0.07.) The last column indicates which form of the
level density to apply at scission, spherical (sph) or deformed (def),
see Sec. V C.

Ground-state Scission E∗
L/H at CM dist. sph

shape shape scission at sciss. or

A Z ε2 ε4 ε6 ε (MeV) (fm) def

82 32 0.02 0.00 0.00 0.07 3.9 18.8 sph
88 34 0.16 0.02 0.00 0.10 5.7 18.5 sph
92 36 0.22 0.04 0.00 0.14 6.9 18.0 sph
98 38 0.32 0.00 0.00 0.19 10.0 17.5 def
102 40 0.34 0.02 0.01 0.24 11.4 17.1 def
108 42 0.30 0.05 −0.01 0.28 10.6 16.9 def
112 44 −0.25 0.07 0.00 0.32 8.9 17.1 def
118 46 −0.22 0.07 0.01 0.13 8.4 18.5 sph
124 48 0.00 0.00 0.00 −0.10 8.4 17.1 sph
128 50 0.00 0.00 0.00 −0.10 8.4 16.9 sph
134 52 0.00 0.00 0.00 −0.08 9.3 17.1 sph
138 54 0.00 0.00 0.00 −0.06 10.1 17.5 sph
144 56 0.15 −0.05 0.02 −0.03 11.6 18.0 sph
148 58 0.19 −0.05 0.02 0.02 12.2 18.5 sph
154 60 0.25 −0.06 0.03 0.07 13.1 18.8 sph

FIG. 3. Intrinsic excitation energy at scission versus fragment
mass number: (a) the average intrinsic energy, 〈E∗

intr〉, (b) the asso-
ciated dispersion, σE∗ , and (c) the relative dispersion, σE∗/〈E∗

intr〉.
The values for each fragment are indicated by red dots connected
by dashed lines, while the values for the combined system are shown
by blue dots connected by solid lines. The black dot-dashed line in
(c) shows the constant value 0.25.

overall shape of the 236U nucleus. The diffusion along the
asymmetric valley depends smoothly on the mass asymmetry
coordinate [25], without any specific signs of the mass 132
closed shells. This results in a smooth dependence of the
total excitation energy as function of the fragment mass. The
specific low level density at mass numbers around 132 sub-
sequently reveals itself in the distribution of excitation energy
on the fragments, as discussed and illustrated in Ref. [27]. The
shell structure manifests itself significantly in the excitation
energies of the fragments, displayed by the dashes red curves
on Fig. 3. To quote some numbers, for masses A = 128 and
134 compared to their partners, A = 108 and 102, the ratio
between average excitation energies is 〈E∗

H 〉/〈E∗
L 〉 ≈ 0.8, to

be compared to the Fermi-gas value 1.25.
Due to the diffusive nature of the nuclear shape evolution,

the quantities extracted at scission fluctuate from one event to
another, and the corresponding distributions may be charac-
terized by their mean values and the associated dispersions.
The fluctuations of the fragment excitation energies are quite
substantial, as shown in Fig. 3(b). Furthermore, the mass de-
pendence of the dispersion of the combined excitation energy
is very similar to that of the mean excitation, so the ratio
is approximately independent of mass number, σE∗/〈E∗

intr〉 ≈
0.25, as seen in Fig. 3(c), while the relative fluctuations of
the individual excitation energies, σL/H/〈E∗

L/H 〉, are larger and
exhibit an overall decrease with mass number.

V. COMBINATORIAL LEVEL DENSITY AT SCISSION

The fission-fragment mass distribution is sensitive to both
shell structure and pairing correlations and those should also
be included in the calculation of the angular momenta of
the fission fragments. This is done by employing the com-
binatorial level density developed in Ref. [39]. It has mainly
been applied to the deformed rare-earth region where it has
accounted for the overall level density at energies up to the
neutron separation energy [39] and for the angular-momentum
dependent odd-even staggering in the number of levels [40].
The present application of the combinatorial level density is
based on the folded-Yukawa potential and a monopole pairing
interaction. It should be noted that the combinatorial level
density is also being used for guiding the diffusive shape
evolution that determines the mass distribution and the scis-
sion shapes [25], so there is a certain consistency between the
treatment of the fission process and the level densities of the
emerging fragments.

In Ref. [26] the energy partition at scission was calculated
based on Ericsson state densities of the two fragments, while
we here use different level densities, as described below. We
have checked that while the energy partition is sensitive to the
overall shell structure, it is not sensitive to the exact type of
level density employed.

The small deformations of some of the scission shapes (see
Table I) pose a special problem because the strong coupling
limit of single-particle and collective angular momenta is not
valid for such compact shapes.

We calculate angular-momentum distributions at scission
and extract average angular-momentum magnitudes for spher-
ical and deformed fragment shapes in Secs. V A and V B,
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FIG. 4. The distributions of the angular momentum magnitude
for four selected fragments with E∗

intr = 10 MeV. Solid curves:
combinatorial level density for a spherical shape; dashed curves:
Fermi-gas expression.

respectively. The condition for treating a fragment shape as
spherical or deformed is discussed in Sec. V C and the en-
ergies and angular momenta of the fragments at scission are
then calculated under the two shape conditions in Sec. V D.

The combinatorial level density is calculated for the 15
selected fragments with a bin size in E∗

intr of 0.2 MeV up
to a maximum of 22 MeV and up to a maximum angular
momentum of 38h̄.

A. Spherical scission shapes

If the fragments are spherical at scission, the dependence
of the level density on the angular momentum I is obtained by
the Bethe subtraction procedure [33]. The level density is first
evaluated for states of energy E∗ and angular-momentum pro-
jection M on some axis. The states are degenerate with respect
to M, and each projection M encompasses angular momenta
from I = M upward, leading to the subtraction relation

ρ(E∗, I ) = ρ(E∗, M = I ) − ρ(E∗, M = I + 1) (10)

With increasing intrinsic energy E∗, the angular-momentum
distribution calculated with the combinatorial level density is
expected to approach the 2D Fermi-gas expression (3), with
the variance given by the product of the temperature and the
moment of inertia.

Figure 4 shows the distribution of angular momentum at
E∗

intr = 10 MeV for four different fragment masses, calculated
for spherical shapes, together with the spin cut-off approxima-
tion with the Fermi-gas parameters (see Sec. II).

The pairing interaction is included in the combinatorial
level density, resulting in a backshift, or delay, in the in-
crease of the level density with excitation energy. Pairing then
also causes the average angular momentum to be somewhat
smaller, so except for A = 118 the angular momentum is
generally smaller than the Fermi-gas prediction. Particularly
small angular-momentum values are found for A = 134 where
the independent-particle ground state is the N = 82 closed
neutron shell, combined with Z = 52 with only two protons
outside the Z = 50 closed shell. Conversely, for A = 118 the
Fermi level is in the middle of partially filled subshells with
large single-particle angular momenta, h 11

2 for neutrons and
g9

2 for protons.

FIG. 5. The mean angular-momentum magnitude for spherical
fragments as a function of the mass number A. The left panel shows
results obtained without pairing, while the right panel is for pair-
ing included with standard strength. The excitation energies (from
below) are E∗

intr = 5, 10, and 20 MeV. The dashed curves show the
corresponding Fermi-gas approximation.

Figure 5 displays the average angular-momentum magni-
tude, obtained from the angular-momentum distribution for
spherical fragments, as a function of mass number for three
different excitation energies. For the result without pairing
(left panel) substantial shell structure leads to a large variation
around the Fermi-gas value 〈I〉 = √

π
2 σ , which accounts well

for the average behavior with excitation energy and mass
number. Pairing generally implies a backshift of the angular-
momentum distribution, and consequently lowers the average
angular momentum, as seen in the right panel. Lower exci-
tation energy leads to stronger pairing, so the largest effect
occurs for E∗

intr = 5 MeV.
The maxima around A = 118 is associated with the par-

tially filled high- j shells, while the minima around A = 134
is associated with the shell gaps, as discussed above.

B. Deformed scission shapes

If the fragment shape is clearly deformed, one should apply
the level density for deformed nuclei, for angular-momentum
coupling in the strong-coupling limit. The assumption of the
angular-momentum vector being perpendicular to the fission
axis causes important changes of the level density.

The starting point is the many-quasi-particle intrinsic states
α of the deformed fragment, having energy eα and angular-
momentum projection Kα . Evaluating the combinatorial level
density, each intrinsic state α in combination with its Ry(π )-
turned partner form the head of a rotational band with a
moment of inertia Jα dependent on the structure of the state
α. To obtain the pairing dependence of the moment of inertia,
we apply the parametrization discussed in Ref. [41], and the
calculated pairing gaps of each configuration yield a specific
reduction of the moment of inertia.
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This results in the level density of deformed axially sym-
metric nuclei given by the Ericsson formula,

ρEricsson(E∗, I ) = 1

2

∑
α

δ

(
E∗− eα − I (I+1)−K2

α

2Jα

)
. (11)

For simplicity, this expression ignores the special situation
for K = 0 seniority-zero bands with even angular momentum,
which are discussed in detail in Ref. [40].

For small angular momenta I , this level density will be
proportional to 2I+1, caused by the different K values. For
example, angular momentum I = 0 requires projection K =
0, whereas I = 1 states have three times as many bandheads,
built on K = −1, 0, 1. However, for small excitation energies
of even-even nuclei, even angular momenta will be more
abundant than odd ones, because of the presence of senior-
ity zero rotational bands. With increasing excitation energy,
this odd-even effect gradually vanishes, resulting in a smooth
angular-momentum distribution [40].

There is a substantial difference between the level density
of a deformed fragment at scission and that of an unrestricted
deformed nucleus. All shapes of our five-dimensional defor-
mation space are symmetric with respect to a rotation around
the fission axis. For a nascent fission fragment, the symme-
try axis is then pointing towards the other fragment. But a
summation of the level density over the K quantum number
for given angular momentum I effectively implies that the
deformed shape can point in all possible directions.

The condition that the fragment angular momentum be
perpendicular to the symmetry axis restricts the angular-
momentum distribution to two dimensions and only K = 0
will be possible. However, a rotational band built on top of a
K = 0 bandhead contains only one state for each value of the
angular momentum I , effectively eliminating the factor 2I + 1
present in the level densities for both spherical and deformed
nuclei.

In view of this, we adopt another form of the level density
for deformed fission fragments at scission, allowing the angu-
lar momentum to acquire a (perpendicular) two-dimensional
distribution. That is, only K = 0 intrinsic states are included,
but the phase space for each angular momentum I is enhanced
by the number of directions perpendicular to the fission axis,
2I + 1:

ρsciss(E
∗, I ) = 2I+1

2

∑
α,Kα=0

δ

(
E∗− eα − I (I + 1)

2Jα

)
. (12)

With decreasing deformation, the angular-momentum distri-
bution of the scission level density develops smoothly into
the two-dimensional Gaussian Fermi-gas distribution (2), pro-
vided that the excitation energy is high enough that the pairing
correlation is quenched.

C. Conditions for spherical or deformed level density

It is a key question how large the nuclear deformation
should be in order for the deformed form of the level density
(12) to be appropriate. Usually, the influence of the deformed
shape arises in connection with the concept of the rotational
enhancement of the level density, caused by the participation

of the orientation of the deformed nucleus as an additional
degree of freedom. As far as the angular momentum is con-
cerned, there is no rotational enhancement.

The conditions for applying the spherical or the deformed
level density depends on the degree of deformation. As dis-
cussed by Bjørnholm, Bohr, and Mottelson [42], the rotational
collective degree of freedom is generated from a coherent
superposition of quasiparticle excitations in the deformed po-
tential, whose energies are typically given by

�E ≈ h̄ω0|ε2|, (13)

were h̄ω0 denotes the intershell distance, and ε2 the defor-
mation. When the average temperature T exceeds this value,
the rotational degree of freedom is not independent of the
many-quasiparticle excitations making up the level density,
and the rotational enhancement should not exist. (It should be
mentioned that experimental searches of the fading away of
the rotational enhancement with increasing excitation energy
have so far not been successful.)

Inserting typical values for the fragments in question, we
obtain |ε2| > 0.11 as a quite rough condition for applying
the deformed-shape level density. It seems, though, that a
somewhat larger deformation is needed for developing the
rotational bands, which form the basis of the Ericsson level
density as well as the deformed scission level density. This is
seen, for example, in the analysis of barium nuclei, from ex-
perimental results as well as those calculated with the Monte
Carlo shell model [43]. Here, there is a clear change of the
low-lying states with increasing neutron number, between
142Ba and 144Ba, with deformations ε2 = 0.12 and ε2 = 0.15,
respectively. There is a step towards lower energies of the 2+
states, as well as towards higher E (4+)/E (2+) ratios. The
same systematics is seen for other sequences of isotopes or
isotones [44] and we take this as a basis for using the fragment
end-cap deformation |ε| = 0.15 as the limiting value of the
deformation. The resulting scission shape designations are
shown in Table I.

D. Excitation energies and angular momenta of fragments

We study below how the distributions of excitation energy
and angular momentum of the fission fragments at scission
are affected by the use of either spherical- or deformed-shape
level densities.

In the simulations of the nuclear shape evolution [26],
on which the present study is based, the fragment excitation
energies are selected event by event when scission is reached.
The level density employed is the Ericsson state density (11),
with summation over angular momentum.

We are here more careful about the level density and the
angular momentum, while on the other hand we represent the
variety of fragment shapes at scission by the average shape for
each mass number, or by a sphere for small deformations with
|ε| < 0.15. For each shape, we calculate the joint probability
for specific excitations and angular momenta,

P(E∗
L , IL, E∗

H , IH ) ∼ ρ(E∗
L , IL ) ρ(E∗

H , IH ), (14)

with the total intrinsic energy E∗
intr = E∗

L + E∗
H being sampled

from a normal distribution having the mean and dispersion as
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FIG. 6. Angular momentum distributions at scission, P(IL ) and
P(IH ) for fragment masses AL = 98 (deformed) and AH = 138
(spherical), and the corresponding distribution of the orbital angular
momentum, P(L).

displayed in Fig. 3. The effect of the wriggling correlation
is incorporated by integrating over the relative angle 
LH

between the two angular-momentum vectors in the transverse
plane, yielding the orbital angular momentum L (see Fig. 1),

L2 = I2
L + I2

H + 2ILIH cos 
LH . (15)

The orbital angular momentum reduces the excitation en-
ergy available for exciting the fragments because E∗

intr is
replaced by E∗

intr − L2/2μR2, leading to the following prob-
ability distribution for the fragment energies and angular
momenta for a specified total intrinsic energy E∗

intr:

P(E∗
L , IL, E∗

H , IH )|E∗
intr

∝
∫ 2π

0
d
LH ρ(E∗

L , IL ) ρ(E∗
H , IH )

× δ

(
E∗

L + E∗
H − E∗

intr + L(IL, IH ,
LH )2

2μR2

)
. (16)

The probability P is subsequently normalized over
(E∗

L , E∗
H , IL, IH ) and an overall probability distribution is ob-

tained subsequently by integrating over E∗
intr , using a Gaussian

distribution with 〈E∗
intr〉 as shown in Fig. 3(a) and a dispersion

equal to σ = 0.25〈E∗
intr〉, representing approximately the solid

blue curve in Fig. 3(c). (For illustrative purposes, in Sec. VI B
we will also calculate for smaller dispersions in E∗

intr .)
In Fig. 6 the distribution of the magnitude of the orbital

angular momentum is shown for the fragments with masses
AL = 98 and AH = 138. The coupling of the orbital angular
momentum vector to the angular momenta vectors of the
light and heavy fragments results in somehat larger average
orbital angular momentum magnitude, 〈L〉 = 8.0 as compared
to 〈IL〉 = 5.2 and 〈IH 〉 = 6.0. The typical value of L = 8h̄

FIG. 7. Calculated average intrinsic excitation energy versus
fragment mass number (blue squares connected by solid lines). Level
densities are calculated assuming spherical (upper panel) or by de-
formed (lower panel) scission configurations. Red circles connected
dy dashed lines show the excitation energy as calculated by the
event-by-event method assuming Ericsson state densities [26].

gives a small collective rotational energy, L2/2μR2 of the
order of 0.1 MeV.

Next, we investigate the average energies in the fragments,
comparing the present integral technique with the event-by-
event results obtained in Ref. [26].

Figure 7 shows the average intrinsic excitation energies in
the fragments, 〈E∗

L/H 〉, for different types of shapes and level
densities. The top panel shows the results of using spheres
for both fragments and correspondingly the Bethe level den-
sity for both. One sees that the maxima and minima of the
average energy becomes more pronounced for the spherical
shape. Generally, the shell structure of nuclear levels is most
pronounced for the spherical shape. For the present case, light
fragments with mass numbers around 102 to 108 are in mid
shell, leading to a large level density, acquiring more excita-
tion energy, being taken from the heavy fragments with mass
numbers around 130 to 138, which are close to closed shells.

The lower panel shows the result of using the deformed-
shape level density for all fragments. Except for the most light
and most heavy fragment, the excitation energy is practically
the same as that obtained by the event-by-event sampling.
This shows that the average shape is a good representa-
tion of the ensemble of shapes encountered event by event.
Also, the precise form of the level density does not matter
so much here. The Ericsson state density, which was ap-
plied in Ref. [26], contains a sum over all rotational bands,
with all K quantum numbers, while the deformed-shape
level density applied in the present study takes account of
only K = 0 bands.
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FIG. 8. Calculated average angular momentum versus fragment
mass number. Level densities are calculated assuming spherical (up-
per panel) or deformed (lower panel) scission configurations. Filled
squares are used when the deformed/spherical condition applies (see
Table I) and open squares are used when it does not apply. Dashed
lines show the Fermi-gas result.

Concluding on the average fragment excitation energy,
one may say that it is the shell structure of the nucleonic
level spectra, and thereby of the nuclear level densities, that
determines the partitioning of the energy between the two
fragments. To a good approximation the average excitation en-
ergy of the light fragment becomes E∗

L = E∗
intraL/(aL + aH ),

where the level-density parameters aL and aH reflect the shell
structure at scission. This simplifies to E∗

L = E∗
intrAL/(AL +

AH ) in the Fermi-gas model.
We now turn to the angular momentum obtained by the

fragments. In Fig. 8 the calculated average angular momentum
as a function of fragment mass number is shown assuming
spherical shapes (Sec. V A) for the fragments at scission, and
in lower part shows the result of using deformed scission
shapes (Sec. V B).

Comparing Figs. 7 and 8, we see that while the frag-
ment excitation energies are very similar when spherical or
deformed scission shape level densities are used, the aver-
age angular-momentum magnitude is much more sensitive to
the type of scission shape assumed. For example, assuming
spherical scission shapes implies an increase in angular mo-
mentum from mass 134 to 154, while a decrease is found for
deformed scission shapes, although the fragment excitation
energy increases smoothly in this mass interval (see Fig. 7).
The quadrupole deformations of these fledging fragments are
indeed very small; see Table I. And since pairing is rather
strong and survives up to E∗ ≈ 10 MeV, the moment of inertia
J is strongly reduced to about 10% to 20% of the rigid-body

value, according to the employed pairing- and deformation-
dependent reduction factor of the moment of inertia [41]. This
implies effectively a small spin cutoff parameter, σ 2 = J T ,
and consequently an average angular momentum that may be
severely reduced as compared to the nonpaired situation.

E. Significance of closed shells

The variation in average angular momentum with fragment
mass obtained for spherical scission shapes (upper panel of
Fig. 8) is partly due to single-particle states with different
angular-momentum values around the Fermi surface. In the
derivation of the Fermi-gas level density, the moment of iner-
tia appears as a product of the density of single-particle states,
proportional to the level density parameter a, and the effective
square of single-particle angular-momentum projections on a
perpendicular axis:

J = 6

π2
a

〈
j2
x

〉
. (17)

For nuclei with proton and neutron numbers around closed
shells, there will be gaps in the level spectrum and the above
expression serves as guidance, interpreting loosely the quan-
tities a and 〈 j2

x 〉 as defined locally for the single-particle states
close to the Fermi surface. With this interpretation, the ap-
pearance of high- j shells around the Fermi surface causes a
substantial variation of J and, consequently, a large variation
of the average angular-momentum magnitude.

Strong shell effects of the average angular-momentum
magnitude for the spherical shape are seen in Fig. 5. Es-
pecially, the upper part of Fig. 8 shows how the sequence
of fragments with A = 124, 128, and 134 with Z = 48, 50,
and 52, respectively, acquire quite different average angular
momenta, 〈I〉 = 8.0h̄, 6.2h̄, 4.5h̄, respectively, although the
excitation energies are similar (E∗

H ≈ 7 MeV).
This behavior can be understood from Fig. 9 showing the

average angular-momentum magnitude versus fragment mass
for three isotopic chains, calculated for the same average
intrinsic excitation energy of 8 MeV. To obtain a realistic dis-
tribution of excitation energy in these heavy fragments in the
presence of gaps in their level spectrum, we assume that their
light partner fragment is spherical and can be described with
the Fermi-gas level density (3). The dispersion in the total
intrinsic energy is the same as used for the results of Figs. 6
and 7. The average total excitation energy in the calculation is
then adjusted to ensure that the average excitation energy in
the heavy fragment is 〈E∗

H 〉 = 8 MeV.
For each isotopic sequence, there is a maximum in angular

momentum for the neutron number N = 76, where the Fermi
energy is in the middle of the h 11

2 shell, followed by a distinct
minimum at the closed shell at N = 82, and then a gradual
increase for larger neutron numbers, where the Fermi energy
is at the f 7

2 and h 9
2 levels. In this way, the values of 〈I〉 can

be interpreted in terms of Eq. (17). The local level density
parameter a has a minimum at the shell gap at N = 82, and
the single-particle angular-momentum projections are on av-
erage larger below than above the shell gap. The variation
with fragment mass number for the different Z values can be
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FIG. 9. The average angular momentum magnitude for spherical
fragments as a function of mass number for the three isotopic se-
quences having Z = 48, 50, and 52, calculated for the same average
intrinsic excitation energy, 〈E∗

H 〉 = 8 MeV. The fragments included
in the present study (see Table I) are marked by circles. The data
from [7] are included (dots with error bars).

understood similarly, in particular the minimum of 〈I〉 at the
doubly magic nucleus 132

82 Sn50.
The calculated mass dependence of the average angular

momentum for spherical fragments seen in Fig. 8, especially
the minimum at A = 134, can thus be understood on the basis
of this analysis. Certainly, also the excitation energy plays a
role in determining 〈I〉. But the gradual filling of the j shells
for spherical fragments explains the main part of the obtained
variation in 〈I〉 as the mass number changes from 112 to 134
while the intrinsic excitation energy exhibits a rather small
variation.

The calculations exhibit a trend similar to that of the exper-
imental data (also shown in Fig. 9) which will be discussed
below.

VI. COMPARISON TO DATA

Applying the pairing- and shape-dependent combinato-
rial level density, we now compare our calculations of the
fragment angular momenta to data. The calculations are per-
formed for 235U(nth, f), which we expect to give a result very
similar to that for 238U(n, f) for which all data are obtained.
In Sec. VI A results of the average angular-momentum mag-
nitude are presented, and in Sec. VI C results of the calculated
correlations between the angular momenta of the two frag-
ments are discussed.

FIG. 10. Upper panel: The average angular momentum magni-
tude versus the fragment mass number. The data (red dots with error
bars) are from Ref. [7]. The calculated values used level densities
for either spherical (blue squares) or deformed (blue diamonds) frag-
ments based on the degree of quadrupole deformation at scission (see
Table I). The Fermi-gas results are also shown (dashed curve). Lower
panel: The corresponding intrinsic fragment excitation energy. Val-
ues obtained in Ref. [26] are also shown (red dots connected by the
dashed curve).

A. Average angular-momentum magnitude

Figure 10 shows the final result for the average angular mo-
mentum magnitude as a function of fragment mass number,
applying the level densities for either spherical or deformed
fragments as indicated in Table I. The initial increase of the
average magnitude from A = 80 up to A ≈ 100 is caused
mainly by the increase in excitation energy, because the
Fermi-gas result displays the same behavior. For masses 100
to 154, the Fermi-gas result is rather constant, and the vari-
ation of the calculated average angular momentum is caused
mainly by the shell structure, most notably the pronounced
minimum around A = 132 that was discussed in the previous
section. This sawtooth behavior corresponds to the sawtooth
behavior of the neutron multiplicity [26].

B. Angular momentum with excitation energy
from neutron multiplicity

Although the results shown in Fig. 10 are in reasonable
overall agreement with the measurements, the calculated av-
erage angular-momentum magnitudes around the minimum
near A = 132 are too large. This deviation is consistent with
the overprediction of the local neutron multiplicity, 〈ν〉 ≈ 0.6
[26], whereas the measured values are around 〈ν〉 ≈ 0.2.
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To deduce an excitation energy that is consistent with the
average neutron multiplicity, one may combine the effect of
shell structure in the level density with the excitation energy
estimated from measured neutron multiplicities.

To include the shell structure, and to treat the neutron
separation energy and kinetic energy consistently, we used
the FREYA simulation code [28,45] to generate the distribution
of the post-evaporation fragment excitation energy and then
calculated the average angular-momentum magnitude for this
distribution, which is thus consistent with the average neutron
multiplicity. However, due to the simple method of energy
sharing used in FREYA, it is generally not possible to be in
accordance with the measured neutron multiplicity for both
fragments. To remedy this shortcoming, a realistic distribution
of excitation energy and angular momentum is generated by
representing the complementary fragment by the Fermi-gas
level density, as was also done in the calculation of Fig. 8.
Because the pre-evaporation intrinsic excitation energies E∗

tot
include the recovered distortion energies, we obtain the in-
trinsic excitation energies at scission by the global scaling
discussed in Sec. III B, E∗

intr = 0.8 E∗
tot .

In a display similar to that in Fig. 10, Fig. 11 shows the
results obtained with the excitation energies and neutron mul-
tiplicities obtained from the FREYA simulations.

The effect of the threshold set by the neutron separation en-
ergy is illustrated in the two lower panels of Fig. 10. Between
mass numbers 128 and 138, the average neutron multiplicity
increases from 0.25 to 1, while the average intrinsic excitation
energy only increases from 5.36 to 7.28 MeV.

Altogether, the average angular momenta shown in the top
panel of Fig. 10 display a fine agreement between data and
calculations, with some reservation for the results around the
closed shells near A ≈ 128. Comparing Figs. 9 and 10 one
sees that the adjustment of the excitation energy in accordance
with the average neutron separation energy mainly changes
the result in two regions: (i) the lightest mass number A = 82
acquires more energy and thereby more angular momentum,
and (ii) the nuclei around the closed shell at mass numbers
from A = 124 to 138 receive about 1.5 MeV less energy, and
about 0.8h̄ less angular momentum.

Still, the very lowest measured values at mass numbers
130 and 132 are well below the trends of the calculation.
One may here refer to Fig. 8, which shows that calcula-
tions with different combinations of N and Z may yield
lower angular momenta. Such combinations would be in bet-
ter accordance with the fact that our calculations are for
fission of the uranium isotope 236U while the data are for
fission of 239U.

Possibly the disagreement at mass numbers 130 and 132
will remain, which might indicate some incomplete excitation
of the angular momentum in the dissipation process close to
scission for spherical fragments with close-to-magic proton or
neutron numbers.

C. Correlation in angular-momentum magnitudes

It is a main result of the paper by Wilson et al. [7] that
the magnitudes of the angular momenta of the heavy and
light fragments are practically uncorrelated, having a slightly

FIG. 11. Upper panel: The average angular momentum mag-
nitudes (blue diamonds) calculated on the basis of the average
excitation energies obtained from FREYA simulations and with spher-
ical or deformed fragment shapes as listed in Table I. The Fermi-gas
result (dashed curve) and the data from Wilson et al. [7] (red dots
with error bars) are also shown. Middle panel: The fragment ex-
citation energy determined from the measured neutron multiplicity
〈ν〉. Lower panel: The experimental neutron multiplicities (a smooth
curve drawn throughout several experimental results as shown in
[26]) used as input in the FREYA simulation.

negative correlation. Such a negative correlation can be un-
derstood within the present treatment of the fission process.
Apart from the restriction to the two-dimensional angular-
momentum distribution, the entire phase space is being filled
in the present study. In some events, the light fragment will
acquire an energy that is larger than average and then its
angular momentum will typically also be larger than average.
In such cases, the opposite will be true for the heavy frag-
ment, which will be colder than the average and its angular
momentum will typically be smaller than the average for that
given total excitation energy and mass division. Thus, the
statistical partitioning of the intrinsic excitation energy by the
fragments at scission naturally leads to a negative correlation
of the angular momentum magnitudes.

To calculate correlations in angular momenta we sample
over energies and angular-momentum vectors as described
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FIG. 12. Contour plot (linear scale) of the probability distribu-
tions of excitation energy (left-hand panel) and angular momentum
(right-hand panel), for the mass division 98:138. The dispersion in
total excitation energy is rather small, 0.1 times the average total
energy, resulting in a strong negative correlation of the energies,
−0.80. The correlation coefficient between the two angular momenta
is −0.059.

in Sec. V D. From the joint probability distribution Eq. (16)
one can obtain the correlated probability distribution for the
excitation energies E∗

L and E∗
H by summing over the angular

momenta IL and IH and, similarly, the correlated probability
in angular momenta can be obtained by integrating over the
energies.

Figures 12 and 13 illustrate the stochastic sampling of ex-
citation energy and angular momentum for the mass numbers
AL:AH = 98:138. Figure 12 shows the origin of the negative
correlation with a schematic calculation, with a small dis-
persion of the total excitation energy, σintr = 0.1〈E∗

intr〉. The
basic correlation in the energies is apparent, the correlation
coefficient being −0.80. For each energy, there is an entire
distribution of angular momenta, so the correlation between
the excitation energies is significantly diluted for the angular
momenta, for which the correlation coefficient is −0.059.

Figure 13 shows the correlations for a realistic disper-
sion in the total intrinsic excitation energy, namely σintr =
0.25〈E∗

intr〉 [see Fig. 3(c)]. Here, the energy correlation co-
efficient is −0.22, while it is only −0.021 for the angular
momenta.

FIG. 13. Same as Fig. 12 but with the dispersion in total excita-
tion energy taken in accordance with experiment, as 0.25 times the
average total energy. This results in a negative correlation coefficient
between the energies, −0.22, and a weaker correlation coefficient
between the angular momenta, −0.021.

FIG. 14. Correlation in magnitudes of the angular momenta of
the two fission fragments, as measured [7] for the fission of 239U in
the reaction 238U(n, f) (left-hand side), and as here calculated for the
fission of 236U in 235U(nth, f) (right-hand side).

Figure 14 shows the correlation in angular momenta as ob-
tained by Wilson et al. [7] by a gating technique, together with
the calculated results of the same observable. Since the data
are for final fragments and for the fission of 239U, whereas our
calculations are for 236U, the fragments cannot be the same.
The gating on the minimum angular momentum of one of the
fragments corresponds to horizontal or vertical slices of the
joint distribution, such as the one displayed in the right panel
of Fig. 13. Clearly, with weak correlations of the magnitudes,
this average angular momentum of one fragment will be rather
constant, being insensitive to the angular momentum of the
other fragment where the cut is made.

It is instructive to display the slopes of a linear fit to the
experimental as well as to the calculated curves in Fig. 14,
together with the intercept at angular momentum I = 2. The
result is shown on Fig. 15. For the angular momenta I = 2 to
10, the average of the calculated slopes is −0.03, in qualitative
accordance with the above discussion of the correlation coef-
ficient. Most of the experimental data display similar slopes,
but considering the substantial error bars, together with the
positive slope for the fragment 100Zr, the average slope for all
data (around −0.015) is not significantly different from zero.
The intercept at angular momentum I = 2 follows roughly the
same trends as seen for the average, displayed in Fig. 10.

A comparison of the results displayed in Figs. 13 and 14
shows a sensitivity to the input value of the dispersion in total
intrinsic excitation energy, σintr . If σintr/〈E∗

intr〉 is increased
from 0.25 (as obtained in our calculation, see Fig. 3) to
0.3 the correlation coefficients for both the energies and the
angular-momenta shift from small negative to small positive
values. In this context it should be mentioned that the results
displayed in Figs. 9 and 10 for the average angular momentum
are rather insensitive to the energy dispersion used in the
calculations.
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FIG. 15. Slopes (left-hand part) and intercepts at angular mo-
mentum I = 2 for fragment 2 (right-hand part) obtained from Fig. 14.
Experimental values are shown by filled red circles with error bars,
and calculated values are shown by filled blue squares.

VII. SUMMARY

The theoretical analysis presented here can describe the
recent experimental findings by Wilson et al. [7] that the
average angular-momentum magnitude displays a sawtooth
pattern as a function of the fission fragment mass number and
that the angular-momentum magnitudes of the two fragment
partners are at most rather weakly correlated.

Our results are partly based on previous simulations of the
diffusive shape evolution by means of Metropolis walks on a
five-dimensional potential-energy surface, guided by pairing-
and shape-dependent combinatorial level densities. This de-
scription is based on the idealization of strongly damped shape
dynamics from the ground state to scission, controlled by
local level densities. When scission is reached, the excitation
energy and the angular momentum of each fragment are deter-
mined, taking account of the coupling between the individual
fragment angular momenta and that of the fragment relative
motion. The process produces rather large dispersions in both
excitation energies and angular momenta.

The condition that all angular-momentum vectors be per-
pendicular to the fission axis (Fig. 1) implies a reduced
2D level density, as compared to an unconstrained scenario,
and the angular-momentum distributions for spherical or de-
formed fragments were calculated. Both excitation energy
and shell effects in the fragments at scission were found to
be important in determining the average angular-momentum
magnitude, which was calculated as a function of the fission
fragment mass number and compared to recent experimental
data. A generally good description was obtained.

For the fragments around the closed shells with N ≈ 82
and Z ≈ 50 more comprehensive and illustrative calculations
were carried out, showing how the sawtooth minimum in

〈I〉(A) arises from the shell structure. Finally, the connection
to the average neutron multiplicity was investigated, carrying
out calculations with the energy in the fragments determined
on the basis of experimental average neutron multiplicities,
including the threshold given by the neutron separation en-
ergy. This brings the calculated values of the average angular
momentum closer to the data, but an overestimation around
mass number 128 remains.

Correlations in angular-momentum magnitudes of fis-
sion fragments were calculated and found to be in very
good agreement with data. The observed very small, and
even slightly negative, correlation coefficients were found
to appear because of the large dispersion of excitation en-
ergies in the two fragments, and the freedom of choosing
the two angular-momentum vectors, balanced by the or-
bital angular-momentum vector. It has been checked that
if the kinetic energy associated with the orbital motion is
ignored in Eq. (16) (providing complete freedom in the
choice of fragment angular momentum vectors), the mag-
nitude of the fragment angular momenta only increases by
about 2% for the light fragment, and about 5% for the heavy
fragment.

The overall agreement between calculated and measured
average angular momenta supports the conjecture that many-
particle–many-hole excitations in the fragments are carrying
the angular momentum at the point of scission. This pro-
vides a statistical distribution of angular momentum with a
small dependence on the intrinsic excitation energy [in the
Fermi-gas model 〈I〉 ∝ (E∗

intr )
1/4]. This simple relation could

provide an explanation why angular-momentum magnitude
and neutron multiplicity have similar sawtooth behaviors as
functions of fragment mass. However, the energy available for
neutron emission involves, in addition to the intrinsic excita-
tion energy (defined at scission), also the distortion energy,
which is recovered as the shape relaxes from its distorted
form at scission to its equilibrium shape during the Coulomb
acceleration.

VIII. DISCUSSION

Some important results and assumptions made in the
present work are discussed, and desired experiments are sug-
gested. The role of the distortion energy is discussed in
Sec. VIII A, and the amount of angular momentum removed
by neutrons in Sec. VIII B. Finally, in Sec. VIII C, experi-
ments on the directions of the angular momentum vectors
of the fragments are discussed, addressing the assumption of
the fragment angular momentum being perpendicular to the
fission axis.

A. Role of distortion energy

At scission the excitation energy available in the fissioning
nucleus is statistically shared between the two prefragments.
Also the angular momentum of each pre-fragment is de-
termined, balanced by the orbital angular momentum. The
shapes of the two prefragments are typically different from the
ground-state deformations (see Table I) and the associated dis-
tortion energy is converted to additional statistical excitation
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as the fragment shapes relax to their equilibrium forms. This
energy together with the excitation energy from scission is
subsequently available for each fragment for the emission of
neutrons (and γ rays).

The recovered distortion energy is available for neutron
evaporation, while it does not affect the fragment angular
momentum, which remains constant after scission. Since it
is only the intrinsic excitation energy at scission that de-
termines the angular-momentum distribution, the distortion
energy must be relatively small and cannot vary much with
fragment mass in order for the same sawtooth behavior to
emerge for the angular momentum and the neutron multiplic-
ity. In some early calculations of the neutron multiplicity [12],
and also in more recent HFB calculations with the Gogny
interaction [46], all energy available for neutron emission
was calculated as distortion energy, thus making it hard to
explain the observed similar sawtooth behaviors of 〈I〉(A)
and 〈ν〉(A). From the Metropolis simulations of the shape
evolution, the distortion energy was found to be relatively
small and smoothly varying with mass number, amounting to
10–30% of the total fragment energy. In general, this finding
supports the assumption of strongly damped shape dynamics
during fission.

In principle, the question of the amount of the total
excitation energy of the fission fragment at different stages of
the fission process or the importance and size of the distortion
energy might be clarified by measuring correlations between
ν(Af ) and I (Af ) and their variation with fragment mass
number.

B. Angular momentum carried by neutrons

When comparing the calculated average angular momen-
tum magnitude with data we assume that the evaporation of
neutrons and the statistical E1 γ cascade removes only a
small amount of angular momentum, less than one unit of
h̄. Concerning the angular momentum removed by neutrons,
Ref. [17] interestingly points out the occurrence of p and f
strength in the neutron evaporation from the fission fragments.
In the calculations of the neutron evaporation in Ref. [17], the
level density has the spin cutoff form given in Eq. (3), with
the moment of inertia chosen as half the rigid-body moment
of inertia [47]. And it is found that each evaporated neutron

removes about 1.33h̄ of angular momentum from the exited
fragment [17].

With the high angular momentum to start out with accord-
ing to Ref. [17], of the order of 8h̄ to 10h̄, and the rather
small moment of inertia, it is indeed favorable to end up at
smaller angular momenta by neutron evaporation according
to Hauser-Feshbach statistical decay calculations. Comparing
level densities at neighboring angular momenta, one finds a
ratio of level densities ρ(I = 8)/ρ(I = 9) ≈ 1.9 for excita-
tion energy 4 MeV, relevant for the daughter nucleus level
density. For our calculations, the average angular momentum
is around 6h̄ to 7h̄, and this yields the level-density ratio
ρ(I = 6)/ρ(I = 7) ≈ 1.25 at 4 MeV for the combinatorial
level density, obtained as an average over all masses. The drive
towards smaller angular momenta in the neutron evaporation
will then be rather small, even with appreciable f7/2 strength
in the wave function of the evaporated neutron.

The amount of angular momentum carried by neutrons can
be investigated in experiments on the distribution of neutron
velocities relative to the motion of the fragments.

C. Direction of fragment angular momenta

A basic assumption in this paper is that the angular mo-
menta of the fission fragments are directed perpendicular to
the direction of motion of the fission fragments. This as-
sumption is based on almost 50 year old experiments [1,2],
measuring the angular distribution relative to the fission axis
of rotational E2 transitions along low-lying rotational bands
of fragments from the spontaneous fission of 252Cf. Certainly,
it would be of great value if such angular distributions could
be investigated for neutron induced fission. It would also be
of great interest to address (in detail) the angular distribution
of the statistical E1 transitions which yield information on
the angular momentum removed by statistical γ rays. Also,
if such experiments could be carried out at above-thermal en-
ergies, it could give further information on the shape diffusion
process.
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