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Transport properties of asymmetric nuclear matter in the spinodal region
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We have studied the shear and bulk viscosities of asymmetric nuclear matter in the mechanical and chemical
instability region based on isospin-dependent Boltzmann-Uehling-Uhlenbeck transport simulations in a box
system. The Green-Kubo method is used to calculate these viscosities with a prepared dynamically equilibrated
nuclear system with hot clusters. While the behavior of the shear viscosity is largely affected by energy-
dependent nucleon-nucleon cross sections, the bulk viscosity increases significantly in the presence of nuclear
clusters compared to that in uniform nuclear matter. Increasing isospin asymmetry generally increases both
viscosities, while their behaviors are qualitatively modified once the isospin asymmetry is large enough to affect
significantly the spinodal region. Our calculation shows that the bulk viscosity is more sensitive to the nuclear
clustering than the shear viscosity and is thus a robust quantity related to the phase diagram of asymmetric
nuclear matter.
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I. INTRODUCTION

Transport properties of nuclear matter are dominated by
the shear viscosity, representing the proportional coefficient
characterizing the relation between the flux gradient and the
shear force per unit area, and the bulk viscosity, a dissipa-
tion coefficient due to the compressibility of the fluid [1].
Knowledge on transport properties of nuclear matter [2,3]
may help us to understand the dynamics in heavy-ion col-
lisions and mergers of neutron stars. The viscosity is often
scaled by the entropy density, called the specific viscosity. It
is a general phenomenon that both the specific shear and bulk
viscosity may have nonmonotonic behaviors in the vicinity of
a phase transition. For instance, the specific shear viscosity
has a minimum around the temperature of a hadron-quark
phase transition [4,5] or a nuclear liquid-gas phase transition
[6–10], while the specific bulk viscosity has a peak around
the temperature of a phase transition [11–13]. In this sense,
the behaviors of the transport properties are closely related
to the phase diagram of strong-interacting matter.

In our previous work [14], we have studied the shear vis-
cosity of isospin symmetric nuclear matter near its liquid-gas
phase transition through the Green-Kubo method [15,16], the
most rigourous method among others [17]. In the present
study, we further investigate the bulk viscosity and extend the
approach to isospin asymmetric nuclear matter. As is known,
besides the mechanical instability, chemical instability may
exist in isospin asymmetric nuclear matter, leading to a richer
phase structure of nuclear matter. The purpose of the present
study is to understand the relation between the phase structure
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of isospin asymmetric nuclear matter and its transport proper-
ties, i.e., the behaviors of the shear and bulk viscosities.

II. THEORETICAL FRAMEWORK

The present study is carried out by transport simulations in
a cubic box of the size 20 × 20 × 20 fm3 with the periodic
boundary condition based an isospin-dependent Boltzmann-
Uehling-Uhlenbeck (IBUU) transport model, which solves the
IBUU equation expressed as

∂ fτ (�r, �p)

∂t
+ �p√

m2 + �p2
· ∂ fτ (�r, �p)

∂�r − ∂Uτ

∂�r · ∂ fτ (�r, �p)

∂ �p = Ic.

(1)
The above equation describes how the phase-space distribu-
tion function fτ (�r, �p) for nucleons with bare mass m and
isospin index τ (τ = n, p) evolves with time under the mean-
field potential Uτ and due to collisions Ic. We note both the
mean-field evolution [18] and nucleon-nucleon (NN) colli-
sions [19] in IBUU transport model are calibrated by the
Transport Model Evaluation Project.

The mean-field evolution is based on the lattice Hamilto-
nian framework [20], which maintains reasonable dynamics
of nuclear clustering in the spinodal region and guarantees en-
ergy conservation. The mean-field potential in nuclear matter
of density ρ and isospin asymmetry δ applied in the present
study is written as

Un,p(ρ, δ) = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

± 2Epot
sym

(
ρ

ρ0

)γsym

δ, (2)

with the “+” (“–”) sign for neutrons (protons). In the isoscalar
part of the potential, the coefficients α = −0.218 GeV, β =
0.164 GeV, and γ = 4/3 are fitted by the saturation density
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FIG. 1. Left: Total neutron-proton (np) and proton-proton (pp)
cross sections as functions of the kinetic energy E in

k of incident
nucleon; Right: Polar angular dependence of differential cross sec-
tions for neutron-proton (np) and proton-proton (pp) collisions at
E in

k = 20 and 40 MeV.

ρ0 = 0.16 fm−3, the binding energy E0 = −16 MeV at ρ0,
and the incompressiblity K0 = 237 MeV. For the isovector po-
tential, we set Epot

sym = 18 MeV and γsym = 0.656 which lead
to a nuclear symmetry energy of a value 30.3 MeV and a slope
parameter L = 60 MeV at the saturation density. We have also
considered the isoscalar and isovector density gradient terms
with empirical coefficients as in the MSL0 force [21], but they
have minor effects on the results.

The NN collisions are carried out through the modified
Bertsch’s prescription [22], basically a geometric method
but with improvements made by using the time step in the
center-of-mass frame of the collision pair and removing re-
peated collisions (see Ref. [19] for more details). Unlike
our previous study [14], we use more realistic energy- and
isospin-dependent differential NN collision cross sections in
the present study. The energy dependence of the total cross
sections and the polar angular dependence of the differential
cross sections at typical incident energies are displayed in
Fig. 1. In the present transport simulation, we adopt these
free-space cross sections taken from Refs. [23,24], since the
energy and angular dependence of the differential in-medium
cross sections are still uncertain. The very large total cross
sections at low energies are automatically restricted in the
finite-size box system with the periodic boundary condition,
since the largest distance as well as the cross section between
two nucleons has an upper limit. For the isospin-dependent
Pauli blockings of NN collisions, we approximate the local
phase-space distribution by a Fermi-Dirac distribution, i.e.,

fτ (�r, �p) = 1

exp
(√

p2+m2−m+Uτ −μτ

T

) + 1
, (3)

where the local temperature T and the neutron and proton
chemical potential μτ can be inversely calculated from the
local neutron and proton densities ρτ and the kinetic energy

density εk from transport simulations through the relations

ρτ = 2
∫

fτ (�r, �p)
d3 p

(2π )3
, (4)

εk =
∑

τ

2
∫

(
√

p2 + m2 − m) fτ (�r, �p)
d3 p

(2π )3
. (5)

Both the shear viscosity η and the bulk viscosity ζ can
be expressed by the Green-Kubo formulas based on the
fluctuation-dissipation theorem [15,16,25],

η = 1

T

∫
d3r

∫ ∞

t0

dt〈π xy(�0, t0)π xy(�r, t )〉equil , (6)

ζ = 1

T

∫
d3r

∫ ∞

t0

dt〈π (�0, t0)π (�r, t )〉equil . (7)

In the above, T is the temperature of the system, and t − t0
is the postequilibration time with t0 being the time when the
system has reached dynamic equilibrium; π xy is the shear
component of the energy-momentum tensor, which can be
expressed as

π xy = 1

Vc

∑
i

px
i py

i

Ei
, (8)

where Vc is the volume of the cell and px
i , py

i , and Ei are,
respectively, the momentum in the x and y direction and the
energy of the ith nucleon in the local cell obtained from trans-
port simulations; π = π − πeq represents the fluctuation of
the bulk component of the energy-momentum tensor,

π = 1
3 (π xx + π yy + π zz ) (9)

with respect to its value πeq in the equilibrium state. In our
previous work [14], we have proved that the Green-Kubo
formula for the shear viscosity is valid for nonuniform nuclear
matter, and Eqs. (6) and (8) can be evaluated in the whole box
system. A similar procedure applies for the calculation of the
bulk viscosity. Therefore, the shear and bulk viscosity can be
calculated from

η = V

T

∫ ∞

t0

dt〈�xy(t0)�xy(t )〉equil, (10)

ζ = V

T

∫ ∞

t0

dt〈�(t0)�(t )〉equil, (11)

where V is the box volume and �xy and � are calculated
similarly as Eqs. (8) and (9) except that the summation is over
the whole box system.

III. RESULTS AND DISCUSSIONS

We will show the mechanical instability, the chemical
instability, and the liquid-gas phase transition regions of
isospin asymmetric nuclear matter in Sec. III A and present
how nuclear clusters are generated in these spinodal regions
in Sec. III B. Section III C discusses how the Green-Kubo
method is used by fitting time evolution of the energy-
momentum tensor and gives extensive results of the shear and
bulk viscosities.
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FIG. 2. Boundaries of isothermal spinodal (ITS), diffusive spin-
odal (DS), and liquid-gas phase coexistence (CE) in the (ρ, δ) plane
at the temperatures T = 5 (a), 10 (b), and 15 (c) MeV.

A. Thermodynamics of isospin asymmetric nuclear matter

Using the mean-field potential as Eq. (2), we display
boundaries of the mechanical instability (isothermal spinodal)
region, the chemical instability (diffusive spinodal) region,
and the liquid-gas phase coexistence region in the (ρ, δ) plane
at different temperatures T in Fig. 2. In the mechanical in-
stability region with (∂P/∂ρ)T,δ < 0, increasing (reducing)
the local density ρ reduces (increases) the local pressure
P, so more particles will flow into (away from) the local
area, further reducing (increasing) the local pressure, thus
any small density fluctuations may grow and make the nu-
clear matter unstable. In the chemical instability region with
(∂μn/∂δ)P,T < 0 or (∂μp/∂δ)P,T > 0, increasing the local
isospin asymmetry δ reduces the neutron chemical potential or
increases the proton chemical potential, so more neutrons will
flow into the local area or more protons will flow away from
the local area, further increasing the local isospin asymmetry,
and thus any small fluctuations of the isospin asymmetry may
grow and make the nuclear matter unstable. The coexistence
line describes the region where the liquid phase represented
by clusters and the gas phase represented by free nucleons can

coexist (see the Maxwell construction for the liquid-gas mixed
phase in, e.g., Refs. [26,27]), and it contains both mechanical
and chemical instability regions. The spinodal region shrinks
with increasing temperature or increasing isospin asymmetry.
While this is a thermodynamic calculation of nuclear matter,
we will see the corresponding situation from IBUU simulation
in a box system.

B. Preparation of dynamically equilibrated systems
with nuclear clusters

In order to calculate the shear and bulk viscosities of nu-
clear matter in the spinodal region by using the Green-Kubo
formulas, we need to prepare a dynamically equilibrated box
system with nuclear clusters. The method is described as
follows and illustrated in Figs. 3 and 4. For example, we start
from a uniform system with density ρ = 0.3ρ0, isospin asym-
metry δ = 0.2, and temperature T = 10 MeV. Since the state
of the initial nuclear matter is in the spinodal region, as shown
in Fig. 2, the uniform matter gradually evolves to the mixture
of higher-density clusters and lower-density nucleon gas, as
can be shown from the contours at t < 500 fm/c in Fig. 3. It is
seen that the higher-density (lower-density) liquid (gas) phase
has a smaller (larger) isospin asymmetry, consistent with the
thermal calculation of the liquid-gas mixed phase [27]. Since
the system with a mixture of the liquid and gas phase has a
lower potential energy compared to a uniform one at the same
average density and isospin asymmetry, the kinetic energy and
the overall temperature increase compared to the initial state,
and this can be seen in Fig. 4. This becomes troublesome if
we want to generate dynamically equilibrated systems at low
temperatures. To overcome this problem, we take the system
at t = 500 fm/c as a new initial state and reset the temperature
of the system by resampling the nucleon momentum distribu-
tion in each local cell. In this case, there is a sudden decrease
of the average kinetic energy density 〈εk〉, the average total
energy density 〈ε〉, the average entropy density 〈s〉, and the
average temperature 〈T 〉, though the average potential energy
density 〈εp〉 does not have an instant change. After a short
relaxation time, the system evolves to a new equilibrated state,
with a higher temperature similar to the initial one. This is
also shown by contours in Fig. 3, where one can see that the
density and the isospin asymmetry actually do not change by
much at t > 500 fm/c. After t = 1250 fm/c, the system has
reached a dynamically equilibrated state with nuclear clus-
ters. We thus use t0 = 1250 fm/c, the value of which can be
slightly different for different initial states of nuclear systems,
as the starting time to calculate the shear and bulk viscosities
through Eqs. (10) and (11). Since in nonuniform systems we
mostly talk about average quantities over space, such average
symbol “〈...〉” will be omitted in subsequent discussions.

C. Shear and bulk viscosities

The time evolutions of correlations of the shear and bulk
components of the energy-momentum tensor after the sys-
tem has reached equilibrium are displayed in Fig. 5. In the
case without mean-field potential, the system remains uni-
form even if the initial state is in the spinodal region, and a
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FIG. 3. Contours of the reduced density ρ/ρ0 (first row), the isospin asymmetry δ (second row), and the temperature T (third row) at time
t = 0, 100, 300, 500, 1000, and 1250 fm/c from IBUU simulations, starting from a uniform box system with initial density ρ = 0.3ρ0, isospin
asymmetry δ = 0.2, and temperature T = 10 MeV, and with a reset of the temperature at t = 500 fm/c.
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FIG. 4. Time evolution of physics quantities from IBUU simu-
lations in a box system at an average density 〈ρ〉 = 0.3ρ0, average
isospin asymmetry 〈δ〉 = 0.2, and initial temperature T = 10 MeV
but with a reset of the temperature at t = 500 fm/c. Top: Average
kinetic energy density 〈εk〉, potential energy density 〈εp〉, and to-
tal energy density 〈εk〉 + 〈εp〉; middle: average entropy density 〈s〉;
bottom: average temperature 〈T 〉.

relaxation time of 100 fm/c is used, as shown in the upper
panels of Fig. 5. It is seen that the correlations for both
the shear and the bulk components can be well fitted by an
exponential decay function so that the integral over time can
be calculated as ∫ ∞

t0

Ae−B(t−t0 )dt = A

B
. (12)

With mean-field potential, the dynamically equilibrated sys-
tem is prepared using the method as described in Figs. 3 and 4.
Compared to the uniform system, the correlation of the shear
component of the energy-momentum tensor has a larger initial
value at t = t0 due to the enhanced correlation in the presence
of nuclear clusters, while the correlation decays more quickly
due to more successful collisions in hot clusters. This leads
to both larger A and larger B in Eq. (12), and whether the
resulting shear viscosity η is larger or smaller in nonuniform
nuclear matter depends on such competition effect. The time
evolution of the correlation of the bulk component of the
energy-momentum tensor has a completely different behavior
in nonuniform nuclear system, and this is likely due to the col-
lective oscillation of the clusters similar to the giant monopole
resonance. Such behavior can be fitted by a sinusoidal func-
tion with its magnitude decreasing exponentially with time, so
the integral over time can be calculated as∫ ∞

t0

Ae−B(t−t0 ) sin[C(t − t0) + D]dt

= AB sin(D) + AC cos(D)

B2 + C2
. (13)

The equilibrium value �eq of the bulk component of
the energy-momentum tensor is carefully chosen so that
〈�(t0)�(t )〉 is nearly 0 for t → ∞. While the oscillation
frequency and the initial phase shift characterized respectively
by C and D may have minor effects on the results, the bulk
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FIG. 5. Time dependence of correlations of the shear (left) and bulk (right) components of the energy-momentum tensor, for a nuclear
system with an average density ρ = 0.3ρ0, average isospin asymmetry δ = 0.2, and average temperature of about 10 MeV. Results for a
uniform system without mean-field potential (MF) are shown in upper panels, and those for a nonuniform system with mean-field potential are
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viscosity is seen to be mostly determined by A and B. Com-
pared to the case of uniform system, while the decay trend
characterized by B is also larger due to more successful colli-
sions, the initial value of the correlation characterized by A
is significantly larger due to the enhanced correlation with
clusters. This leads to a significantly larger bulk viscosity ζ

in systems with nuclear clusters, compared to that in uni-
form nuclear matter without mean-field potential. Here we
emphasize again that a greater enhancement of the initial
〈�(t0)�(t )〉 than the initial 〈�xy(t0)�xy(t )〉 in nonuni-
form matter compared to that in uniform matter is observed,
due to the redistribution of the bulk component of the energy-
momentum tensor with a constrained total energy.

With the method described in Fig. 5, we calculate exten-
sively the shear and bulk viscosities at different densities and
temperatures for isospin symmetric nuclear matter, and these
results are displayed in Fig. 6. At the states that the systems
are out of the spinodal region and keep uniform even with
mean-field potential, the results are identical to those in sys-
tems without mean-field potential. Consistent with Ref. [14],
the entropy density s, which increases with increasing tem-
perature or density, is generally larger in a uniform system
without mean-field potential, compared to that in a nonuni-
form system. For the shear viscosity η, while it is generally
smaller with clusters for a constant and isotropic NN cross
section as seen in Ref. [14], some new features are observed
with more realistic energy-dependent and anisotropic cross
sections. Here, while η is generally smaller in nonuniform
systems than in uniform systems at higher temperatures, it
is smaller in uniform systems than in nonuniform systems

at lower temperatures. The former is due to the enhanced
collisions in the presence of nuclear clusters, as mentioned in
Ref. [14]. The latter is due to significantly more successful
collisions as a result of large NN cross sections at lower
kinetic energies as shown in Fig. 1, compared to that from
a constant NN cross section of 40 mb used in Ref. [14].
This leads to a stronger decay of the correlation function
[see Fig. 5(c) and Eq. (12)], and such effect is larger in
uniform than in nonuniform matter. While η generally in-
creases with increasing density, the energy-dependent NN
cross sections make η decrease (increase) with increasing
temperature at higher (lower) densities, regardless of the clus-
tering effect. Thus, while the temperature dependence of the
specific shear viscosity η/s may have a minimum point, the
temperature of the minimum η/s is different from that for a
constant NN cross section in Ref. [14]. For the bulk viscos-
ity ζ , it generally increases with the increasing temperature
and/or density, due to larger bulk components of the energy-
momentum tensor at higher temperatures/densities. On the
other hand, it is remarkable to see that ζ is two to three
orders of magnitude larger in nonuniform systems, due to the
stronger correlation of the bulk components of the energy-
momentum tensor induced by nuclear clustering as shown in
Fig. 5(d) and described by Eq. (13). In such cases, there are
complicated competition effects between the correlation of
the energy-momentum tensor from nuclear clustering and NN
collisions, as anticipated in the discussion of Eq. (13). Overall,
the larger ζ/s with clusters compared to that in uniform matter
is thus insensitive to the energy dependence of NN cross
sections.
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FIG. 6. Left: Temperature dependence of the entropy density
(s), the shear viscosity (η), the specific shear viscosity (η/s), the
bulk viscosity (ζ ), and the specific bulk viscosity (ζ/s) in isospin
symmetric nuclear matter at fixed average densities ρ = 0.1, 0.3,
and 0.6ρ0; right: density dependence of these quantities at fixed
average temperatures T = 5, 10, 15 MeV. Results with and without
mean-field potential (MF) are compared.

We have further investigated the isospin dependence of
these quantities, and the results in nuclear matter at different
average isospin asymmetries are compared in the left panels
of Fig. 7. Since the isospin dependence has been found to
be weaker at lower densities, here we choose a relatively
higher average density ρ = 0.6ρ0. It is seen that the isospin
asymmetry of the system has minor effects on the entropy
density. At δ = 0.2, both η and ζ as well as the corresponding
specific viscosities have a qualitatively similar behavior com-
pared to that at δ = 0, while they are all quantitatively larger.
The latter can be traced back to the smaller neutron-neutron
than neutron-proton cross section as shown in Fig. 1(a), which
leads to less successful collisions in asymmetric matter com-
pared to those in symmetric matter, thus leading to weaker
decays of the correlations in Eqs. (12) and (13). While the
spinodal region is similar for δ = 0 and 0.2, it shrinks dra-
matically for δ = 0.6, as can be seen in Fig. 2. Consequently,
the values of ζ and ζ/s, which are more sensitive to nuclear
clustering, drop at a lower temperature compared to the case
for a smaller δ. While it is impossible to reach such a high

FIG. 7. Left: Temperature dependence of the entropy density (s),
the shear viscosity (η), the specific shear viscosity (η/s), the bulk
viscosity (ζ ), and the specific bulk viscosity (ζ/s) at a fixed average
density ρ = 0.6ρ0 in isospin symmetric (δ = 0) and asymmetric
(δ = 0.2 and 0.6) nuclear matter with and without mean-field po-
tential (MF); right: temperature dependence of these quantities at a
fixed average density ρ = 0.3ρ0 and isospin asymmetry δ = 0.2 with
and without Coulomb potential (cou) in the presence of mean-field
potential.

isospin asymmetry in heavy-ion collisions, such system could
exist in neutron-star mergers.

While the Coulomb interaction has been neglected in all
above calculations, we devote the right panels of Fig. 7 to
illustrate the Coulomb effect on viscosities in nuclear matter at
an average density ρ = 0.3ρ0 and isospin asymmetry δ = 0.2.
Here the Coulomb potential between protons is incorporated
based on the lattice Hamiltonian framework as described in
Ref. [14]. Basically, the repulsive Coulomb interaction weak-
ens the clustering effect. This leads to a slight increase of s as
well as η and η/s at higher temperatures, and a considerable
decrease of ζ and ζ/s, and these effects are consistent with
the discussions in previous paragraphs. The behaviors of these
quantities are seen to remain qualitatively similar with or
without Coulomb potential.

IV. CONCLUSIONS

We have studied the shear and bulk viscosities in the spin-
odal region of isospin asymmetric nuclear matter by using
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transport simulations in a box system, with calibrated mean-
field calculation and NN collisions. The Green-Kubo method
is used to calculate the viscosities in the prepared dynam-
ically equilibrated system with nuclear clusters. Compared
to that in uniform nuclear matter, the shear viscosity with
clusters is smaller at higher temperatures but larger at lower
temperatures. The temperature for the minimum specific shear
viscosity is largely affected by the energy dependence of NN
cross sections, and this is different from the behavior by using
a constant NN cross section as seen in Ref. [14]. On the other
hand, the bulk viscosity increases dramatically with nuclear
clusters, and such effect is insensitive to the energy depen-
dence of NN cross sections. Increasing the isospin asymmetry
of the system generally increases both viscosities, while the

behavior of the viscosities may be qualitatively modified
once the isospin asymmetry is large enough to affect signifi-
cantly the spinodal region. The Coulomb potential reduces the
clustering effect but does not change qualitatively the behav-
iors of the viscosities.
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