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Multimodality of 187Ir fission studied by the Langevin approach
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Background: The fission mechanism of sub-lead nuclides remains unclear, especially the types of fission modes
involved and their corresponding shell effects.
Purpose: The aim is to identify the different modes in the fission of 187Ir, and investigate the corresponding
mechanism.
Method: The three-dimensional Langevin approach considering nucleus elongation, deformation, and mass
asymmetry is applied to simulate fission dynamics. The macro-microscopic models are used to calculate the
transport coefficients.
Results: The fragment mass, deformation, and total kinetic energy (TKE) of 187Ir fission in the excitation
energies range from 30 to 45 MeV are calculated. Based on the mass-TKE correlations, four fission modes are
identified, namely two asymmetric standard modes, a symmetric superlong mode, and a symmetric liquid-drop
mode. Strong excitation-energy resistance of two asymmetric modes is found. The mass distributions show the
dominance of single-peak shape, which is in good agreement with experimental data. The fission potential energy
surface and the fission dynamics are analyzed to investigate the origins of the modes and the competition between
neutron and proton shell effects.
Conclusions: Multiple fission modes are included in the 187Ir fission behind the single-peak-like distribution
of observables. The proton and neutron magic numbers with different asymmetry parameter might heighten the
sensitivity to the uncertainties of shell corrections.
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I. INTRODUCTION

As a complex quantum many-body problem with signif-
icant nuclear deformation, the mechanism of nuclear fission
remains incompletely understood since its discovery in 1939.
An essential depiction of nuclear fission envisions the nucleus
splitting akin to a liquid drop (LD) [1,2]. This illustration falls
short in explaining the occurrence of low-energy asymmet-
ric fission in actinides unless the influence of nuclear shell
structure is considered, such as through the Strutinsky shell
correction method [3,4]. Three primary fission modes are then
posited to comprehend the fission of actinides, grounded in
the neutron shell effects within fragments at N = 82 (spher-
ical shell), N = 88 (deformed shell), and the LD behavior
of the nucleus [5]. However, further studies report that the
mechanism of different modes is still not fully determinate.
A systematic experimental study in 2000 underscored that the
average charge of heavy fragments consistently appeared at
Z = 54, indicating a possible predominant role of the proton
shell [6]. A microscopic calculation in 2018 suggested that
the proton shell with octupole deformation might be account-
able for the two asymmetric fission modes [7]. Through an
analysis of the asymmetry modes in the fission of actinides
and preactinides, the proton shell emerged as a notable link in
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fission properties between these two nuclide regions [8]. The
application of Bayesian neural networks in predicting fission
charge distribution demonstrated its potential in data evalua-
tion, potentially aiding in estimating inconsistent modes [9].
Since the multimodality of the fission process is a crucial the-
oretical concept for nuclear data [10], definitively determining
the fission modes and their corresponding shell effects is im-
perative for both fission theory and nuclear data evaluation
[8].

In 2010, the discovery of asymmetric fission in 180Hg ex-
panded the realm of asymmetric fission, but challenged the
prior understandings of fission dynamics [11]. Various theo-
ries have uncovered the intricate potential energy landscape
and shell effects of sub-lead nuclides, presenting a height-
ened challenge for intuitive anticipation compared to actinides
[12–17]. To comprehend the fission properties of sub-lead
nuclides, a key question revolves around identifying different
modes and their corresponding shell effects. However, the
high excitation energy in experiments typically weakens the
shell effects, hindering the direct identification of mode com-
ponents. This necessitates an analysis that connects multiple
observables in both theory and experiment. The correlation
between fragment mass, deformation, and total kinetic energy
(TKE) is employed to identify fission modes in the actinides
and trans-actinide region [18]. Recently, a two-dimensional
fitting approach, based on fragment mass and TKE, has been
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developed, enabling a rigorous distinction of three modes in
178Pt fission [19].

The fission mechanism of 187Ir presents a challenge in
the study of sub-lead nuclide fission. Several theories predict
that asymmetric modes dominate for 187Ir [20–22], contra-
dicting early experimental findings [23]. Notably, there are
significant discrepancies among different theoretical results.
Recent measurements by Dhuri et al. on 187Ir fission via
fusion-fission reactions verify the single-peak mass yields of
fragments. Further discussions are then required to address
the discrepancies between theory and experiment [24]. As a
common theoretical method, the Langevin approach has been
widely used in the nuclear fission dynamics studies and the
fission observables simulations, and is recently developed to
higher dimension [25,26]. In this study, the three-dimensional
Langevin approach is applied to investigate the fission of
187Ir. Fission modes are identified based on mass-TKE corre-
lations of fragments, and the corresponding mechanisms are
discussed.

This paper is organized as follows. In Sec. II, we present
the theoretical framework. Related details could also be seen
in our previous work [27]. In Sec. III, the calculated results as
well as some discussions are given. In Sec. IV, a summary of
our work are presented.

II. THEORETICAL FRAMEWORK

A. Nuclear shape parametrization

In this work, the z-axis-rotational symmetric parametriza-
tion of nuclear shape in the deformed two-center shell model
(TCSM) [28] is used. In the cylindrical coordinate, the nuclear
radius ρs is expressed as

ρ2
s =
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where z′
i = z − zi, zi is the fragment centers. ai and bi are

the short and long axes of fragment, the subscripts i = 1, 2
represent the two fission fragments. Three nuclear deforma-
tion parameters are free. Namely the dimensionless elongation
of nucleus z0/R0 with z0 = z2 − z1, the mass asymmetry
η = (A1 − A2)/(A1 + A2), and the deformation δi = (3βi −
3)/(1 + 2βi ) with βi = ai/bi. R0 = r0A1/3

CN denotes the radius
of spherical compound nucleus. The deformation of two frag-
ments is considered to be equal, i.e., δ1 = δ2 = δ. According
to the position of the saddle point shown in Fig. 1(a), the neck
parameter ε is fixed at 0.24, which is defined as the ratio of the
actual potential to the deformed oscillator potential along the
symmetry axis at z = 0. This three-dimensional parametriza-
tion can be generalized to four dimensions by considering δ1

and δ2 as two degrees of freedom [25], and to five dimensions
by unfixing the ε [26].

B. The Langevin approach

The multidimensional Langevin equations are written as
follow:

dqi

dt
= (m−1)i j p j, (2)

d pi

dt
= − ∂V

∂qi
− 1

2

∂ (m−1) jk

∂qi
p j pk − γi j (m

−1) jk pk + gi j	 j (t ),

(3)

where q = {z0/R0, δ, η}, p, m−1, γ and g are the general-
ized coordinate, the generalized momentum, the inverse of
the inertia tensor, the friction tensor, and the random force
strength, respectively. � is the normalized Gaussian random
force. In Eqs. (2) and (3) and the following equations, the
Einstein summation convention over equal pair indices is
used. The random force strength is related to the friction by
the fluctuation-dissipation theorem, i.e.,

gikg jk = γi jT, (4)

where T is the nuclear temperature. According to the Fermi
gas model, the nuclear temperature can be calculated by Eint =
anT 2 with the level density parameter an = ACN/12. Eint is
the intrinsic excitation energy of compound nucleus related to
total excitation energy E∗ as

Eint (q, t ) = E∗ − 1
2 (m−1)i j pi p j − V (q, T = 0), (5)

where V is the fission potential energy. The T will be updated
once the Eint is adjusted at each time step. When the nucleus
reaches scission point, the TKE of fragments is calculated as
[29]

TKE = VCoul + Ekin, (6)

where VCoul = Z1Z2e2/D and Ekin = 1/2(m−1)z0/R0,z0/R0 p2
z0/R0

are the Coulomb repulsion energy of fragments, and the
kinetic energy of nuclear collective motion in the fission
direction at scission point. D is the fragments charge center
distance.

C. Potential energy

Under the framework of the macro-microscopic
model, the fission potential energy is calculated
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as [30]

V (q, T ) = Emac(q) + Eshell (q, T = 0)
(T ), (7)


(T ) = exp(−anT 2/Ed ), (8)

where the damping parameter of shell correction
Ed = 28 MeV, chosen by comparing the calculated and
experimental fragments mass distributions at low excitation
energies. The shell correction energy Eshell is given by
the Strutinsky shell correction method [3,4]. The nuclear
single-particle levels at each deformation grid point are

calculated by the TCSM [28]. One TCSM program is
available on the NRV web knowledge base [31]. For
macroscopic energy, only the nuclear surface energy En

and the Coulomb energy EC change during fission due to
the nuclear volume conservation assumption. By setting the
potential of spherical nucleus as the potential origin, the
macroscopic part is calculated as

Emac = En − En0 + EC − EC0. (9)

Based on the finite range liquid drop model (FRLDM), the
nuclear surface and Coulomb energy can be written in triple
integral form as [32,33]

En = aS(1 − kSI2)
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where the integration domain is the full space and the σ can be derived by the coordinate system transformation as

σ = [
ρ2

s (z) + ρ2
s (z′) − 2ρs(z)ρs(z

′) cos φ + z2 + z′2 − 2zz′]1/2
. (12)

The potential energy at every general coordinate is calculated
to build the fission potential energy surface (PES) and save for
solving the Langevin equation.

To solve the Langevin equation, the initial momentum
and coordinate are required for iteration. The initial mo-
mentum is set to zero. The initial coordinate is set as
{z0/R0, δ, η} = {0.35, 0, 0}, which is the local potential
minimum near ground state, as shown in Fig. 1(b). The limit
of the {z0/R0, δ, η} is {[0.0, 3.6], [−0.4, 0.6], [−0.4, 0.4]}.
Once the trajectory reaches the coordinate boundaries, the
Langevin calculation will restart from the initial state. Due
to the potential minimum, the trajectory is often trapped and
would not cross over the potential barrier. For reducing the
computing resource consumption, some artificial measures
could be applied to restrict the trajectory since we assume
that the nucleus has a tendency to fission [34]. In the present
work, the Gaussian distribution center of the random force at
z0/R0 direction is set at 0.1σGaussian with σGaussian = √

2. The
centers at η and δ directions keep 0 for all calculations. The
Langevin trajectory would end once it reaches the scission
point, where the nuclear neck radius is less than 2 fm chosen
by comparing the calculated and experimental 〈TKE〉 at low
excitation energies.

D. Inertia and friction tensor

Under the Werner-Wheeler approximation, the
inertia tensor is calculated by the hydrodynamic

model [35]

mi j (q) = πρm
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Ai = 1
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z
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, (14)

where the nucleus density ρm = 1.668 × 10−45 MeV s2 fm−5.
A′

i is the derivative of Ai with respect to z. Since the nuclear
center-of-mass coordinate zc.m. changes during fission pro-
cess, the derivative term ∂zc.m./∂qi is subtracted in Eq. (14)
to exclude the spurious contribution of zc.m. [26,36]. The
friction tensor is calculated by macroscopic one-body wall-
and-window model. For neckless nucleus, the wall dissipation
is given as [37,38]
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i j (q) = 1
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where v̄ = 3v f /4 ≈ 6.4 × 1022 fm/s is the average velocity
of nucleons based on Fermi velocity. The terms proportional
to ∂zcm/∂qi are added for the same purpose of excluding
the spurious contribution of zc.m.. When the neck of nucleus
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FIG. 1. (a) The macroscopic potential energy surface at η = 0
and δ = 0. The cross is the saddle point. (b) The potential energy
surface at η = 0 and ε = 0.24. The star is the initial position of
Langevin trajectories.

appeared, the friction tensor is calculated as [39]

γ W+W
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with

γ Wall2
i j (q) = 1

2
πρmv̄

(∫ zN

zmin

IL(z)dz +
∫ zmin

zN

IR(z)dz

)
, (17)

Iv =
(

∂ρ2
s

∂qi
+ ∂ρ2

s

∂z

∂Dv

∂qi

)(
∂ρ2

s

∂q j
+ ∂ρ2

s

∂z

∂Dv

∂q j

)

×
[
ρ2

s + 1

4

(
∂ρ2

s

∂z

)2
]−1/2

, (18)

where v = L, R represents the prefragments on the left and
right sides of the neck. zN is the position of the smallest neck
radius, which equals 0 in the present work. Dv is the mass-
center position of two prefragments. The window dissipation
is calculated as [40]
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where R12 denotes the distance between the mass center
of prefragments. �σ represents the window area. VR is the
volume of right prefragments. Nix and Sierk proposed a phe-
nomenological formula to smoothly transition this two types
of friction [41]

γi j = τ
(
γ W+W

i j

) + (1 − τ )γ Wall
i j . (20)

The choice of τ is subjective [42,43]. The expression in
Ref. [41] is used in the present work

τ = cos2

(
π

2

r2
N

b2
min

)
, bmin = min (b1, b2), (21)

where rN is the neck radius, b1 and b2 are the long axes of
prefragment in Eq. (1).

III. RESULTS AND DISCUSSION

The three-dimensional Langevin approach is utilized to
calculate the mass, total kinetic energy (TKE), and deforma-
tion (δ) of the 187Ir fission fragments at excitation energies
E∗ = 30.2, 32.8, 36.7, 40.8, 43.3, and 44.8 MeV. The fission
barrier of 187Ir is 20 MeV. To identify specific fission modes
in 187Ir fission, the TKE-mass correlation is shown in Fig. 2.
Focusing first on shell-effect-led modes within the fragment
mass range of 70 to 117, at low excitation energies, two
distinct modes are apparent. One mode is symmetric, and
another is an asymmetric fission mode at AL/AH = 84/103.
The symmetric fission mode exhibits a lower fragment TKE,
indicating an oblate deformation with a larger distance of
the charge center, corresponding to δ = 0.15 as illustrated
in Fig. 3. This mode is termed the super-long (SL) mode.
The asymmetric mode corresponds to a deformation of δ = 0,
indicating a spherical shape, and is referred to as the stan-
dard I (S1) mode. The remaining asymmetric mode located
at AL/AH = 63/124 is denoted as the standard II (S2) mode.
In reference to actinide fission, the liquid drop (LD) behavior
is also considered as a possible symmetric fission mode. To
simplify naming, we refer to the LD behavior simply as the
LD mode, deviating from the terminology used in actinide
cases. The general ranges of the SL, S1, and S2 are marked
by ellipses in the mass-TKE correlation in Fig. 2(a). As the
excitation energy increases, the shell effects diminish, and the
Langevin trajectories could explore to a wider range. It leads
to a more diffuse mass-TKE distributions at high excitation
energies.

To assess the proportions of each mode in mass distribu-
tions and their variation with excitation energy, we employ
a two-dimensional fitting approach outlined in Ref. [19]. This
involves a six-Gaussian fitting of the computed fragment mass
and TKE. To eliminate the dependence of TKE on mass, the
relative TKE is used in fitting, calculated as the TKE divided
by the Viola systematics value [44,45]. Figure 4 presents one
of the two-dimensional fitting results. As it considers both
fragment mass and TKE information, this approach provides
enhanced precision compared to its one-dimensional coun-
terpart, where only the mass distribution of the fragments is
considered. This heightened precision is particularly crucial
as the fission of 187Ir involves two symmetric fission modes
(the LD and the SL). Theirs proportions are challenging to
determine through one-dimensional data.

Figure 5 shows the calculated results of mass yields and the
Gaussian fitting. The dominant feature is a single-peak shape,
which has well agreement with experimental data [24], while
previous theoretical predictions give the double-peak shape
[20–22]. The mass asymmetry of S2 is overestimated in our
calculations. The humps observed at AL/AH = 77/110 in the

034609-4



MULTIMODALITY OF 187Ir FISSION STUDIED … PHYSICAL REVIEW C 109, 034609 (2024)

FIG. 2. The fragment mass-TKE correlations at six excitation energies. Each subfigure is normalized to 1.

experimental data might suggest the correct mass asymmetry
of the S2 mode. Our calculations reproduce the sudden change
in slope and the sharp configuration of the main peak at 30.2
and 32.8 MeV. These two features indicate the superposition
effects of the SL and S1 modes. As the excitation energy
increases, both calculations and experimental data exhibit an
increase in the width and a decrease of peak height of the
mass distribution. This phenomenon arises from the attenu-
ation of the shell effect at high excitation energies, which
is estimated by a widely used phenomenological expression
Eq. (8), and from a wider exploring allowed-ness of Langevin
trajectories in the general coordinates space. Although the
overall dependence on excitation energy is reproduced, the
results at 30.2 MeV and 40.8 MeV overestimate the excitation
energy dependence of the symmetric peak and underestimate
the energy dependence of the small asymmetric peaks on both
sides.

FIG. 3. The fragment deformation-mass (δ-mass) correlations at
E∗ = 30.2 MeV. The distribution is normalized to 1.

In Fig. 6, the proportions of the four modes are depicted
as a function of excitation energy. Notably, S1 and S2 ex-
hibit higher resistance to excitation energy compared to SL,
a feature consistent with observations in previous studies
of sub-lead fission [46–52]. Within the Langevin approach
framework, this resistance may be attributed to differences in
the inertia tensor at different degrees of freedom. In the region
from the saddle point to the scission point, the calculated iner-
tia tensor element mη,η is about one order of magnitude higher
than mδ,δ . This suggests that, for prefragments, deformation
is more easily accommodated than the exchange of nucleons
under the same potential energy gradient. Consequently, the
SL mode with an oblate shape becomes more susceptible to
transitioning to other spherical modes as excitation energy
increases, while the spherical shape of the asymmetric modes
S1 and S2 imparts excitation resistance. The change in the
SL proportion elucidates the observed variation in the peak

FIG. 4. The correlations of mass and relative TKE at
E∗ = 30.2 MeV with the two-dimensional six-Gaussian fit shown
by the red contour dashed lines. The distribution is normalized to 1.
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FIG. 5. The fission fragments mass distributions of 187Ir at six excitation energies with Gaussian fits of four fission modes. The experimental
data are taken from Ref. [24].

structure of the mass distribution. Despite the presence of the
asymmetric fission mode S1 in 187Ir fission, the coexistence of
the symmetric fission mode SL prevents the mass distribution
from exhibiting a double-peak shape. This may be an aspect
overlooked by other theoretical approaches, leading to double-
peak fragment mass distributions in their calculations.

Table I provides a comparison between the experimental
and calculated 〈TKE〉 of fragments, which are approximately
130 MeV. In Fig. 7, the experimental and calculated frag-
ment TKE as a function of mass are compared. There is a
deviation in 〈TKE〉 calculation, resulting in a global shift in
the calculated curve compared to the experimental values.
In accordance with the liquid drop model, fission fragments
exhibit a parabolic mass-TKE correlation [45]. Any deviation
from this parabolic trend suggests the potential presence of

FIG. 6. The proportions of different modes as a function of exci-
tation energies.

shell effects. It is observed that both the calculations and ex-
perimental data show a small peak around AL = 70 due to the
effects of S2 mode. At the position of the symmetric fission,
the calculated curve displays an obvious concavity attributed
to the presence of the SL mode. A similar concavity can be
observed in the experiment, albeit with a smaller magnitude.
To understand the origins of each fission mode, we examine
the potential energy surface (PES) from various perspectives.
Figure 8 illustrates the PES at z0/R0 = 2.6, revealing the
potential energy channels associated with the three modes. It
is observed that the δ of SL channel is 0.3, which is com-
paratively larger than the δ of the corresponding fragments in
Fig 3. This is attributed to the higher elongation of the SL
fragments. At larger elongation, the δ of the potential channel
associated with SL becomes smaller.

Figure 9 displays the PESs at two crucial nuclear defor-
mation parameters, δ = 0.0 and 0.2. Two Langevin fission
trajectories are depicted as black lines. The neutron and proton
shell correction energy surfaces are also provided to elucidate
the competition between neutron and proton shell effects.
Assuming an unchanged charge distribution, the asymmetry

TABLE I. Experimental and calculated 〈TKE〉 of fragments at
different excitation energy.

Excitation energy (MeV) Exp.a Langevin

30.2 – 130.5
32.8 – 131.3
36.7 130.9±0.5 132.3
40.8 130.1±0.3 133.0
43.3 129.6±0.4 133.5
44.8 130.7±0.4 133.8

aExperimental data are taken from [24].
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FIG. 7. The calculated (solid line) and experimental [24] (open
circle) 〈TKE〉 of fission fragments as a function of mass.

parameters are identical for neutron, proton, and mass, i.e.,
η = ηp = ηn. In Fig. 9(a), the asymmetry property of the
S1 mode first emerges from a potential hill obstruction on
the symmetric fission track near the elongation z0/R0 = 1.2.
Although there is a small local minimum after the first hill,
a second peak near the scission point impedes the trajectory
toward symmetrical fission. It is noted that the PES does not
show a long descent from saddle point to scission, which is
consistent with the microscopic theoretical calculation [14].
Additionally, the local minimum near {η = 0.0, z0/R0 = 2.0}
suggests a possible fission isomer of 187Ir. In Fig. 9(c), the
neutron shell correction energy valley occurs at η = 0 after
z0/R0 = 1.5, while the proton correction energy valley oc-
curs at Z = 50 (ηp = 0.3), as shown in Fig. 9(e). Noticeably,
the peaks and valleys of the neutron and proton are almost
complementary. Their superposition forms a new asymmetric
potential energy valley located at the middle of the original
peaks and valleys, around η = 0.1. This superposition makes
the PES calculation highly sensitive to the uncertainties of the
neutron and proton shell correction energies. Such sensitivity
is also evident in systematic calculations of 187Ir fission using
the improved scission-point model [20]. It may lead to the

FIG. 8. Potential energy surface at z0/R0 = 2.6.

deviation in the predicted position of the potential valley
around η = 0.3, resulting in the appearance of humps in the
mass distribution near AL = 63 (associated with S2 mode),
rather than the experimentally observed location near AL = 77.

For the case of δ = 0.2, as shown in Fig. 9(b), a hill occurs
near z0/R0 = 1.2. However, after bypassing the hill, the po-
tential energy cliffs on both sides gradually tighten, forming a
narrow potential energy valley. The trajectory is then confined
around η = 0. This restriction is more stringent than the one
of LD behavior, leading to a narrower peak of mass yields at
E∗ = 30.2 and 32.8 MeV. This narrow symmetric valley is
mainly generated by a weaker deformed proton shell effect
around ηp = 0.0, as shown in Fig. 9(f), resulting in a lower
symmetric shell correction valley than the one at δ = 0. A
symmetric potential energy valley is then formed in the PES
at δ = 0.2.

In general, unlike the actinide fission valley generated by
the proton (Z = 50) and neutron (N = 82 or N = 88) shell
effects with close η, the valley of sub-lead fission would
not necessarily lie at the same η as that of the proton or
neutron. This complexity increases the difficulty of identify-
ing fission modes, especially based solely on magic numbers.
For sub-lead nuclide fission, attention should be paid not
only to whether the fragment contains magic numbers but
also to the corresponding asymmetry parameter η. If the η

of neutron or proton shell effects has a gap, it is necessary
to consider whether the position of the asymmetric mass
yields peak would be shifted due to the superposition of shell
effects.

IV. SUMMARY

The calculated fission yields of 187Ir from various the-
oretical models significantly differ from experimental data,
and the fission mode is not clear. This study employs the
three-dimensional Langevin dynamics approach to calculate
the mass, total kinetic energy (TKE), and deformation (δ) of
187Ir fission fragments at different excitation energies. Four
fission modes are identified based on mass-TKE and mass-
δ correlations, namely two asymmetric standard modes S1
and S2, a symmetric superlong mode SL, and a symmetric
liquid-drop mode LD. The center of the asymmetric mass
yield peak for S1 is located around AL/AH = 84/103, and
for S2, it is around AL/AH = 63/124. The calculations re-
veal strong excitation-energy resistance of the asymmetric
modes, a feature consistent with other sub-lead isotope fis-
sion. This resistance might be attributed to the relatively
high inertia of collective motion caused by nucleon trans-
fer between prefragments. The single-peak shape dominates
the mass distribution, particularly at low excitation energies,
aligning well with experimental data. The underestimation of
the SL mode may explain previous predictions of double-
peaked fragment mass distributions by other theoretical
models.

Analysis of the fission potential energy surface indicates
that the asymmetric potential energy valleys leading to S1 and
S2 modes are not identical to any individual proton or neutron
shell correction valley, differing from actinide fission. This
complexity complicates the identification of fission modes,
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FIG. 9. (a), (b) The fission potential energy surfaces of 187Ir at δ = 0 and 0.2. The black lines show the two Langevin trajectories. (c),
(d) The neutron shell correction energy surfaces at δ = 0 and 0.2. (e), (f) the proton shell correction energy surfaces at δ = 0 and 0.2.

with the uncertainties of shell correction may play a crucial
role. These results reveal a complex multimodality of 187Ir
fission under its single-peak mass distribution, emphasizing
the need to consider fission mode displacement when there
is a gap in the asymmetry parameters (η) of the proton and
neutron magic numbers possessed by fragments.
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