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Five-dimensional Langevin approach to fission of atomic nuclei
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We have generalized the four-dimensional Langevin approach used in our previous works for the description
of the fission process to five dimensions by considering the neck parameter ε in the two-center shell model
shape parametrization as an independent dynamical variable. The calculated results for the mass distribution of
fission fragments are in better agreement with the available experimental data. In particular, the transition from
mass-symmetric to mass-asymmetric fission via the triple-humped distribution in fission of thorium isotopes is
well reproduced.
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I. INTRODUCTION

The approach based on Langevin equations [1] has been
successfully applied in various branches of theoretical physics
and chemistry for many years. In nuclear physics, this ap-
proach is used for the description of fission or fusion processes
at excitations above the fission barrier [2–14]. In these
works the Langevin equation was solved in 1–4 dimensions
with macroscopic [2,15,16] or microscopic [17–19] transport
coefficients.

The approach describes quite well the mass distributions
and kinetic energies of fission fragments, the multiplicities of
emitted neutrons, and other observables of fission or fusion
processes.

Five-dimensional (5D) calculations have been published so
far only by Sierk [20] using the three-quadratic-surface shape
parametrization. In that work the potential energy was calcu-
lated within the macroscopic-microscopic model, the inertia
in the Werner-Wheeler approximation, and the friction by
the “surface-plus-window” formula with the reduction factor
ks = 0.27. Because the numerical calculations were very time
consuming, the starting point was chosen slightly outside of
the outermost saddle point (second or third barrier) and the
initial velocity was picked up randomly from the Kramers ve-
locity distribution for the local temperature at the saddle point
deformation. Only velocities directed towards scission were
taken into account. The scission in this model was defined as
occurring when the minimum neck radius falls to a specific
value r (crit)

neck = 1 fm.
Within this model a number of observables—such as the

mean mass asymmetry seen in fission; the approximate width
of the mass yields of the heavy and light peaks; and the
approximate average fragment kinetic energy and width for
fission of actinide nuclei, both spontaneous and induced by

*ivanyuk@kinr.kiev.ua
†chikako@nr.titech.ac.jp
‡chiba.satoshi@nr.titech.ac.jp

neutrons of energies of up to the threshold for second-chance
fission—were accurately reproduced.

The examination of fission of thorium and radium isotopes,
which exhibits a transition to yield distributions where sym-
metric fission is of a magnitude comparable to asymmetric
fission, was mentioned as one of the most interesting explo-
rations of the model.

Recently the first results of 5D Langevin calculations
with deformed Woods-Saxon potential and Cassini shape
parametrization were reported by Wada at the Kazimierz
workshop [21].

In present work we have generalized our four-dimensional
Langevin approach to five dimensions in order to explain the
transition from mass-symmetric to mass-asymmetric fission
of thorium isotopes.

In the Langevin approach one solves the set of differential
equations for the time evolution of collective variables qμ

describing the shape of the nuclear surface. In our works we
used for the shape parametrization that of the two-center shell
model (TCSM) [22]; see Fig. 1. In this model the shape of the
axially symmetric surface is characterized by five deformation
parameters, qμ = z0/R0, δ1, δ2, α, and ε. Here z0/R0 refers
to the distance between the centers of left and right oscilla-
tor potentials, R0 being the radius of spherical nucleus. The
parameters δ1 and δ2 describe the deformation of the right
and left parts of the nucleus. The fourth parameter α is the
mass asymmetry, and the fifth parameter of the TCSM shape
parametrization, ε, regulates the neck radius.

In our older Langevin calculations [9,11] we used a three-
dimensional shape parametrization in which δ1 and δ2 were
assumed to be equal, δ1 = δ2, and the neck parameter was kept
constant, ε = 0.35. The generalization from three to four di-
mensions was carried out in [23]. In that work the deformation
parameters δ1 and δ2 were considered as independent dynam-
ical variables. Thus, shapes with very different deformations
of the left and right parts were considered. In particular, one
part could be nearly spherical while the other could be very
elongated. This made it possible to reproduce [24] the rapid
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FIG. 1. The z-dependent part of the TCSM mean-field potential
V (z) ≡ V (ρ, z)ρ=ρ(z). The neck parameter ε is defined as the ratio of
the potential V (z) at z = 0 to the value E0 of oscillator potential at
z = 0, ε ≡ V (z = 0)/E0.

change of mass distributions of fission fragments from mass
asymmetric (in 256Fm) to mass symmetric (in 258Fm) [24],
the sawtooth structure of neutron multiplicity [25], and the
decrease of the total excitation energy of fission fragments
with the increasing of the excitation energy [26].

At the same time, there are some experimental results on
nuclear fission that, to date, have not been explained theoreti-
cally. In [27] the secondary-beam facility of GSI Darmstadt
was used to study the fission properties of 70 short-lived
radioactive nuclei. Relativistic secondary projectiles were pro-
duced by fragmentation of a 1A GeV 238U primary beam and
identified in nuclear charge and mass number. These reac-
tion products were excited by electromagnetic interactions,
and fission from excitation energies around 11 MeV was
induced. The elemental yields and the total kinetic energies
for a series of neutron-deficient preactinides and actinides
from 205At to 234U were determined. The elemental yields af-
ter electromagnetic-induced fission cover the transition from
symmetric fission at 213Ac to asymmetric fission at 234U. The
longest isotopic sequence, from 217Th to 229Th, was measured
for thorium isotopes. In the transitional region, around 227Th,
triple-humped distributions appear, demonstrating compara-
ble weights for symmetric and asymmetric fission.

The qualitative transition from the mass-symmetric to
mass-asymmetric mass distributions for thorium isotopes was
shown in the first paper on the random walk model [28]
assuming the overdamped character of nuclear collective mo-
tion. Later (after adding the energy dependence, which has
some effect at E∗ = 11 MeV) much better agreement of the
calculated fission-fragment charge yields with GSI data [27]
was demonstrated in [29]. The transition from mass symmet-
ric to mass asymmetric in the sequence of thorium isotopes
was also found recently by a Polish-Chinese collaboration
[30] within the Born-Oppenheimer approximation.

A more recent experimental study of nuclear fission along
the thorium isotopic sequence was carried out in [31]. In
that article, new data on fission along the thorium isotopic
sequence were reported, using the same reaction mechanism
as in [27], but with the new R3B/SOFIA experimental setup
which was conceived to identify the mass and the nuclear
charge of the fissioning nuclei and both fission fragments.

FIG. 2. The fission fragment mass distributions for a few thorium
isotopes. The experimental data from [31] are marked by circles,
solid lines show the 4D Langevin calculations with ε = 0.35, and
the dashed line shows the 4D Langevin calculation for 222Th with
ε = 0.15.

The experimental data from [31] for a few thorium iso-
topes are shown by circles in Fig. 2. Solid lines show the
4D Langevin calculations with ε = 0.35. One can see that for
230Th the agreement of experimental and theoretical results is
quite reasonable. For lighter isotopes the experimental mass
symmetric peak becomes stronger and stronger, while in cal-
culations the mass asymmetric peak remains dominant.

As one can see from Fig. 2, the mass distribution calculated
with the four-dimensional approach is mainly mass asymmet-
ric. The mass symmetric peak is too small. All attempts to
make it larger by varying the starting point or the scission
conditions were unsuccessful. The only noticeable effect on
the height of central peak arose from a variation of the neck
parameter ε. With smaller ε the mass symmetric peak became
somewhat larger; see the dashed curve in the left part of
Fig. 2. That was a clear indication that the parameter ε of the
TCSM shape parametrization should not be fixed, but should
be considered as an independent dynamical variable, like the
other four deformation parameters.

The results of the five-dimensional Langevin calculations
for the sequence of thorium isotopes are presented below in
this publication.

In Sec. II we present the main relations of the Langevin
approach to the description of the nuclear fission process. In
Sec. III we explain how the collective potential energy is cal-
culated. Section IV contains the description of the used mass
and friction tensors. The results of numerical 5D calculation
are given in Sec. V. Section VI contains a short summary.

II. THE LANGEVIN APPROACH

The first-order differential equations (Langevin equations)
for the time dependence of the collective variables qμ and the
conjugate momenta pμ are

dqμ

dt
= (m−1)μν pν, (1)

d pμ

dt
= −∂F (q, T )

∂qμ

− 1

2

∂ (m−1)νσ

∂qμ

pν pσ

− γμν (m−1)νσ pσ + gμνRν (t ), (2)
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where the sums over the repeated indices are assumed. In
Eq. (2) the F (q, T ) is the temperature dependent free energy
of the system, γμν and (m−1)μν are the friction and inverse of
mass tensors, and gμνRν (t ) is the random force.

The free energy F (q, T ) is calculated as the sum of the
macroscopic (folded Yukawa) energy and the temperature de-
pendent shell correction δF (q, T ). The shell corrections are
calculated from the single-particle energies in the deformed
Woods-Saxon potential [32,33] fitted to the above mentioned
TCSM shapes.

The collective inertia tensor mμν is calculated within the
Werner-Wheeler approximation [2] and for the friction tensor
γμν we used the wall-and-window formula [15,16].

The random force gμνRν (t ) is the product of the normally
distributed white noise Rν (t ), 〈Rμ(t )Rν (t ′)〉 = 2δμνδ(t − t ′),
and the temperature-dependent strength factors gμν . The fac-
tors gμν are related to the temperature and friction tensor via
the modified Einstein relation,

gμσ gσν = T ∗γμν, T ∗ = h̄


2
coth

h̄


2T
, (3)

where T ∗ is the effective temperature [34,35]. The parameter

 is the local frequency of collective motion [35]. The mini-
mum of T ∗ is given by h̄
/2. At large excitations, T ∗ is close
to T .

In [34,35] the one-dimensional collective motion was con-
sidered and the “frequency of collective motion” was simply
the frequency of harmonic vibrations around a fixed point
in the deformation space. In the model considered here the
collective space is five dimensional, so there are five collective
frequencies at each deformation point. Besides, these frequen-
cies depend on the point in the collective space.

Unfortunately, with our present computational facility, we
cannot take into account the dependence of h̄
 on deforma-
tion and the type of collective degree of freedom. So, we use
a simplified approximation, namely, a constant value for h̄
 ,
the same for all degrees of freedom.

To check how sensitive the calculated mass distributions
are to the choice of h̄
 , we carried out the calculations with
three values of h̄
 : 
 = 0 (T ∗ = T ), h̄
 = 2, and h̄
 = 4
MeV; see the red, black, and blue curves in Fig. 10. It turned
out that the mass distributions of 222Th, 226Th, and 230Th cal-
culated with 
 = 0 and h̄
 = 2 and 4 MeV are surprisingly
close to each other. So, all other calculations in the present
work were carried out with h̄
 = 2 MeV. The same value for
h̄
 was used also in our previous publications.

A discussion of the zero-point energy in different models
can be found in the seminal paper by Hill and Wheeler [36].
The approximate value seems to be between 0.5 to 2.23 MeV.
Note that the zero-point energy is equal to h̄
/2.

The temperature T in Eq. (3) is related to the initial energy
E∗

(in) and the local excitation energy E∗ by

E∗ = Egs + E∗
(in) − 1

2 m−1
μν pμ pν − Vpot (q, T = 0) = aT 2, (4)

where Vpot is the potential energy and a is the level density
parameter. More details are given in our earlier publications;
see [11,12,23,37]. The E∗

(in) in Eq. (4) is the energy of initial
excitation of nuclei by the Coulomb excitation; see [31]. In

the case of neutron induced fission, E∗
(in) would be the sum of

the neutron kinetic and separation energies.
Usually, the initial values of momenta pμ are set to zero,

and calculations are started from the ground state deformation.
The calculations are continued until the trajectories reach

the “scission point,” In our older publications the “scission
point” was defined as the point in deformation space where
the neck radius becomes zero. However, the zero critical neck
radius is not well justified. It was shown in the so-called
optimal shapes model [38–40] that the nuclear liquid drop
loses stability with respect to elongation at an almost constant
elongation z0 ≈ 2.3R0 and rather thick neck, rcrit

neck; see the
right part of Fig. 1 in [39]. Thus, in all our calculations below
we used the finite value of the critical neck, rcrit

neck = 1 fm.

III. THE 5D SHAPE PARAMETRIZATION

In present work we use the two-center shell model sug-
gested by Maruhn and Greiner [22] and the code developed by
Suekane, Iwamoto, Yamaji, and Harada [41–43] and extended
by one of the authors (Ivanyuk, [23]).

The TCSM single-particle Hamiltonian H includes the
mean-field potential V (ρ, z) and the angular momentum de-
pendent part. In cylindrical coordinates {ρ, z} it is written as

H = �p 2

2m
+ V (ρ, z) − κi

[
2(�li · �s) + μi

(�l2
i − 〈�li 2〉)]h̄ω0, (5)

see [41–43]. Here i = 1 for z � 0 and i = 2 for z � 0, κi and
μi are the usual parameters of Nilsson model [44].

The potential V (ρ, z) in TCSM consists of the two os-
cillator potentials with centers at z1 and z2, smoothly joined
between z1 and z2 by a fourth-order polynomial in z; see
Fig. 1. The deformation parameters δ1 and δ2 define the cur-
vature of the parts outside of z1 or z2. In the three-dimensional
parametrization δ1 and δ2 are the same.

The advantage of the TCSM shape parametrization is that
even in the case of three deformation parameters (δ1 = δ2)
it supplies a very reasonable shape parametrization for large
deformations, including the shape of separated fragments. The
three-dimensional Langevin calculations are not very time
consuming. To date, they have been used successfully for
the description of the fission process [45–48]. However, the
3D shape parametrization cannot describe the shapes where
one part of the nucleus is close to a sphere and the other is
very elongated. This drawback was corrected in [23] by the
generalization of the 3D to the 4D Langevin approach.

The variation of δ1 at fixed δ2 formally change only the
outer part of the potential. But, due to the continuity con-
ditions at z1 and z2, requirements of fixed volume and mass
asymmetry, the whole shape, even in the neck region, is mod-
ified by variation of δ1 or δ2; see Fig. 3. So, δ1 and δ2 can be
considered as the parameters of deformation of the entire left
and right parts of the shape.

The effect of the variation of the fifth parameter, ε, on the
nuclear shape is somewhat different. Formally, parameter ε

controls the neck radius; see Fig. 4.
However, since the yields and other quantities are cal-

culated at the scission point with a fixed neck radius, the
variation of ε leads to the incorporation of very elongated or
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FIG. 3. The effect of variation of parameter δ2 on 4D TCSM
shapes; z0/R0 = 2.5, α = 0.2, ε = 0.35.

very compact shapes; see Fig. 5. Exactly such shapes con-
tribute to the superlong or supershort fission modes. So, the
inclusion of ε as an additional dynamical variable makes it
possible to describe more accurately the superlong or super-
short fission modes.

IV. THE POTENTIAL ENERGY

The parameters κ and μ of the Nilsson model in (5) were
fitted separately for each oscillator shell [44] in order to repro-
duce the known single-particle energies at the ground state of
nuclei. It is evident that κ and μ may depend on deformation.
Away from the ground state, at the barrier and beyond, κ and
μ may differ from those at the ground state. Thus, the use of
TCSM with the Nilsson potential is not well justified for large
deformations. Consequently, we have modified the mean-field
potential of TCSM. Instead of the Nilsson type of potential we
use a more realistic Woods-Saxon (TCWS) potential [23]. For
this, we keep from TCSM only the deformation dependent
profile function ρ(z) [the axially symmetric nuclear shape
is obtained by the rotation of ρ(z) around the z axis]. Then
the profile function ρ(z) is expanded in a series of Cassini
ovaloids. In total, 20 terms in the expansion are taken into
account, which makes the reproduction of the TCSM shapes
very accurate; see Fig. 3 of [23].

FIG. 4. The effect of variation of parameter ε on 5D TCSM
shapes; z0/R0 = 2.5, δ1 = δ2 = α = 0.2.

FIG. 5. The 5D TCSM shapes for δ1 = δ2 = α = 0.2 at the scis-
sion point for a few values of parameter ε.

Considering the coefficients αn of the expansion as the
deformation parameters of the Woods-Saxon potential, the
single-particle wave functions and energies are calculated
with the code of Pashkevich [32,33].

The free energy of nucleus F (q) is calculated within the
macroscopic-microscopic model:

F (q) = ELDM(q) + δF (q, T ). (6)

The shell correction δF (q, T ) is calculated by Strutinsky’s
prescription [49,50] from the energies of single-particle states
in the deformed Woods-Saxon potential fitted to the TCSM
shapes. At zero temperature the shell correction to the free
energy δF (q, T = 0) coincides with the shell correction to the
collective potential energy δE (q),

δE (q) =
∑
n,p

(
δE (n,p)

shell (q) + δE (n,p)
pair (q)

)
. (7)

The damping of δF (q, T ) with the excitation energy was
calculated by the method developed in [51]. The macroscopic
part of energy ELDM(q) is calculated within the folded Yukawa
model [41,42].

An example of the macroscopic deformation energy
ELDM(q) is shown in Fig. 6. As one can see, the potential
energy is rather flat in the ε direction. Consequently, the
dynamical trajectories fill all the available space in ε.

The comparison of the total deformation energy of 222Th
at the saddle and above in the (z0, α) plane is shown in
Fig. 7. In this plot the energy was minimized with respect to
δ1, δ2 at fixed ε for ε = 0.35 and ε = 0.15. For ε = 0.35 one
clearly sees the two asymmetric valleys leading to asymmet-
ric fission. For ε = 0.15 the mass asymmetric valley is less
pronounced. So symmetric divisions may also occur. These
observations are in accord with the fission fragment mass
distribution shown in the left hand part of Fig. 2.

V. THE TENSORS OF FRICTION AND INERTIA

In the present work we use the macroscopic transport
coefficients, which are often used for solving the Langevin
equations. The macroscopic transport coefficients depend
only on the shape of the system and do not depend on the
excitation energy of the system.
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FIG. 6. The dependence of macroscopic deformation energy of
222Th on the elongation z0/R0 and neck parameter ε for fixed
δ1 = δ2 = α = 0.2.

The macroscopic mass tensor MWW
μν is usually defined in

the Werner-Wheeler approximation [2],

MWW
μν = πρ0

∫
ρ2(z)

[
Aμ(z)Aν (z) + ρ2

8
A′

μ(z)A′
ν (z)

]
dz,

(8)

where ρ(z) is the profile function of the axially symmetric
shape and

Aμ(z; Q) = 1

ρ2(z, Q)

∂

∂Qμ

∫ zR

z
ρ2(z′, Q)dz′ − ∂zcm

∂Qμ

. (9)

The derivative of the center of mass ∂zcm/∂Qμ is subtracted in
(9) from the standard definition of Aμ(z; Q) to exclude from
the velocity field the spurious contribution due to the center-
of-mass motion.

The macroscopic friction tensor is given by the so-called
the wall-and-window formula [16]. The wall-and-window
friction is a generalization of wall friction [15] which for axial

FIG. 7. The dependence of the potential energy of 222Th, minimized with respect to δ1, δ2 at fixed ε, ε = 0.35 and ε = 0.15, on the
elongation z0/R0 and asymmetry α.

symmetric shapes can be written as [52]

γ wall
μν = πρ0 v̄

∫
dz

(
∂ρ2

∂Qμ
+ ∂ρ2

∂z
∂zcm
∂Qμ

)(
∂ρ2

∂Qν
+ ∂ρ2

∂z
∂zcm
∂Qν

)
√

4ρ2 + (∂ρ2/∂z)2
, (10)

with ρ0 = 3mA/(4πR3
0) and v̄ being the mean velocity of nu-

cleons. For v̄ the Fermi gas estimate was used, v̄ = (3/4)vF ,
where vF is the Fermi velocity, related to the particle number
A by the Thomas-Fermi relation A = (4/9π )x3

F , xF ≡ mvF /h̄.
The derivatives ∂ρ2/∂Q in Eq. (5.172) of [52] should be
calculated under the condition that the nuclear center of mass
remains fixed during the fission process. This requirement
is fulfilled by adding terms, proportional to ∂zcm/∂Q, in the
numerator of (10).

In the wall-and-window model the velocities of nucleons
are taken with respect to the velocities of centers of mass of
the left or right parts of the nucleus, and a “window” term is
added [16,52],

γ w+w
μν = πρ0 v̄

(∫ 0

zL

IL(z) dz +
∫ zR

0
IR(z)dz

)
+ γ window

μν ,

(11)

with

IL,R(z) =
(

∂ρ2

∂Qμ
+ ∂ρ2

∂z
∂zcm (L,R)

∂Qμ

)(
∂ρ2

∂Qν
+ ∂ρ2

∂z
∂zcm (L,R)

∂Qν

)
√

4ρ2 + (∂ρ2/∂z)2
(12)

and

γ window
μν = 1

2
ρ0v̄

[
�σ

(
∂R12

∂qμ

∂R12

∂qν

)
+ 32

9�σ

∂VL

∂qμ

∂VL

∂qν

]
,

(13)

where R12 is the distance between the centers of mass of the
left and right parts of the nucleus and �σ is the area of the
“window.”

One expects a smooth transition between the regime in
which the wall formula applies and the part of the fission
path where the wall-and-window friction should be used.
For this Nix and Sierk [53] proposed the phenomenological
ansatz

γ total
μν = sin2(πφ/2)γ wall

μν + cos2(πφ/2)γ w+w
μν , (14)
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FIG. 8. The z0z0 components of friction (10) and inertia (8) tensors for 222Th as a function of the elongation z0/R0 and mass asymmetry α

at fixed δ1 = δ2 = 0.2 and ε = 0.35.

with φ = (rneck/Rmin)2, where Rmin is the smallest value of the
two quantities ρ(z1) and ρ(z2); see [20]. The ρ(z) here is the
profile function, shown in Figs. 3–5.

Soon after the introduction of wall friction it was recog-
nised that the wall friction is too strong, and the reduction
factor, ks = 0.27, was introduced by Nix [54] from the anal-
ysis of widths of giant resonances. This reduction factor was
used in all our Langevin calculations.

The z0z0 components of the friction (10) and inertia (8)
tensors for 222Th are shown in Fig. 8 as a function of the
elongation z0/R0 and mass asymmetry α. The dependence
of friction or inertia separately on the deformation does not
have much meaning. This dependence is a consequence of
the definition of the deformation parameters. More meaning-
ful is the ratio of friction to inertia, the so-called reduced
friction coefficient, βμν ≡ (γ M−1)μν , or the damping pa-
rameter ημν ≡ βμν/2
 , where 
 is the frequency of local
collective vibrations. This is a dimensionless parameter that
defines whether the collective motion is underdamped, η 	 1,
or overdamped, η 
 1. Accordingly, one develops different

models for the underdamped and overdamped motions. In the
model by Kramers [55] one can find the expressions for the
limits of high viscosity, �HV, and low viscosity, �LV. These
expressions are rather different. So, it is important to know
whether the nuclear fission process is underdamped or over-
damped in order to develop meaningful models.

In our calculation we use the reduced value of wall and
window friction with the reduction factor ks = 0.27. The
damping factor shown in Fig. 9 includes this factor, ημν =
ks(γ M−1)μν/2
 .

The z0z0 and εε components of damping tensor ημν for
222Th are shown in Fig. 9 for the deformations at the saddle
and above. As one can see, ημν is more stable with respect to
deformation as compared to γ or M alone. The value of ηz0z0

varies in the limits from 2.6 to 0.35. The value of ηεε varies
in the limits from 1.9 to 1.3. Thus, in the present Langevin
treatment with the macroscopic transport coefficient the fis-
sion process is neither underdamped nor overdamped. So, the
application of the Kramers high viscosity limit formula to the
nuclear fission width may not be justified.

FIG. 9. The damping parameters ηz0z0 and ηεε for 222Th as a function of the elongation z0/R0 and mass asymmetry α at fixed δ1 = δ2 = 0.2
and ε = 0.35.
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FIG. 10. Top: The comparison of calculated fission fragment mass distributions (solid lines) for a few thorium isotopes with the
experimental data [31] (open circles). The mass distributions calculated with h̄
 = 0 (T ∗ = T ), h̄
 = 2 MeV, and h̄
 = 4 MeV are shown
by red, black, and blue lines respectively. Bottom: The distribution of fission events in the elongation-asymmetry plane.

This conclusion is correct under the assumption that the
underlying approximations are reliable. For the damping
parameter shown in Fig. 9 we used the Werner-Wheeler ap-
proximation for the inertia, the reduced wall friction with the
reduction factor ks = 0.27, and the frequency 
 = 2 MeV/h̄.
For other parameter values the damping factor may be
different.

VI. NUMERICAL RESULTS

In this section we present the results of the numerical solu-
tion of the five-dimensional Langevin equations (1) with the
potential energy and transport coefficients specified above. In
these calculations the damping of the shell correction with the
excitation energy was described by the method developed in
[51]. The frequency of local collective vibration was assumed
to be constant, h̄
 = 2 MeV. In principle, 
 should de-
pend on the deformation. But, the account of this dependence
makes the computation time too long.

To justify the choice of h̄
 , we carried out the calculations
with three values of h̄
 : 
 = 0 (T ∗ = T ), h̄
 = 2, and
h̄
 = 4 MeV; see the red, black, and blue curves in Fig. 10.
The mass distributions calculated with all three values of 


are almost identical. Thus, the choice h̄
 = 2 MeV is quite
reliable. To solve Eqs. (1) and (2), besides the coefficients
of the equations, one should fix the initial values and final
conditions. The calculations for all thorium isotopes were
started from the same point close to the ground state de-
formation, {qμ} = 0.2, 0.2, 0.2, 0.0, 0.35, with zero collective
momenta {pμ} = 0. The integration of equations continued

until the neck radius turned into r (crit)
neck = 1 fm. At this point

the solutions of the equations provide all the information
on the shape, collective velocities, and excitation energy of
the system. This information makes it possible to calculate
the moments of the density distribution, the mass distribu-
tion of fission fragments, the prescission and total kinetic
energies, and the excitation energy of the nucleus just before
scission.

Unfortunately, the 5D computations are too time consum-
ing. The 5D configuration space is much larger compared with
4D space. The trajectories travel in 5D space much longer
before they reach the scission point.

Another problem is the lack of memory space. For the grid
in z0, δ1, δ2, α that we use usually, 41 × 31 × 31 × 40, we can
add only 5 points in ε. Otherwise the memory of computer is
overfilled. For more points in ε we have to reduce the grid in
other deformation parameters. In the present calculations we
used 0.1 � ε � 0.5 with �ε = 0.1.

The distribution of fission events in the elongation-
asymmetry plane is shown in the bottom part of Fig. 10.
The red line is the average value of z0/R0. One can see that
symmetric fission occurs at a much more elongated config-
uration than mass-asymmetric fission. The symmetric fission
mode could therefore be called superlong. The elongation of
this mode is almost the same for all three isotopes. Thus, our
calculations do not confirm the conclusion made in [56], from
the analysis of multiplicity of postscission neutrons, that the
symmetric fission mode in 222Th is supershort.

For a more definite conclusion it is necessary to carry out
5D calculations of more observables of the fission process:
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FIG. 11. The calculated mass distributions of fission fragments
for the sequence of thorium isotopes at the excitation energy E∗ = 11
MeV.

the charge and kinetic energy yields, fragment mean N/Z ,
multiple moments and the excitation energies of fragments,

and postscission neutron multiplicities and their correlations.
This will help investigation of the interpretation of the mea-
surement, since the additional observables will be a better
probe of the deformation at scission. Such calculations will be
the subject of our future work. Recently, similar 4D calcula-
tions with Fourier-over-spheroid shape parametrization were
published by Pomorski et al. [57].

The calculated mass distributions of fission fragments for
the sequence of thorium isotopes at the excitation energy
E∗ = 11 MeV are shown in Fig. 11. The calculated distri-
butions agree qualitatively with the experimental results of
Schmidt et al. [27].

VII. SUMMARY

Calculations within the five-dimensional dynamical
Langevin approach provide much better agreement with the
available experimental data compared with 4D calculations.
In particular, the transition from mass-symmetric to
mass-asymmetric fission via the triple-humped distribution in
fission of thorium isotopes is well reproduced.

The use of five-dimensional Langevin calculations makes
theoretical predictions for the observables of fission process
much more reliable.
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