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Simultaneous calculation of elastic scattering, fusion, and direct cross sections
for reactions of weakly bound projectiles
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Simultaneous analyses are performed of cross-section data for elastic scattering, fusion, Coulomb breakup,
and other direct yields for the 6He + 209Bi system at near Coulomb-barrier energies. The bare and dynamical
polarization potentials are constructed microscopically from the structure of the colliding nuclei and they
reproduce all the data well with only two adjustable parameters. This method of calculation can be successfully
applied to the reactions of weakly bound and exotic projectiles with heavy targets.
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I. INTRODUCTION

In recent decades there has been significant progress in the
exploration of the mechanisms involved in heavy-ion colli-
sions at energies close to the Coulomb barrier. One particular
focus has been on reactions caused by radioactive halo nuclei,
which may be visualized as consisting of one or two loosely
bound valence nucleons orbiting at a large distance from a
tightly bound core. When these reactions occur at low ener-
gies, close to the Coulomb barrier, they are mainly dominated
by fusion and direct reactions such as transfer and breakup.
Reviews of the reactions induced by these exotic nuclei inter-
acting with heavy targets may be found in Refs. [1–3].

The optical model potential is often used to describe elas-
tic scattering data within a single-channel approach, and for
heavy-ion projectiles is most commonly of Woods-Saxon vol-
ume form for both real and imaginary parts. However, the
imaginary potential is occasionally split into volume and sur-
face components, with a short-range volume term arranged to
simulate the in-going-wave boundary condition to model loss
of flux due to fusion and a surface term with a longer range
to account for loss of flux due to nonelastic direct reaction
channels. This is the so-called extended optical model intro-
duced by Udagawa and collaborators [4–8], which gives good
simultaneous fits to the fusion and elastic scattering data for
a large variety of systems. The direct component can also be
taken as a complex potential, i.e., including a real part, within
this model, as in Refs. [9–12].
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In the reactions of weakly bound projectiles with heavy
targets the projectile can become polarized by and/or break
up in the strong electric field of the target. The resulting
strong Coulomb dipole excitation and breakup can be treated
by introducing an additional interaction, which influences the
elastic scattering. This additional interaction is often referred
to as the Coulomb dynamical polarization potential (CDPP).
Recently [13,14], a new expression for the CDPP was ob-
tained by solving the Schrödinger equation for the internal
motion of an exotic neutron-rich projectile (considered as a
two-body deuteronlike cluster structure) incident on a heavy
target nucleus using the adiabatic approximation. However,
in the optical model (OM), the CDPP potential alone cannot
entirely account for the long-range interactions in these exotic
systems. To address this issue, a long-range nuclear dynamical
polarization potential (NDPP) is introduced to account for
the nuclear breakup and transfer reactions, so that the direct
surface potential now consists of the CDPP plus the NDPP.
This NDPP utilizes either a volume or surface Woods-Saxon-
type potential, usually with large radius and/or diffuseness
parameters, see for example Refs. [15–17].

In this work we present a form of the extended optical-
model potential, which is able simultaneously to reproduce
elastic scattering, fusion, Coulomb breakup, other direct
yields, and total reaction cross-section data with two ad-
justable parameters. We apply this potential to calculations for
the 6He + 209Bi system.

II. THEORY

A. Optical potentials

1. Bare nuclear potential

The nuclear interaction in the absence of coupling effects
is represented by a short-range complex nuclear potential—
the bare potential—which is often of volume Woods-Saxon
form. However, in this work the real part of the bare nuclear
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potential is taken from the São Paulo potential (SPP) [18],
which reproduces with reasonable accuracy the experimental
angular distributions of a large number of stable systems over
a wide energy range with no adjustable parameters [19,20]. It
is obtained by multiplying the double folding potential (VF) by
an energy-dependent factor:

VSPP(R) = VF(R)e−4υ2/c2
, (1)

where υ is the relative velocity between the projectile and
target, c is the speed of light and VF is given by [21]

VF(R) =
∫

ρp(rp)ρt (rt )υnn(s)drpdrt , (2)

where ρp(rp), ρt (rt ) are the nuclear matter density distribu-
tions for projectile and target nuclei, respectively, s = |R −
rp + rt | is the distance between the two nucleons, and υNN(s)
is the effective NN interaction, which in this case is the zero-
range effective NN interaction υNN(s) = V0δ(s), with V0 =
−456 MeV [18].

The imaginary potential may be of Woods-Saxon form or
the SPP potential multiplied by a normalization factor [19], in
which case the bare optical potential is given by

UN(R) = NRVSPP(R) + iNIVSPP(R), (3)

where NR and NI are the normalization factors that fit the data
and simulate the polarization effects. A systematic analysis
of many stable tightly bound nuclei in Ref. [19] arrived at
NR = 1.00 and NI = 0.78 as reference values of the normal-
ization factors, and this bare potential was used recently to
analyze reactions with exotic and stable nuclei [20]. The SPP
has also been shown to be a reasonable basis for the analysis of
fusion reactions induced by stable weakly bound nuclei [22].
Note that since the weakly bound nuclei considered here are
composed of a core nucleus and one or two valence nucleons,
the short-range bare potential may also be obtained by fitting
suitable projectile core-target elastic scattering data.

2. Coulomb dynamical polarization potential (CDPP)

Recently [13,14], the CDPP was obtained by solving the
formalism for the scattering of a weakly bound two-body pro-
jectile consisting of a core plus a cluster of n valence neutrons
from a heavy target. To solve the Schrödinger equation of
the system and obtain the CDPP one may use the adiabatic
approximation �(r, R) ≈ ψ (R)φ(r, R), where ψ (R) refers
to the wave function of the center of mass and φ(r, R) to
that of the internal motion of the projectile; R and r are the
coordinates of the projectile-target and the projectile valence-
core systems, respectively. The resultant CDPP (δUC) must
obey(

ε0 + δUC (R)

ε0

)
H+

0 (ρ)F0(ρ) − Q2(R)H+′
0 (ρ)F ′

0 (ρ) = Q(R),

(4)

where H+
0 = G0 + iF0, with F0 and G0 the regular and irreg-

ular Coulomb functions in ρ = k(R)R and the Sommerfeld
parameter η = (m2

c/μp)ZPZTe2/h̄2k(R), where μp is the core-
valence reduced mass, mc the mass of the charged core, and

ZP and ZT the charges of the projectile and target, respec-

tively. Q(R) = μp

mc

k(R)
κ0

with κ0 =
√

−2μpε0/h̄2, where ε0 is
the binding energy of the valence neutron or neutron cluster
with respect to the charged core of the projectile. If the core is
in an excited state ε0 is replaced by ε∗

0 = ε0 + εIπ
c

where εIπ
c

is the excitation energy of the core state of spin-parity Iπ
c . The

wave number of the charged core in the field of the target that
is associated with the wave function of the internal motion of
the projectile,

k(R) =
√

2m2
c

μph̄2 [VC (R) + ε0 + δUC (R)], (5)

may be approximated as in Ref. [13] by assuming δUC (R) �
VC (R) to obtain analytical formulas for the real and imaginary
parts of the CDPP:

δVC (R) = ε0

[
QG0F0 + Q2G0F0G′

0F ′
0 + Q2F 2

0 F ′2
0

F 4
0 + G2

0F 2
0

− 1

]

δWC (R) = ε0

[
Q2F0F ′

0 − QF 2
0

F 4
0 + G2

0F 2
0

]
. (6)

Note that k(R) depends parametrically on the Coulomb poten-
tial between the projectile and target, VC (R) and is different
from the wave number of the center-of-mass motion of the
system, which describes the motion of the projectile along
the Rutherford trajectory, K =

√
2μ(E − ε0)/h̄2 where E is

the incident energy of the projectile and μ is the reduced
mass of the projectile-target system. The CDPP of Eq. (6)
thus depends on the structure of the system but not on the
incident energy of the projectile. At this point we should
add that the local momentum k(R) becomes complex at large
distances where R > ZPZTe2/ε0, and in this case we would
need to use the Coulomb function for the complex arguments
ρ and η. However, in this work, for the 6He + 209Bi reaction
using ε0 = 1.6 MeV for 6He, k(R) becomes complex when
R > 149.4 fm and this is larger than the effective distances
needed to analyze this reaction.

This CDPP has been successfully applied to the calcula-
tion of Coulomb dissociation at high energies by including
excitation to the continuum [14]. In addition, the dipole po-
larizability, α0, may be obtained by fitting the long-range real

part of Eq. (6) by the classical expression δVC = − 1
2α0

Z2
Te2

R4 at
large distances [13]:

δVC (R) −→ −1

2

(
h̄2μpZ2

Pe2

16m2
cε

2
0

)
Z2

Te2

R4
(7)

so that

α0 = 1

16

h̄2μpZ2
Pe2

m2
cε

2
0

. (8)

The resulting values are in good agreement with those ob-
tained using other methods [13]. The same expression for
the polarizability can be derived from the response function
dB(E1, ε)/dε obtained in the simple cluster model [23]

dB(E1, ε)

dε
= 3h̄2μ

π2m2
c

√
ε0(ε − ε0)3/2

ε4
(9)
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from which we get

α0 = 8π

9

∫ ∞

ε0

1

ε

dB(E1)

dε
dε = 1

16

h̄2μpZ2
Pe2

m2
cε

2
0

, (10)

where the integrated B(E1) is given by

B(E1) =
∫ ∞

ε0

dB(E1)

dε
dε = 3

16π

h̄2μpZ2
Pe2

m2
cε0

= 3

π
α0ε0.

(11)

The CDPP is thus seen to be indirectly dependent on
dB(E1, ε)/dε.

To examine the behavior of the CDPP at large separation
energies we use the second-order Wentzel-Kramers-Brillouin
(WKB) approximation for the Coulomb functions in Eq. (4).
As ε0 is increased k(R), Q(R), and ρ = k(R)R decrease
whereas η increases. Thus, for large values of ε0 we may use
the approximations of the Coulomb functions for 2η 	 ρ

[24],

F0 
 β

2
eγ , F ′

0 

(

β−2 + 1

8η

β4

t2

)
F0,

G0 
 βe−γ , G′
0 
 −

(
−β−2 + 1

8η

β4

t2

)
G0, (12)

where

t = ρ

2η
, β =

(
t

t − 1

)1/4

,

γ = 2η
(√

t (1 − t ) + arcsin
√

t − π

2

)
. (13)

Similarly to Ref. [25], by expressing k(R), ρ, η, and Q(R) as
functions of δUC (R), ε0, and R and expanding in the small
parameter δUC (R)/ε0, one finds [25]

δVC (R) = −1

2
α0

Z2
Te2

R4

δWC (R) = −
⎡
⎣

√
1

2
α0

Z2
Te2

R4
ε0 + 1

4
α0

Z2
Te2

R4

⎤
⎦e2γ , (14)

where α0 is given by Eq. (8). Since e2γ is small, the imaginary
CDPP tends to zero for large ε0. In addition, this result is
expected from Eq. (6) where for small ρ, F (ρ) and F ′(ρ)
are also small but G(ρ) and G′(ρ) have very large values and
δWC (R) −→ 0.

For small values of ε0, 2η ∼ ρ and Q(R) 	 0. For large
enough values of η we may use the approximation where the
Coulomb functions can be represented by the Airy functions
[24]

G0 + F0 ∼ π1/2(2η)1/6[Bi(x) + iAi(x)],

G′
0 + iF ′

0 ∼ −π1/2(2η)−1/6[Bi′(x) + iAi′(x)], (15)

FIG. 1. The behavior of the CDPP (6) for 6He + 209Bi at the
sensitivity radius Rs = 14.6 fm as a function of the separation energy.
The dashed and dotted curves in (a) represent the real and imaginary
parts of the CDPP, respectively, and the solid line in (b) denotes the
imaginary-to-real ratio. Note the logarithmic separation energy scale
in (b).

where x = (2η − ρ)(2η)−1/3. As ε0 −→ 0, ρ = 2η 	 0 and
these expressions become

G0 + iF0 ∼ �(1/3)
√

w

2
√

π
(
√

3 + i),

G′
0 + iF ′

0 ∼ �(2/3)

2
√

πw
(−

√
3 + i), (16)

where w = ( 2η

3 )1/3. From Eq. (4) one then obtains

δVC (R) + iδWC (R) ∼ ε0Q(R)2

2w2

�(2/3)2

�(1/3)2
(−1 + i

√
3)

∼ 0.1548

[
1

2

μph̄2(ZPZTe2)2

16m2
cR4

]1/3

(1 − i
√

3). (17)

Thus, while for large breakup energies the CDPP becomes
purely real as in the adiabatic expression, conversely, when the
breakup energy tends to zero we get a small repulsive real part
and an attractive imaginary part with |δWC (R)/δVC (R)| −→√

3, independent of ε0. To check these limits, Fig. 1
presents the real and imaginary CDPPs from Eq. (6) and
their ratio δWC/δVC for 6He + 209Bi at the sensitivity radius
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Rs = 14.6 fm [32] as functions of the separation energy (ε0).
It is clear that the calculated real and imaginary CDPPs and
their ratio behave as expected from the above approximations
at small and large separation energies.

This behavior is similar to that of the dynamic polarization
potential induced by dipole Coulomb excitation to a distribu-
tion of dipole states introduced in Refs. [26,27]:

δUC (R) = 4π

9

Z2
t e2

h̄v

B(E1)

(R − a0)2R

×
[

g

(
R

a0
− 1, ξ

)
+ i f

(
R

a0
− 1, ξ

)]
, (18)

with

f

(
R

a0
− 1, ξ

)
= 4ξ 2

(
R

a0
− 1

)2

e−πξ K ′′
2iξ

[
2ξ

(
R

a0
− 1

)]
,

g

(
R

a0
− 1, ξ

)
= P

π

∫ ∞

−∞

f
(

R
a0

− 1, ξ
)

ξ − ξ ′ dξ ′, (19)

where a0 is the distance of closest approach in a head-on
collision, K ′′ is the second derivative of the modified Bessel
function and ξ = a0ε0/h̄v is the Coulomb adiabaticity pa-
rameter [27]. If ξ is large, f (z, ξ ) −→ 0 and g(z, ξ ) −→
z2/(z + 1)3ξ , and one thus obtains the adiabatic expression for
the polarization potential, which is purely real, as in Eq. (7).
If ξ is very small, then f (z, ξ ) −→ 1 and g(z, ξ ) −→ 0. The
polarization potential then becomes purely imaginary.

3. Nuclear dynamical polarization potential (NDPP)

However, the CDPP is usually insufficient completely to
explain the long-range interactions in exotic systems. To
tackle this problem, the direct polarization potential should
include both the CDPP and a long-range nuclear dynamical
polarization potential (NDPP) to factor in nuclear breakup and
transfer. This NDPP typically employs a volume, for example
Ref. [17], or surface, for example Refs. [15,16,28], Woods-
Saxon-type imaginary potential, characterized by large radius
and/or diffuseness parameters. It is sometimes referred to
as the direct potential and may also include a real part, see
Refs. [9–12,28].

The dispersion relation, a consequence of causality, may
be used to connect the real and imaginary parts of the NDPP
according to the following expression [29,30]:

�V (r; E ) = P

π

∫
W (r; E ′)
E ′ − E

dE ′, (20)

where P denotes the principal value of the integral. However,
the empirical optical potential need not necessarily satisfy the
dispersion relation [29] and for weakly bound nuclei the cou-
pling to breakup produces a large repulsive contribution to the
real part of the optical potential, leading to the suggestion that
the dispersion relation may not apply in these circumstances
[30]. Indeed, the empirical optical potentials extracted from
fits to near-barrier 6Li + 208Pb elastic scattering data clearly
do not satisfy such a dispersion relation, the surface strength
of the real potential being essentially energy independent
[31] while that of the imaginary potential increases as the

incident energy is reduced towards the barrier. Conversely, the
7Li + 208Pb potentials are broadly consistent with a dispersion
relation [31].

For 6He + 209Bi the situation is less clear; while it is pos-
sible to fit the data with optical potentials, which satisfy the
dispersion relation within the uncertainties, see Refs. [32,33],
the relatively sparse angular distributions and the associated
uncertainties make it hard to draw a definitive conclusion.
While more complete angular distributions are available for
the near-barrier elastic scattering of the 6He + 208Pb system a
similar result was obtained; the best-fit optical potentials are
consistent with the dispersion relation but the uncertainties
remain such that they are also broadly consistent with little
or no energy dependence of the NDPP [17,34]. In fact, good
fits to the 6He + 208Pb elastic scattering data for incident en-
ergies of 16, 18, and 22 MeV are possible with a completely
energy-independent real potential and a long-range imaginary
potential of fixed geometry and energy-dependent strength
[35]. Effective potentials obtained from continuum discretized
coupled channel (CDCC) calculations, either four-body [34]
or three-body [36], do show some energy dependence but its
relative importance varies significantly with the radial region
examined. Since the radial regions of sensitivity to the po-
tential are different for the real and imaginary parts [34] it
is not clear whether these effective potentials will satisfy a
dispersion relation.

To fix the form of the NDPP we turn to semiclassical the-
ory. Within this framework the breakup probability is found
to depend on the exponential exp(−b/a) [37], where b is
the impact parameter and a = 1/(2κ0) with κ0 =

√
2με0/h̄2

the decay length of the initial wave and ε0 the separation
energy. A similar exponential form was assumed at large dis-
tances for the imaginary surface potential, W (R) ≈ e−(R−Rs )/a,
which accounts for peripheral reactions such as transfer and
nuclear breakup. The strong absorption radius is taken as
Rs = 1.4(A1/3

p + A1/3
t ).

Note that a long-range surface Woods-Saxon potential with
radius RL and diffuseness aL can be approximated by the
exponential form at large distances [28,38]:

exp
(R−RL

aL

)
[
1 + exp

(R−RL
aL

)]2 → exp

(
−R − RL

aL

)
, (21)

which is similar to the semiclassical formula with the same
radius and diffuseness. The same applies to the volume
Woods-Saxon shape:

1

1 + exp
(R−RL

aL

) → exp

(
−R − RL

aL

)
(22)

so that using either form we can fix the radius and diffuseness
from the semiclassical theory and just vary the strength. In this
work the long-range nuclear dynamical polarization potential
is thus taken to be of derivative Woods-Saxon shape:

δUN = δVN + iδWN

= −4(VL + iWL )
exp

(R−RL
aL

)
[
1 + exp

(R−RL
aL

)]2 , (23)
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where RL = 1.4(A1/3
p + A1/3

t ) is the strong absorption radius

and aL = 1/(2κ0) the diffuseness, where κ0 =
√

2με0/h̄2

and ε0 is the separation energy. VL and WL are varied to
fit the data. For 6He: aL = 2.0 fm using ε = 0.975 MeV
(the actual 2n separation energy) and aL = 1.565 fm us-
ing ε = 1.6 MeV (the effective separation energy used in
the improved two-body cluster model of Moro et al. [39]),
which may be compared with 1.25 fm (6He + 209Bi [10]),
2.29 fm (6He + 208Pb) [15], and 1.45 fm (6He + 208Pb [17])
obtained empirically from fitting data. For 11Li, aL = 2.94
fm, which may be compared with 3.42 and 4.00 fm from
11Li + 208Pb [15]. For 11Be, aL = 3.38 fm, which may be
compared with 3.50 fm from 11Be + 64Zn [40,41] and 3.2
fm from 11Be + 64Zn [16]. This therefore seems a reasonable
basis for fixing the geometry of the NDPP.

4. Total optical potential

The polarization potentials are added to the bare optical
potential to give the generalized optical potential. According
to the Feshbach theory [42], the effective optical potential can
be written as UN + δU where δU ≡ Upol(R) is the dynamical
polarization potential. Here we have Coulomb and nuclear
contributions. The total projectile-target optical potential is
given as:

UOP(R) = UC (R) + UN (R) + δUC (R) + δUN (R), (24)

where UC (R) = VC (R) is the usual real Coulomb poten-
tial with a radius of RC = 1.25(Ap

1/3 + At
1/3), UN (R) the

bare nuclear potential that accounts for the fusion, and
δUC (R) = δVC (R) + iδWC (R) is the CDPP (6) that represents
the dipole polarization and Coulomb breakup. δUN (R) =
δVN (R) + iδWN (R) is the long-range nuclear dynamical polar-
ization potential (or NDPP), which accounts for the nuclear
breakup and transfer reactions. We note that it is possible to
split the NDPP into two parts, one for nuclear breakup and
the other for transfer. To a first approximation these may em-
ploy the same diffuseness and radius, just the strengths being
varied to fit the corresponding cross-section data if these are
available. In reactions induced by weakly bound projectiles
with light targets we may ignore the CDPP. For more complex
reactions, other components can be added.

B. Cross sections

1. Partial and total reaction cross sections

Using the continuity equation, the total reaction cross sec-
tion can be calculated from the imaginary potential as

σReac = − 2

h̄υ
〈ψ |W |ψ〉 = − 2

h̄υ

∫
d3R|ψ (R)|2W (R), (25)

where υ is the asymptotic relative velocity and ψ is the
usual distorted wave function that satisfies the Schrödinger
equation with the full optical model potential U (R) = V (R) +
iW (R).

Similarly, the direct reaction and fusion cross sections can
be calculated within the extended optical model using the
imaginary surface-type direct-reaction and volume-type fu-
sion potentials, respectively [6–8,43]. Here we have three

contributions to the absorption: fusion, direct nuclear, and di-
rect Coulomb, so the total fusion and direct cross sections are
calculated as

σReac = σF + σDN + σDC

= − 2

h̄υ
〈ψ |WN (R) + δWN (R) + δWC (R)|ψ〉 (26)

and then

σi = 2

h̄v
〈ψ |Wi(R)|ψ〉(i = DN, DC, or F). (27)

Note that DN refers to direct nuclear reactions such as trans-
fer and nuclear breakup. DC refers to the direct Coulomb
breakup. In terms of the partial-wave radial wave functions
χ�(R), the complete wave function, ψ (R) = ψ (R, θ ), of the
Schrödinger equation can be expanded as

ψ (R) = 1

kR

∞∑
�=1

(2� + 1)i�χ�(R)P�[cos(θ )], (28)

where P�[cos(θ )] are Legendre functions and satisfy the or-
thogonality relation∫ 1

−1
dcos(θ )P�[cos(θ )]P�́[cos(θ )] = 2

2� + 1
δ��́ (29)

and then

σi =
∑

�

σi;� = − 2

h̄υ

4π

k2

∞∑
�=1

(2� + 1)
∫

dR|χ�(R)|2Wi(R)

= π

k2

∑
�

(2� + 1)Ti,�, (30)

where the transmission coefficient (Ti,�) is given by

Ti,� = 8

h̄υ

∫ ∞

0
|χ�(R)|2Wi(R)dR. (31)

Thus, for a given shape the depths of the DN and F imaginary
potentials may be fixed by fitting the corresponding cross-
section data if these are available, although the strength of the
fusion imaginary potential is usually held fixed. In practice,
the strengths of the real and imaginary parts of the DN poten-
tial are usually fixed by fitting the elastic scattering data and
these are the only adjustable parameters of the present model.

2. Calculation of angular distributions

In the semiclassical approximation [44–47], the trajectory
impact parameter b and orbital angular momentum � are re-
lated to the scattering angle in the center-of-mass frame θc.m.

by

b = �

k
= D0

2
cot

θc.m.

2
, (32)

where D0 = ZPZT e2

Ec.m.
is the distance of closest approach in a

head-on collision, k = √
2μEc.m/h̄ is the wave number, Ec.m.

is the incident energy in the center-of-mass system, and ZP

and ZT the charges of the projectile and target ions, respec-
tively. By treating � as a continuous variable and assuming
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that dσi (�)
d�

= σi;� [9], the angular distribution of the cross sec-
tion for each potential is given as [9]

dσi(�)

d�
= 1

2πsin(θc.m.)

d�

dθc.m.

dσi(�)

d�

= kD0

16π

1

cos
(

θc.m.
2

)
sin3

(
θc.m.

2

)σi;�. (33)

The angular distribution of the total transfer plus breakup
cross section then comes from the direct nuclear and Coulomb
contributions and is written as [9,48]:

dσBU

d�
= kD0

16π

1

cos
(

θc.m.
2

)
sin3

(
θc.m.

2

)σBU;l (34)

with

σBU;l = π

k2
(2l + 1)

8

h̄υ

∫ ∞

0
|χ�(R)|2[δWC (R) + δWN (R)]dR.

(35)

To calculate the differential cross section for the elastic
scattering, we start from the Rutherford cross section σR =∑

� σR;�, where [9]

σR;� = dσR(�)

d�
= π

k2
(2� + 1), (36)

and then

dσR

d�
= kD0

16π

1

cos
(

θc.m.
2

)
sin3

(
θc.m.

2

) π

k2
(2� + 1). (37)

The elastic transmission for each � can be obtained as TEl,� =
1 − ∑

i Ti,� = 1 − (TF,� + TDC,� + TDN,�) and then

dσEl

d�
= dσR

d�
−

∑
i

dσi

d�
, (38)

where i = F, DC, DN. Here it is convenient to work with the
ratio of the differential cross section to the Rutherford cross
section

Pi = dσi

d�

/
dσR

d�
= 2� + 1

kD0
tan

(
θc.m.

2

)
≈ Ti,�, (39)

where

PEl + PF + PDC + PDN ≈ 1. (40)

III. APPLICATION TO THE 6He + 209Bi SYSTEM

We apply the above methodology to the 6He + 209Bi sys-
tem. This system has been studied many times before, see,
for example, Refs. [10,32,49–52], since it has the most com-
plete data set of any system involving a weakly bound exotic
projectile. It thus provides a severe test of the ability of the
present formalism to describe a wide body of data with only
two adjustable parameters. Remarkably high yields for α-
particle emission have been observed in studies [53–55] of the
6He + 209Bi interaction at energies close to the Coulomb bar-
rier. They have been shown to arise from one-neutron transfer
[56], two-neutron transfer [57], and projectile breakup [53].
The transfer accounts for nearly 75% of the total α-particle
yield [53,58].

FIG. 2. 6He + 209Bi elastic scattering angular distributions cal-
culated using the optical model (solid lines) and the semiclassical
model (dashed lines) compared with the data from Refs. [54,55]. The
c.m. energies corresponding to each distribution are given.

The calculations are carried out using the optical model
framework with the total optical potential of Eq. (24). In the
SPP, the density of 209Bi is given by a two-parameter Fermi
distribution obtained by fitting the appropriate Hartree-Fock
density. The density distribution of 6He is of Gaussian-
oscillator form, ρ = ρcore + ρvalence, where the core density is
usually taken as a single-parameter Gaussian and the density
of the valence nucleon(s) is assumed to have a 1p-shell har-
monic oscillator distribution. Its parameters were obtained by
fitting the measured proton elastic scattering cross sections at
high incident energies using the Glauber multiple scattering
theory [59]. In the CDPP, 6He is described within the 4He +2n
cluster model of Moro et al. [39] with a separation energy of
ε0 = 1.6 MeV that simulates the wave functions of realistic
three-body calculations and gives a very good description of
the elastic scattering data for several reactions induced by 6He
[39]. Accordingly, the diffuseness of the NDPP is given as
1.565 fm as noted in Sec. II A 3.

We analyzed the elastic scattering angular distributions
for the 6He + 209Bi system measured at energies around the
Coulomb barrier, namely, at c.m. energies of 14.3, 15.8, 17.4,
18.6, 21.4, and 21.9 MeV [54,55]. The results of the optical-
model calculations are presented in Fig. 2. To check whether
the semiclassical approximation is sufficiently accurate, the
angular distributions of the elastic cross sections calculated
using Eqs. (37) and (38) are also shown in Fig. 2; they are very
close to the optical model results. At the same time the cross
sections were calculated for the fusion, Coulomb breakup,
other direct nuclear yields (nuclear breakup and transfer), and
the total direct yield (the sum of the direct channels: Coulomb
breakup and nuclear breakup plus transfer, corresponding to
the measured inclusive α yield). Note that the DN component
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TABLE I. OM calculations of cross sections for 6He + 209Bi.

Ec.m. VL WL σF σC
bu σDN σα σReac

(MeV) (MeV) (MeV) (mb) (mb) (mb) (mb) (mb)

14.3 1.7 0.61 0.4 51 162 213 214
15.8 1.0 0.52 4.0 87 292 379 383
17.3 0.61 0.45 22.9 127 435 561 584
18.6 0.32 0.36 71.9 161 489 650 722
21.4 0.14 0.29 339 219 594 813 1152
21.9 0.08 0.27 398 227 578 805 1202

will in principle also include a contribution from inelastic
excitation of the target, but for this system it is completely
negligible. These partial cross sections and the total reaction
cross section are listed in Table I and presented in Fig. 3.
The angular distributions of the total direct yield are com-
pared with the measured inclusive α yields at Ec.m. = 18.6
and 21.9 MeV [54] in Fig. 4. Note that the calculated an-
gular distributions are in the center-of-mass frame whereas
the measured inclusive α yields should, due to their inclusive
nature, in principle be in the laboratory frame. Thus, strictly
speaking a direct comparison is not possible. However, the
data of Ref. [54] are plotted therein as a function of θc.m.;
it is not clear whether this is simply a typographical error
or the transformation was made assuming a specific reaction
mechanism. Nevertheless, given the large mass asymmetry of
the scattering system the difference between laboratory and
center-of-mass frames should be relatively small. The breakup
data of Ref. [53] are the result of a coincidence measurement
and were transformed to the reconstructed 6He∗ center-of-
mass frame. They may thus be compared directly with the
Coulomb breakup angular distribution denoted by the dotted
curve on Fig. 4.

The obtained VL and WL values of the NDPP (the only
free parameters in our optical potential) are listed in Table I.
They have a systematic behavior as a function of energy

FIG. 3. Fusion (σF), Coulomb breakup (σC
bu), direct nuclear

(σDN), total direct (σα-yield), and total reaction (σReac) cross sections
calculated with the 6He + 209Bi optical potential from the present
work compared with the experimental data [54,60–62].

FIG. 4. Calculated direct reaction (transfer plus breakup) angular
distributions for the 6He 209Bi system at c.m. incident energies of
18.6 and 21.9 MeV compared with the experimental data. The dotted
and dashed curves denote the Coulomb breakup and the direct nu-
clear contributions, respectively. The circles denote the total α-yield
angular distributions of Aguilera et al. [54]. The diamonds denote
the total breakup cross section data of Kolata et al. [53].

which may be parameterized in an exponential form as VL =
315.3 exp(−Ec.m./2.74) and WL = 2.89 exp(−Ec.m./9.19).
Since there are fusion cross-section data at energies larger
than 21.9 MeV, the calculations were extended to include c.m.
energies larger than 22 MeV using the obtained energy depen-
dence of VL and WL. Thus at these energies we do not have any
free parameter in our potential. All the data are simultaneously
well reproduced. However, it is possible to obtain almost as
good fits with VL fixed at zero, i.e., with a purely imaginary
NDPP and thus only one adjustable parameter, although al-
lowing VL to vary does give improved agreement, in particular
with the total reaction and α-yield cross sections. We note
here that in our discussion we refer to the direct nuclear part
of the optical potential as consisting of the combined effects
of transfer and nuclear breakup. However, in this system
the Coulomb breakup is dominant and much more important
than the nuclear, so we do not consider the nuclear breakup
separately since the transfer cross section is the dominant
contributor to the direct nuclear (DN) cross section.

Further to elucidate the behavior of the different contri-
butions to the total cross section, we define the ratios Ri =
σi/σReac where i = F, DC, DN, D and F, DC, DN, D refer to
the fusion, Coulomb direct (Coulomb breakup), nuclear direct
(nuclear breakup and transfer), and total direct (α-yield), re-
spectively. These ratios are shown in Fig. 5(a) as a function
of Ec.m/VB where VB is the Coulomb barrier (about 20.3 MeV
[55,60]). We see that below the barrier the total direct con-
tribution is dominant, whereas above the barrier fusion is the
dominant contributor to the total cross section. The nuclear
contribution to the α-yield cross section (transfer and nuclear
breakup) is much larger than the Coulomb contribution below
the Coulomb barrier. This rule is reversed for energies higher
than 32 MeV (Ec.m/VB ≈ 1.5) and the Coulomb breakup
eventually becomes dominant at high enough energies. This
is illustrated more clearly in Fig. 5(b) where the ratios of
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FIG. 5. (a) Ratios of fusion (RF), Coulomb direct (Coulomb
breakup RDC), nuclear direct (nuclear breakup and transfer RDN),
and total direct or α-yield (RD) cross sections to total reac-
tion cross sections for the 6He + 209Bi system. (b) Ratios of the
Coulomb and direct nuclear contributions to the total direct cross
section (σα-yield).

the Coulomb direct and nuclear direct cross sections to the
α-yield cross section are plotted.

At Ec.m ≈ 22 MeV the calculated Coulomb breakup is 227
mb, which is close to the experimental value of 205(65) mb
[53] or the calculation of Ref. [58], 218 mb. The calculated
DN cross section is about 578 mb, which is in agreement
with the measured transfer cross section of 565 mb [53]. The
α yield is about 805 mb, which is in agreement with the
measured values 770(140) mb [53] and 773(31) mb [54,55].
The calculated total reaction cross section, the sum of the
fusion and direct reaction yields, is in good agreement with
the experimental values of 1080(148) mb [53] or 1170(150)
mb [54,55] and the calculation of Rusek [58], 1182 mb.

At 18.6 MeV, our calculated value for the α-yield cross
section of 650 mb is close to the measured one of 643(42)
mb [54]. The direct nuclear contribution is about 75% of
the α-yield cross section at all the energies considered here,
which is the same ratio deduced from previous measurements
and calculations [53,56–58] assuming that transfer is the main
component of the direct nuclear processes.

Figure 6 shows the bare, CDPP, NDPP, and the total poten-
tials used to calculate the cross sections for the 6He + 209Bi
system at Ec.m. = 21.9 MeV. The real CDPP has the longest
range due to the polarization of the 6He projectile and the

FIG. 7. Energy dependence of the (a) real and (b) imaginary parts
of the total optical potential (24) at the sensitivity radius of 14.6 fm
for 6He + 209Bi system in comparison with the results of previous
optical model fits [32].

imaginary CDPP and NDPP, which account for the loss of flux
due to the other direct reaction processes, are also of much
longer range than the bare potential. Figure 6(c) shows that
adding the CDPP alone to the bare potential cannot reproduce
the data and the long-range NDPP is needed to account for the
full deviation from the Rutherford cross section.

Figure 7 shows the energy dependence of the real
[Fig. 7(a)] and imaginary [Fig. 7(b)] parts of the total optical
potential (24) at the sensitivity radius of 14.6 fm [32] com-
pared with the corresponding values from the optical model
fits of Ref. [32]. It is clear that both the real and imaginary
potentials have long ranges even below the Coulomb barrier.
The largest contributor to the real part at the sensitivity radius
is the CDPP, whereas the imaginary NDPP is the largest con-
tributor to the imaginary part below the Coulomb barrier. This
is consistent with the observed very large cross sections for
the transfer of one or two neutrons at these low energies. At
higher energies, greater than 32 MeV, the imaginary CDPP

FIG. 6. (a) and (b) The real and imaginary parts of the bare, CDPP and NDPP potentials at 21.9 MeV. Note that the bare and CDPP
potentials do not depend on the incident energy. (c) Calculated angular distributions for 6He + 209Bi elastic scattering compared to the data at
Ec.m. = 21.9 MeV [54,55] showing the influence of the CDPP and NDPP.
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becomes larger than the imaginary NDPP and Coulomb
breakup makes the largest contribution to the direct cross
section, see Fig. 5(b).

IV. SUMMARY AND CONCLUSIONS

In summary, a simultaneous analysis has been carried out
of cross-section data for elastic scattering, fusion, Coulomb
breakup, and other direct nuclear channels of the 6He + 209Bi
system within the framework of the extended optical model
[4–8]. The optical potential used consisted of a short-range
bare nuclear potential (volume type), long-range NDPP (sur-
face type), and CDPP. The bare potential was calculated using
the SPP prescription [18] and the CDPP according to a recent
formalism [13,14]. The NDPP was of Woods-Saxon derivative
form; however, guided by semiclassical theory and the obser-
vation that the results are essentially sensitive to just the tail of
this potential, the radius and diffuseness parameters could be
fixed leaving the real and imaginary depths of the NDPP, VL

and WL, as the only free parameters of the potential adjusted
to fit the elastic scattering angular distribution and reaction
cross-section data. The angular distribution of the total direct
cross section derived from the summation of the DN (transfer
and nuclear breakup) and DC (Coulomb breakup) channels
was also compared with the measured inclusive α production
angular distributions at Ec.m. = 18.6 and 21.9 MeV [54]. All
the calculated cross sections are in good agreement with the
data.

It was found that VL and WL exhibited a simple exponential
dependence on the incident energy, enabling calculation of the
fusion cross section for energies where no elastic scattering
data exist but where the fusion has been measured. These
predictions—the values of VL and WL were fixed following the
systematics—were in good agreement with the data. Thus the
methodology also has some predictive power via extrapolation
into regions where there are no existing data. The success of
the model is at least in part due to the applicability to the
system under study of the semiclassical concepts employed.
Also, the available observables are such that they appear to
be relatively insensitive to interference terms between the
Coulomb and nuclear breakup mechanisms, which cannot be
handled within the present formalism. With these limitations,
the present model has the advantage of being able to describe
well a large body of data over a range of near-barrier energies
with only two free parameters. As such it should prove of use
in planning experiments and also as a source of pseudodata
that may be used to help validate more sophisticated models.
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