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gA-sensitive β spectral shapes in the mass A = 86–99 region
assessed by the nuclear shell model
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Recent years have witnessed an expanding interest in experimental studies of β electrons (electrons emitted
in β− decay transitions) and their energy distributions, the so-called β-electron spectra. These experiments have
been focused mainly on β transitions with electron spectra sensitive to the effective value of the weak axial
coupling gA. In the present paper we make an extensive search for gA sensitive β spectral shapes in the A = 86–99
region using the nuclear shell model with the well established Hamiltonians glekpn and jj45pnb, designed to
render a good description of the spectroscopic properties of nuclei in this mass region. We have found eight
β− decay transitions with various degrees of gA sensitivity. Moreover, these transitions are also important in
pinning down the value of the so-called small relativistic vector nuclear matrix element. In addition, some of the
corresponding mother nuclei are important contributors to the antineutrino flux from nuclear reactors. All this
means that the found β transitions are potentially of great interest for future rare-events experiments.
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I. INTRODUCTION

Rare-events experiments typically look for beyond-the-
standard-model (BSM) physics by, e.g., measurements of rare
nuclear β decays and double β decays. Lately, a booming
interest in these experiments has concentrated on studies of
β electrons (electrons emitted in β− decays) and their energy
distributions, the so-called β-electron spectra. Experimental
and/or theoretical information on these spectra is crucial, e.g.,
for resolving the anomalies related to the antineutrino flux
from nuclear reactors [1,2], and for resolving the common
backgrounds in the rare-events experiments themselves [3].
Also, pinning down the effective values of weak couplings is
a considerable incentive for those present and future β-decay
experiments able to tackle the spectral shapes of β electrons.
In particular, determination of the effective value of the weak
axial coupling gA is needed for the estimation of the sensitiv-
ities of experiments trying to measure the neutrinoless double
beta (0νββ) decay since the 0νββ half-life is proportional
to the inverse fourth power of gA [4–6]. The implications of
detection of this decay mode are fundamental as discussed in
the recent reviews [7–10].

Nuclear β decays vary in complexity, from allowed to
highly forbidden ones: In the allowed Fermi and Gamow-
Teller decays no orbital angular momentum is transferred to
the emitted leptons [11], whereas in the forbidden decays [12]
a nonzero orbital angular momentum is transferred. As in the
case of allowed β decays, also in the case of forbidden unique
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β decays the lepton phase space can be separated from the
nuclear part, resulting in a universal β spectral shape, inde-
pendent of nuclear-structure details [11]. Of special interest
for the rare-events experiments are the forbidden nonunique
β decays for which the β spectral shapes can be strongly
nuclear-structure dependent through several nuclear matrix
elements (NME). These NME depend, in turn, on the structure
of the wave functions of the states involved in a β-decay
transition.

In addition to the many NME, the (partial) half-life of a
forbidden nonunique β transition depends on the so-called
effective value of gA, recently discussed in the reviews [5,6,8].
As discussed in these reviews, the effective value of gA is
quenched relative to the bare-nucleon value gA = 1.27. Only
in rare cases, for first-forbidden β-decay transitions with
change in parity and no change in angular momentum, is there
an enhancement of gA present [13]. As mentioned earlier,
pinning down the effective value of gA is of crucial importance
for quantifying the impact on the BSM physics stemming
from the gained data of rare-events experiments. As discussed
in [14,15], this information can be gained by using the so-
called spectrum-shape method (SSM). Use of SSM requires
a β-electron spectrum with a notable gA dependence in its
shape. In this case information on the effective value of gA

can be gained through the comparison of computed template
β spectra, for different gA values, with the measured one with
the aim to find a match. Such SSM analyses of β-spectral
shapes of individual β− transitions have been done recently
for the fourth-forbidden nonunique β decays of 113Cd and
115In in [16–18]. An enhanced version SSM (enhanced SSM)
was introduced in [19,20] and the spectral moments method
(SMM) in [21]. Measurements of the 113Cd and 115In β
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spectra are being extended also to other potentially sensitive
candidates, as in the case of the ACCESS Collaboration [22].

An additional ingredient in the theoretical analyses of
β spectral shapes is the so-called small relativistic NME
(sNME) used to fix the measured (partial) half-life in the
enhanced SSM [19,20] and the SMM [21]. In spite of its
smallness, sNME can influence the (partial) half-lives and
shapes of β-electron spectra quite strongly, see [3,17,21]. The
sNME gathers its major contributions outside the proton (neu-
tron) valence major shell that contains the proton (neutron)
Fermi surface. This makes its calculation particularly hard for
the nuclear shell model (NSM), exploited in this work, which
typically uses as valence space just the valence major shell for
both protons and neutrons.

The sNME can be related to the so-called large vector
NME (l-NME) by using the conserved vector current (CVC)
hypothesis [12]. The l-NME gathers its major contributions
from the valence major shells so that it is reliably calculable
in the framework of the NSM. Although this CVC-dictated
value of the sNME is an idealization, strictly applicable to an
ideal nuclear many-body calculation [12], it still serves as a
good reference in our search for a realistic value of the sNME.
In our present work we determine the values of the sNME
by fitting the experimental partial half-lives (branching ratios)
corresponding to the eight β-decay transitions that we have
found to depend on the values of gA and/or sNME. In this
case, the dependence of the β spectral shape on the value of
sNME stems from the fact that there are always two values
(or none at all) of the sNME that reproduce the measured
branching of a β transition.

The present article is organized as follows. In Sec. II the
adopted theoretical framework is summarized by introducing
briefly the β spectral shapes and the related NME, as also their
computation using the NSM. Our results are presented and
discussed in Sec. III. Conclusions are drawn in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work we discuss only β− decays which are weak-
interaction processes where a neutron transmutes into a proton
and an electron and an electron antineutrino (ν̄e) are emitted
within a nuclear environment:

n → p + e− + ν̄e.

In the following, we describe briefly the theory of β-
electron spectral shapes, and their connection to the effective
value of the weak axial coupling gA. We also discuss the
NME, in particular the sNME and its role in the present
calculations. Furthermore, the NSM, alongside its effective
interactions and single-particle model spaces are discussed.

A. β spectral shapes

The partial half-life corresponding to a branching ratio of a
transition to a particular final state in the daughter isobar can
be obtained from the expression

t1/2 = κ/C̃, (1)

where κ = 6289 s is a collection of natural constants [20] and
the integrated shape function reads

C̃ =
∫ w0

0
S(we)dwe, (2)

where the shape function S(we) can be written as

S(we) = C(we)pwe(w0 − we)2F0(Z,we). (3)

In this expression, F0(Z,we), with Z as the proton number
of the daughter nucleus, is the usual Fermi function taking
into account the final-state Coulomb distortion of the wave
function of the emitted electron and

w0 = W0

mec2
, we = We

mec2
, p = pec

mec2
=

√
w2

e − 1 (4)

are kinematic quantities scaled dimensionless by the electron
rest mass mec2. Here, pe and We are the momentum and
energy of the emitted electron, respectively, and W0 is the β

endpoint energy, which for the ground-state transitions defines
the β-decay Q value. The shape factor C(we) contains the
Fermi and Gamow-Teller NME for allowed transitions [11]
and in general it is a complicated combination of leptonic
phase-space factors and NME, as described in detail in [12]
and recently in [14,15].

In the current work, we discuss first-forbidden and
second-forbidden nonunique β−-decay transitions and the as-
sociated β-spectral shapes S(we). The presently discussed
first-forbidden β transitions are pseudovector (change in par-
ity) �J = 1 (change of one unit of angular momentum)
transitions, and the second-forbidden transition, correspond-
ing to the decay of 99Tc, is a �J = 2 tensor (no change in
parity) transition. All these transitions have both vector and
axial-vector components and depend on more than one NME,
thus being sensitive to details of nuclear structure through the
initial and final nuclear wave functions. For the vector part we
adopt the CVC-compatible value gV = 1.0 of the weak vector
coupling. In this work, we will refer to the effective geff

A as
simply gA and it should not be confused with its free-nucleon
value gfree

A = 1.27.
Our particular aim is to find β spectral shapes that are

sensitive to the effective value of gA. This dependence is
enabled by the interference of the vector and axial-vector parts
with the mixed vector-axial-vector part in the decomposition

S(we) = g2
VSV(we) + g2

ASA(we) + gVgASVA(we) (5)

of the shape function. Thus far only very few cases with
a sizable sensitivity of S(we) to the value of gA have been
identified [8,19,20]. Another dependence of S(we) can come
from the chosen value of sNME [3]. Details related to this
chosen value of sNME are highlighted below.

B. β spectral shapes and the value of the sNME

The small relativistic NME (sNME) can play an important
role in combined studies of β spectral shapes and branch-
ing ratios (partial half-lives) [3,17,20,21]. In these works
the sNME has been used as a fitting parameter, together
with gA, in order to fit the experimental β spectral shapes
and branching ratios simultaneously. In the nuclear-structure
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calculations, the sNME gathers contributions outside the nu-
cleon major shell(s) where the proton and neutron Fermi
surfaces lie. Due to the limitation of the NSM valence space
to these shells only, the value of the sNME turns out to be
unrealistic (practically zero) in the NSM calculations.

In an ideal case (infinite valence spaces, perfect nuclear
many-body theory) the value of the sNME is tied to the value
of the so-called large vector NME (l-NME) by the CVC hy-
pothesis [12] through the relation

VM(0)
KK−11 =

⎛
⎜⎝

(
−Mnc2+Mpc2+W0

)
×R

h̄c + 6
5αZ√

K (2K + 1) × R

⎞
⎟⎠ × VM(0)

KK0, (6)

where the left side of the equation is the sNME, the last
term on the right is the l-NME, and K denotes the order
of forbiddenness, with K = 1 (K = 2) denoting the first-
forbidden (second-forbidden) decays. The quantities Mn and
Mp denote neutron and proton masses, respectively. W0 is
the available endpoint energy for the decay, h̄ the reduced
Planck constant, α is the fine-structure constant, and c the
speed of light. Lastly, Z is the atomic number of the daughter
nucleus, and R = 1.2A1/3 is the nuclear radius in fm [11],
A being the nuclear mass number. The value of the l-NME
can be rather reliably computed by the NSM since the main
contributions to it stem from the major shell(s) where the
nucleon Fermi surfaces lie. The CVC value of sNME can
thus be considered as a good reference for the proper value of
the sNME.

In our calculations, we adopt the approach of fitting the
sNME such that each individual β− transition can be re-
produced in terms of the branching ratio (partial half-life)
accounting for screening, radiative, and atomic exchange
corrections. Visible at low electron energies is the atomic
exchange correction which was originally derived for allowed
β decays [25] and is responsible for the upward tilt seen in all
curves. The experimental branching ratios are taken from [23].
There is a quadratic dependence of the computed branching
ratios on the value of the sNME and hence two values of the
sNME, for each decay transition, reproduce the experimental
branching (in some cases there are only complex-conjugate
pairs of solution available, meaning that the experimental
branching cannot be reproduced by the adopted NSM Hamil-
tonian). One of these two sNMEs is closer to the CVC value
of the sNME and thus offers a way to define the “optimal” β

spectral shape: By this hypothesis, choosing always the sNME
closer to its CVC value produces the most probable spectral
shape for a given β-decay transition. In the following we study
how clear is this selection of the “closer-to-the-CVC” value of
the sNME, and the dependence of the β spectral shape on this
chosen value.

C. Nuclear shell-model calculations

The NSM calculations were performed using the soft-
ware KSHELL [24] with the Hamiltonians glekpn [26] and
jj45pnb [27]. We have used two different single-particle va-
lence spaces for glekpn and jj45pnb, as indicated in Table I.
In particular, for the glekpn valence space we have employed

TABLE I. Single-particle valence spaces and single-particle en-
ergies adopted in the present work. The mass ranges are: Set 1 is for
A < 88, Set 2 is for A = 88–98, and Set 3 is for A = 94–98.

glekpn (MeV)

Set 1 Set 2 Set 3 jj45pnb (MeV)

π0f7/2 −10.480 −8.980 −8.012 −
π0f5/2 −5.678 −4.178 −4.197 −14.938
π1p3/2 −5.761 −4.261 −2.796 −13.437
π1p1/2 −1.693 −1.693 −1.340 −12.0436
π0g9/2 −1.423 −1.423 −0.436 −8.9047

ν0g9/2 −9.306 −9.306 −10.357 −
ν0g7/2 10.927 10.927 11.622 6.2302
ν1d5/2 4.220 4.220 5.236 2.4422
ν1d3/2 7.212 7.217 9.496 2.9448
ν2s1/2 4.371 4.371 6.710 2.6738
ν0h11/2 − − − 4.3795

three different single-particle energy sets, such that Set 1
is suited for the masses A < 88, Set 2 for the mass range
A = 88–98, and Set 3 for the mass range A = 94–98. Set 1
is an adjustment of Set 2 changing only the first three proton
single-particle energies.

For all glekpn computations the valence spaces have been
truncated by including the π0 f7/2 orbital to be part of the
closed core, and the same is true for the ν0g9/2 orbital. In the
case of the jj45pnb calculations, due to M-scheme dimensions
being in some cases higher than 1010, a truncation was made
for A = 95 such that the π0f5/2 orbital was forced to have
from four to six protons, and lastly, for A = 97 the truncation
consists of allowing up to six neutrons in the ν0h11/2 orbital
and the orbital π0 f5/2 was forced to have from three to six
protons. For all other masses, no truncation was made in the
jj45pnb calculations.

III. RESULTS

Here, we detail the steps involved in our calculations. First
we discuss the electromagnetic observables of the involved
states in the light of experimental data. Then the experimental
branching ratios of the β-decay transitions of interest are fitted
by varying the value of the sNME for each selected value of
the axial-vector coupling gA. We then plot the corresponding
β spectral shapes to see if there is any sensitivity of the shapes
to the value of sNME and/or gA.

A. Electromagnetic observables

We probe the reliability of our adopted nuclear wave
functions by first computing their electromagnetic properties,
namely their electric quadrupole moments Q in units of barn
and their magnetic dipole moments μ in units of nuclear
magneton μN . We compare these computed values, as well
as the computed energies, with the available data in Table II.
Here, the states are given in column 1 and their experimen-
tal excitation energies, quadrupole, and dipole moments in
columns 2–4. The corresponding computed excitation ener-
gies, quadrupole, and dipole moments are given in columns
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TABLE II. Comparison of the experimental and jj45pnb-computed and glekpn-computed state energies Eexc (in units of MeV), electric
quadrupole moments Q (in units of barn), and magnetic dipole moments μ (in units of nuclear magneton μN ). The experimental values are
taken from the evaluation [23]. The values in squared brackets denote which set of single-particle energies of glekpn was used in the calculation.
The adopted effective charges are ep

eff = 1.5e and en
eff = 0.5e and the bare g factors gl (p) = 1, gl (n) = 0, gs(p) = 5.585, and gs(n) = −3.826

were used for the magnetic moments.

Experimental evaluation jj45pnb glekpn

Isotope (Jπ ) Eexc (MeV) Q (barn) μ (μN ) Eexc (MeV) Q (barn) μ (μN ) Eexc (MeV) Q (barn) μ (μN )

86Br (1−) 0.000 − − 0.601 +0.079 +1.929 0.614 −0.034 −0.455 [1]
86Kr (2+) 1.565 − +2.20(10) 1.614 −0.148 +2.084 1.585 −0.123 +2.984 [1]
86Kr (4+) 2.250 − +4.1(6) 2.265 +0.450 +3.966 2.340 +0.347 +3.724 [1]
87Br ( 5

2

−
) 0.000 − − 0.519 −0.016 +2.024 0.000 +0.376 +0.612 [1]

87Kr ( 7
2

+
) 1.420 − − 1.532 −0.024 −0.003 1.707 −0.106 +1.124 [1]

87Kr ( 5
2

+
) 0.000 −0.300(3) −1.022(2) 0.000 −0.295 −1.683 0.000 −0.188 −1.683 [1]

87Kr ( 5
2

+
) 0.000 −0.300(3) −1.022(2) 0.000 −0.295 −1.683 0.000 −0.359 −1.408 [2]

87Rb ( 3
2

−
) 0.000 +0.1335(5) +2.75129(8) 0.000 +0.166 +2.842 0.658 +0.177 +3.255 [2]

93Y ( 1
2

−
) 0.000 − −0.139(1) 0.000 − −0.266 0.747 − −0.538 [2]

93Zr ( 3
2

+
) 0.267 − − 0.198 +0.001 −0.042 0.183 −0.108 +0.637 [2]

95Sr ( 1
2

+
) 0.000 − −0.537(2) 0.182 − −1.650 0.275 − −0.751 [2]

95Y ( 1
2

−
) 0.000 − −0.16(3) 0.000 − −0.286 0.646 − −0.535 [2]

95Y ( 3
2

−
) 0.686 − − 0.308 +0.279 +1.700 0.000 +0.396 +2.146 [2]

97Zr ( 1
2

+
) 0.000 − −0.936(5) 0.000 − −1.829 0.271 − −0.757 [2]

97Nb ( 3
2

−
) 1.251 − − 0.925 +0.272 +1.809 0.000 +0.442 +2.174 [2]

99Mo ( 1
2

+
) 0.000 − +0.375(3) 0.202 − −1.799 0.639 − −0.835 [3]

99Mo ( 5
2

+
) 0.098 − −0.775(5) 0.222 +0.435 −0.266 0.000 +0.500 +1.062 [3]

99Tc ( 3
2

−
) 0.509 − − 0.696 +0.020 +1.825 0.763 +0.350 +2.255 [3]

99Tc ( 9
2

+
) 0.000 −0.129(6) +5.687(2) 0.112 +0.022 +5.662 0.512 +0.243 +5.416 [3]

99Tc ( 7
2

+
) 0.141 − +4.48(15) 0.000 −0.091 +4.593 0.397 +0.724 +4.715 [3]

99Tc ( 5
2

+
) 0.181 − +3.48(4) 0.063 −0.476 +3.356 0.638 +0.307 +3.393 [3]

99Ru ( 5
2

+
) 0.000 +0.079(4) −0.641(5) 0.037 −0.002 +0.288 0.000 −0.322 +1.083 [3]

99Ru ( 3
2

+
) 0.090 +0.231(13) −0.248(6) 0.000 +0.055 −0.282 0.276 +0.275 +0.569 [3]

5–7 for the jj45pnb Hamiltonian and in columns 8–10 for the
glekpn Hamiltonian.

From Table II one can see that mostly the computed en-
ergies of the states are in fair agreement with experiment.
Since almost all these states are in odd-mass nuclei, the
state density can be quite high even at low excitation ener-
gies. This makes the prediction of the correct ground state
sometimes quite tricky for the NSM. This can be seen in
Table II as a failure of the NSM to predict the correct ground
state. On the other hand, this is not a serious flaw since in
all these cases the experimentally determined ground state
is not far in excitation in the predicted theoretical energy
spectrum.

In addition to the state energies, a measure of the qual-
ity of the corresponding computed wave functions, relevant
for the present purposes, are the electromagnetic moments.
From Table II one can see that the two interactions mostly
agree in sign for both the electric quadrupole moments Q
and magnetic dipole moments μ of the states involved.
The signs between the computed and measured moments

differ only in cases where the absolute values of these mo-
ments are relatively small, like in the cases of the states
99Mo(1/2+, 5/2+) (μ), 99Tc(9/2+) (Q), and 99Ru(5/2+)
(both μ and Q). However, overall, the correspondence
between the computed and measured values of these moments
is quite good.

B. Values of the small vector matrix element

As already mentioned above, we use the sNME as a fitting
parameter to match, for each selected value of the axial cou-
pling gA, the computed and measured branching ratios of the
β-decay transitions of interest. We obtain two solutions for
the value of sNME for each value of gA, giving two ranges
of sNME values corresponding to our adopted range gA =
0.8–1.2. These ranges are compared with the CVC value of
the sNME, Eq. (6), in Table III. In this table we give, for each
individual β transition (columns 1 and 2), the corresponding
experimental Q value and excitation energy in the final nu-
cleus in units of MeV in columns 3 and 4. We also give the
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TABLE III. Ranges of the values of the fitted sNME (lower and upper bounds), corresponding to range gA = 0.8–1.2 of the axial coupling,
and the CVC value of the sNME for the Hamiltonians jj45pnb (columns 6–8) and glekpn (columns 9–11). The transition is given in columns
1 and 2, and the corresponding measured Q value, excitation energy of the final state, and the branching are given in columns 3–5. The data
are taken from the evaluation [23]. The numbers without parentheses (in parentheses) correspond to the sNME range which is considered to
be more (less) correlated with the CVC value of the sNME.

Evaluation data jj45pnb (×10−2) glekpn (×10−2)

Jπ
i Jπ

f Qexp (MeV) Eexp (MeV) Br. (%) Lower Upper CVC Lower Upper CVC

86Br (1−) 86Kr (0+) 7.633(3) 0.000 15(8) +1.55(−0.16) +2.02(+0.13) +4.99 +3.40(+1.79) +3.53(+2.33) +5.36
87Br ( 5

2

−
) 87Kr ( 7

2

+
) 6.818(3) 1.420 4.8(16) +1.76(−1.18) +1.83(−1.00) +0.50 −1.48(+1.71) −1.43(+1.76) +0.06

87Kr ( 5
2

+
) 87Rb ( 3

2

−
) 3.88827(25) 0.000 30.5(22) +0.57(−0.59) +0.96(−0.57) +1.57 −1.20(+0.23) −0.72(+0.29) −2.79

93Y ( 1
2

−
) 93Zr ( 3

2

+
) 2.895(10) 0.267 4.9(9) −0.66(−0.68) −0.08(−0.48) +1.35 −0.53(−0.20) −0.50(−0.07) −0.61

95Sr ( 1
2

+
) 95Y ( 3

2

−
) 6.090(7) 0.686 8.9(7) −2.04(+4.21) −1.62(+4.55) +1.04 +3.64(+0.40) +5.02(+3.64) +6.82

97Zr ( 1
2

+
) 97Nb ( 3

2

−
) 2.659(2) 1.251 3.90(20) −0.10(−1.41) +0.10(−1.22) −0.52 −1.77(−1.20) −1.31(−0.80) −3.70a

99Mo ( 1
2

+
) 99Tc ( 3

2

−
) 1.3578(9) 0.509 1.16(2) −0.50(−1.38) −0.23(−1.12) −0.47 −1.70(−0.96) −1.66(−1.10) −3.43

99Tc ( 9
2

+
) 99Ru ( 5

2

+
) 0.2975(10) 0.000 99.9984(4) −8.56(+4.96) −5.15(+8.33) −17.1 −3.11(+10.4) −0.93(+12.4) +0.80

aFor this transition, the glekpn Hamiltonian could not reproduce the measured branching ratio for gA = 1.2 thus the ranges are for gA =
0.8–1.1.

measured branching ratio in percents in column 5. The CVC
values of the sNME are given in columns 8 and 11 for the
Hamiltonians jj45pnb and glekpn, respectively. In columns 6
and 7 (columns 9 and 10) we give the lower and upper bounds
of the range of the fitted sNME values, corresponding to the
range gA = 0.8–1.2 of the axial coupling, for the jj45pnb
(glekpn) Hamiltonian. Here, the numbers without parentheses
(in parentheses) correspond to the range which is considered
to be the more (less) compatible one with the CVC value of
the sNME.

Taking a look at Table III indicates that there is a clear cor-
relation of the ranges of the fitted sNME values with the CVC
value of sNME for the decay of 87Kr for both Hamiltonians,
for the decays of 97Zr and 99Mo for the glekpn Hamiltonian,
and the decays of 86Br, 95Sr, and 99Tc for the jj45pnb Hamil-
tonian. In these cases the sign of the CVC value of the sNME
clearly defines the preferred range of the fitted sNME values.
The rest of the cases are less clear and the assignment of
the closer-to-CVC-value range is almost a matter of taste, the
decay of 93Y being the most unclear case. In the end, only
experimental data on the β spectral shapes, when compared
with the corresponding computed shapes, will decide which
range of the sNME values will be the more realistic one.

C. β spectral shapes

We have produced the β spectral shapes, corresponding to
the shape function S(we) of Eq. (3), by adopting the experi-
mental Q values and excitation energies listed in Table III. In
addition, the experimental branching ratios of the table (col-
umn 5) have been reproduced by the sNME fitting procedure
discussed in Sec. III B. Our β-spectral results are summarized
in Figs. 1–3. In Fig. 1 the decay transitions 86Br(1−) →
86Kr(0+) and 87Br(5/2−) → 87Kr(7/2+) are shown. It can
clearly be seen that the decay of 86Br depends very strongly on
the adopted Hamiltonian, the axial coupling, and the sNME,
whereas the decay of 87Br depends quite weakly on all these

three degrees of freedom. For the former decay the strong
dependence on the used nuclear Hamiltonian is conspicuous
for the closer-to-CVC values of the sNME, whereas there is
practically no dependence on the chosen Hamiltonian for the
farther sNME values.

In Fig. 2 the β spectral shapes corresponding to the
decay transitions 87Kr(5/2+) → 87Rb(3/2−), 93Y(1/2−) →
93Zr(3/2+), and 95Sr(1/2+) → 95Y(3/2−) are depicted.
Here, the decays of 87Kr and 93Y depend on the value of gA

and sNME, the latter even strikingly strongly. For the decay
of 95Sr there is only a very weak dependence on the value of
gA but a rather strong dependence on the value of the sNME,
in particular for the Hamiltonian jj45pnb. The decays of 93Y
and 95Sr depend strongly on the chosen NSM Hamiltonian,
whereas for the decay of 87Kr there is practically no depen-
dence on the chosen Hamiltonian.

In Fig. 3 the β spectral shapes corresponding to the de-
cay transitions 97Zr(1/2+) → 97Nb(3/2−), 99Mo(1/2+) →
99Tc(3/2−), and 99Tc(9/2+) → 99Ru(5/2+) are displayed.
The decay of 97Zr shows rather strong dependence on gA

for both Hamiltonians, but strong sNME dependence only
for the jj45pnb Hamiltonian. The dependence on the chosen
Hamiltonian is notable. For the decay of 99Mo there are strong
dependencies on the sNME and the chosen Hamiltonian,
whereas there is a notable gA dependence only for the jj45pnb
Hamiltonian. In the case of the 99Tc decay there is a strong
dependence on the chosen Hamiltonian and the value of gA.
The glekpn interaction shows strong dependence on the values
of sNME, whereas the jj45pnb interaction shows only very
moderate sNME dependence.

IV. SUMMARY AND CONCLUSIONS

In the present article we perform a survey of possible
forbidden nonunique β-decay transitions which would be sen-
sitive to the (effective) value of the weak axial-vector coupling
gA. This dependence would allow determination of the value
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(a)

(b)

FIG. 1. Computed β spectral shapes of the transitions
86Br(1−) → 86Kr(0+) (a) and 87Br(5/2−) → 87Kr(7/2+) (b).
The crossed-blue (red) curves are those constructed by adopting the
value closer to (farther from) to the CVC value of the sNME for
each transition. The light (darkened) gray-hatched regions denote
the span of the curves corresponding to the range of gA = 0.8–1.2
and their corresponding closer (farther) sNMEs for the glekpn
Hamiltonian. The corresponding blue and red dotted curves and
their light (darkened) gray-hatched regions show the results for
the jj45pnb interaction. All the areas under the curves have been
normalized to unity.

of this coupling in comparisons between the computed and
measured electron spectral shapes, in terms of an enhanced
spectrum-shape method (SSM) adopted in the present work.
This enhanced method exploits the additional dimension of
fitting the measured branching ratio of a β transition by using
the sNME as a fitting parameter.

(a)

(b)

(c)

FIG. 2. The same as in Fig. 1 for the transitions 87Kr(5/2+) →
87Rb(3/2−) (a), 93Y(1/2−) → 93Zr(3/2+) (b), and 95Sr(1/2+) →
95Y(3/2−) (c).

Here, we study the nuclear mass region A = 86–99 since
there are lots of possible decay transitions that have mea-
sured branching ratios that are reasonably large in order to
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(a)

(b)

(c)

FIG. 3. The same as in Fig. 1 for the transitions 97Zr(1/2+) →
97Nb(3/2−) (a), 99Mo(1/2+) → 99Tc(3/2−) (b), and 99Tc(9/2+) →
99Ru(5/2+) (c).

enable realistic execution of β spectral-shape measurements.
In addition, in this mass region there are available two well-
established Hamiltonians, jj45pnb and glekpn of the nuclear

shell model (NSM), which would allow comparison of the
results of these two Hamiltonians and a rough estimation of
the uncertainties involved in our NSM calculations.

We have found 8 β-decay transitions of potential interest
for spectral-shape measurements, the corresponding nuclei
ranging from 86Br to 99Tc. The corresponding decay transi-
tions can be grouped in four categories:

Category I includes those transitions which are sensitive
to the values of both gA and sNME. These are the tran-
sitions 86Br(1−) → 86Kr(0+), 87Kr(5/2+) → 87Rb(3/2−),
and 93Y(1/2−) → 93Zr(3/2+) for both Hamiltonians, and
97Zr(1/2+) → 97Nb(3/2−) and 99Mo(1/2+) → 99Tc(3/2−)
for the jj45pnb Hamiltonian, and 99Tc(9/2+) → 99Ru(5/2+)
for the glekpn Hamiltonian.

Category II contains all β transitions that have a strong
gA dependence but a weak sNME dependence. The cor-
responding transitions are 97Zr(1/2+) → 97Nb(3/2−) and
99Mo(1/2+) → 99Tc(3/2−) for the glekpn Hamiltonian, and
99Tc(9/2+) → 99Ru(5/2+) for the jj45pnb Hamiltonian.

Category III contains the β transitions that are rather
weakly sensitive to gA but strongly sensitive to sNME. This
one transition is 95Sr(1/2+) → 95Y(3/2−).

Category IV includes those β transitions that are rather
weakly sensitive to both gA and sNME. This one transition is
87Br(5/2−) → 87Kr(7/2+).

All the discussed transitions are first-forbidden nonunique,
except for the decay of 99Tc which is second-forbidden
nonunique. These β decay transitions are also associated to
fission products that contribute notably to the antineutrino
flux from nuclear reactors. In particular, the first-forbidden
nonunique transitions may play a decisive role in solving the
anomalies related to the reactor antineutrino flux [1].

The transition from Category IV is interesting mainly as
a test of the nuclear-structure calculation, either proving or
disproving the shape of the computed β spectral shape. This
philosophy is along the lines of the spectral-shape study of
the 137Xe(7/2−) → 137Cs(7/2+) transition performed by the
EXO-200 collaboration in [28]. In this SSM study the mea-
sured and computed β spectral shapes showed immaculate
agreement, thus verifying the correctness of the correspond-
ing nuclear-structure calculations, since the computed spectral
shape of this first-forbidden nonunique transition turned out to
be quite independent of the value of the axial-vector coupling.

The transition from Category III is important in deter-
mining the proper value of the sNME, i.e., whether the fitted
value closer to the CVC value of sNME is the right physical
choice, as could be anticipated based on the jj45pnb values
of sNME in Table III. This same strategy is valid also for the
β-decay transitions of Category I. In addition, the transitions
of Category I and Category II open up a way to assess the
effective value of the axial coupling, the ones of Category II
even more straightforwardly.

Building on the shape decomposition in Eq. (5), we can
map the four categories to specific components within this
equation: vector (CV), axial (CA), and vector-axial (CVA). Cat-
egory I arises under two scenarios: first, when the vector-axial
component, with a relevant sNME dependency, is dominant,
resulting in a shape influenced by both gA and sNME; second,
when all three components have comparable magnitudes, and
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the sensitivity to the sNME in either (or both) the vector or
vector-axial components leads to a similar dependence. For
Category II, the dominance of the axial component or a
dominant vector-axial component with weak sNME sensitiv-
ity both yield shapes primarily influenced by gA, albeit with
slight sNME sensitivity. Category III is defined by a domi-
nant vector component sensitive to sNME variations, making
the shape dependent on sNME with minimal gA influence.
Finally, Category IV describes cases where a dominant and
insensitive vector component to sNME variations results in a
shape unaffected by both gA and sNME.

Properties of many of the discussed β spectral shapes de-
pend more or less also on the adopted Hamiltonian, namely
those corresponding to the decays of 93Y, 95Sr, 97Zr, 99Mo,
and 99Tc, and also the one corresponding to the closer-to-
CVC sNME for 86Br. These decay transitions then open up
a way to also test the accuracy of the two widely used NSM
Hamiltonians in describing also the β-decay properties in the
nuclear-mass region of interest here.

Concerning the experimental aspects, the measurements
of the presently discussed β spectral shapes do not need very
high precision in the very beginning owing to the large differ-
ences in many of the spectra with respect to the sNME and gA.
A challenge for the scintillation-based experimental methods
are the short half-lives of the decaying nuclei, excluding 99Tc,
ranging from 55 s to 65.9 h. Typically these methods are used
for long-lived nuclei, like 113Cd [29] and 115In [30]. Other

possible methods are those based on semiconductor detectors
[16] and cryogenic calorimeters [18,22]. Short half-lives may
be a challenge also for these type of measurement methods.
Further methods are metallic magnetic calorimeters, the decay
transition of 99Tc(9/2+) → 99Ru(5/2+) having already been
measured by Paulsen et al. [31] by this method. The short
half-lives may be overcome by using radiochemical methods
or beams of radioactive nuclei [32–34], like in the ISOLDE
facility at CERN. Interesting possibilities offers also the
newly developed method employing the Ion Guide Isotope
Separator On-Line facility at the Accelerator Laboratory of
Jyväskylä [35].

As a final note it should be stated that our calculations in-
dicate that there are a lot of interesting possibilities for future
β-decay experiments in the mass region A = 86–99. These ex-
periments would be in a position to shed light on the effective
value of the weak axial coupling, on the role of the small
relativistic vector matrix element in β-decay calculations,
and on the capability of two well-established shell-model
Hamiltonians in predicting β-decay properties, in addition to
spectroscopic properties, of nuclei in this mass region.
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