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Nuclear binding energies in artificial neural networks
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The binding energy or mass is one of the most fundamental properties of an atomic nucleus. Precise binding
energies are vital inputs for many nuclear physics and nuclear astrophysics studies. However, due to the complex-
ity of atomic nuclei and the nonperturbative strong interaction, up to now, no conventional physical model can
describe nuclear binding energies with a precision below 0.1 MeV, the accuracy needed by nuclear astrophysical
studies. In this work, artificial neural networks (ANNs), the so-called “universal approximators”, are used to
calculate nuclear binding energies. We show that the ANN can describe all the nuclei in AME2020 with a
root-mean-square deviation (RMSD) around 0.2 MeV, better than the best macroscopic-microscopic models,
such as FRDM and WS4. The success of the ANN is mainly due to the proper and essential input features we
identify, which contain the most relevant physical information, i.e., shell, paring, and isospin-asymmetry effects.
We show that the well-trained ANN has excellent extrapolation ability and can predict binding energies for those
nuclei inaccessible experimentally. In particular, we highlight the important role of “feature engineering” for
physical systems where data are relatively scarce, such as nuclear binding energies.
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I. INTRODUCTION

The atomic nucleus is a quantum many-body system with
an extremely complex structure [1]. As one of the most fun-
damental properties of atomic nuclei, binding energies (BE)
can provide crucial information on nuclear shapes [2], shell
effects [3,4], pairing effects [5], and the disappearance as
well as the emergence of magic numbers [4,6]. In addition,
binding energies are essential inputs for superheavy nuclei
syntheses [7] and nuclear astrophysical studies [8], e.g., the
r-process [9,10], x-ray bursts [11], etc. Therefore, reliable
theoretical predictions and experimental measurements of nu-
clear binding energies have always been at the frontier of
nuclear physics [12–14].

In the latest atomic mass evaluation (AME 2020) [15], the
masses of 3556 nuclei (including measured and extrapolated)
are compiled. However, various theoretical models predict
that about 8000 to 10000 nuclei may exist [12,13,16,17], in-
cluding most of those relevant in nuclear elements syntheses.
Therefore, reliable and accurate theoretical predictions are
urgently needed. Some of the most widely used theoretical
models include the Weizsäcker-Skyrme (WS) model [18–22],
the relativistic mean field model (RMF) [17,23], the Duflo-
Zuker model (DZ) [24], the Hartree-Fock-Bogoliubov model
[25–28], the finite-range droplet model (FRDM) [12,29,30],
and the RCHB [13] and DRHBc [31] models. Most of these
models can describe the experimental data with a root-mean-
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square deviation (RMSD) ranging from about 0.3 MeV to
several MeV. Among them, FRDM2012 [30] achieved an
RMSD of 0.570 MeV, while the Weizsäcker-Skyrme (WS4)
[22] model gives the best description with an RMSD of
0.298 MeV. In general, the macro-micro models, rather than
the more “physical” microscopic models, perform better in
describing nuclear masses because their parameters are deter-
mined by fitting all the (then available) experimental data.

In recent years, artificial neural networks (ANNs), as one
of the most powerful machine learning methods, have been
successfully applied in nuclear physics studies [9,32], e.g.,
binding energies [33–38], charge radii [39–42], α-decay half-
lives [43], β-decay half-lives [44], and fission fragment yields
[45–47].

The studies of nuclear binding energies (masses) can be
divided into two categories, i.e., either fitting to the experi-
mental data directly or to the residuals between experimental
data and model predictions. In Refs. [34,38,48–51], mass
residuals are utilized to refine the theoretical models. In
Refs. [34–36,38], Bayesian neural networks are found to be
able to describe nuclear binding energies with an RMSD
ranging from 0.266 to 0.850 MeV. The RMSD obtained in
the WS4 supplemented with light gradient boosting machine
(LightGBM) is 0.170 ± 0.011 MeV [49]. The Bayesian ma-
chine learning (BML) method proposed in Ref. [52] achieves
an RMSD of 84 keV, the first crossing the 100 keV threshold.

However, fewer works study the experimental data directly.
In Refs. [37,53], feed-forward neural networks with different
structures are explored. Reference [37] yielded an RMSD of
1.84 MeV for 1071 nuclei contained in AME2016 [54] as
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FIG. 1. The architecture of a neural network consists of two input
features, two hidden layers of nine and seven nodes, and one output
layer.

the test set.1 Reference [53] applied the data augmentation
technique to expand the data set. The RMSD decreased to
1.322 MeV for the test set within the training data region and
1.495 MeV for the new nuclei beyond the training data region.
In Refs. [55,56], mixed density networks with 12 physically
motivated features [56] or eight features constrained by the
GK relation [55] are devised to describe nuclear mass ex-
cesses. In the latter work [55], an RMSD of 0.316 MeV for
the test set and 0.186 MeV for the training set for nuclei with
Z � 20 was achieved, whose performance is comparable to
that of WS4 [22].

In this work, we develop an ANN with seven input features
of the most relevance. We find that among the 12 features
studied in Ref. [56], only six of them are effective in our
network. Meanwhile, we find that taking GeLU [57] as the
activation function enhances the predictive power of the ANN.
Our ANN provides a better description of nuclear binding
energies than all the conventional models and shows good
extrapolation ability.

This article is organized as follows. In Sec. II, we explain
how to construct the ANN and determine the physically moti-
vated input features. Results and discussions are presented in
Sec. III. A summary and outlook are provided in Sec. IV.

II. THEORETICAL FORMALISM

In this section, we introduce the ANN and mass data we
used in detail.

A. Artificial neural network

Generally speaking, an ANN is a supervised machine
learning method regarded as a “universal approximator”. The
ANN used in this work is a fully connected feed-forward neu-
ral network consisting of one input layer with seven features,
two hidden layers, and one output layer, as shown in Fig. 1.
The inputs I j and outputs Oj of layer j are connected as

1The rather poor performance may be attributed to the fact that the
MLP model has only been trained 800 epochs.

follows:

Oj = f (Wj · I j + b j ), (1)

where j runs over the input layer and the hidden layers, Wj are
the weights, bj are the bias, and f is the activation function
to be specified. For the output layer, no activation function is
needed.

Although, in principle, one could improve the description
of BEs with either more hidden layers or more nodes in
each hidden layer, one often ends up with the overfitting
problem. By trial and error, we find that with two hidden
layers and about 800 parameters, our ANNs can well describe
the binding energies. For an ANN with I inputs, two hid-
den layers, and one output, denoted as [I, H1, H2, O], the
number of parameters is (I + 1) × H1 + (H1 + 1) × H2 +
(H2 + 1) × O. Table I lists the nodes and number of param-
eters of the different ANNs investigated in the present work.
Note that to understand better how the different input features
affect the performance of ANNs, in addition to the default
ANN with seven features, we also study three other ANNs,
where two, four, and six features are used. For the activation
function, we choose GeLU [57], which performs better than
Tanh. For the loss function, we use the standard mean absolute
error (MAE)

LOSS =
∑N

i=1

∣∣BE th
i − BE exp

i

∣∣
N

. (2)

For numerical implementation, we use the optimized tensor
library PYTORCH [58] and employ the Adam algorithm [59]
with a learning rate 0.0001 and the decay constants 0.9 and
0.999. The weight matrices of our ANNs are initialized in
PYTORCH with the same random seed.

A supervised ANN maps inputs to the desired outputs. In
the present case, the output is the binding energy of a nucleus.
An atomic nucleus is determined by its proton and neutron
numbers, so one can naively take them as the only input.
Nevertheless, it is well known that for small data sets, engi-
neered features (in addition to these “fundamental features”),
which encode essential information (priors) about the system
under investigation, can play an invaluable role in enhancing
the capacity of ANNs. Such a technique is widely used in
nuclear physics studies (e.g., [39,40,55,56]). In Ref. [39],
it was shown that in addition to N and Z , with two more
features accounting for the pairing and shell-closure effects,
one can describe the nuclear charge radii much better than the
Bayesian models without these two features. In particular, one
can describe the strong odd-even staggerings of the charge
radii of the calcium and potassium isotopes. In Ref. [40],
it was shown that the description can be further improved
with two more features accounting for isospin dependence and
local anomalies.

In the studies of binding energies, besides the above-
mentioned pairing, shell-closure, and isospin dependence
effects, many other features have been studied [43,56]. In the
present work, the most relevant features are those just men-
tioned, i.e., pairing, shell-closure, and isospin dependence.
The pairing effects are encoded in ZEO and NEO, which is 1
when Z/N is odd or 0 otherwise. Shell effects are introduced
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TABLE I. Structure, number of parameters, and input features of the different ANNs studied in the present work.

Model Structure Number of parameters Input features

ANN2 [2, 35, 19, 1] 809 Z , N
ANN4 [4, 35, 17, 1] 805 Z , N , ZEO, NEO

ANN6 [6, 32, 17, 1] 803 Z , N , ZEO, NEO, �Z , �N
ANN7 [7, 32, 16, 1] 801 Z , N , ZEO, NEO, �Z , �N , ASY

via �Z and �N , the differences between Z and N , and the
closest magic numbers. In this work, the magic numbers are
8, 20, 28, 50, 82, 126, and 184. As one moves away from the
β-stability line, isospin-asymmetry becomes large. Therefore,
we take into account this effect by introducing the seventh
feature, ASY, which is defined as

ASY =
(

1 − κ

A1/3
+ ξ

2 − |I|
2 + |I|A

)
I2A fs, (3)

where the parameters κ , ξ , and fs are taken from WS4 [22].

B. Mass data

AME2020 [15], in which the masses of 3556 nuclei (in-
cluding measured and extrapolated ones) are compiled, is
referred to as the data set in this work. We stress that one of our
primary purposes is to provide reliable predictions that may be
relevant for future applications, such as nuclear astrophysical
studies. Therefore, it is necessary to use all the existing data
for training. However, to test our model and to avoid over-
fitting, we follow the strategy adopted in Ref. [40] to divide
the data according to the time when they were reported, i.e.,
we use the masses compiled in AME2016 [54] as the training
set and those measured between 2016 and 2020 and compiled
in AME2020 as the test set (test20). Based on this selection,
there are 3434 nuclei in the training set and 122 in the test set.

III. RESULTS AND DISCUSSIONS

To quantify how well the ANN can describe nuclear bind-
ing energies in the training and test sets, we use the standard
root-mean-square deviation (RMSD), σrms, defined as

σrms =
√√√√ N∑

i

(
BE th

i − BE exp
i

)2

N
, (4)

where BE th
i are the ANN predictions, and BE exp

i are the
experimental binding energies contained in the training and
test sets.2 The σrms obtained with different numbers of input
features are shown in Table II. For the entire set, the RMSD
reduces from 1.18 MeV in ANN2 to 0.20 MeV in ANN7. This
demonstrates unambiguously that engineered features that
explicitly encode the pairing, shell, and isospin-asymmetry
effects can significantly improve the capacity of ANNs to
describe/predict nuclear binding energies. We stress that the

2In the present work, we do not distinguish between the mea-
sured and extrapolated masses compiled in the mass evaluations
(AME2016 and AME2020).

total number of parameters is similar for all four network
structures. From ANN2 to ANN4, with the features (Zeo and
NEO), the descriptions improve not only the training set but
also the test set. The RMSD decreases by almost 50 percent
from ANN2 to ANN4. The explicit consideration of shell
effects (�Z and �N) further improves the descriptions, and
the RMSD for the entire set crosses the 0.3 MeV threshold.
Finally, the explicit consideration of the asymmetry effects
further improves the description, and the RMSD of ANN7 (for
the training set and the entire set) falls below 0.2 MeV.

To put the performance of ANN7 into better perspective,
we compare it with one of the most refined conventional
models, WS4, which only studied those nuclei with Z � 8
and N � 8, i.e., only 3336 nuclei and 120 nuclei among those
contained in our training and test sets. The corresponding
σrms’s are given in Table III. Three things are noteworthy.
First, ANN7 performs better than WS4 for all three sets of
data. Second, removing the light nuclei with Z < 8 or N < 8,
the RMSD of ANN7 decreases from 0.2 to 0.16 for the entire
set. Third, from the training set to the test set, the RMSDs of
ANN7 and WS4 increase. Somehow, surprisingly, in terms of
percentage, the increase of WS4 is even more significant than
that of ANN7. We note in passing that for the 2353 nuclei
studied in WS4 [22], ANN7 gives an RMSD of 0.15 MeV,
which should be compared with that of WS4, 0.29 MeV.

Figures 2 and 3 provide more details on the deviations
of the ANN predictions from the experimental data. As seen
from Fig. 2, ANN2 performs relatively worse for even-even
nuclei than their neighboring nuclei (even-odd or odd-odd).
With two more features, ZEO and NEO, which take into account
explicitly the pairing effects, ANN4 improves the description
of even-even nuclei, and the σrms is reduced from 1.05 MeV
to 0.63 MeV for the test set and from 1.18 MeV to 0.55 MeV
for the training set. However, ANN4 does not capture the shell
effects. One can see from the bottom panel of Fig. 2 that the
deviations between the ANN predictions and the experimental
data are larger for those nuclei, with either proton or neutron

TABLE II. RMSDs for the training set (consisting of 3434 nu-
clei) and test set (consisting of 122 nuclei) achieved using different
network structures.

σrms (MeV)

Model Training set Test set Entire set

ANN2 1.18 1.05 1.18
ANN4 0.55 0.63 0.55
ANN6 0.29 0.51 0.30
ANN7 0.19 0.34 0.20
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TABLE III. Comparisons between ANN7 and the WS4 model
[22], for nuclei with Z � 8 and N � 8 compiled in AME2020, i.e.,
3336 nuclei and 120 nuclei contained in our training set and test set,
respectively.

σrms (MeV)

Model Training set Test set Entire set

ANN7 0.15 0.34 0.16
WS4 0.42 1.30 0.47

number being magic. For doubly magic nuclei, the deviation
is substantial. With the shell effects taken into account, the
ANN6 successfully describes these nuclei, as seen from the
upper panel of Fig. 3. A closer examination of Fig. 3 reveals
that for heavy nuclei with N ∼ 175 and light nuclei with
N ∼ 20 and Z ∼ 25, the deviations are relatively large. We
note that these nuclei are more neutron rich, and are newly
compiled in AME2020. As a result, one can anticipate that an
improved description can be achieved by considering a feature
that explicitly considers isospin asymmetry. This is indeed the
case. The σrms of ANN7 for the test set decreases from 0.51

FIG. 2. Absolute deviations of the ANN2 and ANN4 predictions
from the experimental binding energies. The gray lines denote the
magic numbers.

FIG. 3. Absolute deviations of the ANN6 and ANN7 predictions
from the experimental binding energies. The gray lines denote the
magic numbers.

MeV to 0.34 MeV, even though the deviations for some light
nuclei are still relatively large.

It is instructive to examine how the different ANNs per-
form for nuclei in different mass regions. In Fig. 4, we show
the distribution of σrms over different nuclei from light to
heavy. It is clear that, on average, ANN7 performs the best,
but for light nuclei with A < 40, ANN4 is the best. For nuclei
with 120 < A < 160, ANN7 and ANN6 work similarly well,
but ANN6 is slightly better. The fact that ANN7 is better
than ANN6 for light and heavy nuclei indicates that the ASY
feature plays an important role. Even though for nuclei with
80 � A < 200, their RMSDs are both small, as shown in
Fig. 5, the generalizability of ANN7 is more robust.

It is interesting to study the performance of different net-
work structures as one moves away from the β stability line.
In Fig. 5, we decompose those nuclei in the test set into
seven groups in terms of |N − Z| to judge the predictive pow-
ers of ANNs in different isospin-asymmetry regions. ANN7
achieves the most stable and accurate predictions. For nuclei
in the |N − Z| > 30 regions, the RMSDs between the predic-
tions of ANN7 and the experimental data stay about only 200
keV.

Single and two-neutron separation energies are observables
better suited to showcase the details of theoretical models,
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FIG. 4. Distributions of σrms between every 40 mass numbers in test20.

particularly whether the shell closure and pairing effects are
properly considered. They could be deduced from the binding
energies as follows:

Sn(Z, N ) = BE (Z, N ) − BE (Z, N − 1),

S2n(Z, N ) = BE (Z, N ) − BE (Z, N − 2). (5)

In Figs. 6 and 7, we compare the experimental one-
and two-neutron separation energies with the predictions of
four ANNs for the Ca, Ni, Sn, and Pb isotopic chains. For
Sn, ANN2 cannot describe at all the odd-even staggerings,
while ANN4 largely improves the situation. However, as is
also reflected in Fig. 7, for nuclei close to the shell closures,
the deviations are larger. ANN6 and ANN7, on the other

r
m
s

FIG. 5. σrms as functions of |N − Z|, which reflects the ability of ANNs to describe nuclei with large isospin asymmetries. Note that there
is no nucleus in test20 with 50 < |N − Z| < 60.
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FIG. 6. Experimental single neutron separation energies in comparison with the ANN predictions.

hand, can describe all the nuclei, including the neutron-rich
ones.

The predictions of a sound theoretical model should center
around its mean value with small spreads. To check how the
four ANNs perform in this perspective, we show in Fig. 8, the
number of nuclei for which the deviations between theory and
experiment fall between certain ranges. We further fit these
counts with normal distributions. The mean of the Gaussian
fit indicates the accuracy of the predictions, and the variance
reflects the range of deviations. From Fig. 8, it can be seen
that the Gaussian fits of ANN2 and ANN4 are pretty flat, and
there are still many deviations over 0.7 MeV. In contrast, both
ANN6 and ANN7 have very narrow distributions. In addition,
most predictions by ANN7 deviate from their experimental
counterparts by less than 0.7 MeV. In this sense, ANN7 not
only predicts well but also is more certain.

Comparison with some recent works

In the past, most machine learning studies of nuclear bind-
ing energies adopted the residual approach, which fits the
residuals between experimental data and the predictions of

an underlying theoretical model [34,38,48–51]. In the past
two years, several studies fitting directly to binding energies
appeared. In the following, we compare our study with two
recent works.

The data augmentation technique, i.e., Gaussian noise aug-
mentation, was found in Ref. [53] to improve the predictions
of ANNs. The number of nuclei in the training set expands
from 1685 to 10110. The improvements in different MLPs
from the perspective of RMSDs are from 18.86% to 30.50%
in the test set in the training data region and from 23.47%
to 36.33% in the test set beyond the training data region.
We also tried to apply the data augmentation technique to
our model but found that this technique barely affected our
results.

In the latest work of Mumpower et al. [55], the GK relation
[60] was added into the MDN as a soft constraint. For nuclei
with N � Z , the GK relation reads

BE (Z, N ) ≈ BE (Z − 2, N + 2) + BE (Z − 1, N )

− BE (Z − 2, N + 1) + BE (Z, N + 1)

− BE (Z − 1, N + 2), (6)
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FIG. 7. Experimental two-neutron separation energies in comparison with the ANN predictions.

while for nuclei with N � Z , it reads

BE (Z, N ) ≈ BE (Z + 2, N − 2) + BE (Z, N − 1)

− BE (Z + 1, N − 2) + BE (Z + 1, N )

− BE (Z + 2, N − 1). (7)

FIG. 8. The distribution of the number of atomic nuclei as func-
tions of deviations between theoretical calculations and experimental
data for binding energies. The nuclei for which the BE deviations
fall below 0.7 MeV are divided into seven equally spaced groups.
The normal distribution curves fit the number of nuclei for which the
σrms is lower than 0.7 MeV. We note that 63(51.6%) of the nuclei in
ANN2, 32(26.2%) of the nuclei in ANN4, 16(13.1%) of the nuclei
in ANN6, and 7(5.7%) of the nuclei in ANN7 have deviations over
0.7 MeV.

By training 450 nuclei randomly chosen in AME2016 with
Z � 20, the root-mean-square deviation of the predictions on
the training set was 0.186 MeV and 0.316 MeV for heavier
nuclei with A � 50.

It is interesting to check how adding the GK relation af-
fects the performance of our ANNs. For such a purpose, we
designed two training methods. The first training method is
to train 20% of the AME2016 (686 nuclei, randomly chosen)
and take the remaining 80% (2748 nuclei) and the 122 nuclei
(test20) of AME2020 as the test sets. This method is similar
to MDN since it was also trained using about 20% nuclei of
AME2016.

Note that our training set is not the same as the training
set of Ref. [55]. From Table IV, it can be seen that the
performance of ANN7 with the constraint of the GK relation
is better than the performance of ANN7 without such a con-
straint not only on the training set but also on the two test sets.

TABLE IV. Performance of ANN7 with or without the constraint
of the GK relation by using only 20% of the nuclear masses compiled
in AME2016 for training, in comparison with the MDN method [55].
The rms deviations are given in units of MeV.

Method training set test16 test20

ANN7 without GK 0.65 1.02 1.54
ANN7 with GK 0.23 0.42 0.94
MDN 0.67 0.76 1.08
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TABLE V. Performance of ANNs with and without the constraint
of the GK relation.

Without the GK constraint With the GK constraint

Model training set test set training set test set

ANN7 0.18 0.34 0.23 0.26

On the other hand, MDN performs worse than ANN7 on both
test16 and test20.3

The second method is to apply the constraint of the GK
relation on our ANN7. Table V shows the results without and
with the constraint of the GK relation. It is clear that adding
the GK constraint can result in a slight improvement in the
performance on the test set but no sign of improvement on
the training set. This is in sharp contrast with the first test
we performed using only 20% of the total nuclei contained
in AME2016 as the training set.

From the above studies we performed, we conclude that
using a subset of the masses contained in AME2016 as the
training set, adding the GK relation can be beneficial, as
demonstrated in Ref. [55]. On the other hand, using all the
masses contained in AME2016 as the test set, as we did in
this work, adding the GK relation has a minor impact on the
performance of the ANNs. This corroborates the intuitive un-
derstanding that adding constraints goes in the same direction
as adding more features and can be beneficial for scenarios
where data are limited.

IV. SUMMARY AND OUTLOOK

In this work, we developed a deep neural network with
seven physically motivated features: Z , N , ZEO, NEO, �Z ,
�N , and ASY. We studied the nuclear masses compiled
in AME2020 (measured and extrapolated), achieving a de-
scription with a root-mean-square deviation around 0.2 MeV
which is much smaller than the previous work [37] and closer
to those of Refs. [55,56]. The success of our work further
demonstrated the importance of considering relevant phys-
ical information, i.e., “feature engineering,” when applying
machine learning methods to study systems for which only
limited data are available.

3We used the numerical results provided to us in [61].

It is interesting to note that the description of the nuclear
binding energies achieved in the present work is similar to
those of Refs. [55,56], but our work differs from those of
Refs. [55,56] in many details: the networks, constraints, and
input features. In Ref. [56], 12 features are used. In our ap-
proach, we found that only six of them (Z , N , ZEO, NEO, �Z ,
�N) are relevant. On the other hand, Ref. [55] considered
the constraint of the GK relation in addition to eight fea-
tures. Nevertheless, the similar results in these works support
the conclusion that machine learning methods are powerful
enough to predict nuclear binding energies at a level com-
parable to or even better than the most refined conventional
theoretical models.

This work reveals that for systems with limited data, con-
sidering input features containing the most relevant physical
information can be critical to the success of physical stud-
ies using machine learning methods. Turning the argument
around, by trial and error, one can also anticipate the discovery
of “new physics” by examining the deficiency of ANNs in
describing such systems.

We note that the neural network developed in the present
work can already describe experimental binding energies with
a precision of 300 keV, reaching a level comparable to the
global mass formula WS4 [22] or even better than the much
more sophisticated deformed relativistic Hartree-Bogoliubov
theory in continuum [31]. As a result, the results can provide
alternative theoretical binding energy inputs to various nuclear
physics and nuclear astrophysics studies where experimental
data are unavailable. For instance, one can use the predictions
to study r-process nucleosynthesis [62] or predict the half-
lives of potential proton emitters [63], which is helpful for
planning future experiments.
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