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Background: In the framework of nuclear energy density functional (EDF) methods, many nuclear phenomena
can be related to the deformation of intrinsic states. Their accurate modeling relies on the correct description of
the change of nuclear binding energy with deformation. The two most important contributions to the deformation
energy have their origin in shell effects and the surface energy coefficient of nuclear matter.
Purpose: It has been pointed out before that the choices made for the center-of-mass (c.m.) correction energy
and the effective mass during the parameter adjustment influence the deformation properties of nuclear EDFs.
We study the impact of these two properties by means of a set of purpose-built parametrizations of the standard
Skyrme EDF at next-to-leading (NLO) order in gradients.
Methods: In a first step, we build nine series of parametrizations with a systematically varied surface-energy
coefficient asurf for three frequently used options for the c.m. correction (none, one-body term only, full one-body
and two-body contributions) combined with three values for the isoscalar effective mass m∗

0/m (0.7, 0.8, 0.85)
and analyze how well each of these parametrizations can be adjusted to the properties of spherical nuclei and
infinite nuclear matter. In a second step, we performed additional fits without the constraint on surface energy,
adding one “best-fit” parametrization to each of the nine series. We then benchmark these parametrizations to
the deformation properties of heavy nuclei by means of three-dimensional Hartree-Fock-Bogoliubov calculations
that allow for nonaxial and/or nonreflection symmetric configurations.
Results: We perform a detailed correlation analysis between surface and volume properties of nuclear matter
using the nine series of parametrizations. The best fits out of each series are then benchmarked on the fission
barriers of 240Pu and 180Hg, as well as on the properties of deformed states at normal and superdeformation for
actinides and nuclei in the neutron-deficient Hg region.
Conclusions: The main conclusions are as follows: (i) Each combination of choices for c.m. correction and
m∗

0/m leads to a significantly different optimal value of asurf, reason being that the effective interaction has to
absorb the contribution of the c.m. correction to the total binding energy. (ii) Many properties of symmetric
and asymmetric infinite nuclear matter of Skyrme NLO EDFs are strongly correlated to the value of asurf. (iii)
Omitting the c.m. correction results in values of asurf that are systematically too small. On the other hand,
including the one-body term but neglecting the computationally expensive two-body term means asurf will be
too large. Both choices result in unrealistic predictions for fission barriers and superdeformed states of heavy
nuclei. Only by incorporating the complete c.m. correction does one obtain quite realistic surface properties
from an adjustment protocol that only constrains properties of infinite nuclear matter and spherical nuclei. (iv)
Lowering asurf increases the susceptibility of finite nuclei to take an exotic shape.

DOI: 10.1103/PhysRevC.109.034316

I. INTRODUCTION

The self-consistent mean-field approach and its extensions,
such as the random-phase approximation (RPA) and the gen-
erator coordinate method (GCM), allow for the systematic
study of properties and phenomena for all systems throughout
the chart of nuclei [1,2]. Using a universal energy density
functional (EDF) to model the effective in-medium nucleon-
nucleon interaction, these techniques give access to numerous
observables concerning ground and excited states of nu-
clei, such as binding energies, deformations, isomeric states,
rotational bands, as well as the large-amplitude collective
motion of nuclear systems. Furthermore, symmetry-broken

mean-field configurations allow for a natural interpretation of
experimental data in terms of the shape of the nucleus in its
intrinsic frame.

With the arrival of a wealth of new data on many different
aspects of the fission process [3,4] and major advances in
its microscopic modeling [5,6], there is a renewed interest
in constructing parametrizations of the nuclear EDFs that are
predictive for physics at large deformation [7].

Indeed, not all parametrizations of the nuclear EDF, most
of which are mainly adjusted to properties of nuclear matter
and finite spherical nuclei, describe well the available infor-
mation on nuclear states at large deformation [8] or fission
barriers [9]. There are in fact just very few parametrizations
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of the nuclear EDF that are widely used for nuclear fission
studies, among which the Skyrme parametrization SkM∗ [10]
and the Gogny interaction D1S [11] are arguably the most
prominent. Both were in fact constructed by the readjustment
of an earlier parametrization that was unable to reproduce
even the gross trends of fission barriers.

It is well established that a correct description of shape
isomeric states and fission barriers of heavy nuclei is strongly
correlated with the value of the surface energy coefficient
asurf [9,10,12,13] and, to a lesser degree, also with the surface
symmetry energy coefficient assym [8] of semi-infinite nuclear
matter. There is, however, not a one-to-one correspondence
as the actual minima and maxima of the deformation-energy
landscape of finite nuclei are generated by shell effects. Still,
the values of asurf and assym can be indirectly used to inform
parameter fits about deformation energies [9–11].

The binding energy of finite nuclei is, of course, also
strongly correlated with asurf . In a liquid-drop picture of a
nucleus with A nucleons, the surface energy is the only con-
tribution to the binding energy that scales as A2/3. Nuclear
masses therefore strongly constrain asurf even when consider-
ing spherical nuclei only.

It has also been pointed out that the choices made to ap-
proximately correct for spurious center-of-mass (c.m.) motion
during the parameter adjustment have an impact on the result-
ing surface properties [14]. The motivation for such correction
is that the localized A-body states used in the mean-field
modeling of static finite nuclei are not eigenstates of the
many-body momentum operator P̂ = ∑

i p̂i with eigenvalue
zero, but rather are superpositions of eigenstates of P̂ that
only yield an average value of 〈P̂〉 = 0. The resulting spu-
rious excitation energy can be approximately eliminated by
subtracting the average value of the kinetic energy of the
nucleus in its c.m. frame, which is the expectation value of
the operator [14–17]1

1

2Am
P̂2 =

∑
i

p̂2
i

2Am
+

∑
i< j

p̂i · p̂ j

Am
, (1)

where the sums run over occupied single-particle states. The
first term on the right-hand side (r.h.s.) is a one-body operator
that yields 1/A times the free kinetic energy. The second
term, however, is a two-body operator that leads to a nonlocal
contribution to the total energy.

The numerical implementation of the two-body term is
comparatively cumbersome, and, at least in the context of the
otherwise local Skyrme EDF, its calculation is quite costly
in terms of CPU time. For this reason, the two-body term
has been omitted for the vast majority of parametrizations of
Skyrme-type EDFs adjusted so far, including well-known ex-
amples such as SkM∗ [10], SLy5s1 [9], SLy4, and SLy5 [17].

Some parametrizations that aim at describing nuclear fu-
sion or fission dynamics were adjusted without any c.m.

1This expression assumes that one is in the c.m. frame of the
nuclear system, i.e., that 〈P̂〉 = 0. If this is not the case, then the
c.m. correction energy is proportional to the dispersion of P̂, i.e.,

1
2Am (〈P̂2〉 − 〈P̂〉2), instead.

correction at all, examples being SLy4d [18] and UN-
EDF2 [19]. The motivation for the latter practice is that,
because of the 1/A factor, the c.m. correction cannot be con-
sistently defined for processes where two nuclei fuse or one
nucleus splits apart without introducing further corrections for
other types of spurious motion [20,21].

Among the Skyrme parametrizations that were adjusted
including the full c.m. correction (1) are the SkIx and
SV-x parametrizations of Refs. [22,23], SLy6 and SLy7
from Ref. [17], and those of the large-scale mass fits from
Refs. [24–29]. The full c.m. correction is also considered
for most of the parametrizations of the Gogny force such as
D1S [11].

Disregarding for the moment parametrizations that were
explicitly adjusted to nuclear properties at large deformation,
and parametrizations that were adjusted with a specific em-
phasis on other observables than nuclear ground-state data,
there is a correlation between the scheme for c.m. correc-
tion and the performance for fission barrier heights. This
observation becomes particularly obvious for parameter sets
constructed within the same protocol, but with different
choices for the c.m. correction [14]. Parametrizations that
are adjusted with the full c.m. correction give systematically
smaller fission barriers than parametrizations that keep only
the one-body part, but are otherwise adjusted within the same
fit protocol. This finding is not related to the deformation
dependence of the c.m. correction itself, which in general is
quite small [14]. Instead, the interaction part of the EDF has
to absorb the absent contributions from Eq. (1) to the total
binding energy. There are indications that considering or not
the c.m. correction as such might cause a similar problem: as
pointed out in Ref. [9], the SLy4d parametrization [18] that
was adjusted with the same protocol as SLy4 and SLy6 but
without any c.m. correction at all, gives significantly smaller
fission barriers than SLy6.

Among these three families of Skyrme parametrizations,
those adjusted with the full c.m. correction perform system-
atically better for fission barriers. This does not, however,
mean that only these perform well. Indeed, the long-standing
reference parametrization for fission studies, SkM∗ [10], be-
longs to the family of parametrizations that only consider the
one-body c.m. correction. Similarly, the UNEDF1 [12] and
UNEDF2 [19] parametrizations that have been used in recent
fission studies were adjusted without any c.m. correction.
What these exceptions have in common is that in one way or
the other they were explicitly adjusted to some characteristics
of fission barriers: SkM∗ via readjusting some parameters of
the earlier SkM parametrization [30] such that asurf reproduces
a semiclassical estimate for the fission barrier of 240Pu [10],
whereas the fit protocol of UNEDF1 [12] and UNEDF2 [19]
considers excitation energies of some fission isomers. The ad-
justment of the D1S parametrization of the Gogny force [11],
which employs the full c.m. correction, was also informed by
fission barrier heights. Other examples of such parametriza-
tions are those of the SLy5sX series that employ only the
one-body contribution to the c.m. correction and which were
constructed with a systematically varying constraint on asurf

with the aim of finding the one that performs best for fission
barriers [9]. That the deformation energy of parameter sets
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adjusted with the full c.m. correction is automatically more
realistic can serve as the starting point for their fine-tuning to
fission barriers. The very recent mass fits BSkG2 [28,29] and
BSkG3 [31] use the full c.m. correction and achieve a mean
deviation of less than 500 keV on the primary and secondary
barriers of 45 actinide nuclei, including odd and odd-odd ones,
through a slight readjustment of corrections for other types of
collective motion.

Strutinski’s theorem [32] relates deformation energies and
the actual deformation of energetic minima and barriers to
the evolution of the bunching of single-particle levels around
the Fermi energy with deformation. Deformation properties
are therefore also correlated to the effective mass [33] as the
level density of single-particle scales with the latter [34]. As
a consequence, it has been observed that the effective mass
can have a visible influence on the excitation energies of
superdeformed states and fission barrier heights [23].

Starting from these observations, the goals of the present
article are

(1) to further clarify the correlation between the surface
energy coefficient during a parameter adjustment and
the multiple choices made for the c.m. correction in the
literature;

(2) to further analyze the role of the isoscalar effective
mass for fission barriers and its correlation with the
surface energy coefficient.

To this aim, we constructed new series of parametrizations
that are adjusted with each of the three different treatments of
the c.m. correction terms mentioned above, and this for three
different values of the isoscalar effective mass: m∗

0/m = 0.70,
0.80, and 0.85.

This article is organized as follows: Section II defines the
form of the Skyrme EDF that will be used for our study, while
Sec. III details the fit protocol used to adjust nine series of
new parametrizations customized for our study that differ in
the scheme for c.m. correction and isoscalar effective mass.
Section IV discusses correlations between properties of in-
finite and semi-infinite matter found for these new fits and
proposes a set of “best fits” for each choice of c.m. correction
and isoscalar effective mass that are then used in Sec. V for the
study of representative fission barriers as well as properties of
normal-deformed and superdeformed states of heavy nuclei.
Section VI summarizes our findings.

II. THE ENERGY DENSITY FUNCTIONAL

For the purpose of our study of the impact of the scheme
for c.m. correction and the value of the isoscalar effective
mass on surface properties of nuclei, we constructed a set
of new parametrizations of the standard Skyrme EDF. As we
are interested in surface properties, we omit genuine tensor
forces that directly impact only nuclear shell structure [35,36]
and the response to spin- and spin-isospin excitations [37].
We also limit ourselves to the Skyrme EDF at next-to-leading
order (NLO) in gradients [38,39] and to a form where only the
coupling constants of the gradientless (leading order) terms in
the EDF have a (single) density dependence.

The total energy is given by [1]

Etot = Ekin + ESky + ECou + Epair + Ecorr, (2)

where Ekin is the kinetic energy, ESky is the Skyrme energy
that accounts for the binding due to strong interaction in the
particle-hole channel, ECou is the Coulomb energy, Epair is
the pairing energy, and Ecorr is the sum of all corrections for
quantal zero-point motion.

The kinetic energy is given by [1]

Ekin = h̄2

2m

∫
d3rτ0(r), (3)

where we use same value h̄2/2m = 20.735 530 MeV fm2 for
protons and neutrons that is obtained by averaging the values
of h̄2/2mn and h̄2/2mp as obtained from the 2020 recommen-
dations for the nucleon masses by the Particle Data Group [40]
and the 2018 CODATA value for h̄c [41].

The local Skyrme EDF can be decomposed into isoscalar
(t = 0) and isovector (t = 1) terms that are either constructed
out of time-even (“e”) densities only and terms that contain
time-odd (“o”) densities,

ESky =
∫

d3r
∑
t=0,1

[Et,e(r) + Et,o(r)]. (4)

We consider here the traditional standard form of the Skyrme
EDF for which the time-even and time-odd parts take the
form [1]

Et,e(r) = Cρρ
t ρ2

t (r) + Cρρρα

t ρ2
t (r)ρα

0 (r)

+ Cρ�ρ
t ρt (r)�ρt (r) + Cρτ

t ρt (r)τt (r)

− CsT
t

z∑
μ,ν=x

Jt,μν (r)Jt,μν (r)

+ Cρ∇J
t ρt (r)∇ · Jt (r), (5)

Et,o(r) = Css
t s2

t (r) + Cssρα

t s2
t (r)ρα

0 (r)

+ Cs�s
t st (r) · �st (r) − Cρτ

t j2
t (r)

+ CsT
t st (r) · Tt (r) + Cρ∇J

t st (r) · ∇ × jt (r). (6)

For the definition of the local densities and currents entering
the Skyrme EDF see, for example, Ref. [1]. The coupling
constants Cρτ

t , CsT
t , and Cρ∇J

t appear in both parts of the
EDF in order to ensure its Galilean invariance [42]. For the
new parametrizations whose adjustment is described in what
follows, the coupling constants of the Skyrme EDF are cal-
culated as the strict HF expectation value of a central +
spin-orbit Skyrme interaction, meaning that the resulting bi-
linear terms in the spin-current tensor density Jt,μν (r) are kept,
as is the strict relation Cρ∇J

0 = 3Cρ∇J
1 between the isoscalar

and isovector spin-orbit coupling constants. In addition, when
doing so, the coupling constants of all time-odd terms are
linearly dependent on the coupling constants of the time-even
terms. Although these relations are necessary to respect the
Pauli principle (at least for the nondensity-dependent terms),
they are not always imposed. Instead, for many parametriza-
tions of Skyrme’s EDF, some of the coupling constants are
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either set to zero or treated as independent ones. For some
of the existing parametrizations of the Skyrme EDF, some
of the time-odd terms in Eq. (6) have to be dropped in or-
der to avoid numerical finite-size instabilities [43–45]. As
will be explained in Sec. III, the adjustment protocol for the
parametrizations constructed for our study ensures that none
of such instabilities appear at densities that are probed in finite
nuclei.

The Coulomb energy of a Slater determinant is given by
the sum of a direct and an exchange term ECou = E (d)

Cou + E (e)
Cou

that take the form

E (d)
Cou = e2

2

∫∫
d3r1d3r2

ρch(r1)ρch(r2)

|r1 − r2| , (7)

E (e)
Cou = −e2

4

∫∫
[ρch(r1, r2)ρch(r2, r1)

+ sch(r1, r2) · sch(r2, r1)]
d3r1d3r2

|r1 − r2| , (8)

with e2 = 1.439 964 MeV fm being the square of the unit
charge [41] and ρch and sch representing, respectively,
the scalar and vector charge densities. As often done for
the calculation of the Coulomb energy and fields, we neglect
the intrinsic charge distribution of nucleons and use point-
proton densities instead.

While the direct term only depends on local one-body
densities, the exchange term depends on the full one-body
nonlocal densities ρp(r1, r2) and sp(r1, r2). As we consider
only properties of doubly magic nuclei during the parameter
adjustment that can be calculated with a spherical code in
which this term can be treated at acceptable numerical cost,
the Coulomb exchange energy and its contribution to the
mean fields are calculated exactly for this task. When calcu-
lating properties of deformed nuclei and fission barriers in a
Cartesian 3d code, however, the exact numerical treatment of
E (e)

Cou becomes unacceptably costly and the numerically much
more efficient Slater approximation that yields a local energy
density,

E (e,S)
Cou = −3e2

4

(
3

π

)1/3 ∫
d3r[ρch(r)]4/3, (9)

is used instead. As analyzed in Refs. [46–48], using the Slater
approximation introduces only a small error of the order of 3%
on the Coulomb exchange energy that only mildly depends on
deformation.

For the doubly magic nuclei entering the parameter ad-
justment, the Hartree–Fock–Bogoliubov (HFB) treatment of
pairing correlations breaks down such that these calculations
are performed at the HF level. When calculating deformed
open-shell nuclei and fission barriers, however, pairing corre-
lations have to be considered. The scheme employed for this
task will be described in Sec. V B.

In the present work, Ecorr is limited to the approximate
correction for the c.m. motion and is given by the expectation
value of the operator defined in Eq. (1),

Ecorr = −Ec.m. = −E (1)
c.m. − E (2)

c.m. = −〈P̂2〉
2mA

. (10)

The c.m. correction can be written as the sum of a one-body
(E (1)

c.m.) and a two-body (E (2)
c.m.) contribution, see Eq. (1). The

former is simply proportional to the free kinetic energy,

E (1)
c.m. = Ekin

A
= h̄2

2mA

∫
d3rτ0(r), (11)

whereas the two-body contribution has to be expressed either
through gradients acting on the product of nonlocal densities
or as a weighted sum over products of off-diagonal matrix
elements of the momentum operator, see Ref. [14] for the
detailed expression. While E (1)

c.m. is trivial to calculate numer-
ically at essentially no cost through Eq. (11), the numerical
calculation of E (2)

c.m. and the corresponding contribution to the
single-particle Hamiltonian are much more expensive. When
working with otherwise local EDFs, the two-body c.m. cor-
rection becomes in fact the single most costly contribution to
the energy, in particular when self-consistently including its
contribution to the single-particle Hamiltonian.

This difference in computational cost, together with the
effort necessary to implement the comparatively complicated
expressions for its contribution to the total energy and the
single-particle Hamiltonian, are the main motivation why
E (2)

c.m. has been omitted for the vast majority of parametriza-
tions of Skyrme’s EDF, a practice that started long ago [49].

Skyrme’s EDF is not the only flavor in use. Both Fayans’
EDF [50,51], and the SeaLL1 EDF of Ref. [52] are used and
adjusted without any c.m. correction at all. The Barcelona-
Catania-Paris-Madrid (BCPM) EDF [53,54] employs the
analytical estimate of Ref. [55] for the full c.m. correction.
All of these EDFs have in common that they are local. For
nonlocal EDFs that consider the exchange terms from a finite-
range force, there is no computational reason to neglect the
two-body part of the c.m. correction anymore. Consequently,
beginning with D1S [11], all parametrizations of Gogny’s
force have been adjusted with the full c.m. correction, al-
though the two-body part is not always used in production
calculations [56]. Likewise, the parametrizations of the finite-
range EDF based on the Michigan-3-Yukawa (M3Y) force by
Nakada [57] as well as the recently introduced regularized
finite-range pseudopotential [58–61] also employ the full c.m.
correction.

For the parametrizations considering the full c.m. cor-
rection that we adjusted for the present study, we chose
a compromise between phenomenology and computational
cost. We treated E (2)

c.m. self-consistently during the parame-
ter adjustments, since doing so is not excessively costly in
spherical symmetry and is particularly simple in the absence
of pairing. The Cartesian 3d calculations of deformed nuclei
and fission barriers that we describe below, only account for
E (2)

c.m. perturbatively for reasons of computational cost. This
means in practice that we drop the corresponding contribution
to the single-particle Hamiltonian and only add E (2)

c.m. to the
total energy, in Eq. (2), after convergence. Calculating at least
part, if not all, of the c.m. correction perturbatively is in fact
the strategy followed for many of the existing applications that
do consider the full c.m. correction [22,23,28,29,31,56,62,63].

We note in passing that the center-of-mass correction ap-
proximates the energy gain from restoration of translational
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invariance of the nuclear state [64–69], but even including it
self-consistently in the variational equations does by no means
even approximatively restore these symmetries in the wave
function. Other observables such as the density distributions
and its moments therefore also have to be explicitly corrected
for spurious c.m. motion as well [70–73]. For further dis-
cussion of the c.m. correction to the binding energy and its
treatment we refer to Refs. [14–16,55,74–82] and references
therein.

III. PARAMETER ADJUSTMENT

A. General idea

We have adjusted three sets of parametrizations with dif-
ferent treatment of the c.m. correction. For the first set, we
have omitted the first and second term of (1) such that there
is no c.m. correction at all. These will be labeled by 1F2F(X)
in what follows. For the second set of parametrizations, the
correction was limited to its one-body part only, i.e., the
term (11). These will be labeled by 1T2F(X) in what fol-
lows. Finally, the third set of parametrizations was adjusted
considering both the one-body and two-body terms in the
c.m. correction. These will be labeled by 1T2T(X). For each
choice for the c.m. correction we constructed a series of
parameter sets with isoscalar effective mass m∗

0/m = 0.70,
0.80 and 0.85, which will be indicated in the parentheses (X )
of the label. For each of the resulting nine combinations of
scheme for c.m. correction and effective mass, we constructed
a series of parametrizations with a constraint on the surface
energy coefficient asurf with target values varying between
15.5 and 20.0 MeV. For that purpose, asurf is calculated in
the computationally friendly modified Thomas-Fermi (MTF)
approximation [83] that was already used earlier for the same
purpose in the construction of the SLy5sX parametrizations of
Ref. [9].

B. Penalty function

To adjust the coupling constants of the Skyrme EDF of
Eqs. (5) and (6), we have minimized a penalty function that
considers data on doubly magic nuclei and phenomenological
properties of infinite nuclear matter (INM).

This adjustment is achieved by minimizing a penalty
function, hereafter denoted χ2, that is a sum of squares of
differences between calculated quantities Oi and their target
values O(0)

i . These are weighted by the inverse of the square
of parameters �Oi that can be regarded as tolerances for the
desired final deviation,

χ2 =
∑

i

(
Oi − O(0)

i

�Oi

)2

. (12)

Reaching the minimum of the objective function does not
guarantee that all quantities Oi fall inside of the interval
[O(0)

i − �Oi,O(0)
i + �Oi].

Two quantities characterizing infinite nuclear matter are
not constrained through the minimization of the penalty
function (12), but are enforced to take a definite value.
These quantities are the saturation density, which is fixed to

TABLE I. Binding energies (in MeV) of doubly magic nuclei
used to constrain the parameters of the functional. Note that the value
for 78Ni is extrapolated. The last column gives the tolerances (in
MeV) used in the fit protocol.

Nucleus Etot Tolerance

40Ca −342.034 ±1.0
48Ca −415.983 ±1.0
56Ni −483.954 ±1.0
78Ni −642.522 ±2.0
100Sn −824.995 ±1.0
132Sn −1102.675 ±1.0
208Pb −1635.862 ±1.0

ρsat = 0.16 fm−3, and the isoscalar effective mass m∗
0/m that

is set to the required value for each series of fits. Since the
objective function involves several properties of nuclear mat-
ter at saturation, fixing ρsat in this way greatly stabilizes the
parameter adjustment.

Adapting the protocol used for adjusting parametrizations
of Refs. [9], the set of constraints considered here is the
following:

(1) Total energies of seven doubly magic nuclei from
AME20 [84], listed in Table I.

(2) The difference in binding energy �E between 56Ni
and 40Ca depends strongly on the distance between
the neutron 1 f7/2 and 1d3/2 orbitals and therefore on
the strength of the spin-orbit term. We have put a
constraint on �E with a target value of 141.920 MeV
and a tolerance of 1 MeV to constrain this term.

(3) Properties of symmetric infinite nuclear matter in the
vicinity of the saturation point: energy per nucleon εsat,
symmetry energy coefficient J and its slope L with
target values and tolerances given on Table II. The
choice of target values for J and L is motivated by mi-
croscopic calculations in infinite nuclear matter [85].

(4) Energy per nucleon in infinite neutron matter. We used
values calculated for the potentials UV14 plus UVII
(see Table III in Ref. [86]) at densities up to 0.45 fm−3

with a tolerance of 25%.
(5) Energy per nucleon in polarized infinite nuclear matter

and neutron matter. Adjustment of parameters some-
times leads to the appearance of a bound state in
symmetric polarized matter or to the collapse of po-
larized neutron matter at high density. To avoid this
type of results, we used the constraints of E/A =

TABLE II. Properties of symmetric nuclear matter in the vicinity
of saturation used to constrain the EDF parameters. All quantities are
in MeV.

Property Target value Tolerance

εsat −16.0 ±0.1
J 32 ±1
L 50 ±5
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12.52 MeV at density 0.1 fm−3 in polarized nuclear
matter and E/A = 40.10 MeV in polarized neutron
matter at the same density (taken from Ref. [87]) both
with a large tolerance of 25%.

(6) To avoid the appearance of finite-size instabilities [45]
we used the linear-response method [44] to enforce
that the lowest poles of the response function remain
above ρmin = 1.2 × ρsat � 0.192 fm−3 in symmetric
nuclear matter for all spin and isospin channels [except
for the case of the spinodal instability at low density
in the (S, T ) = (0, 0) channel] and above half of this
density in pure neutron matter, see Ref. [45]. An insta-
bility is characterized by a divergence of the response
function, or a zero of its inverse, for given values of the
density ρ0 and the transferred momentum q between
particles and holes. To push any instability above ρmin,
we calculate the sum of the modulus of the inverse of
the response function at ρ0 = ρmin for equally spaced
values of q from 0 to 9 fm−1 with δq = 0.01 fm−1

and require the result in all (S, T ) channels to be
greater than zero using an asymmetrical constraint as
described by equation (58) in Ref. [60]. These strong
constraints allow us to avoid the appearance of finite-
size instabilities for all parametrizations constructed,
as we checked explicitly afterwards.

(7) The surface energy coefficient calculated in semi-
infinite nuclear matter using the MTF approximation
was constrained to a series of values in steps of
0.2 MeV with a tolerance of 0.01 MeV. Nine series of
interactions have been thus constructed labeled with
their {center of mass, isoscalar effective mass, MTF
surface energy coefficient} options. Beyond these,
nine other interactions (only labeled with their {center
of mass, isoscalar effective mass} options) have been
built omitting the constraint of the surface coefficient
in order to have in each case the exact minimum of the
penalty function.

The power α of the density dependence in Eq. (5) is not
considered as a free parameter but set to α = 1/6. It is well
known that with standard NLO Skyrme functionals and for
given values of saturation density and energy per nucleon
in symmetric infinite nuclear matter, the isoscalar effective
mass m∗

0/m, and the compression modulus K∞ are not in-
dependent quantities [88]. The choice to set α to 1/6 allows
us to vary the isoscalar effective mass while keeping K∞ in
a acceptable interval, see Sec. IV C 2. With this choice for
α and for the chosen fixed values for ρsat and m∗

0/m, the
EDF contains in total seven free parameters that have to be
adjusted.

All nuclei considered for the fit of parameters are doubly
magic spherical nuclei. It is assumed that pairing correla-
tions do not contribute to those, such that calculations are
done at the HF approximation. Their numerical calculations
was performed on a radial mesh in coordinate space with
80 points with a constant spacing of 0.25 fm using the code
FINRES4 [89].

IV. CORRELATIONS BETWEEN NUCLEAR MATTER
PROPERTIES

A. From EDF parametrization to liquid-drop model

As has been pointed out before [8,14], the physical origin
of the correlation between choices made for the center-of-
mass correction and nuclear surface properties on the one
hand, and of the correlations between surface properties and
the bulk properties of nuclear matter on the other hand, can be
understood when looking at binding energies obtained from
a liquid-drop model (LDM) whose parameters are set to the
values predicted by the parametrizations of EDF models.

To this aim, we employ the following form for the LDM
energy of a nucleus with N neutrons and Z protons:

ELDM(N, Z ) = (avol + asymI2)A

+ (asurf + assymI2)A2/3

+ 3e2

5r0

Z2

A1/3
− 3e2

4r0

(
3

2π

)2/3 Z4/3

A1/3
, (13)

where A = N + Z is the mass number and I =
(N − Z )/(N + Z ) is the isospin asymmetry. The coefficients
of the volume (avol) and volume symmetry (asym) energy
can be related to properties of infinite nuclear matter at
the saturation point, whereas the coefficients of the surface
(asurf) and surface symmetry (assym) energy are connected to
properties of semi-infinite nuclear matter (SINM). The radius
constant r0 is determined by the nuclear matter saturation
density ρsat through r3

0 = 3/(4πρsat ). Constructing a LDM
that accurately approximates the binding energies of a
self-consistent model would require additional terms [90], but
the simplicity of Eq. (13) is sufficient for our study.

B. Further analysis of the correlations between the values
for asurf obtained through different schemes

We recall that there are several approaches to calculate the
surface and surface symmetry energy coefficients of an EDF
that differ in their strategy and computational cost. A widely
used procedure is to extract asurf and assym from calculations
of the model system of SINM [9,91],

asurf,eff(I ) = asurf + assymI2

= lim
L→∞

{[
4πr2

0

∫ +L/2

−L/2
dzE (z)

]
− Eref(I, L)

}
,

(14)

in a one-dimensional box of length L, where E (z) is the energy
density of SINM calculated at an asymmetry I and Eref(I ) is a
reference volume energy that depends on nucleon numbers.

The value of asurf can be determined from a single SINM
calculation of symmetric matter (I = 0), whereas the extrac-
tion of assym requires at least two calculations at different
asymmetries I .

The SINM calculations can either be performed in some
variant of the semiclassical Thomas-Fermi approximation or
in the quantal Hartree-Fock framework. While each of these
schemes yields a slightly different value for asurf, it has been
argued in Ref. [9] that they are basically equivalent for the
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purpose of constraining effective interactions as long as the
value that asurf is constrained to is suitably chosen.

To put the earlier analysis of Ref. [9] onto a wider basis
of parametrizations that systematically cover a wide interval
of asurf values, and to confirm that the main conclusions of
this study also apply when making the choices of the fit pro-
tocol described above, we compare values for asurf extracted
from calculations of semi-infinite nuclear matter performed
within either the Hartree-Fock (HF), within the semiclassical
extended Thomas-Fermi (ETF) approach up to order h̄4, or
within the modified Thomas-Fermi (MTF) approach. For de-
tails about these methods we refer to Ref. [9] and references
therein, and recall only their main characteristics. In a quantal
HF calculation of SINM, one minimizes the total energy as
calculated from the self-consistent densities of a Slater deter-
minant of single-particle states. In the ETF calculation, the
kinetic and spin-current densities entering the Skyrme EDF
are developed into functionals of the local density and its
derivatives. The surface energy is then minimized with respect
to the parameters of a prescribed profile for the local densities
of protons and neutrons. Finally, the MTF approach is based
on the observation that a slight modification of the relative
weights of the semiclassical expansion of the kinetic density
in a limited ETF expansion up to order h̄2 makes the system
integrable for standard Skyrme EDFs at NLO [83,92], such
that the optimal density profile is obtained without a varia-
tional calculation [9,92]. The computational cost is thereby
considerably reduced when going from HF to ETF and then
to MTF.

The semiclassical calculations reported here were per-
formed with the same tools as those reported in Ref. [9],
whereas the HF calculations were made with a newly designed
code [93] that yields results for asurf that are identical to those
reported in Ref. [9] within typically 0.01 MeV.

For the surface symmetry energy coefficient assym, the
discussion will be limited to values extracted from HF calcu-
lations of SINM. The reason is that there are several different
choices for the reference energy Eref(I, L) entering Eq. (14)
that are frequently used in the literature for its extraction and
that lead to different values of assym when extracted from
the same calculations of semi-infinite matter. As assym has
not been constrained during the adjustment of the parameter
sets discussed here, we limit its analysis to one scheme to
calculate assym and to one procedure to extract it. For the latter,
we choose the thermodynamical definition [94,95], where the
reference energy Eref = εF,nNbox + εF,pZbox is provided by the
Fermi energies of protons and neutrons, respectively, and the
number of protons and neutrons that enter the calculation of
the energy density E (z) in Eq. (14).

Figure 1 shows the differences �aMTF
surf = aMTF

surf − aHF
surf

and �aETF
surf = aETF

surf − aHF
surf between the values of the surface

energy coefficient extracted from SINM calculations with ei-
ther of the semiclassical ETF and MTF approaches and its
value obtained from a HF calculation for all nine series of
fits by systematically varying aMTF

surf and the isoscalar mass
m∗

0/m.
The difference �aMTF

surf between MTF and HF results shows
a clear dependence on m∗

0/m, which was already hinted in
the results discussed in Ref. [9]: the difference decreases with

FIG. 1. Differences between the surface energy coefficient as
calculated in either (a) the MTF or (b) ETF approach and its HF
value for the nine series of parametrizations as indicated as a function
of their aMTF

surf . Different colors indicate different schemes for c.m.
correction, whereas different markers indicate different isoscalar ef-
fective mass m∗

0/m.

increasing effective mass. This can be explained by the nature
of the MTF approximation that modifies the dependence of
the kinetic density τ [ρ(r)] on the local density ρ(r) in the
semiclassical approximation in such a way that the problem
becomes integrable [9,83]: the smaller the isoscalar effective
mass, the larger becomes the relative contribution from EDF
terms that contain products of τ (r) and other densities com-
pared with the free kinetic energy that is linear in τ (r). It
appears that the MTF approximation works better for terms
of the latter type than those of the former.

For each fixed value of m∗
0/m, there also is a very mild

dependence of �aMTF
surf on the actual value of aMTF

surf .
For comparison, and to complement the discussion of

Ref. [9], Fig. 1 also shows the difference �aETF
surf between ETF

and HF results. Although the deviation is not the same for
all, its spread is much smaller, meaning that the ETF approx-
imation works much more consistently for parametrizations
with different m∗

0/m. The difference, however, depends more
strongly on the value of aMTF

surf that the parameter set is con-
strained to than it is the case for �aMTF

surf . At fixed aMTF
surf the

deviation is systematically slightly smaller for parametriza-
tions with larger m∗

0/m. There also is a slight systematic
dependence of �aETF

surf on the scheme used for the c.m. cor-
rection, where the deviation is smallest for parameter sets
adjusted with the full 1T2F scheme and largest for those
adjusted with the 1F2F scheme.

C. Penalty function and correlations between nuclear
matter properties

1. Surface properties

Figure 2 shows the penalty function for all parametriza-
tions out of the nine series of fits with systematically varied
aMTF

surf and m∗
0/m. We focus first on Fig. 2(a) that shows the

penalty function as a function of aMTF
surf .
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FIG. 2. Penalty function χ 2 for all parametrizations out of the
nine series of fits as a function of their value of (a) aMTF

surf and (b) aHF
surf.

The dots indicate the parametrizations with systematically varied
aMTF

surf whose properties are studied in Sec. IV C. For each of the
nine series, the minimum of χ 2 is indicated by a filled marker.
The properties of the corresponding “best fit” parametrizations are
studied beginning with Sec. IV D.

There is a clear correlation between the value of aMTF
surf at the

minimum of the penalty function and the scheme of c.m. cor-
rection: for parameter sets using the popular 1T2F scheme, the
minimum is can be found near 18.6 MeV, while for parameter
sets using the full 1T2T scheme it is located around 17.7 MeV,
and for parameter sets without any c.m. correction (1F2F)
one finds it at 16.8 MeV. The position of the minimum also
depends in a more limited way on the effective mass m∗

0/m:
with increasing effective mass, the minimum shifts to smaller
values of aMTF

surf . The different locations of the minima in terms
of the surface energy of the parametrizations are quite mean-
ingful: a difference of 1 MeV in asurf typically changes the
outer fission barrier heights of actinide nuclei by about 4 MeV,
a value that is comparable to the experimentally determined
barriers for these nuclei. We illustrate this in Sec. V but it was
already pointed out repeatedly in earlier studies [9,13,96,97].

Previous studies conducted in Refs. [9,13] have shown that,
for nuclear EDFs that do not consider other quantal correc-
tions2 than possibly a c.m. correction as done here, the optimal
values of aMTF

surf for a satisfying description of the deformation

2In the presence of additional strongly deformation dependent
quantal corrections such as a rotational correction [29,98,99], or

properties of heavy nuclei fall into an interval between 17.6
and 18.0 MeV. It is striking to see that the minimum of the
penalty function χ2 as a function of aMTF

surf is situated precisely
in this interval for the parametrizations of the 1T2T type,
whereas it is well above for parametrizations of 1T2F type
and well below for parametrizations of 1F2F type.

The systematic differences between the values of aMTF
surf at

the minima of the penalty function explain why many of the
existing parametrizations that use the popular 1T2F recipe
systematically fail to describe fission barrier heights and
grossly overestimate them [9,14,17], unless their surface prop-
erties are constrained during the parameter adjustment. One
representative example is the SLy4d parametrization [18],
whose surface properties and fission barriers where discussed
in Ref. [9].

It is possible to constrain 1F2F and 1T2F parametriza-
tions to realistic surface properties during the fit, but this
comes at the price of a deteriorated description of other ob-
servables that enter the penalty function. For example, the
SLy5s1 parametrization has aMTF

surf = 18.0 MeV, but performs
comparatively poorly for binding energies of nuclei [13].
Recalling that SLy5s1 is of 1T2F(0.70) type and has been
adjusted with a protocol that is almost identical to ours, this
finding can be easily understood from Fig. 2(a). Bringing aMTF

surf
to a realistic value is only achieved at the expense of other
features.

As illustrated by Fig. 1, the offset between the HF and
MTF values for asurf slightly depends on the isoscalar effective
mass of the parametrizations. The change of this offset has
as a consequence that, for a given choice of scheme for c.m.
correction, the minima of the penalty function χ2 for different
choices of isoscalar effective mass m∗

0/m become closer when
plotting χ2 as a function of aHF

surf instead of the value of aMTF
surf

that the parametrizations were constrained to, see Fig. 2(b).
This observation indicates that the fission barrier heights of
optimal fits that employ the same scheme for c.m. correction
might depend less on the effective mass than is apparent on
Fig. 2(a), at least if one assumes that aHF

surf is the value of
the surface energy that is the most directly correlated to the
deformation energies obtained in EDF calculations.

For a given nucleus, the effective surface energy coeffi-
cient asurf,eff(I ) of Eq. (14) also depends on its asymmetry
I through the surface symmetry energy coefficient assym. As
a consequence, the correlation between the fission barrier of
this nucleus and the value of asurf constrained in a parameter
fit also depends on the value adopted by assym during the
parameter fit. As it turns out, for our series of parameter fits
the values of assym are not identical, but also correlated to the
value of aMTF

surf , the choice of scheme for c.m. correction, and
the isoscalar effective mass as illustrated in Fig. 3.

Within each series of our fits, the absolute value of assym

increases with asurf. As assym and asurf have in general opposite
sign, this dependence keeps the values of asurf,eff(I ) of very

when considering exact restoration of angular momentum [100,101],
the optimal value of aMTF

surf can be substantially different as it only
represents the deformation dependence of the interaction energy, but
not the deformation dependence of the quantal corrections.
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FIG. 3. Surface symmetry energy coefficient aHF
ssym calculated in

HF approximation for all parametrizations out of the nine series of
fits, plotted as a function of their value for aMTF

surf . Panels (a)–(c) com-
pare parametrizations with same effective mass but different scheme
for c.m. correction, whereas panels (d)–(f) compare parametrizations
with same scheme for c.m. correction but different effective mass
m∗

0/m.

asymmetric nuclei closer together when comparing different
parametrizations out of a given series than their difference in
asurf would suggest.

For a given scheme for c.m. correction, the absolute value
of assym increases with effective mass, typically by about
4 MeV when going from m∗

0/m = 0.7 to m∗
0/m = 0.8, and

by about another 2 MeV when going from m∗
0/m = 0.80 to

m∗
0/m = 0.85. For a given effective mass, the absolute value

of assym increases by about 3 MeV when going from the 1T2F
scheme to the 1T2T scheme, and by about another 3 MeV
when going from the 1T2T scheme to the 1F2F scheme.

We note in passing that we made an unsuccessful attempt
to simultaneously constrain asurf and assym at the MTF level,
using an adaptation of the estimate of assym proposed in
Ref. [102]. As it turns out, this cannot be meaningfully done
for the NLO Skyrme EDF that we use here: setting assym to a
value that differs significantly from the optimal value for given
asurf indicated by Fig. 3 pushes the values of some nuclear
matter properties far out of their accepted range. Adding assym

to a fit protocol that already fixes asurf and aims at realistic
bulk properties over-constrains the parameter fit of a Skyrme
EDF at NLO. This is not surprising in view of the limited
number of independent coupling constants of Eq. (5) that

FIG. 4. Location of the saturation point: Energy per particle εsat

at the saturation density ρsat of the parametrizations as indicated. The
horizontal lines indicate the target value of εsat and its tolerance in the
penalty function.

determine nuclear matter properties. It remains to be shown
if more general forms of a Skyrme EDF would allow for a
fine-tuning of assym without deteriorating the bulk properties.

2. Bulk properties

As it turns out, for a Skyrme EDF at NLO the infinite
nuclear matter properties are already strongly correlated to the
value of asurf even when assym is left unconstrained.

Figure 4 displays the energy per particle εsat at satu-
ration density of homogeneous INM. This property equals
the volume energy coefficient avol = εsat of the liquid drop
model. We constrain it in our parameter fits to εsat = (16.0 ±
0.1) MeV, although this target value is incompatible with the
most extreme values of asurf covered by our fits. In general,
large (positive) values of asurf correspond to large negative
values of avol and vice versa. This correlation can be under-
stood when considering the role of the surface energy for
nuclear masses in the liquid-drop model. Since the surface
energy asurfA2/3 reduces nuclear binding, the coefficients of
other terms in the liquid-drop model have to change in a way
that increases their contribution to the total energy in order to
keep binding energies of finite nuclei roughly constant. The
volume term is apparently one of them. Not surprisingly, εsat

is close to 16.0 MeV for parametrizations with a value of aMTF
surf

near the minimum of the penalty function for all nine series of
fits.

Because of the different A (and I) dependence of their
contribution to total binding energy, one term can of course
not perfectly compensate for the change of the other, such that
multiple nuclear matter properties change when varying aMTF

surf .
And indeed, as can be seen from Fig. 5, the volume symmetry
energy coefficient asym of the liquid-drop model, which equals
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FIG. 5. Symmetry energy J and its slope L at saturation density
ρsat and at ρ0 = 0.1 fm−3 (see text) for the parametrizations as indi-
cated. The horizontal lines indicate the target values of J and L in the
penalty function, as well as their respective tolerances. Colors and
symbols are as in Fig. 4.

the symmetry energy of symmetric matter

S(ρ0) = 1

2

∂2

∂I2

E
ρ0

, (15)

at saturation density, i.e.,

asym = J = S(ρsat ), (16)

is also evolving with the constrained value of aMTF
surf over a

wide range between roughly 28.5 and 35 MeV. Within each
series of fits, J almost linearly increases with aMTF

surf . While the
slope of this dependence is almost the same within all nine
sets of fits, there is a large offset between different series that
strongly depends on the choice made for the scheme for c.m.
correction (indicated by different symbols in Fig. 5) and to a
much lesser degree also on the value for the effective mass
m∗

0/m (indicated by different colors).

In addition, Fig. 5 displays the slope of the symmetry
energy at the saturation point

L = 3ρ0
∂S(ρ0)

∂ρ0

∣∣∣∣
ρ0=ρsat

, (17)

as well as the values of the symmetry energy and its slope at
ρ = 0.1 fm−3 denoted J0.1 and L0.1. It has been pointed out
that the slope L is correlated with characteristics of asym-
metric nuclear systems at densities that are very different
from saturation density. Examples for such systems are finite
nuclei with neutron skins, heavy-ions in collision, or neutron
stars [85,103–106].

One can observe that the values obtained for L are well
outside of the interval defined by the target value and the tol-
erance [45,55] (in MeV). This feature reveals that the EDF (6)
does not have the required flexibility to satisfy all constraints
listed in Sec. III B within the tolerance intervals. Even if the
values obtained for L are rather low to correctly reproduce
global properties of neutron stars, we can consider that this
will not impact too much the properties of finite nuclei be-
sides, possibly, neutron skins, since these values are close
to the one obtained with other successful interaction such as
D1S [99].

Besides the correlations of nuclear matter properties with
observables, there possibly are other correlations that are in-
trinsic to nuclear models and the protocols used to adjust
them. Some of the latter correlations might be spurious conse-
quences of limitations of the models or of the lack of data that
allow us to isolate the role of each of the properties of nuclear
matter. For example, it was pointed out early on that the values
of L and J of nuclear EDFs are closely correlated [107], which
is also found here. Similar correlations are also found between
other elements of the symmetry energy [108–110], but their
analysis is usually limited to bulk properties of infinite matter.
It has also been pointed out that the volume and surface
symmetry energy are correlated by nuclear masses through
Eq. (13), see for example Refs. [8,111]. Nuclear masses also
correlate the surface symmetry energy with εsat, such that
their sum is nearly constant along the valley of stability [8].
Unfortunately, the portion of the nuclear chart explored exper-
imentally so far is too small to fix the symmetry parameters in
a pure LDM model [112].

It has also been argued that finite nuclei actually mainly
constrain the symmetry energy Jρ0 = S(ρ0) and its slope Lρ0

at subsaturation densities around ρ0 � 0.1 fm−3 [104,113–
115]. And indeed, as indicated by Fig. 5, for our nine series
of fits the values of J0.1 and L0.1 are somewhat closer one
to each other than those of the corresponding quantity at
ρsat. The spread of these values, however, remains larger than
what is typically found for parametrizations whose asurf is not
constrained, see for example Ref. [113] and Table III in what
follows.

Figure 6 displays four higher-order characteristics of infi-
nite matter, which are its incompressibility

K∞ = 9ρ2
0

∂2

∂ρ2
0

E
ρ0

∣∣∣∣
ρ0=ρsat

(18)
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TABLE III. Properties of infinite homogeneous nuclear matter (see text for their definition) of the nine best-fit parametrizations. Values for
SLy7 and SLy5s1 are shown for comparison.

ρsat εsat K∞ Q∞ J J0.1 L L0.1 Ksym Qsym

(fm−3) (MeV) (MeV) (MeV) m∗
0/m κv �m∗

np (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

1T2F(0.70) 0.160 −15.948 229.0 −364.1 0.70 0.53 +0.10 30.73 24.92 33.40 38.53 −182.6 517.0
1T2F(0.80) 0.160 −15.917 216.9 −393.0 0.80 0.34 +0.11 30.88 24.90 34.78 39.39 −184.5 496.3
1T2F(0.85) 0.160 −15.900 211.8 −404.7 0.85 0.26 +0.13 30.90 24.87 35.00 39.64 −186.7 487.6
1T2T(0.70) 0.160 −15.860 228.1 −361.9 0.70 0.48 +0.05 30.61 24.83 33.50 38.14 −176.1 525.1
1T2T(0.80) 0.160 −15.832 216.0 −390.7 0.80 0.27 +0.03 30.80 24.83 35.15 38.99 −175.3 508.2
1T2T(0.85) 0.160 −15.820 211.0 −402.6 0.85 0.19 +0.03 30.87 24.82 35.78 39.37 −175.9 499.5
1F2F(0.70) 0.160 −15.742 226.9 −358.7 0.70 0.46 +0.03 30.56 24.82 33.35 37.90 −173.7 531.0
1F2F(0.80) 0.160 −15.713 214.7 −387.6 0.80 0.23 −0.03 30.76 24.84 35.00 38.62 −170.6 520.6
1F2F(0.85) 0.160 −15.701 209.7 −399.5 0.85 0.14 −0.05 30.84 24.85 35.68 38.96 −170.0 514.7
SLy7 0.158 −15.894 229.7 −358.9 0.69 0.25 −0.20 31.99 25.17 47.22 41.95 −113.3 515.2
SLy5s1 0.160 −15.772 222.1 −372.1 0.74 0.30 −0.05 31.43 24.28 48.13 42.76 −124.8 440.4

and skewness

Q∞ = 27ρ3
0

∂3

∂ρ3
0

E
ρ0

∣∣∣∣
ρ0=ρsat

(19)

FIG. 6. Higher-order derivatives K∞, Q∞, Ksym, and Qsym of the
binding energy per particle at saturation density ρsat. Colors and
symbols are as in Fig. 4.

at saturation, as well as the curvature

Ksym = 9ρ2
0
∂2S(ρ0)

∂ρ2
0

∣∣∣∣
ρ0=ρsat

(20)

and skewness

Qsym = 27ρ3
0
∂3S(ρ0)

∂ρ3
0

∣∣∣∣
ρ0=ρsat

(21)

of the symmetry energy. Together with the already discussed
coefficients εsat, J , and L, these parametrize the density de-
pendence of the energy per particle and the symmetry energy
of symmetric matter around the saturation point in terms of
x ≡ (ρ0 − ρsat )/3ρsat [116–120]

E (ρ0)

ρ0
� εsat + 1

2 K∞x2 + 1
6 Q∞x3 + · · · , (22)

S(ρ0) � J + Lx + 1
2 Ksymx2 + 1

6 Qsymx3 + · · · . (23)

The incompressibility K∞ exhibit a weak linear dependence
on asurf that is almost independent on the scheme for c.m.
correction, but falls on a different line for each of the three
effective masses. The latter finding is a consequence of the
correlation between m∗

0/m, K∞ and the power α of the
density-dependent term in the time-even part of the Skyrme
EDF of Eq. (5) that has been identified in Ref. [88] and already
mentioned in Sec. III B. The skewness Q∞ exhibits a similar
weak linear dependence on asurf but in the opposite direction.
The reason is that for NLO Skyrme EDFs, the equation of
state of symmetric matter is entirely determined by just three
combinations of coupling constants plus the exponent α of
the density dependence [88], such that for fixed α and ρsat

there are only two further linearly independent properties of
INM, implying that, at given εsat and K∞, the value of Q∞ is
completely fixed.

The values of Ksym and Qsym, neither of which is directly
constrained in the parameter fit, also change over a wide
range. This reflects an overall correlation between the density-
dependence of the symmetry energy and the surface energy
where changes in one of the symmetry energy’s characteris-
tics is partially absorbed by changes of the others. For these
higher-order coefficients, however, the correlation is no longer
near-linear over the entire range of values for asurf. The values
for Ksym show a mild dependence on the scheme for c.m.
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FIG. 7. Isoscalar effective mass m∗
0/m, the enhancement factor of

the Thomas-Reiche-Kuhn sum rule κv , and the splitting �m∗
np of the

effective masses of neutrons and protons in neutron matter. Colors
and symbols as in Fig. 4.

correction only at large asurf, and which is quite different from
the large offsets found for J and L in Fig. 5 over the entire
range of asurf. The higher-order coefficient Qsym, however,
exhibits again quite large a dependence on the adopted scheme
for c.m. correction. Both Ksym and Qsym additionally exhibit a
mild dependence on m∗

0/m, similarly to J and L.
Figure 7 displays the isoscalar effective mass m∗

0/m, the
enhancement factor κv of the Thomas-Reiche-Kuhn sum rule,
and the splitting �m∗

np = m∗
n (I )/m − m∗

p(I )/m of the effective
masses of neutrons and protons in pure neutron matter (I = 1).
For Skyrme NLO EDFs, these three quantities are not linearly
independent, as they only depend on two coupling constants
of the time-even part of the Skyrme EDF of Eq. (5),

m

m∗
0

= 1 + 2m

h̄2 Cρτ
0 ρsat = 1 + κs, (24)

κv = 2m

h̄2

(
Cρτ

0 − Cρτ
1

)
ρsat, (25)

�m∗
np = 2(κv − κs)

(1 + κs)2 − (κv − κs)2 , (26)

see Ref. [43] for a detailed discussion. In particular, the sign
of �m∗

np is determined by the sign of Cρτ
1 .

As the isoscalar effective mass is imposed exactly on the
respective set of fits, the panel of Fig. 7 displaying m∗

0/m
mainly serves as a reminder of the colors and symbols used
to represent the various series of parameter sets.

Contrary to the majority of INM properties discussed so
far, for the new parametrizations constructed here the values
for κv and �m∗

np are strongly correlated to m∗
0/m and aMTF

surf , but
remain fairly independent on the scheme of c.m. correction.

At large values of aMTF
surf , �m∗

np takes comparatively large
positive values and then becomes smaller with decreasing
aMTF

surf . For parameter sets with m∗
0/m = 0.7 the value of �m∗

np

remains positive at all aMTF
surf , whereas for m∗

0/m = 0.8 and
m∗

0/m = 0.85 the values of �m∗
np become slightly negative

for the smallest values of aMTF
surf covered by our fits.

This property has been analyzed in the context of stan-
dard Skyrme NLO EDFs before in Ref. [43]. There, it has
been pointed out that the early Lyon fits such as SLy4-SLy7
and many others yield negative values for �m∗

np, which is
at variance with Brueckner-Hartree-Fock (BHF) predictions
for �m∗

np being positive (typically between 0.15 and 0.2
in pure neutron matter calculated with different flavors of
BHF approximation [121]). As argued in Ref. [43], this find-
ing is ultimately caused by the stringent constraints on the
equation of state of neutron matter imposed in these fits in
combination with a lack of flexibility of the functional form
of the EDF. For standard Skyrme EDFs with a small power of
the density dependence α in Eq. (5), the contribution of the
effective-mass terms to the total binding energy is strongly
constrained by the high-density regime of the neutron matter
equation of state, even if the latter’s behavior might have a
different physical origin. This comes at the expense of losing
the possibility to fine-tune the actual isospin dependence of
the effective mass, i.e., the spectral properties of the single-
particle Hamiltonian in infinite matter. In fact, the attempt
to push �m∗

np to positive values may even generate parame-
ter sets with finite-size instabilities in the isovector channel.
Adding a second density dependence with sufficiently large
exponent is one way to resolve these issues [43].

We employ here the traditional standard Skyrme EDF with
a single density dependence that was found to be overcon-
strained in Ref. [43]. To have the possibility to freely adjust
aMTF

surf , however, we had to substantially relax the constraints
on properties of infinite nuclear and neutron matter. As a
byproduct, this yields values for the �m∗

np that are closer to
the Brueckner-HF prediction.

The strong correlations between the nuclear matter proper-
ties examined above can have two clearly distinct reasons: On
the one hand, observables of finite nuclei are known to be only
sensitive to specific combinations of two or more properties
of INM. On the other hand, the number of INM properties we
analyze here is actually larger than the number of parameters
of the Skyrme EDF at NLO that determine them. In partic-
ular, m∗

0/m, κv , and �m∗
np only depend on parameters of the

terms with gradients in the Skyrme generator that also make a
large contribution to asurf [13] and assym. The space for these
parameters however is limited by the appearance of finite-size
instabilities in the four (S, T ) channels.

These observations indicate that over-constraining some
specific properties of nuclear bulk matter in the parameter
adjustment of an EDF with a limited number of degrees
of freedom can lead to very unrealistic results for other
properties. The latter can be higher-order characteristics of
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homogeneous matter, features of inhomogeneous matter in
general, or more specifically surface properties. Indeed, it
has been pointed out before that the parametrizations of the
standard Skyrme EDF that reproduce best the knowledge
about nuclear matter properties of the time [122] do not well
describe finite nuclei [123]; surface properties are probably
only one aspect of this puzzle. Conversely, extended Skyrme
EDFs are needed to describe the global systematics of nuclear
masses and the present empirical knowledge about neutron
stars within a single model [31,124,125]. This observation
suggests that constraining nuclear matter properties at den-
sities and asymmetries that are far from those encountered
in finite nuclei does not necessarily fix loose ends in the
parametrization of a given EDF tailored for the description
of finite nuclei as sometimes hoped for, but leads to indepen-
dent properties that cannot be simultaneously modeled within
the same simple form of the EDF. These concerns can all
be traced to the limited number of degrees of freedom of
the standard Skyrme EDF. Reconciling some or all of these
issues will require extending the form of the EDF, whether
through additional density dependencies [43,126], combined
momentum and density dependencies [31,124,125,127,128],
or higher-order momentum dependent terms [38,39].

D. Fits without constraint on aMTF
surf

Since the optimization of the parameters for the EDFs of
type 1T2T gives the lowest χ2 for a value of aMTF

surf that is
close to the expected optimal value to describe the proper-
ties of nuclei at large deformation, we added one additional
parametrization to each series of each type without a con-
straint on aMTF

surf . We call these parametrizations “best fits” in
what follows, but underline that they only represent a best
fit with respect to the penalty function defined in Sec. III
for a given choice of c.m. correction and m∗

0/m; these fits
are not necessarily optimal to describe nuclear deformation
properties. The coupling constants of these parametrizations
can be found in the Supplemental Material [129]. As the
surface properties of these additional fits are not constrained
by information on deformed nuclei, they can also be used
for a study of the impact of the choice for c.m. correc-
tion and effective mass on deformation properties of existing
parametrizations.

The nuclear matter properties of these parametrizations are
listed in Table III. As can be expected from the previous dis-
cussion of the correlations between nuclear matter properties
and asurf, and from the systematic differences between the
values of asurf at the minimum of the penalty function shown
in Fig. 2, the nuclear matter properties of the nine “best fits”
vary over a wide range of values, including those constrained
in the fit. The values for εsat fall inside the tolerance interval of
the penalty function only for the 1T2F(X), and the values for
J and L even systematically fall outside the tolerance interval
of the penalty function for all of them.

Table III also lists the symmetry energy J0.1 and its
slope L0.1 at ρ0 = 0.1 fm−3. These two quantities at this
subsaturation density are more stringently constrained by
the properties of finite nuclei than the values of J and L at
saturation density, as we mentioned before in the context

of Fig. 5. The same is found for the nine “best fits.” In
particular, the J0.1 values of the 1F2F(X) and 1T2T(X) fits
are near-identical within a few tens of keV, although their
values for J differ by several hundreds of keV. The values of
the symmetry energies J0.1 of the three 1T2F(X) fits are also
much closer than their J , but remain slightly larger than those
of the 1F2F(X) and 1T2T(X) fits.

As expected from Fig. 7, all 1T2F(X) and 1T2T(X) pa-
rameter sets predict a positive splitting of �m∗

np, in agreement
with Brueckner-HF calculations. Only the 1F2F(X) take neg-
ative values as did the earlier SLyX parameter sets [43].

Table III also lists the nuclear matter properties of the
SLy7 [17] and SLy5s1 [9] parametrizations that were adjusted
with similar, albeit not identical, protocols as ours, and that are
both known to provide a reasonable description of fission bar-
riers. There are some noteworthy differences in their nuclear
matter properties. The SLy7 parameter set is of 1T2T type and
can be directly compared with 1T2T(0.70) that has almost the
same effective mass. For SLy7, the values of J and L are actu-
ally closer to the target values of our fit protocol then they are
for any of our best fits. This, however, comes at the expense of
SLy7 exhibiting finite-size spin instabilities, such that it can-
not be used in calculations that break time-reversal symmetry
without making an ad hoc modification of the Cs�s

t coupling
constants in the time-odd part (6) of the Skyrme EDF. This
is different for SLy5s1 that has already been adjusted with a
constraint on the absence of unphysical finite-size instabilities
at densities probed in finite nuclei. The SLy5s1 parameter set
is of 1T2F type and has an effective mass that falls in between
the values of 1T2F(0.70) and 1T2F(0.80). Again, SLy5s1
yields values for J and L that are also closer to the targeted
values of our fit protocol. However, its value for εsat is much
further away. These differences result from slight differences
in the choices made when setting up the penalty function
and indicate that for overall well-adjusted parametrizations of
the standard Skyrme EDF any significant improvement with
respect to one nuclear matter property can in general only be
achieved when significantly degrading others.

Table IV lists surface properties of the nine “best fits” as
obtained from calculations of semi-infinite matter. The first
three columns provide the surface energy coefficient asurf

calculated with the HF, ETF, and MTF methods, which are
also illustrated in Fig. 8. There is again a near-constant shift
between the methods with a slight effective-mass dependence,
as could be expected from the analysis of the parametrizations
with systematically varied aMTF

surf as shown in Fig. 1.
As the parameters of the nine “best fits” correspond to the

minima of the penalty functions plotted in Fig. 2, the value
of their surface energy coefficient depends strongly on their
respective scheme for c.m. correction and also their isoscalar
effective mass m∗

0/m. Choosing a different scheme for c.m.
correction leads to significantly different values of asurf. Con-
firming the earlier analysis of Ref. [14], those of the 1T2F(X)
are typically almost 1 MeV larger than those of the 1T2T(X),
whereas those for the 1F2F(X) are about 1 MeV smaller
than those for the 1T2T(X), which will make an enormous
difference for fission barriers.

To a lesser extent, choosing a different effective mass
also yields significantly different values for asurf when not
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TABLE IV. Properties of semi-infinite nuclear matter as obtained
with the nine “best-fit” parametrizations (all in units of MeV), where
the last two columns list the effective surface energy coefficients
aHF

surf,eff(I ) obtained in HF approximation at the asymmetries of the
180Hg (I = 0.111) and 240Pu (I = 0.217) nuclei discussed in Sec. V.
Values for SLy7 and SLy5s1 are shown for comparison.

aHF
surf,eff

aMTF
surf aETF

surf aHF
surf aHF

ssym
240Pu 180Hg

1T2F(0.70) 18.9 18.0 18.4 −49 16.1 17.8
1T2F(0.80) 18.6 17.8 18.2 −51 15.8 17.6
1T2F(0.85) 18.4 17.7 18.1 −51 15.7 17.5
1T2T(0.70) 18.0 17.1 17.5 −47 15.3 16.9
1T2T(0.80) 17.7 16.9 17.3 −49 15.0 16.7
1T2T(0.85) 17.6 16.9 17.2 −50 14.9 16.6
1F2F(0.70) 17.1 16.2 16.6 −44 14.5 16.1
1F2F(0.80) 16.8 16.0 16.4 −46 14.3 15.9
1F2F(0.85) 16.7 15.9 16.3 −47 14.1 15.8
SLy7 18.0 17.1 17.5 −51 15.1 16.9
SLy5s1 18.0 17.1 17.6 −56 14.9 16.9

constraining the latter. Within a series of fits with same
scheme for c.m. correction and compared with the fit with
m∗

0/m = 0.7, the value of asurf of the fit with m∗
0/m = 0.8 is

about 200 keV smaller, and the one of the fit with m∗
0/m =

0.85 even about 300 keV smaller. As discussed in Refs. [9,13],
changing asurf by as little as 0.2 MeV typically changes the
outer fission barrier of 240Pu on the order of 700 keV.

Table IV also lists the surface-symmetry energy coefficient
aHF

ssym calculated in HF approximation as well as the effective
surface symmetry coefficient asurf,eff(I ) from Eq. (14) of the
two nuclei 240Pu (with I = 0.217) and 180Hg (with I = 0.111),
whose fission barrier properties will be analyzed in Sec. V.

For the rest of the discussion, we focus on these
parametrizations, labeled 1F2F(X), 1T2F(X), 1T2T(X), and
that can be expected to be representative for the typical
behavior of standard Skyrme interactions adjusted with a
given scheme for c.m. correction at a given effective mass.

FIG. 8. Value of the surface energy coefficient asurf calculated
with the HF, ETF, and MTF methods for the nine “best fits.”

FIG. 9. Size of the c.m. correction energy Ec.m. (full markers)
for the three parametrizations with m∗

0/m = 0.70 as indicated for the
seven doubly magic nuclei entering the penalty function of the new
fits plotted as a function of their mass number. The lines are estimates
for the size of the c.m. correction based on differences of the LDM
coefficients obtained for the three fits (see text). Panel (a) compares
with the LDM estimates assuming I = 0 for all nuclei, i.e., consid-
ering only the volume and surface energy, whereas for the lines in
panel (b) also the symmetry and surface symmetry contributions to
the LDM energies are taken into account.

E. The origin of the correlations between nuclear
matter properties

As already mentioned, it has been pointed out before [14]
that the significantly different values of asurf obtained in fits
that (i) use different schemes for c.m. correction and that (ii)
are only constrained by data on spherical nuclei or nuclear
matter, results from the nuclear matter properties absorbing
the absent contribution from the c.m. correction energy to the
total binding energy of the nuclei entering the penalty function
during the parameters adjustment.

For the seven doubly magic nuclei entering the adjust-
ment protocol, the size of the c.m. correction energy Ec.m.

is displayed in Fig. 9 for the three parametrizations with
m∗

0/m = 0.70 by filled markers. The full c.m. correction of
the 1T2T(0.70) parametrizations only takes about one third of
the size of the one-body contribution of the 1T2F(0.70). The
A-dependence of the c.m. correction energy is also different
in the three cases: for the 1F2F(0.70) it is constant and zero
by construction, for the 1T2F(0.70) it quickly rises for light
nuclei and then remains almost constant for the heavy ones,3

whereas for the 1T2T(X) it slowly falls off with mass number
(when plotting Ec.m. for all nuclei across the chart one also
clearly sees shell effects introduced by the two-body contri-

3Note that the one-body contribution E (1)
c.m. to the c.m. correction

energy does not fall off to zero in the limit A → ∞; only the sum
of the one-body and two-body contributions does for reasons evoked
in the introduction. Instead, when increasing A beyond the interval
shown in Fig. 9, the value of E (1)

c.m. tends to a value that equals the
contribution of the kinetic energy to the energy per particle in infinite
matter, which for symmetric matter is 3

5
h̄2

2m k2
F = 3

5
h̄2

2m ( 3π2

2 ρsat )2/3 =
22.108 MeV.
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bution [14]). Figure 9 clearly indicates that neglecting the
two-body contributions to the c.m. correction for reasons of
computational convenience neither constitutes a quantitatively
nor a qualitatively meaningful approximation. It is because
of the different nonlinear A dependence of the resulting c.m.
correction energy that different schemes for the c.m. correc-
tion have a large impact on the surface energy when fitting
parameter sets.

This is illustrated by the three lines in Fig. 9. We recall
that we use a convention (10) for Ec.m. where it enters the
total binding energy (2) with a minus sign. Assuming that
the LDM formula perfectly simulates the contributions from
the kinetic, Skyrme and Coulomb energies to the total en-
ergy of nuclei when inserting the nuclear matter properties
of a given parametrization, one should find E1F2F

LDM = E1T2T
LDM −

E1T2T
c.m. or, equivalently,

E1T2T
c.m. = E1T2T

LDM − E1F2F
LDM, (27)

and similar when comparing two other pairs of parametriza-
tions. The dotted lines in Fig. 9 plot the difference between
the LDM energies, calculated through Eq. (13) and using
the nuclear matter properties listed in Tables III and IV, of
either the 1T2T(0.70) and 1F2F(0.70) (drawn in red) or the
1T2F(0.70) and 1F2F(0.70) (drawn in blue) parametrizations,
respectively. In Fig. 9(a) only the isoscalar volume and sur-
face terms of the LDM energy are included in this analysis,
whereas in Fig. 9(b) this is done for the full LDM energy
including the symmetry and surface symmetry terms.4 The
dashed blue line shows the sum of the c.m. correction energy
Ec.m. obtained with 1T2T(0.70) and the difference between
the LDM energies obtained with 1T2F(0.70) and 1T2T(0.70).
If the contribution of Ec.m. to the total binding energy was
perfectly absorbed by the nuclear matter properties, then the
three lines would fall on top of the markers of same color.

For the simpler estimate made in Fig. 9(a) this is al-
most the case; in particular the difference in c.m. correction
energy between 1T2T(0.70) and 1T2F(0.70) is very well
reproduced by the LDM estimate, as already observed in
Ref. [14]. The absolute size of the c.m. correction energies
found with 1T2T(0.70) and 1T2F(0.70), however, is less well
described by the difference in LDM energies between ei-
ther and 1F2F(0.70). Also, including the isovector terms in
the LDM energy, in particular the surface symmetry energy
whose coefficient varies by several MeV, somewhat spoils the
agreement between Ec.m. and the LDM estimates, pointing to
a more complex compensation between terms in the param-
eter adjustment as far as the isovector degree of freedom is
concerned. This is not too surprising as the LDM expression
for the energy assumes that the isovector density is constant
throughout the nucleus, and the symmetry energy the same at
all densities, which is not at all the case in a self-consistent
mean-field model.

Following Ref. [14], the overall size and sign of the differ-
ences between the nuclear matter properties of the 1F2F(X),

4Note that the Coulomb energy does not contribute to these
LDM estimates because, by construction, ρsat is the same for all
parametrizations considered here.

1T2F(X), and 1T2T(X) can be explained by fitting a sim-
plified LDM expression bvolA + bsurfA2/3 directly to the c.m.
correction energies plotted in Fig. 9. For 1T2T(0.70) one finds
bvol = −0.185 MeV, bsurf = 1.241 MeV. These numbers are
of similar size as the differences �avol = −0.118 MeV and
�asurf = 0.9 MeV found between the values of these coeffi-
cients for 1T2T(0.70) and 1F2F(0.70) in Tables III and IV.
A similar qualitative agreement is found for 1T2F(0.70) and
1F2F(0.70) with bvol = −0.325 MeV, bsurf = 2.431 MeV and
�avol = −0.206 MeV, �asurf = 1.8 MeV.

That avol and asurf have to change simultaneously in oppo-
site direction when the interaction energy has to absorb the
contribution from the c.m. correction to the binding energy
becomes evident when considering the c.m. correction energy
to be roughly independent of A for the nuclei entering the
adjustment protocol. A constant change in binding energy of
these nuclei can be roughly achieved by a small change of
the volume term ∝ A and a larger change of the surface term
∝ A2/3 in the opposite direction. For example, assuming that
Ec.m. of the 1T2T(0.70) parametrization is simply 7 MeV for
nuclei in the range 40 � A � 208, a least-squares fit of the
simplified LDM formula to these values yields bvol = −0.135
MeV, bsurf = 0.99 MeV, which is even closer to the actual
change of the nuclear matter properties when comparing
1F2F(0.70) with 1T2T(0.70) than what is found fitting the
precise values for Ec.m. obtained for 1T2T(0.70). Repeating
the same estimate with 19 MeV as an approximation for
the c.m. correction energy of the 1T2F(0.70) parametrization
leads to bvol = −0.348 MeV and bsurf = 2.53 MeV.

As said before, taking into account that some of the nuclei
are asymmetric leads to a less clear picture. We also recall
that avol = εsat and asym = J are constrained in our adjustment
protocol, such that their values cannot vary freely when fitting
parametrizations with different schemes for c.m. correction.
In particular, the above analysis indicates that avol = εsat has
to change by about the size of its tolerance in the adjustment
protocol in order to simulate the presence or absence of one
or the other contribution to the c.m. correction.

These findings are consistent with the presumption of
Ref. [14] that the absent contributions from the c.m. correction
to the total binding energy of the nuclei considered in the fit
are absorbed by the nuclear matter properties of the resulting
parameter sets, and demonstrates that it also applies to the
comparison with parameters sets that do not consider any c.m.
correction at all.

Results found for the parametrizations with m∗
0/m = 0.80

and m∗
0/m = 0.85 are very similar to what is shown in Fig. 9,

with a subtle difference in detail that would, however, be
difficult to identify on a plot: for the seven nuclei entering the
fit, the c.m. correction energy calculated in either the 1T2T or
the 1T2F scheme decreases by roughly 200 keV when going
from a fit with m∗

0/m = 0.70 to a fit with m∗
0/m = 0.85.

We also mention in passing that, for the 1T2T(X) fits,
the one-body contribution to the c.m. correction is typi-
cally 200 keV larger than the value found with the 1T2F(X)
fit with same effective mass because of self-consistency
effects.

Compared with other contributions to the binding energy,
a particularity of the c.m. correction energy is that over the
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range of experimentally accessible nuclei it is almost con-
stant. It turns out that modern refined liquid-drop models also
contain large mass-independent terms, i.e., have contributions
that are proportional to A0. These terms still have an isospin
dependence, though. In the finite-range liquid-drop model
(FRLDM) of Ref. [130] there is an explicit A0 term as well as a
contribution from the finite-range surface energy that scales as
A0. In the notation of that paper, for spherical nuclei the sum
of these terms is given by a0 − 3a2

r2
0

as(1 − κsI2). Inserting the

values of the constants, one finds 2.645 − 21.927(1 − 2.39I2)
MeV, which varies between −19.28 MeV for 40Ca and other
N = Z nuclei and −16.93 MeV for 208Pb. These values are
very close to the contribution of the one-body term of the c.m.
correction to the total energy as obtained with 1T2F(0.70) and
plotted in Fig. 9. The Lublin-Strasbourg liquid drop model
(LSD) of Ref. [131] also has a sizable contribution ∝ A0,
which there is motivated as a Gaussian curvature term. In the
notation of the paper, it takes the form bcurG(1 − κcurGI2)A0.
Inserting again the values of the constants for the NLD
parametrization of the LSD, one finds 10.357(1 − 13.4235I2),
which takes a positive value of 10.357 MeV for all N = Z nu-
clei, and falls off to 4.14 MeV for heavy nuclei on the valley of
stability like 208Pb, and even might become slightly negative
for very neutron-rich ones, such as −0.703 MeV for 78Ni. The
A0 terms of these modern liquid-drop models therefore behave
very differently. Although such term-by-term comparisons
between different approaches have to remain qualitative, it
seems that the successful reproduction of nuclear masses re-
quires the presence of rather large contributions to the binding
energy that are essentially mass independent.

V. DEFORMATION PROPERTIES

A. Setup of the calculations

To explore the deformation properties of the newly con-
structed parametrizations, we turned to the MOCCA code of
Ref. [132], which represents single-particle wave functions
on a three-dimensional Cartesian coordinate-space mesh with
equidistant points. Profiting from the efficiency of Lagrange
meshes [133], the relatively coarse discretization dx = 1.0 fm
chosen for this study is sufficiently accurate to resolve abso-
lute binding energies to within a few hundred keV [134]. This
is sufficient for our purposes, especially since this numerical
precision is essentially independent of the nuclear shape, even
for the very elongated shapes we discuss below [134], such
that we expect differences of binding energies to be even more
accurately resolved.

The deformation of the nuclear density can be character-
ized by its multipole moments Q�m. For two integers � and m
that satisfy � � m � 0, we define

Q�m =
∫

d3rρ0(r)r�Re[Y�m(θ, φ)], (28)

where ρ0(r) is the matter density and Y�m(θ, φ) is a spher-
ical harmonic. Since the Q�m scale with particle number, it
is more straightforward to compare dimensionless multipole

moments β�m:

β�m = 4π

3R�A
Q�m, (29)

where R = 1.2A1/3 fm. By replacing ρ0(r) in Eq. (28) by
the neutron or proton density and replacing A in Eq. (29) by
either N or Z , we also define the neutron and proton multipole
moments βq,�m with q = p, n. We will in what follows assume
that the nuclear charge density equals the proton density,
which implies that the charge and proton multipole moments
are equal.

The flexibility of the MOCCA code with respect to the
symmetries imposed on the eigenstates of the single-particle
Hamiltonian is used to reduce the computational effort. All
calculations reported here conserve time-reversal symmetry, z
signature R̂z and the y time-simplex ŜT

y . The combination of
the latter two imposes two plane symmetries in the x = 0 and
y = 0 planes on the local densities and currents [135]. For the
calculation of fission barriers at large deformation, parity P̂ is
not enforced, which allows for the description of shapes that
are not reflection symmetric with respect to the z = 0 plane.
In this case, a constraint on the mass dipole moment β10 is
added to fix the nucleus’ center-of-mass at the origin of the
numerical box. For the study of shapes at small deformation,
however, it turned out that for the majority of cases parity
can be enforced as a conserved symmetry without loss of
generality. This reduces the computational cost and facilitates
the convergence of the self-consistent equations. For either of
these two choices, the Cartesian 3d representation allows for
the description of nonaxial shapes. It turned out, however, that
most of the states discussed below remain axially symmetric.

B. Treatment of pairing correlations

The 1F2F(X), 1T2F(X), and 1T2T(X) parametrizations
were adjusted to properties of doubly magic nuclei for which
pairing correlations vanish at the mean-field level. The calcu-
lations of energy surfaces and deformed open-shell nuclei that
will be presented in what follows, however, require the intro-
duction of pairing correlations. These are treated by solving
the HFB equations within the two-basis method [136,137].
For the effective pairing EDF, we employ the widely used
density-dependent form [138]

Epair =
∑

q=p,n

Vq

4

∫
d3r

[
1 − ρ0(r)

ρc

]
ρ̃∗

q (r)ρ̃q(r), (30)

where ρ̃q(r) is the pair density [1]. With ρc = 0.16 fm−3,
this form corresponds to a “surface-type” pairing interaction.
A smooth cutoff above and below the Fermi energy as de-
scribed in Refs. [9,13,137] limits the pairing correlations to
the single-particle levels around the Fermi energy. For sim-
plicity, we take the proton and neutron pairing strengths to be
equal, i.e., Vn = Vp = V1, and use the same cutoff parameters
(μp = μn = 0.5 MeV and �Ep = �En = 5.0 MeV) for both
species, as done before in Refs. [9,13,137,138].

While our earlier studies on deformation energies reported
in Refs. [9,13] used the HFB + Lipkin–Nogami (LN) scheme
to ensure the presence of pairing correlations in all states,
we use here the stabilization of the pairing EDF proposed
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in Ref. [139] instead, with Ecutb = 0.3 MeV for the cutoff
parameter.

It is well known that the pairing strength has to scale with
effective mass m∗

0/m. For the series with m∗
0/m = 0.70 we use

the same pairing strength of V1 = −1250 MeV fm−3 for pro-
tons and neutrons originally adjusted for SLy4 in Ref. [138]
and used in Refs. [9,13]. Although originally adjusted within
the HFB + LN scheme, this pairing strength gives nearly
identical values of pairing gaps when used in the context of the
stabilized pairing EDF. For the two other series, the pairing
strength was readjusted to give the same average neutron
pairing gap for the spherical ground state of 188Pb as SLy4
with V1 = −1250 MeV fm−3, which led to the values of V1 =
−1175 MeV fm−3 for the parametrizations with m∗

0/m = 0.80
and V1 = −1140 MeV fm−3 for those with m∗

0/m = 0.85.
In some figures, we compare results obtained with the new

fits with results obtained with the existing SLy7 [17] and
SLy5s1 [9] parametrizations that are known to have reason-
able deformation properties. Both have an isoscalar effective
mass close to 0.7, see Table III, and will be used with a pairing
strength of Vq = −1250 MeV fm−3.

C. Fission barrier of 240Pu

We start our discussion of deformation properties by con-
sidering the double-humped fission barrier of 240Pu, which is
arguably the most widely used testing ground for the modeling
of nuclear fission [1,9,10,99,100,140–147]. Figure 10 dis-
plays the static fission barrier of this nucleus calculated as in
Ref. [13]. For all eleven parametrizations, we find a very simi-
lar fission path in the space of multipole deformations β�m that
evolve continuously without sudden jumps. There is one little
difference in detail for 1F2F(0.70), 1F2F(0.80), 1F2F(0.85),
1T2T(0.70), and SLy7. For these we find a narrow region
around the ground state where octupole deformation leads
to a small additional energy gain: 200 keV for 1F2F(0.70)
and a few tens of keV for the four others. For all other
parametrizations, all configurations are reflection symmet-
ric up to the superdeformed minimum associated with the
fission isomer. At larger quadrupole deformations, octupole
deformation gradually sets in and shapes become reflection-
asymmetric. Around the two saddle points, the lowest-energy
path passes through nonaxial shapes that lower the inner bar-
rier by about 1.5 MeV and the outer one by about 0.5 MeV as
found earlier in Refs. [13,29]. The corresponding β22 defor-
mation takes values of about 0.07 for the inner and 0.02 for
the outer barrier, which corresponds to γ angles of about 12
degrees and 1.5 degrees, respectively. At small deformations
and around the minima, the nucleus takes an axial shape.
Altogether, the fission path is very similar to the one of the
actinide nuclei discussed in Ref. [29].

The energy curves obtained with the new parameter sets
fall into three clearly distinguishable groups that are identi-
fied by the scheme for c.m. correction employed during their
adjustment: those using the 1T2F recipe give systematically
the highest energy curves relative to the ground state when
increasing deformation, those using the 1F2F recipe the low-
est ones, while the 1T2T sets fall in between. The systematic
differences are enormous: compared with the 1T2T(X) pa-

FIG. 10. (a) Deformation-energy curve of 240Pu and (b) change
of the center-of-mass correction as a function of the quadrupole
deformation β20 for the parametrizations as indicated. In both cases,
the energies are normalized to the value at the respective ground-state
deformation. To facilitate the comparison, both panels share the
same energy scale. The horizontal gray bars in panel (a) indicate
experimental values for the height of the inner and outer barriers as
well as the excitation energy of the fission isomer, taken from the
sources mentioned in the text. The inserts on top of the figure indicate
the evolution of shapes along the fission path, the upper and lower
halves representing isodensities at ρ0 = 0.08 and 0.15 fm−3 in the x
and y directions.

rameter sets, the excitation energy of the fission isomer is
about 2 MeV larger for those in the 1T2F(X) set, while for
the 1F2F(X) sets it is about 2 MeV smaller. For the height
of the outer barrier, the differences are even larger. Within
each of these three groups, there also is a clear dependence
of the deformation energy on isoscalar effective mass: for
a given recipe of c.m. correction, the deformation energy
systematically increases with decreasing m∗

0/m, and this in a
very similar way for each of the three recipes.

As can be seen from Fig. 10(b), the variation of the c.m.
correction energy Ec.m. with deformation is much smaller
than the difference between the barriers and therefore can-
not explain it. Still, the one-body contribution systematically
increases the barriers by a few 100 keV, whereas the full c.m.
correction reduces the barriers by a few 100 keV. The value of
the effective mass has practically no influence on the variation
of Ec.m..
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The differences between the barriers reflect primarily the
difference between the values for asurf of these parametriza-
tions. As has been pointed out earlier in Ref. [14], for
parameters sets that are adjusted like ours without an ex-
plicit constraint on deformation properties, asurf can take very
different values depending on the scheme for c.m. correc-
tion chosen during the parameter adjustment. In addition, the
present study indicates that such fit protocols also produce a
weak dependence of asurf on the value chosen for the isoscalar
effective mass, cf. Table III.

The barriers obtained with SLy5s1 and SLy7 are very sim-
ilar to those of the new 1T2T(X) parameter sets, as expected
from their similar values for asurf. There are small differences
in detail: SLy7 yields a smaller excitation energy of the fission
isomer, whereas SLy5s1 predicts it at slightly larger deforma-
tion, and both SLy7 and SLy5s1 produce a slightly wider outer
barrier.

The ground-state deformation takes practically the same
value of β20 � 0.3 for all parameter sets and agrees well
with the available experimental data [148,149], see the more
detailed comparison in Sec. V E 1. The deformation of the
isomer, however, is slightly different for each parameter set,
mainly in dependence of the effective mass, but always re-
mains close to β20 � 0.85. This will also be analyzed in more
detail in Sec. V E 1. Depending on the height of the fission
barrier, the positions of the inner and outer saddle points also
move to slightly larger deformations with increasing barrier
height, as observed before for the SLy5sX series [13].

Before entering the comparison with data, we recall that the
main purpose of our new fits discussed here is not the “best re-
production” of barriers by itself, which in one way or another
should include actual information about deformation in the
adjustment protocol, but the question of how well barriers are
reproduced without considering them in the adjustment proto-
col depending on the choices made for the c.m. correction and
the isoscalar effective mass. Phrased differently, we want to
analyze which global choices make the reproduction of fission
barriers a fine-tuning problem within an existing adjustment
protocol that will not be in disproportionate conflict with other
constraints.

Concerning the available experimental data for the bar-
rier, we recall that some experiments for double-humped
fission barriers provide information about the inner and
outer barrier heights, while others issue information about
the higher (“primary”) and lower (“secondary”) of the two
barriers.

An example for the analysis of fission of 240Pu induced
by direct reactions is Ref. [150], which yields 5.80 ± 0.20
MeV and 5.45 ± 0.20 MeV for the heights of the inner and
outer barrier, respectively. The data evaluation from multiple
experiments provided by the RIPL-3 database [151], however,
lists 6.05 and 5.1 MeV for the heights of these barriers. A re-
cent multinucleon transfer experiment finds 6.25 ± 0.32 MeV
for the primary fission barrier [152]. Values for the excitation
energy of the 0+ superdeformed fission isomer also differ; the
authors of Ref. [153] give (2.25 ± 0.20) MeV, while the data
evaluation of Ref. [154] lists a value of 2.8 MeV. The error
bars of the experimental values displayed in Fig. 10 cover the
range of these values.

From Fig. 10 it is clear that the 1T2T(X) fits that consider
the full c.m. correction give a height of the outer barrier and an
excitation energy of the isomer that are closest to experiment,
although neither describes the data perfectly. The parameter
sets with an elevated effective mass of 0.8 and 0.85 perform
slightly better than the one with m∗

0/m = 0.7, but that seems
to be a particularity of the fit protocol used for the new pa-
rameter sets as the calculated barrier obtained with the SLy7
parametrization that has an effective mass of m∗

0/m = 0.69 is
about as close to the data.

By contrast, the inner barrier is systematically overesti-
mated by all of the 1T2T(X) fits. Its height is only reasonably
well described by the three 1F2F(X) fits that in turn grossly
underestimate the excitation energy of the isomer and the
height of the outer barrier.

Still, Fig. 10 confirms the earlier finding that when ad-
justing the parameters of EDFs solely to data on spherical
ground nuclei and infinite matter, choosing the full c.m. cor-
rection yields more realistic surface properties than choosing
the 1F2F or 1T2F recipes instead.

Obtaining realistic surface properties for parameter sets
of 1F2F and 1T2F type requires adding information on the
surface energy to the fit protocol. This is exemplified in
Fig. 10 by SLy5s1 that produces a barrier of similar quality
as the one from the 1T2T(0.80) and 1T2T(0.85) and SLy7
parametrizations. Unlike these, SLy5s1 is of 1T2F type and
had to be constrained during the fit to have a realistic value
of the surface energy by shifting its aMTF

surf value from about
19.0 MeV that it would naturally acquire to 18 MeV. Simi-
larly, the parametrizations SkM∗ [10] (that is of 1T2F type),
UNEDF1 [12], and UNEDF2 [19] (both of 1F2F type) that
perform similarly well for this barrier were also constrained
in one way or the other to do so.5

The failure of the three 1T2T fits, and also SLy5s1 and
SLy7, to describe simultaneously all of the three characteristic
energies of the barrier of 240Pu is consistent with the earlier
findings for nuclei in this mass region [1,9]. Two recent ex-
ceptions are BSkG1 and BSkG2 [29], which describe the inner
and outer barriers of 240Pu similarly well.

As recalled in Sec. IV B, the surface energy of an EDF
cannot be represented by a unique number, as it has an isospin
dependence and can be determined within different schemes.
This poses the question to which of the various possibilities
to characterize surface energy the barriers are actually most
correlated to. To answer this question, Fig. 11 displays the
excitation energy of the fission isomer and the heights of the
inner and outer barrier of 240Pu as a function of the isoscalar
surface energy coefficients calculated in MTF (aMTF

surf ) and
HF (aHF

surf) approximation, as well as the effective isospin-

5Although SkM∗ [10] is also of 1T2F type, its surface energy
actually had to be increased compared with the original SkM [30]
parametrization, see also Ref. [9] for a detailed comparison of their
asurf values and the corresponding fission barrier of 240Pu calculated
in a similar manner as done here. The reason is that SkM was
adjusted within an unusual protocol that focused on nuclear matter
properties relevant for the description of giant resonances.
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FIG. 11. Characteristic energies of the fission barrier of 240Pu as
a function of (a) aMTF

surf , (b) aHF
surf, and (c) aHF

surf,eff(
240Pu). Colors indicate

families of parameter sets with same scheme for c.m. correction as
in Fig. 10. Markers, however, indicate here the excitation energy
of the fission isomer and the heights of the inner and outer barrier,
respectively. To guide the eye, lines connect results obtained with
the three parameter sets with same scheme for c.m. correction, but
different effective mass. Within each family of parameter sets, asurf

decreases with increasing effective mass, see Table IV. As in Fig. 10,
the experimental data are indicated by horizontal gray bars, where
those for the inner and outer barrier overlap.

dependent surface energy coefficient aHF
surf,eff calculated in HF

approximation.
The different range of asurf values over which the three

parameter sets with same c.m. correction scheme are spread
in each of the panels of Fig. 11 illustrates again that the dif-
ference between aMTF

surf and aHF
surf slightly depends on effective

mass as a consequence of the approximations made in the
MTF scheme, and that also the surface symmetry energy coef-
ficient that enters aHF

surf,eff takes a slightly different value at each
effective mass. This change in spread has the consequence that
the slope of the line connecting results obtained with the three
parameter sets with same c.m. correction is different in each
of the three panels of Fig. 11.

When comparing results obtained with parameter sets with
different effective mass for a given choice of c.m. correc-
tion, i.e., the data that are plotted in same color in Fig. 11,
one finds in most cases a nearly linear correlation between
the calculated characteristic energies of the barrier and the
respective surface energy coefficient. For none of the three
choices of surface energy coefficient, however, the calculated
characteristic energies in Fig. 11 fall near a unique straight
line when comparing all nine parametrizations from the dif-
ferent families of fits, i.e., the data plotted in different colors.
Instead, there always is an offset when going from one family
of parametrizations to the next. The sign of this offset is
also not universal. For the excitation energy of the isomer,
extrapolating the results from a family with overall low asurf

to higher asurf will underestimate the results obtained from
parameter sets that actually have larger asurf. For the height
of the inner barrier the opposite happens: extrapolating values
obtained with parameter sets that use the same c.m. correction
to higher asurf will overestimate the barrier height actually
found for the other families of fits. For the outer barrier
height, the sign of the offset is even different when plotting
the values as a function of aHF

surf or as a function of either aMTF
surf

or aHF
surf,eff. The offsets remain comparatively small and do not

prevent using any of these correlations to adjust a suitable
value of asurf as an alternative to the adjustment of actual
fission barriers. However, as already suspected in Ref. [9]
based on a set of parametrizations that was much more limited
with respect to the choices for c.m. correction and effective
mass, one can expect a nearly linear correlation between asurf

and deformation energies only when the fundamental choices
made for the form of the EDF and the fit protocol are the
same. This is of course not surprising as the very origin of
the complicated topography of a fission barrier like the one
of Fig. 10 is generated by the variation of shell effects that
are not directly influenced by asurf, but depend sensitively on
many of the other choices made when parametrizing an EDF.

Shell effects are not the only possible source of such differ-
ences. There are also other contributions to the deformation
energy that are not represented by the surface energy coef-
ficient and therefore can spoil the correlation between these
quantities. One of these is the deformation dependence of the
pairing correlation energy, i.e., the energy difference between
a HF and a HFB calculation of a nucleus at given deforma-
tion. This energy changes along the fission path as a nucleus’
ground state and fission isomer correspond to deformations
where pairing correlations are weak because of the low level
density around the Fermi surface, whereas the saddle points
correspond to regions where pairing correlations are strong
because of a large level density around the Fermi surface.
Assuming that for a given nucleus the size of the pairing
correlation energy scales with pairing strength, the need to
adjust the pairing strength separately for parametrizations
with different effective mass can generate a systematic differ-
ence between parameter sets with different m∗

0/m. This would
introduce an effective-mass-dependence of the characteristic
energies from parametrizations with different effective mass
within a series with given scheme for c.m. correction, and
thereby misalign the trends when comparing series with dif-
ferent scheme for c.m. correction. While such misalignments

034316-19



PHILIPPE DA COSTA et al. PHYSICAL REVIEW C 109, 034316 (2024)

are seen on Fig. 11, it is unlikely that the pairing correlation
energy is their main source: for the reasons already men-
tioned, its effect on the excitation energy of the fission isomer
should be smaller than its effect on the barrier heights, which
is not the case for the differences seen on the figure.

Another contribution for the offsets visible in Fig. 11 is the
deformation dependence of the c.m. correction energy Ec.m.

displayed in the lower panel of Fig. 10. Indeed, Ec.m. does not
contribute to the calculation of the surface energy of infinite
matter, such that its mass- and deformation dependence is
not represented by asurf and assym. Comparing with the 1F2F
case where the c.m. correction energy is zero by construction,
the values for the excitation energy of the fission isomer are
pushed up by about 200 keV by this effect for parameter sets
of 1T2F type, whereas they are pulled down a few tens of keV
for parameter sets of 1T2T type. Again, this effect cannot be
the major source for the observed offsets in Fig. 11, as it is too
small in absolute size and also cannot explain the relative sign
in all cases.

D. Energy landscape of 180Hg

As a second example we discuss 180Hg, which is among the
most neutron-deficient nuclei for which information about the
fission barrier is available. Because of its much smaller asym-
metry I , the surface symmetry energy is much less important
for the barrier of 180Hg than for the one of 240Pu.

In addition, this nucleus is situated in a different region of
the chart of nuclei where shell effects along the fission path
are very different from those determining the fission path of
240Pu. This has several consequences for the energy curves
displayed on Fig. 12. First, 180Hg exhibits shape coexistence
of near-degenerate normal-deformed states at low excitation
energy, one at an oblate deformation of β20 � −0.15, the
other at a prolate deformation of β20 � 0.32. Second, model
calculations [155–158] suggest that there is only one broad
barrier, whose saddle point is at very large deformation, pos-
sibly very close to the scission point. In fact, the curves in
Fig. 12 end where the calculations jump to a solution with
two nonidentical fragments. The broad outer barrier follows
a reflection-asymmetric path beginning at around β20 � 1.1.
Like in our earlier study of this nucleus with the SLy5sX
parametrizations reported in Ref. [13], we have not found
nonaxial solutions that lower the barrier around the saddle
point.

As we are mainly interested in the primary fission barrier
of this nucleus, we have not checked if the various super- and
hyperdeformed local minima that can be found at intermediate
deformations might be connected through triaxial shapes that
bypass the small barriers between them that get particularly
pronounced for the parameter sets with small surface energy
coefficient. For this reason, the energy curves shown in Fig. 12
are for an entirely axial fission path.

For the barrier height, comparison with experiment is not
entirely straightforward as all available data were obtained
from the observation of β-delayed fission of 180Tl [159],
which passes through excited states of 180Hg with negative
parity and finite angular momentum. The excitation energy of
these states is necessarily smaller than the Q value for elec-

FIG. 12. (a) Deformation energy curve of 180Hg and (b) change
of the center-of-mass correction as a function of the quadrupole
deformation β20 drawn in the same way as in Fig. 10. The energy
curves end at the deformation at which the calculation jumps to a
solution with two separate fragments.

tron capture of 180Tl, QEC(180Tl) = 10.44 MeV, which sets
an upper bound for the fission barrier. The model-dependent
analysis of the measured probability of β-delayed fission in
that nucleus [156] suggests that the fission barrier has a height
of about 8.0(9) MeV, which is the value used in Fig. 12.

The configuration of 180Hg for which fission has been ob-
served can therefore be expected to have a different structure
than the ground state for which the fission barrier is calculated.
When comparing theory and experiment, however, we assume
that these two barriers are the same, as done in the earlier
literature on the subject.

The energy curves calculated with the new parametriza-
tions shown in Fig. 12 fall again into three groups according
to their scheme for c.m. correction. Compared with 240Pu, the
differences are even more dramatic because of the larger range
of deformations that are probed. This makes it even clearer
that the differences in barrier height cannot be caused by the
variation of the c.m. correction itself with deformation. Within
each group of parametrizations with same c.m. scheme, the
barrier height decreases again with increasing effective mass,
such that the pattern of the energy curves clearly follows the
sequence of the parametrizations’ asurf values.

Comparing the calculated energy curves with data, the
1T2F(X) parametrizations again overestimate the barrier

034316-20



IMPACT OF CHOICES FOR CENTER-OF-MASS … PHYSICAL REVIEW C 109, 034316 (2024)

height, whereas the 1F2F(X) underestimate it. While the
1T2T(X) are again closest to experiment, the calculated barri-
ers are of the same size as the upper limit for the barrier from
the QEC value, but overestimate the barrier height as deduced
in Ref. [156].

Like in the case of 240Pu, SLy7 gives a barrier height that
falls in between those predicted by the 1T2T(X) parametriza-
tions. By contrast, SLy5s1 gives a visibly higher barrier than
the 1T2T(X) although it has a very similar asurf,eff value. This
different behavior of SLy5s1 can be explained by its different
scheme for c.m. correction, which for SLy5s1 is of 1T2F type.
As can be seen from Fig. 12(b), at the respective saddle point
at β20 � 2.8, the c.m. correction energy of the 1T2F-type
parametrizations is about 500 keV larger than for the ground
state, whereas the full c.m. correction energy of the 1T2T-type
parametrizations becomes 500 keV smaller. Consequently,
the difference in c.m. correction increases the barrier height
of SLy5s1 by about 1 MeV compared with SLy7 and the
1T2F(X). As the difference in c.m. correction grows further
beyond the saddle point, the outmost part of the fission barrier
obtained with SLy5s1 is then also somewhat flatter than the
one found with any of the 1T2T(X).

As the c.m. correction does not enter the calculation
of the surface energy of semi-infinite matter, the slightly
different deformation dependence of the c.m. correction
energy obtained for the 1F2F(X), 1T2F(X), and 1T2T(X)
parametrizations is not accounted for by their asurf value. For
nuclei with a very wide fission barrier like 180Hg, the defor-
mation dependence of the c.m. correction can therefore make
a visible difference for the fission barriers of parametrizations
with same asurf, but different scheme for c.m. correction. For
240Pu with its much narrower fission barrier, the variation of
the c.m. correction energy with deformation across the barrier
is much smaller, such that it does not have a visible effect on
the fission barrier as seen in Fig. 10.

Experimental data consistently point to an oblate shape of
the ground state of this and other even-even Hg isotopes in this
mass region [160], while many EDF parametrizations predict
a prolate shape for these nuclei instead. Among those that
do correctly predict an oblate ground state for these nuclei
are the fits with low asurf out of the SLy5sX series such as
SLy5s1 [160]. This success, however, cannot be attributed to
a low asurf value as such. Comparing the new fits, all of the
1T2T(X) parametrizations (intermediate asurf) and all of the
1T2F(X) (large asurf) predict an oblate ground state, whereas
the 1F2F(X) (low asurf) predict a prolate ground state. On
the other hand, SLy7 predicts a prolate ground state of 180Hg
although its value for asurf is similar to those of the 1T2T(X).

For all of these parameter sets, the energy difference be-
tween the prolate and oblate minima is at most 1 MeV, and
often significantly less. Note that our calculations also predict
a third minimum at small prolate deformation, that for the
1T2F(X) parametrizations is actually lower in energy than the
prolate minimum at larger deformation. For the parametriza-
tions with large asurf values out of the SLy5sX series, the
weakly deformed prolate minimum is actually predicted to be
the ground state [13,160].

These minima are generated by shell effects that are related
to the evolution of the bunching of single-particle levels with

FIG. 13. Height of the primary fission barrier of 180Hg as a func-
tion of (a) aMTF

surf , (b) aHF
surf, and (c) aHF

surf,eff(
180Hg) plotted in the same

way as in Fig. 11.

deformation in the Nilsson diagram, and which are more
difficult to control in a parameter fit than the surface en-
ergy. Assuming that these shell effects are equal for all of
the new fits, then the order of the minima obtained with the
1F2F(X), 1T2F(X), and 1T2T(X) parametrizations is actually
what one would naively expect from the differences between
their surface energy coefficients. At small deformation, the
macroscopic deformation energy grows quadratically with
quadrupole deformation, see Ref. [13] and references therein,
such that a state with larger absolute value of β20 looses more
macroscopic energy when increasing asurf than a state with
smaller β20. That the SLy5sX parametrizations discussed in
Ref. [160] do not follow this trend indicates that also the
ground-state shell effects change significantly within this se-
ries, which has been illustrated for 180Hg in Ref. [13]. Many
traditional Skyrme parametrizations predict a well-deformed
prolate ground state for even-even Hg isotopes in this mass
region, and this even in spite of their having large asurf values
that are comparable to those of the 1T2F(X). This altogether
points to an unresolved fine-tuning problem of shell effects
and indicates that finding the expected asurf dependence of the
energy difference between the coexisting shapes in 180Hg for
our new fits might be fortuitous.

We note that Fig. 12 indicates that the relative energy
between the various normal-deformed minima of 180Hg does
not show any significant dependence on m∗

0/m for the best fits.
This is slightly surprising, as the size and variation of shell
effects could have been affected by the effective mass.
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FIG. 14. Dimensionless quadrupole and hexadecapole deforma-
tion of the charge-density distribution of the ground states of
even-even U (Z = 92) and Pu (Z = 94) isotopes compared with
experimental data where available, plotted in the same colors and line
styles as in Fig. 10. The error bars of the experimental β20 values are
smaller than the markers used to plot them. For the two Pu isotopes
for which we found reflection-asymmetric ground-state shapes, we
also show the calculated octupole deformation.

Figure 13 plots the height of the primary fission barrier of
180Hg as a function of aMTF

surf , aHF
surf, and aHF

surf,eff(
180Hg). Like in

the case of 240Pu displayed in Fig. 11, there is a near-linear
correlation of the values obtained with the three parameter
sets with different effective mass but same scheme for c.m.
correction for all of the choices for asurf, but again the barrier
heights do not perfectly correlate with any of the choices
for asurf across families of parameter sets with different c.m.
correction. While the deformation dependence of the c.m.
correction energy mentioned before brings an offset of about
1 MeV to the comparison of the results obtained with the
1T2T(X) and 1T2F(X) sets, there have to be other contribu-
tions that are even larger.

E. Deformation

1. Normal-deformed ground states of actinides

Figure 14 compares the calculated ground-state quadrupole
and hexadecapole deformations of U (Z = 92) and Pu (Z =
94) isotopes with the available data6 for electric transition
moments extracted from B(E2) and B(E4) moments deter-
mined either from Coulomb excitation [148] or the analysis
of muonic x rays [149,161]. We mention that SLy5s1 and
SLy7 give results that on the plot are almost indistinguishable
from those obtained with 1T2T(0.70) and therefore have been
omitted from the figure.

It is striking to see almost no difference between the
calculated values obtained from different parametrizations,

6Note that the β2 and β4 values given by these references are surface
deformations that are not equivalent to the volume deformations
of Eq. (29). The experimental β�0 values used for Fig. 14 were
obtained from converting the Cartesian quadrupole and hexadecapole
moments given in these references to spherical multipole moments
Q�m and then applying Eq. (29).

indicating that for well-deformed nuclei with a unique deep
normal-deformed minimum in the energy surface the ground
state deformation is solely determined by the deformation de-
pendence of shell effects, but independent on the macroscopic
surface energy. In addition, the experimental β20 values are
almost perfectly reproduced by all parametrizations. Note that
β20 and β40 follow a different trend when moving across a
major shell, with the hexadecapole moment changing sign
at about midshell, which can be understood from the spatial
distribution of the single-particle wave functions that are suc-
cessively filled, see Refs. [162,163]. The actinide nuclei for
which data are available are located close to the region where
this happens. Within their large error bars, the experimen-
tal β40 values are fairly reproduced, although the calculated
values tend to decrease too slowly with mass number. Al-
though there is a modest spread in the predictions of different
self-consistent models for hexadecapole deformation in this
region, this mismatch between the calculated and experimen-
tal trend with mass number seems to be a consistent feature
of all models that have been used to study this observable, as
first discussed in Ref. [164] and shown explicitly in the case
of 238U for 21 different parametrizations of Skyrme’s EDF in
Ref. [165]. Given this indication from different models and
the inherent difficulties of the experimental determination of
hexadecapole deformation, it seems worthwhile to revisit this
region with modern technology. For 238U in particular, such
experimental information would be complementary to infor-
mation that might be gleaned from ultrarelativistic heavy-ion
collisions of this nucleus [166].

As mentioned when discussing the fission barrier of 240Pu
in Sec. V C, for a few parametrizations we find an octupole-
deformed ground state for this nucleus that is accompanied by
a very small energy gain of at most 200 keV for 1F2F(0.70).
That the deformation-energy surface of 240Pu is soft against
octupole deformation has been noticed before [167,168], in-
dicating the possibility of dynamical octupole correlations
that would explain the experimentally observed low-lying
negative-parity band whose levels decay to states in the
ground-state band via strong E1 transitions [169,170]. For
the same four parametrizations, 1F2F(0.70), 1F2F(0.80),
1T2F(0.85), and 1T2T(0.70), we also find a shallow octupole-
deformed minimum for 238Pu, again with an energy gain that
does not exceed a few tens of keV. The β30 deformation
of these isotopes are also displayed in Fig. 14. Compared
with the lowest reflection-symmetric configuration of these
isotopes, the quadrupole and hexadecapole deformations do
not change by an amount that can be resolved on the figure.
No octupole-deformed minima are found for the heavier plu-
tonium isotopes or any of the uranium isotopes displayed in
Fig. 14.

For the more neutron-deficient nuclei displayed on this
figure, the presence or absence of an octupole-deformed
minimum results from a small change in the softness of
the deformation-energy surface with respect to β30, as is
illustrated by Fig. 15 for 240Pu. The pattern of differences
between the deformation-energy curves is clearly correlated
with the effective mass and the scheme for c.m. correction em-
ployed: the energy curve becomes stiffer when going from the
1F2F(X) to the 1T2T(X) and then to the 1T2F(X), reflecting
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FIG. 15. Energy of the normal-deformed configuration of 240Pu
as a function of dimensionless octupole deformation β30, plotted in
the same colors and line styles as in Fig. 10. The insets on top of the
figure indicate the typical evolution of shapes along the energy curve.

the global dependence of asurf on the scheme of c.m. cor-
rection. For parametrizations with the same scheme for c.m.
correction, it is, however, the one with the smallest effective
mass that is the softest against octupole deformation. There-
fore, the sequence of energy curves is not directly determined
by asurf, as for a given c.m. scheme it is the parametrization
with the largest m∗

0/m that has the smallest asurf value (see
Table IV). This points to an important role of the effective
mass for the variation of shell effects with deformation that
generate the octupole-deformed minima in this mass region.
Comparing the parametrizations that generate an octupole-
deformed minimum for this nucleus, the size of octupole
deformation at the minimum and the energy gain are clearly
correlated.

We mention that a similar pattern, but with much larger
gain in deformation energy from octupole deformation, is
also found for 222Ra [171], a nucleus for which empirical
data point to static octupole deformation. Altogether, Fig. 15
confirms the finding of Ref. [13] that it is more likely to find
static octupole deformation for parametrizations of Skyrme’s
EDF with low surface energy coefficient. The present study
points to a second nuclear property of EDFs that amplifies
such exotic deformation modes, which is a small effective
mass as suspected in Ref. [33].

While our finding of octupole-deformed minima for a
few plutonium isotopes indicates that lowering asurf of a
parametrization significantly increases the likelihood of shape
transitions that involve exotic shape degrees of freedom in
self-consistent mean-field calculations, the significance of the
actual octupole-deformed minima for the interpretation of
experimental data is less clear. The minima are too shallow to
interpret the nuclei for which they are found as rigid octupole-
deformed rotors, which also would be incompatible with
experimental data for the observed states at low spin. Still,
that fluctuations on octupole degrees of freedom might play a
significant role for 240Pu is evident when comparing Fig. 15
with Fig. 10: around the ground state, the energy surface of

FIG. 16. Charge quadrupole (a), (b) deformation and (c), (d) ex-
citation energy of the 0+ fission isomers of even-even (a), (c) U and
(b), (d) Pu isotopes. Colors and line styles are the same as in the
previous figures.

240Pu is much softer with respect to octupole deformation
than with respect to quadrupole deformation for all nine of
the “best fit” parametrizations, irrespective of their predicting
an octupole-deformed minimum or not.

2. Superdeformed fission isomers of actinides

Figure 16 compares calculated values for the excitation
energy and quadrupole deformation of superdeformed (SD)
fission isomers of U (Z = 92) and Pu (Z = 94) isotopes with
the available data. As done earlier in Ref. [8], we limit the
comparison to data for isomers that could be identified as 0+
bandheads.

The excitation energies of the fission isomers of the ura-
nium isotopes are taken from Ref. [172], the energy of the
state with 37.4 ps lifetime of 236Pu from Ref. [154], and the
energy of the isomer of 240Pu from Refs. [153,154], see also
Sec. V C.

The experimental β2 values were obtained converting the
Cartesian charge quadrupole moments Q0 listed in Ref. [173]
to spherical quadrupole moments Q20 = √

5/(16π )Q0 first
and then applying Eq. (29).

As could be expected from the discussion of the fis-
sion barrier of 240Pu, the 1T2F(X) parametrizations grossly
overestimate the known excitation energies of fission iso-
mers. This performance is similar to almost all other Skyrme
parametrizations that use the 1T2F recipe and that are not
fine-tuned to describe highly deformed states. The 1F2F(X)
on the other hand grossly underestimate this energy, so much
so that SD minima become the global minima for some heavy
actinide nuclei. The isomer excitation energies predicted by
the 1T2T(X) are compatible with available data, further con-
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FIG. 17. Charge quadrupole (a), (b) deformation and (c), (d) ex-
citation energy of the hypothetical (see text) 0+ bandheads of the
superdeformed rotational bands of even-even (a), (c) Hg and (b),
(d) Pb isotopes. Colors and line styles are the same as in the previous
figures.

firming that choosing the 1T2T(X) recipe for c.m. correction
automatically leads to quite realistic, although not completely
perfect, surface properties.

Taking into account the huge error bars on β20, one can
consider that all new parameter sets agree with data for
the quadrupole deformation. Unlike the case of the normal-
deformed minima, the calculated values do not fall on top of
each other which indicates that there is some variation in the
shell structure predicted in the second well.

We have checked that for all parametrizations the SD
minimum is stable with respect to nonaxial and reflection-
asymmetric deformations.

3. Superdeformed states of Hg and Pb isotopes

Figure 17 compares predictions for the excitation energy
and charge quadrupole moment of the 0+ bandheads of SD
rotational of even-even neutron-deficient Hg (Z = 80) and Pb
(Z = 82) isotopes with available data.

Again, the experimental quadrupole deformations β2

have been deduced from Cartesian transition quadrupole
moments7Qt = √

16π/5Q20 listed in Ref. [154]. These
quadrupole moments are obtained from averaging transition
moments between high-spin states built on top of the respec-
tive bandhead.

In general, the calculated β2 values of Pb isotopes are
slightly larger than those of Hg isotopes with same neutron

7Note that the β2 values given in the same table of Ref. [154] are
surface deformations that are not equivalent to the volume deforma-
tions defined through Eq. (29), see Ref. [13] and references therein.

number, pointing to a significant role of proton shell effects
for the SD minimum. For both the Hg and Pb chains, the
calculated β2 take their maximum value at about N � 110. For
Hg isotopes, the calculated β2 slightly fall off on both sides,
whereas for Pb isotopes, only the values calculated with the
1T2F(X) and 1T2T(X) parametrizations follow this trend. For
the heavier isotopes of both elements with N � 110, all new
fits predict similar β2 values that fairly reproduce the available
data that have very large error bars. For the most neutron-
deficient isotopes, however, the 1F2F(X) systematically yield
slightly larger values than the fits from the two other series.
This can possibly be attributed to 1F2F(X)’s asurf values being
smallest among all new fits and therefore yielding the softest
deformation-energy surfaces.

Not all Hg and Pb isotopes exhibit an SD minimum, and
Fig. 17 is limited to the range of neutron numbers for which
it is most likely to find one. Not all parametrizations predict
an SD minimum for the same range of neutron numbers, as
indicated by the 1T2F(X) for which none is found for 188Pb.
That the likelihood of finding an SD minimum increases with
decreasing asurf has already been illustrated by Fig. 12 for
180Hg: the flatter the deformation-energy surface, the more
likely it is that local variations of shell effects generate local
minima.

The experimental data for the excitation energies of the
bandheads of the SD rotational bands in these nuclei are taken
from Refs. [174–176]. The bandheads themselves have not
been identified in experiment so far; instead, their energy
is estimated from the extrapolation of the excitation ener-
gies of high-spin levels in the rotational band built on top
of them.

Going towards more neutron-deficient isotopes, the excita-
tion energy �E of the calculated SD bandheads first decreases
rapidly and then levels out. As can be expected from their asurf

values, the curves obtained from the 1F2F(X), 1T2T(X), and
1T2F(X) are almost parallel, with an offset of about 1.5 MeV
when going from one series to the next. The available ex-
perimental data, which are all in the region where the slope
of the calculated �E starts to level out, decrease slightly
less quickly than the calculated ones. None of the new fits
describes simultaneously the data for Hg and Pb isotopes:
While the �E of Pb isotopes are reasonably well described
by the 1T2T(X)—which are also those that performed best
for all other deformation energies discussed so far—the same
parametrizations visibly underestimate the �E of the Hg iso-
topes. By contrast, the 1T2F(X) with their larger asurf fairly
describe these data.

This discrepancy in performance for the �E of adjacent Hg
and Pb isotopes is likely to be a deficiency in the description
of the relative size of shell effects in the various minima of
Hg isotopes. The same flaw has been found for the SLy5sX
series in Ref. [13]: SLy5s1 fairly describes the ground state
and fission barrier of 180Hg, the fission barrier of 240Pu and
the SD bandheads of Pb isotopes, but underestimates the SD
bandheads of Hg isotopes by a similar amount to what is found
here for the 1T2T(X). That the �E of Hg and Pb isotopes is
not simultaneously described by widely used parametrizations
of the Skyrme EDF had already been pointed out earlier in
Ref. [177].
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4. Shape coexistence of even-even Hg isotopes
at normal deformation

As we mentioned already when discussing the fission bar-
rier of 180Hg in Fig. 12, there is experimental evidence that the
ground states of even-even Hg isotopes below N � 120 are the
weakly oblate-deformed bandheads of a collective rotational
band, which at least for isotopes between 100 � N � 110
coexists with an excited prolate rotational band that has much
larger a moment of inertia [178]. The excitation energy of the
0+ state interpreted as the prolate bandhead roughly follows
a parabolic trend with A [178], taking its minimal value of
328 keV for A = 182. For three of the intermediate odd-mass
Hg isotopes with 101 � N � 105 around the minimum of this
parabolic trend, however, a prolate state becomes the ground
state, which leads to an anomalous odd-even staggering of
charge radii [160,178] in this mass region.

Nuclear EDF methods in general reproduce the coexistence
of oblate and prolate states in this mass region. What most
nuclear EDF methods fail to reproduce is the relative order
and mass dependence of the energy difference between the
prolate and oblate states [160].

Energy curves from calculations limited to axial symmetry
often exhibit an additional third weakly deformed prolate min-
imum that, however, might turn out to be a saddle point when
considering more general nonaxial shapes. When allowing
for nonaxial shapes, some of the calculated well-deformed
prolate states become slightly triaxial for each of our best-fit
parametrizations. In most cases this concerns the two heaviest
even-even isotopes for which such minimum is found, for the
1F2F(X) even the heaviest three, but for 1T2F(0.85) only the
heaviest one. In any event, these are not the same isotopes
for each parameter set. For 180Hg discussed earlier, and with
energy curves shown on Fig. 12, only 1T2F(0.80) predicts
slight triaxiality of its quite highly excited prolate state, which
is accompanied by an energy gain of 50 keV. The triaxiality
angle γ typically takes values between 7 and 15 degrees, and
in most cases increases with A. Simultaneously, the energy
gain from triaxiality also increases, taking values of up to
about 350 keV for the last isotope for which such minimum
is found. Altogether, this situation is quite different from the
case of normal-deformed prolate states of Pu isotopes (shown
in Fig. 14) for which the occurrence of octupole deformation
is correlated with asurf and m∗

0/m.
Figure 18(a) compares the total quadrupole deformation

β2 = (β2
20 + 2β2

22)1/2 of the calculated minima found with the
available data. We multiplied the β2 values of oblate states by
a minus sign for better separation of the curves. Experimental
data for the absolute β2 values of the oblate states as deter-
mined from B(E2, 2+

1 → 0+
1 ) values through the rigid-rotor

model are taken from the NUDAT database [179]. There are
indications that the low-lying coexisting states of some of
these Hg isotopes are strongly mixed [180]; therefore, the
rigid-rotor model cannot be expected to perfectly describe
these transitions. Still, the calculated β20 of the oblate states
agree well with these data. In particular, they reproduce well
the slightly parabolic trend with A.

The experimental data for the absolute β2 values of the
prolate states are deduced from the B(E2, 6+

1 → 4+
1 ) values

FIG. 18. Shape coexistence at normal deformation in even-
even neutron-deficient Hg isotopes. (a) Calculated dimensionless
quadrupole charge deformation β2 of the three minima compared
with experimental data where available (see text). (b)–(d) Energy of
the weakly and strongly deformed prolate states relative to the oblate
state shown separately for the 1F2F(X), 1T2F(X) and 1T2T(X)
parametrizations. Colors and line styles are the same as in the pre-
vious figures.

measured in the experiments reported in Refs. [181,182],
again through the rigid-rotor model.8 Because of their large
moment of inertia, these states can be attributed to the rota-
tional bands built on the prolate state of the respective nucleus.
They are yrast for all nuclei for which there are data and
expected to be less mixed with the oblate states than the lower-
lying ones in this band, which makes the extraction of the
transition quadrupole moment through the rigid-rotor model
more reliable. The overall size and A dependence of the defor-
mation of the prolate states is also well reproduced, although
calculated values fall off less quickly with increasing A. This
may simply point to the inadequacy of the mean-field ansatz
to model the complex structure of these states [180,183].

The other three panels of Fig. 18 compare the energy of
the coexisting normal-deformed minima to the energy of the
oblate state with the available data. As we saw already in
the discussion of the fission barrier of 180Hg represented in
Fig. 12, depending on the choices made for the scheme of
c.m. correction the new fits make very different predictions
for shape coexistence at normal deformation of 180Hg, which

8Note that the β2 reported in Ref. [181] are again surface deforma-
tions, not volume deformations as plotted in Fig. 18.
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is a direct consequence of the very different asurf values of
these fits.

For the 1T2F(X) [Fig. 18(c)] that have the largest asurf,
the ground state is oblate and the excitation energy of the
well-deformed prolate states is grossly overestimated. Inter-
estingly, the calculations do not find such prolate minimum
for all isotopes for which a prolate rotational band is known.
The second prolate minimum at smaller deformation remains
well above the oblate state for all mass numbers.

For the 1T2T(X) [Fig. 18(d)] that have intermediate asurf

values, the ground state is also oblate, but now the well-
deformed prolate states are at about the correct energy. Note
that, without the additional energy gain from triaxial defor-
mation, the excitation energy of the heavier isotopes would be
further off the data. Unlike the case of the 1T2F(X), there is
a visible effective-mass dependence of the excitation energy
of the prolate state: reducing m∗

0/m also lowers the excitation
energy.

For the 1F2F(X) that have the lowest asurf values, the oblate
and well-deformed prolate structures cross in energy, such that
the lightest of the Hg isotopes shown in Fig. 18 have a prolate
ground state. For the 1F2F(X), the effective-mass dependence
of the excitation energy of the well-deformed prolate mini-
mum is even more pronounced than for the 1T2T(X).

Comparing the three series, there is also a striking differ-
ence that concerns the isotopes for which a well-deformed
prolate minimum is found: the range in A is smallest for
the 1T2F(X) and largest for the 1F2F(X) parametrizations.
More specifically, going from 1T2F(X) to 1T2T(X) and then
to 1F2F(X) at a given effective mass, the heaviest isotope
for which a well-deformed prolate minimum is found is in
most cases pushed two mass units further up. There also is an
effective-mass dependence: for 1T2T(0.70) and 1T2F(0.70),
such minima are still found two mass units further up than for
the parameter sets with larger effective mass from the same
series.

In all cases, the excitation energy of the prolate bandhead
varies too quickly with mass number. Finding a well-
deformed prolate minimum also seems to be correlated to its
excitation energy: there are no such minima found at more
than about 1.2 MeV above the oblate state.

As already noted when discussing Fig. 12, the differ-
ences in relative energy between the weakly deformed oblate
and well-deformed prolate minimum when comparing the
1F2F(X), 1T2T(X), and 1T2F(X) directly reflect the differ-
ences in their asurf values: increasing asurf leads to a larger loss
in binding energy for the minimum at larger deformation.

The 1T2T(X) perform best for this phenomenon, confirm-
ing again that adjusting a parametrization of the Skyrme EDF
at NLO with the full c.m. correction leads to quite realistic de-
formation properties, even when no information on deformed
nuclei enters the adjustment protocol.

We mention in passing that for obvious reasons the
1T2T(X) are the only parametrizations out of the new fits
that produce an anomalous odd-even staggering of the light
Hg isotopes [171]; like in the case of SLy5s1 discussed in
Ref. [160], however, the phenomenon is not predicted for
exactly the same mass range at which it is observed experi-
mentally.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

We investigated the impact of choices made for the scheme
of center-of-mass correction and the isoscalar effective mass
m∗

0/m on the resulting surface properties of nuclear EDF
through a series of dedicated fits of parameter sets of the
widely used standard NLO form of the Skyrme EDF.

To this aim we first constructed nine series of parametriza-
tions that differ in their scheme for c.m. correction; i.e., none
(1F2F), one-body term only (1T2F) and full one and two-body
correction (1T2T), and in their isoscalar mass, i.e., m∗

0/m =
0.70, 0.80, and 0.85. Adding a constraint on the surface energy
coefficient aMTF

surf calculated using the MTF approximation to a
fit protocol that otherwise only constrains properties of doubly
magic spherical nuclei and properties of infinite matter, we
constructed a set of parametrizations for each combination of
c.m. correction strategy and m∗

0/m that covers the wide range
of aMTF

surf . The main observations and conclusions drawn from
the analysis of these parametrizations are as follows:

(1) The value of the penalty function of the adjustment
protocol of the converged parameter fits varies strongly
with aMTF

surf within each of the nine series of fits.
(2) The optimal value for aMTF

surf that gives the smallest
value for the penalty function within a given series
of fits depends strongly on the choice made for the
scheme of c.m. correction in the EDF, as has been
deduced earlier [14] in a much more limited study. In
addition, there is a mild dependence of value for aMTF

surf
that minimizes the penalty function on the isoscalar
effective mass m∗/m.

(3) We find strong correlations between almost all proper-
ties of infinite nuclear matter and the constrained value
for aMTF

surf . The origin of these correlations is proba-
bly threefold. First, there is a physics reason that can
be qualitatively explained in the liquid-drop model:
varying asurf changes the contribution from the surface
energy to the total binding energy of finite nuclei.
To achieve a similar description of binding energies
with different values of asurf, other contributions to
the LDM energy have to absorb the change in surface
energy through a change of their coefficients. Second,
there is a limitation of the standard Skyrme EDF: the
number of its coupling constants is smaller than the
number of relevant nuclear matter properties, which
introduces an inevitable correlation between virtually
all nuclear matter properties and the size of asurf. As
we cannot expect that the standard Skyrme EDF pro-
vides perfect modeling of nuclear systems and covers
all physical degrees of freedom, this limitation of the
Skyrme EDF introduces unphysical interdependencies
between nuclear matter properties. Third, there is an
accidental interconnection between the scheme chosen
for the c.m. correction and the properties of nuclear
matter properties. Although the c.m. correction itself
does not contribute to the properties of infinite and
semi-infinite matter, using different schemes during
the parameter adjustment produces parametrizations
with different nuclear matter properties as the other
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contributions to the total binding energy have to absorb
the differences between the resulting c.m. correction
energy.

(4) It is likely that similar correlations between the surface
and surface symmetry energy will be found when con-
structing series of parametrizations with varied infinite
matter properties.

(5) We confirm earlier studies [9] that, for NLO Skyrme
EDFs, the values for asurf obtained with different
schemes to calculate semi-infinite matter, system-
atically differ by an offset. The MTF approach
systematically gives values that are larger than the
HF ones by a few hundreds of keV. The size of this
offset depends on effective mass, which can be at-
tributed to the ansatz for the kinetic density that is
made in the MTF scheme. By contrast, values for
asurf obtained from the ETF approximation are sys-
tematically smaller than the HF ones, again by a few
hundreds of keV. This time however, the difference
between the asurf slowly increases with their absolute
size with a mild effective-mass dependence. This con-
firms that the MTF value can serve as an efficient tool
to constrain the isoscalar surface energy coefficient
asurf in a parameter fit. Unfortunately, extending the
MTF scheme to asymmetric matter is not straight-
forward [102] and requires additional approximations
when assym is also to be constrained. In addition, the
MTF ansatz is specifically tailored for the Skyrme
NLO EDF and cannot be applied to Skyrme EDFs of
higher order in gradients that require the setup of an
alternative scheme [184].

In a second step, we constructed nine fits without constraint
on aMTF

surf that each represent the “best fit” for a given combi-
nation of choices for c.m. correction and isoscalar effective
mass in the sense that they correspond to the minima of the
penalty function of our adjustment protocol for each of the
nine series constructed with a constraint on aMTF

surf . Like the ma-
jority of parametrizations of the Skyrme EDF, the adjustment
protocol of these nine “best fits” only considers properties of
spherical nuclei and infinite nuclear matter, but no information
on deformation properties of finite nuclei. With this, these
parametrizations are representative of the consequences of
the choices made for the scheme of c.m. correction and the
effective mass on the surface energy of Skyrme EDFs at NLO.
The main observations and conclusions from our analysis of
their nuclear matter properties are as follows:

(1) As a consequence of the correlations between asurf and
properties of infinite matter, the INM properties of the
nine best fits systematically differ and this even in spite
of some of them being constrained by the adjustment
protocol.

(2) Most importantly, the nine “best fits” have systemati-
cally different values for the surface energy coefficient.
First, there is a clear dependence on the scheme for
c.m. correction: for the parameter sets using the 1T2F
scheme, asurf is almost 1 MeV larger than for parame-
ter sets employing the full 1T2T scheme, whereas for

parametrizations using the 1F2F scheme it is about 1
MeV smaller. This effect has already been identified
for the difference between fits of 1T2F and 1T2T type
before [14]. Our results demonstrate that something
similar, but in the opposite direction, happens for fits
of 1F2F type. On top of that, we also observe a mild
dependence of asurf on effective mass, at least in our fit
protocol.

The main observations and conclusions from our analysis
of the deformation energies of finite nuclei obtained with these
nine parametrizations are as follows:

(1) For all examples we studied, the calculated energy
differences between two configurations in the same
given nucleus scale roughly with the surface energy
coefficient asurf of the parametrization used. For some
observables, but not all, there is an additional de-
pendence on effective mass. The former of these
two correlations can be expected from the deforma-
tion dependence of surface energy in the liquid-drop
model, whereas the latter results from a deformation-
dependence of shell effects.

(2) At small deformation, which means regions where
the macroscopic liquid-drop energy is slowly vary-
ing with deformation, the actual deformation at which
mean-field minima are found is rather insensitive to
the value of asurf. By contrast, the deformation of
highly deformed excited states situated on the flank of
a high fission barrier where the macroscopic energy
varies quickly shows some dependence on asurf. In
addition, highly deformed minima for some nuclei are
only found for parametrizations with low asurf. From
the point of view of Strutinski’s theorem, we attribute
this behavior to the relative rate at which microscopic
and macroscopic contributions contained in the EDF
change with deformation. The former are determined
by variations of the average density of single-particle
levels around the Fermi energy, whereas the latter
roughly increase quadratically with deformation, at
least up to the point where the nucleus forms a neck.
When the shell effects vary quicker than the macro-
scopic background, they determine the position of
minima in the energy surface. By contrast, when the
macroscopic background varies quicker than shell ef-
fects, then the barriers and minima obtained from the
combined contributions move in deformation or might
disappear completely.

(3) The 1T2T(X) fits provide the best overall agreement
with experiment, particularly the parametrizations
with elevated effective mass. Within the uncertainties
of the experimental data, the 1T2T(X) parametriza-
tions describe fairly well the fission barriers of
240Pu and 180Hg, ground-state deformation of ac-
tinides, shape coexistence in neutron-deficient Hg
isotopes, and the superdeformed states of actinides
and Pb isotopes. The only clear deficiency of the
1T2T(X) that we found is their underestimation of
the excitation energy of the superdeformed band-
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head of some Hg isotopes. By contrast, the 1F2F(X)
systematically underestimate all deformation-energy
differences, whereas the 1T2F(X) almost always over-
estimate them.

(4) By no means, however, do the 1T2T(X) offer the
best possible description of deformation energies that
can be achieved for a Skyrme NLO EDF. This
was not our purpose; instead these parametrizations
demonstrate that a reasonable description of defor-
mation energies can be achieved without explicitly
considering information about deformation energies
in the adjustment protocol by simply choosing the
1T2T scheme for c.m. correction. For parametriza-
tions using the 1T2T scheme, the accurate descrip-
tion of deformation energies becomes a fine-tuning
problem. For parametrizations using the 1T2F or
1F2F schemes on the other hand, the adjustment
of deformation energies will require a major degra-
dation of other properties. This is consistent with
the recent BSkG1, BSkG2 [29], and BSkG3 [31]
parametrizations, which all use the 1T2T recipe,
achieving an excellent simultaneous description of
masses, charge radii, fission barriers and nuclear mat-
ter properties relevant for nuclear astrophysics in case
of BSkG3.

(5) The differences in deformation energy found between
the 1F2F(X), 1T2T(X), and 1T2F(X) fits is almost
independent on the contribution of the c.m. correction
itself to the total energy. The slow variation of the
c.m. correction with deformation only makes a visible
difference for nuclei with a very wide fission barrier
such as 180Hg.

(6) Our results confirm the finding of Ref. [13] that
the likelihood of finding minima in the energy sur-
face for configurations with exotic shapes increases
with decreasing surface energy coefficient of the
employed parametrizations. Our results point in ad-
dition to a significant role of the effective mass in
this respect. This point deserves further study in
the future.

(7) Our findings explain a number of observations made
in the literature about the performance of Skyrme
EDFs regarding nuclear deformation properties. Un-
fortunately the majority of Skyrme EDFs for nuclear
structure and nuclear matter studies are still adjusted
with the numerically less costly 1T2F scheme, which
tends to make nuclei too rigid against deformation.
Constructing parametrizations for nuclear dynamics
with the 1F2F scheme can also pose problems since
such strategy tends to make nuclei too soft against de-
formation unless surface properties are explicitly tuned
during the fit.

Our study raises the question to which extent not incor-
porating other quantal effects that cannot be easily described
by mean-field modeling based on an EDF might also
be spuriously imprinted on the properties of the EDF’s
parametrizations. The most immediate suspects are rotational

and vibrational corrections for collective motion but the
Wigner energy might be another [185].

There also is a noteworthy difference between the optimal
values for asurf when comparing different types of models.
For the Skyrme EDFs used here, the best description of bar-
riers is achieved for aHF

surf � 16.4 MeV in combination with
aHF

ssym � −46 MeV. The surface and surface-symmetry energy
coefficients of macroscopic-microscopic models, for which
they usually are adjusted to fission barriers, are very dif-
ferent from these values. The FRLDM model of Ref. [130]
gives asurf = 21.269461 MeV and assym = −50.804 MeV, and
the three LDM models fitted in Ref. [131] have asurf and
assym values of 19.3859 and −38.4422 MeV (LDM), 17.0603
and −12.8737 MeV (NLD), or 16.9707 and −38.9274 MeV
(LSD), depending on the type of curvature term that is con-
sidered (i.e., none at all, a Gaussian one, or one of standard
form). Among the aforementioned models, only the NLD
describes fission barriers well. The comparison between the
LDM models is complicated by their different definition of
the surface (diffuse in the FRLDM and sharp in the models
of Ref. [131]) and the use of different shape parametriza-
tions in the study of fission barriers. With the exception
of the LSD, none of these parametrizations comes close to
the optimal value for a Skyrme EDF, although it has to be
noted that it is not entirely clear how to calculate EDF val-
ues for asurf and assym that can be meaningfully compared
with those of a macroscopic-microscopic model (i.e., with the
HF scheme, or an ETF scheme, or even differently because
of the different density profiles assumed in LDM models).
In any event, all of the above points to the conclusion that
one cannot expect that a parametrization of the nuclear EDF
that reproduces the asurf and assym values of a macroscopic-
microscopic model will perform well for deformation
energies.

More relevant experimental data would be most useful to
better constrain and benchmark nuclear surface properties; in
particular data that probe the deformed density distribution of
heavy nuclei, both for well-deformed ground states of heavy
nuclei and especially for states at large deformation. The few
existing measurements of higher-order shape deformations of
nuclear ground states were all achieved in the 1970s mostly
with stable nuclei. Similarly, there is very little information
available on the excitation energies and quantum numbers
of superdeformed states. In our view, the surface properties
of nuclear matter deserve more investment: such information
is as important to fine-tune models as the much-more-often
investigated bulk properties of nuclear matter.

For the reasons recalled above, among the parametrizations
discussed in this paper, 1T2T(0.80) is the one that offers
the best overall description of a wide range of observables.
As they all use the full c.m. correction energy and keep
the tensor terms from the two-body central interaction with
coupling constants CsT

t in Eqs. (5) and (6), the EDF of the
1T2T(X) has the same form as the one of SLy7 constructed in
Ref. [17]. Because of the similarity of the adjustment protocol,
we encourage the use of 1T2T(0.80) as a replacement of the
parametrizations of Ref. [17] in future nuclear structure stud-
ies, and propose that it shall be used under the name of SLy7∗.
Its parameters (which can also be found in the Supplemental
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Material [129]) are

t0 = −2676.132387, x0 = 0.574713,

t1 = 381.547873, x1 = 0.015424,

t2 = −438.549085, x2 = −0.892996,

t3 = 15893.083082, x3 = 0.764736,

W0 = 119.182854, α = 1
6 .

The parameter t0 is in MeV fm3, t1, and t2 in MeV fm5, t3 in
MeV fm3+1/6, and W0 in MeV fm5. The x j and α are dimen-
sionless.

Unlike SLy4 and SLy6, the form of SLy7∗ includes all
contributions to the EDF obtained from a two-body generator,
removing some ambiguities about its use in nuclear matter
studies. Compared with SLy7 and to the vast majority of other
parametrizations of the Skyrme EDF at NLO, SLy7∗ does
not exhibit finite-size instabilities [45] in any of the (S, T )

channels at densities encountered in finite nuclei, such that it
can be used for time-reversal breaking calculations without
the need for modifying coupling constants of the time-odd
part of the EDF (6). We do not report on such calculations
here, but we checked the stability of our parametrizations
by means of cranked HFB calculations of rotational bands
at high spin [171]. Results for rotational bands and one-
quasiparticle states of odd-mass heavy nuclei obtained with
time-reversal breaking calculations with SLy7∗ will be re-
ported elsewhere [186].
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[101] P. M. N. Marević and N. Schunck, Fission of 240Pu with
symmetry-restored density functional theory, Phys. Rev. Lett.
125, 102504 (2020).

[102] H. Krivine and J. Treiner, A simple determination of the nu-
clear surface symmetry energy, Phys. Lett. B 124, 127 (1983).

[103] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis,
Isospin asymmetry in nuclei and neutron stars, Phys. Rep. 411,
325 (2005).

[104] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch, R.
Michaels, A. Ono, J. Piekarewicz, M. B. Tsang, and H. H.
Wolter, A way forward in the study of the symmetry energy:

034316-31

https://doi.org/10.1103/PhysRevC.68.054325
https://doi.org/10.1088/0370-1298/70/5/309
https://doi.org/10.1016/0029-5582(62)91025-8
https://doi.org/10.1016/0370-2693(84)90001-7
https://doi.org/10.1007/BF01904157
https://doi.org/10.1140/epja/i2003-10108-1
https://doi.org/10.1140/epja/i2003-10109-0
https://doi.org/10.1103/PhysRev.111.940
https://doi.org/10.1016/0375-9474(70)90076-X
https://doi.org/10.1007/BF01289693
https://doi.org/10.1016/0375-9474(91)90804-F
https://doi.org/10.1103/PhysRev.51.283
https://doi.org/10.1098/rspa.1955.0239
https://doi.org/10.1103/PhysRev.110.1395
https://doi.org/10.1103/PhysRev.136.B1266
https://doi.org/10.1016/0029-5582(65)90724-8
https://doi.org/10.1016/0003-4916(68)90124-3
https://doi.org/10.1016/0003-4916(68)90143-7
https://doi.org/10.1016/0375-9474(71)90727-5
https://doi.org/10.1016/0375-9474(96)00203-5
https://doi.org/10.1016/0370-2693(79)90450-7
https://doi.org/10.1088/1674-1137/abddaf
https://doi.org/10.3390/particles6010003
https://doi.org/10.1103/PhysRevC.38.1010
https://doi.org/10.1103/PhysRevC.77.015805
https://doi.org/10.1016/S0375-9474(97)00596-4
https://doi.org/10.1103/PhysRevC.73.014309
https://doi.org/10.1016/0375-9474(78)90099-4
https://doi.org/10.1016/0003-4916(86)90098-9
https://doi.org/10.1016/0375-9474(85)90548-2
https://doi.org/10.1016/0370-2693(86)90341-2
https://doi.org/10.1016/0375-9474(80)90300-0
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1103/PhysRevC.21.1568
https://doi.org/10.1016/0375-9474(89)90656-8
https://doi.org/10.1103/PhysRevC.70.054304
https://doi.org/10.1103/PhysRevLett.125.102504
https://doi.org/10.1016/0370-2693(83)91418-1
https://doi.org/10.1016/j.physrep.2005.02.004


PHILIPPE DA COSTA et al. PHYSICAL REVIEW C 109, 034316 (2024)

Experiment, theory, and observation, J. Phys. G 41, 093001
(2014).

[105] M. Baldo and G. F. Burgio, The nuclear symmetry energy,
Prog. Part. Nucl. Phys. 91, 203 (2016).

[106] X. Roca-Maza and N. Paar, Nuclear equation of state from
ground and collective excited state properties of nuclei, Prog.
Part. Nucl. Phys. 101, 96 (2018).

[107] M. Farine, J. M. Pearson, and B. Rouben, Higher-order
volume-symmetry terms of the mass formula, Nucl. Phys. A
304, 317 (1978).

[108] W. Nazarewicz, P.-G. Reinhard, W. Satuła, and D. Vretanar,
Symmetry energy in nuclear density functional theory, Eur.
Phys. J. A 50, 20 (2014).

[109] C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M.
Centelles, and X. Viñas, Interdependence of different symme-
try energy elements, Phys. Rev. C 96, 021302(R) (2017).

[110] C. Mondal, B. K. Agrawal, J. N. De, and S. K. Samaddar, Cor-
relations among symmetry energy elements in Skyrme models,
Int. J. Mod. Phys. E 27, 1850078 (2018).

[111] J. M. Lattimer and Y. Lim, Constraining the symmetry param-
eters of the nuclear interaction, Astrophys. J. 771, 51 (2013).

[112] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, Error
estimates of theoretical models: a guide, J. Phys. G: Nucl. Part.
Phys. 41, 074001 (2014).

[113] C. Ducoin, J. Margueron, C. Providência, and I. Vidaña,
Core-crust transition in neutron stars: Predictivity of density
developments, Phys. Rev. C 83, 045810 (2011).

[114] E. Khan, J. Margueron, and I. Vidaña, Constraining the nuclear
equation of state at subsaturation densities, Phys. Rev. Lett.
109, 092501 (2012).

[115] Z. Zhang and L.-W. Chen, Constraining the symmetry energy
at subsaturation densities using isotope binding energy differ-
ence and neutron skin thickness, Phys. Lett. B 726, 234 (2013).

[116] J. Piekarewicz and M. Centelles, Incompressibility of neutron-
rich matter, Phys. Rev. C 79, 054311 (2009).

[117] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equa-
tion of state for dense nucleonic matter from metamodeling. I.
Foundational aspects, Phys. Rev. C 97, 025805 (2018).

[118] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equa-
tion of state for dense nucleonic matter from metamodeling.
II. Predictions for neutron star properties, Phys. Rev. C 97,
025806 (2018).

[119] B.-A. Li, B.-J. Cai, W.-J. Xie, and N.-B. Zhang, Progress
in constraining nuclear symmetry energy using neutron star
observables since GW170817, Universe 7, 182 (2021).

[120] G. Grams, R. Somasundaram, J. Margueron, and E. Khan, Nu-
clear incompressibility and speed of sound in uniform matter
and finite nuclei, Phys. Rev. C 106, 044305 (2022).

[121] W. Zuo, I. Bombaci, and U. Lombardo, Asymmetric nuclear
matter from an extended Brueckner-Hartree-Fock approach,
Phys. Rev. C 60, 024605 (1999).

[122] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R.
Stone, and P. D. Stevenson, Skyrme interaction and nuclear
matter constraints, Phys. Rev. C 85, 035201 (2012).

[123] P. D. Stevenson, P. M. Goddard, J. R. Stone, and M. Dutra,
Do Skyrme forces that fit nuclear matter work well in finite
nuclei?, AIP Conf. Proc. 1529, 262 (2013).

[124] S. Goriely, N. Chamel, and J. M. Pearson, Further explo-
rations of Skyrme-Hartree-Fock-Bogoliubov mass formulas.
XII. Stiffness and stability of neutron-star matter, Phys. Rev.
C 82, 035804 (2010).

[125] S. Goriely, N. Chamel, and J. M. Pearson, Further explo-
rations of Skyrme-Hartree-Fock-Bogoliubov mass formulas.
XIII. The 2012 atomic mass evaluation and the symmetry
coefficient, Phys. Rev. C 88, 024308 (2013).

[126] B. Cochet, K. Bennaceur, P. Bonche, T. Duguet, and J. Meyer,
Compressibility, effective mass and density dependence in
Skyrme forces, Nucl. Phys. A 731, 34 (2004).

[127] S. Krewald, V. Klemt, J. Speth, and A. Faessler, On the use of
Skyrme forces in self-consistent RPA calculations, Nucl. Phys.
A 281, 166 (1977).

[128] Z. Zhang and L.-W. Chen, Extended Skyrme interactions for
nuclear matter, finite nuclei, and neutron stars, Phys. Rev. C
94, 064326 (2016).

[129] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.109.034316 for the coupling constants.

[130] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Nuclear
ground-state masses and deformations: FRDM (2012), At.
Data Nucl. Data Tables 109–110, 1 (2016).

[131] K. Pomorski and J. Dudek, Nuclear liquid-drop model and
surface-curvature effects, Phys. Rev. C 67, 044316 (2003).

[132] W. Ryssens, Symmetry breaking in nuclear mean-field
models, Ph.D. thesis, Université Libre de Bruxelles, Brus-
sels, 2016, http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.
ulb.ac.be:2013/235692.

[133] D. Baye, The Lagrange-mesh method, Phys. Rep. 565, 1
(2015).

[134] W. Ryssens, P.-H. Heenen, and M. Bender, Numerical accu-
racy of mean-field calculations in coordinate space, Phys. Rev.
C 92, 064318 (2015).

[135] W. Ryssens, V. Hellemans, M. Bender, and P.-H. Heenen,
Solution of the Skyrme-HF+BCS equation on a 3D mesh, II:
A new version of the Ev8 code, Comput. Phys. Commun. 187,
175 (2015).

[136] B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, and P.-H.
Heenen, Superdeformed rotational bands in the mercury re-
gion. A cranked Skyrme-Hartree-Fock-Bogoliubov study, Z.
Phys. A 348, 183 (1994).

[137] W. Ryssens, M. Bender, and P.-H. Heenen, Iterative ap-
proaches to the self-consistent nuclear energy density func-
tional problem. Heavy ball dynamics and potential precondi-
tioning, Eur. Phys. J. A 55, 93 (2019).

[138] C. Rigollet, P. Bonche, H. Flocard, and P.-H. Heenen, Micro-
scopic study of the properties of identical bands in the A = 150
mass region, Phys. Rev. C 59, 3120 (1999).

[139] J. Erler, P. Klüpfel, and P.-G. Reinhard, A stabilized pairing
functional, Eur. Phys. J. A 37, 81 (2008).

[140] T. Bürvenich, M. Bender, J. A. Maruhn, and P.-G. Reinhard,
Systematics of fission barriers in superheavy elements, Phys.
Rev. C 69, 014307 (2004).

[141] L. Bonneau, P. Quentin, and D. Samsœn, Fission barriers of
heavy nuclei within a microscopic approach, Eur. Phys. J. A
21, 391 (2004).

[142] W. Younes and D. Gogny, Microscopic calculation of 240Pu
scission with a finite-range effective force, Phys. Rev. C 80,
054313 (2009).
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