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α-cluster matter reexamined
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We examine in detail two alternative descriptions of a system of α particles interacting via local interactions
of different character, highlighting the fact that a faithful microscopic description of such systems demands
a consistent treatment of both short- and long-range correlations. In preparation, we examine four different
versions of modern microscopic many-body theory and conclude by emphasizing that these approaches, although
a priori very different, actually lead to the same equations for their efficient application. The only quantity that
depends on the formulation of many-body theory chosen is an irreducible interaction correction. In the language
of Green’s functions and Feynman diagrams, it is the set of both particle-particle and particle-hole irreducible
diagrams, and in variational Jastrow-Feenberg theory it is determined by multipartite correlations and elementary
diagrams. We apply these theoretical methods to the calculation of the energetics, structure, thermodynamics,
and dynamics of α matter, as well as its condensate fraction. In dimensionless units, α matter appears to be
remarkably similar to the much-studied 4He quantum fluid, its low-temperature properties now basically solved
in the Jastrow-Feenberg framework. Accordingly, one can have confidence in the results of application of the
same procedure to α matter. Even so, closer examination reveals significant differences between the physics
of the two systems. Within an infinite nuclear medium, α matter is subject to a spinoidal instability. Extended
mixtures of nucleons and α particles are yet to be given rigorous consideration in a corresponding theoretical
framework.
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I. INTRODUCTION

α matter [1–3] was originally conceived as an alternative
model of infinitely extended nuclear matter composed of in-
tact 4He nuclei treated as point bosons interacting via a central
two-body potential that fits α-α scattering data. Immediately,
there is the prospect of an intriguing correspondence between
such α-particle matter and its atomic counterpart liquid 4He,
for which the ground-state structure and low-lying excitations
are now basically a solved quantum many-body problem.
Quite naturally, this correspondence was exploited in an early
application of correlated-wave-function theory to α matter [3],
as well as some of the subsequent theoretical investigations of
the equation of state and other properties of this hypothetical
system, now spanning nearly 60 years [4–22].

Among Refs. [1–22], theoretical studies of the ground state
and other properties of a system involving many interacting α

particles divide roughly into two categories. In the first cat-
egory, exemplified specifically by Refs. [3,5,7] and partially
in Ref. [13], effort is made to describe the system at the
microscopic level based on α-α two-body interactions that fit
α-α scattering data to a suitable approximation. This task is
carried out by application of one or another of the available
brands of first-principles quantum many-body theory that will
be surveyed in Sec. II.

The Ali-Bodmer (AB) potential [23] (1966) is the most
common choice for the basic two-body α-α interaction in

studies of the ground-state, elementary excitations, dynam-
ics, and thermodynamic properties of α matter. With its four
parameters chosen to fit scattering data in leading states L =
0, 2, 4 of angular momentum up to 24 MeV, this interaction
consists of an L-dependent inner repulsive gaussian term and
an L-independent outer attractive gaussian term,

V (L)(r) = V (L)
R exp

[− (
μ

(L)
R

)2
r2

] − VA exp
[− μ2

Ar2
]
.

(1.1)

The parameters of the AB potential are specified in Table I
and its caption.

Alternative α-α potential models of comparable quality
were developed earlier in the same period, also fitted to low-L
scattering. Among them, the version labeled ESH [24] fea-
tures an inner hard core of L-dependent radius, plus repulsive
and attractive gaussian terms of the same form as in the AB
potential. In the studies of α matter based on true quantum
many-body theories beyond a mean-field description, the Ali-
Bodmer interaction has generally been adopted as the standard
choice for assessment of different microscopic many-body
approaches among those methods reviewed in Sec. II.

The second category among theoretical approaches to pre-
diction of the properties of α matter and α-nucleon mixtures
employs versions of the α-α interaction alternative to the
Ali-Bodmer potential, derived by a double-folding procedure
applied to Gogny [25,26] or Skyrme [27] parametrizations
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FIG. 1. Aziz interaction [28] for 4He (dash-dotted line) and Ali-
Bodmer interaction [23] (solid line) for α matter, in normalized units.
Also shown are curves for versions of the α-α interaction derived
from versions D1 and D1N of the Gogny variety of two-nucleon
interactions.

of effective two-nucleon potentials [13,15,16,18,19,21,22].
These versions are evolved specifically from Gogny-D1 [25]
and Gogny-D1N [26] nucleon-nucleon interactions in the case
of Ref. [13].

An explicit demonstration of the remarkable simili-
tude of the many-body problems of α matter and liquid
4He is provided by Fig. 1. Shown there is a comparison
between the Aziz atom-atom interaction [28] in liquid 4He
and three proposed α-α interactions, namely the Ali-Bodmer
L = 0 interaction and the two surrogate α-α interactions of
Ref. [13] derived from Gogny-D1 and Gogny-D1N effective
two-nucleon interactions.

The vast difference of scales is accommodated by mea-
suring the separation r and potential V (r) in units of the
respective values of the range and depth parameters σ and ε

for the two systems. (The range σ is defined as the distance
below which the interaction becomes repulsive.)

For the four systems, the corresponding values of the de-
Boer parameter [29]

� =
(

h2

mεσ 2

)1/2

, (1.2)

which is the basis for the quantum law of corresponding states,
are listed in Table II.

Here, we must note that strictly, the deBoer parameter is
defined specifically for 6–12 potentials. Still, in the present

TABLE I. Parameters of the repulsive core of the AB poten-
tial (1.1). The attractive parameters are VA = 130.0 MeV and μA =
0.475 fm−1.

L V (L)
R (MeV) μ

(L)
R (fm)

0 475.0 0.7
2 320.0 0.7
4 10.0 0.7

TABLE II. Parameters for deBoer corresponding states analysis
of liquid 4He (Aziz potential) and three α − α potentials.

Aziz Ali-Bodmer D1 D1N

σ 2.65 2.214 2.819 2.544
ε 10.8 11.975 4.620 7.220
� 2.51 2.65 3.35 2.97

case it gives a reasonable criterion for comparing interactions
and for normalizing associated energetics, in support of the
conclusion that α matter and liquid 4He are indeed rather
similar.

The repulsive strength of the Ali-Bodmer interaction drops
from 475 MeV for L = 0 to 320 MeV for L = 2 to 10 MeV
for L = 4 [23]. In our calculation of α-matter properties, we
have used only the L = 0 component of this interaction, acting
in all states. Although this simplification overestimates the
binding energy somewhat, we will find that use of the more
attractive L-dependent interaction would only lead to more
binding and (as will be seen) make the behavior of the model
even less realistic with respect to stability. The extension of
our microscopic approaches to the full, angular momentum
dependent AB interaction would require a formulation of the
FHNC-EL theory to include L2 operators in the correlation
functions, or a parquet theory with such interactions. So far,
these theories have been developed for Fermi systems only
up to spin/isospin, tensor, and spin-orbit interactions, see
Refs. [30–32]. One might include a correction of the L2 form
by finite [33] or infinite order [34] correlated-basis-functions
perturbation theory, but in view of the fact that the equation of
state of the AB interaction is overbinding, it seemed to us that
at this time the additional effort is not justified for this single
problem.

Our current effort belongs to the first category named
above. Section II provides an extensive survey of state-of-
the-art quantum many-body methods with specific attention
to approaches and aspects that are directly relevant to the
microscopic physics of α matter as a strongly interacting
multiboson system. In particular, attention is given to ex-
tended Jastrow-Feenberg theory, parquet diagrammatics, pair
density functions, energetics, consistency, finite-temperature
behavior, and dynamics. In Sec. III we present and dis-
cuss numerical results for α-system ground-state energetics
and structure, condensate fraction, and dynamics based
on Jastrow-Feenberg and parquet theory. Section IV con-
cludes with a brief summary of the status of the α-matter
problem.

While this paper addresses in depth the properties and
behavior of pure α matter, we do not attempt to solve the
problem of how and under what conditions ordinary nuclear
matter or nuclei composed of a soup of nucleons may be
subject to the formation of α clusters, i.e., nucleon quartets, or
the reverse process. The literature on this subject is vast, but
Refs. [35,36] are two especially significant recent papers on
these phenomena. Notable progress toward an understanding
of the role of α clustering in nuclear systems has also been
reported or surveyed in Refs. [37–39].
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In significant ways, formation of α clusters is analogous
to Bardeen-Cooper-Schrieffer (BCS) epairing in neutron mat-
ter [40]. As in the BCS case, crucial input to its theoretical
treatment is the interaction that causes quarteting. Micro-
scopic many-body theory derives such an interaction from
an underlying microscopic interaction such as variants of the
Reid potential [41,42], the Argonne interaction [43], or more
modern interactions based on effective field theories [44,45].
As we will see in the next section, this task is far less de-
manding than one might think. True, one has to deal with the
complications of Fermi statistics, but these can be accommo-
dated [30–35,37–47]. In fact, for the pairing problem, serious
microscopic many-body theory has revealed effects that had
been overlooked in the past, and it should be quite worthwhile
to examine analogous issues for the quarteting problem.

II. GENERIC MANY-BODY THEORY

Microscopic many-body theory has been developed over
numerous decades since the 1950s, initially along very
different lines, specifically quantum field theory [48], the
Jastrow-Feenberg variational method [49], and coupled-
cluster theory [50], applied predominantly to systems of
fermions. Here, we are interested in a system of identical
bosons. With the exception of applications within Jastrow-
Feenberg theory, Bose systems have been less well examined,
but any method developed for fermions can readily be adapted
to bosons by taking the limit where the degree of degener-
acy of single-particle states goes to infinity and the Fermi
wave number goes to zero, while keeping the particle density
fixed.

Certain simple physical considerations are involved in
specifying which effects a satisfactory theoretical descrip-
tion of an interacting many-particle system should contain.
These are:

(i) short-range correlations to describe the influence of
the interaction on the wave function as well as satu-
ration, and

(ii) stability of the system under external perturbations.

Observing these simple criteria, microscopic many-body
theory has been developed along different pathways to be de-
scribed briefly below. Though apparently very different at the
outset, in the final analysis these approaches lead, however,
to exactly the same set of equations for implementation. This
fact prompted the authors of Ref. [51] to conclude that “many-
body theory has been developed to a level where different
approaches are a matter of language, but not of substance”
(see also Ref. [52]). Accordingly, we here use the term generic
many-body theory .

This situation is completely clear for a system of bosons.
Formally, the case of Fermi liquids has been less extensively
studied in this respect. The same objectives still apply, but
naturally the issues become more complicated because of
the multitude of exchange diagrams, and some additional
approximations need to be made to establish the equivalence
between the Jastrow-Feenberg method and that based on
parquet-diagram summations [53].

A. Jastrow-Feenberg method

Historically, the first and best-explored approach leading to
what we will call generic many-body theory is the Jastrow-
Feenberg method. For bosons, the method starts with an
ansatz for the wave function

|�0〉 = exp
1

2

⎡
⎣∑

i< j

u2(ri, r j ) +
∑

i< j<k

u3(ri, r j, rk ) + · · ·
⎤
⎦.

(2.1)

The correlation functions un(ri1 , . . . , rin ) are obtained by min-
imizing the energy expectation value

E = 〈�0

∣∣H |�0〉
〈�0|�0〉 ,

δE

δun
(r1, . . . , rn) = 0. (2.2)

This method is, in principle, exact. Approximations are de-
fined by the number of correlation functions retained and how
the so-called “elementary diagrams” are treated, as explained
below. The connections to the observable pair distribution
function

g(r, r′) = g(|r − r′|)

= 1

ρ2

〈�0|
∑

i �= j δ(ri − r)δ(r j − r′)|�0〉
〈�0|�0〉 (2.3)

and static structure function

S(k) = 1 + ρ

∫
d3reik·r[g(r) − 1] (2.4)

are made through the hierarchy of hypernetted chain equations
[54,55]. The variations in Eq. (2.2) with respect to the corre-
lation functions un(ri1 , . . . , rin ) are then re-expressed in terms
of the variations with respect to the observable g(r − r′) and
higher-order n-body distribution functions,

δE

δgn
(r1, . . . , rn) = 0. (2.5)

This procedure has been described in textbooks [49] and peda-
gogical material [56]; we highlight here only its most essential
features. In practice, stopping at three-body correlations has
proven to be sufficient [57–59]. These are dealt with by first
optimizing the triplet correlations for fixed pair correlation
functions. The result is then inserted into the energy func-
tional, which then only depends on g(r) and S(k). For further
reference, we spell out the explicit form

E = ER + EI + EQ, (2.6)

where

ER = N
ρ

2

∫
d3r

[
v(r)g(r) + h̄2

m
|∇

√
g(r)|2

]
, (2.7)

EQ = −N

4

∫
d3k

(2π )3ρ
t (k)

(S(k) − 1)3

S(k)
, (2.8)

in which t (k) = h̄2k2/2m and EI is the contribution
from elementary diagrams and higher correlation functions
un(r1, . . . , rn) for n � 3. Here, EI is a functional of the pair
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distribution function g(r) that generates the irreducible inter-
action through

VI(r) = 2

ρ

δEI

δg(r)
. (2.9)

Manipulating the Euler equation for g(r), one obtains the
familiar Bogoliubov formula

S(k) = t (k)

εF(k)
=

[
1 + 2

t (k)
Ṽp−h(k)

]− 1
2

, (2.10)

where

εF(k) =
√

t2(k) + 2t (k)Ṽp-h(k) = t (k)

S(k)
(2.11)

is the Feynman dispersion relation [60] and Ṽp-h(k) is an
effective local “particle-hole” interaction. The latter quantity
is given in coordinate space by

Vp-h(r) = g(r)[v(r) + VI(r)] + h̄2

m

∣∣∇√
g(r)

∣∣2

+ [g(r) − 1]wI(r), (2.12)

where wI(r) is the induced potential

w̃I(k) = − t (k)

2

[
1

S2(k)
− 1

]
− t (k)[S(k) − 1]. (2.13)

As usual in this field, we have defined the dimensionless
Fourier transform by including a particle number density fac-
tor ρ:

f̃ (k) ≡ ρ

∫
d3r eik·r f (r). (2.14)

The correction VI(r) in Eq. (2.12) comes from the elementary
diagram contributions, which have to be included term by
term; they change the numerical values of the results, but
not the analytic structure of the equations. Also, three-body
correlations lead only to a quantitative modification of that
term [59].

A simple rearrangement [61] of Eqs. (2.10) and (2.13)
allows us to rewrite the Euler equation in the form

h̄2

m
∇2

√
g(r) = Vp-p(r)

√
g(r) (2.15)

with

Vp-p(r) ≡ v(r) + VI(r) + wI(r). (2.16)

Equation (2.15) can be recognized as a boson Bethe-
Goldstone equation in terms of an effective particle-particle
interaction Vp-p(r). This observation led Sim, Wu, and Buchler
[62] to the conclusion that “...it appears that the optimized
Jastrow function is capable of summing all rings and ladders,
and partially all other diagrams, to infinite order.”

It is immediately clear that the induced interaction wI(r)
has non-negligible effect in Eq. (2.15): For r → ∞, the
correct pair distribution function goes [49] as g(r) ∼ 1 +
h̄/(2mcsρπ2r4), where cs is the hydrodynamic speed of

sound. If one leaves out the correlation corrections wI(r), the
solution of Eq. (2.15) will behave as g(r) ∼ 1 + a/r, where a
is related to the S wave scattering length of the potential. In
other words, the correlation corrections to the particle-particle
interaction must be just right to guarantee that Vp-p(r) has zero
scattering length.

B. Parquet diagram summations

Following up on the observation of Ref. [62], Jack-
son, Lande, and Smith [51,63] began with standard Green’s
function perturbation theory [48,64]. Arguing that the self-
consistent summation of ring and ladder diagrams was the
minimum requirement for a satisfactory microscopic de-
scription of strongly interacting many-particle systems, they
carried out the corresponding summations and, what is most
important, made the summation practical by introducing local
approximations [51,63].

To summarize this incisive analysis and synthesis, the op-
erative procedure amounts to the following:

(i) Begin with a local particle-hole interaction, and sum
the ring diagrams to obtain

χ (k, ω) = χ0(k, ω)

1 − Ṽp−h(k)χ0(k, ω)
, (2.17)

where χ0(k, ω) is the density-density response func-
tion of the noninteracting system, expressed for
bosons as

χ0(k, ω) = 2t (k)

(h̄ω + iη)2 − t2(k)
. (2.18)

The frequency integration

S(k) = −
∫ ∞

0

d (h̄ω)

π
Imχ (k, ω) (2.19)

then leads to the familiar Bogoliubov formula (2.10).
(ii) Define an energy-dependent particle-hole reducible

interaction,

w̃I(k, ω) = Ṽp-h(k)

1 − Ṽp-h(k)χ0(k, ω)
. (2.20)

.
(iii) Define anenergy-independent particle-hole reducible

interaction w̃I(k) ≡ w̃I(k, ω̄(k)) by demanding that
its frequency integration gives the same observ-
able S(k) as the frequency integration obtained with
w̃I(k, ω); thus∫ ∞

0
d (h̄ω)Im[χ0(k, ω)w̃I(k, ω)χ0(k, ω)]

=
∫ ∞

0
(dh̄ω)Im[χ0(k, ω)w̃I(k, ω̄(k))χ0(k, ω)].

(2.21)

(iv) Sum the ladder diagrams with this local interaction to
arrive at

h̄2

m
∇2ψ (r) = [v(r) + wI(r)]ψ (r), (2.22)

noting that g(r) = |ψ (r)|2 applies as well as Eq. (2.4).
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(v) Finally, construct a local particle-hole irreducible in-
teraction such that the results for S(k) obtained from
Eq. (2.19) and from g(r) agree.

(vi) Repeat the process to convergence.

This procedure leads to exactly the same equations (2.10)
and (2.15) as before, with the effective interactions (2.12) and
(2.13). The only difference is that the correction term VI(r) is
given by the set of diagrams that are both particle-particle and
particle-hole irreducible. The equivalence between Jastrow-
Feenberg and parquet diagram summations has been proven
to the next order, with the simplest set of totally irreducible
diagrams [65] and optimized three-body Jastrow-Feenberg
functions again leading to the same answer [66].

C. Coupled-cluster method

The coupled-cluster method (CCM), originally formulated
by Coester and Kümmel [67] and further developed by Bishop
and Kümmel, has been very successful in describing elec-
tronic systems in condensed matter and chemical settings
[68–71]. Somewhat later, CCM has been applied intensively
in nuclear physics, where it provides a plausible generaliza-
tion of the Brueckner-Hartree-Fock method [72–76].

CCM is based on a ground-state ansatz of the form [67]

|�〉 = eC|�0〉, (2.23)

in which |�0〉 is a suitable reference state, notably a Hartree-
Fock ground state, while C is a cluster operator that generates
a linear combination of excited determinants from this ground
state. The exponential form ensures size extensivity of the
solution. Relatively little has been done with the CCM for
strongly interacting Bose systems. In the aftermath of the
work on Jastrow-Feenberg and parquet diagram summation
and proof of their equivalence, the same issue has been exam-
ined within coupled-cluster theory [77]. Importantly, it was
established that the so-called “Super-Sub(2)” approximation
of the CCM also leads to the same set of equations.

D. Pair density functional theory

Returning to the variational problems based on Eq. (2.5), it
is natural to ask whether a general minimum principle exists
for the pair distribution function. In effect, we are seeking a
two-body version of the Kohn-Hohenberg [78,79] theorem.

Following the line of arguments that led to the Kohn-
Hohenberg theorem for the one-body density, two statements
can be made:

(i) The kinetic energy K depends only on g(r) and not on
v(r).

(ii) The total energy has a minimum equal to the ground-
state energy at the physical ground-state distribution
function. In other words, the ground-state distribution
function can be obtained through the variational prin-
ciple (2.5).

The proof of these results parallels exactly that for the orig-
inal Kohn-Hohenberg theorem and need not be repeated here.
However, in contrast to the formulation of density-functional
theory (DFT) where assumptions such as the local-density

approximation must be made for the energy functional, more
is known about the properties of the pair distribution function,
namely:

(i) The static structure function can be derived from a
linear-response theory by the usual frequency inte-
gration (2.19) from a local particle-hole interaction
Vp-h(r). Unlike the three cases above, Eqs. (2.19)
and (2.17) are now taken as the definition of a
local particle-hole interaction consistent with linear-
response theory.

(ii) For small interparticle distances, the wave function
should be determined by a two-particle Schrödinger
equation

− h̄2

m
∇2�(r) + v(r)�(r) = λ�(r), r → 0+,

(2.24)

in a very loose definition of the “pair wave function”
�(r).

At short distances, the pair distribution function g(r) is
proportional to the square of the pair wave function,

g(r) ∼ |�(r)|2, r → 0 + . (2.25)

Without loss of generality, we can therefore assume a general
equation for the pair distribution of the form (2.15) for all
distances, where Vp-p(r) is again a definition of the particle-
particle interaction based on the pair distribution function and,
accordingly, completely general.

If we now demand that the two interactions, Vp-h(r) and
Vp-p(r), yield the same pair distribution function g(r), we
are led [80] to the relationships (2.12) and (2.16) with a
yet undetermined correction term VI(r). The new aspect of
this formulation of the theory is the interpretation of the
“irreducible” interaction. In their simplest versions, diagram-
matic many-body theories start with VI(r) = 0 and improve
upon this approximation by means of diagram expansions
[65,66,81]. But this is not the point from which we started
here. Instead, we have started from two rather general defini-
tions and are, to some extent, at liberty to choose a suitable
phenomenological form of the irreducible interaction correc-
tion VI(r).

E. Energy calculation

In variational theory, the equations for the pair distribution
functions are obtained by minimizing the ground-state energy
with respect to their variation, in particular via Eq. (2.5) for
n = 2, as described in Sec. II A. In both the parquet diagram
and pair-DFT formulations, we begin with the equations of
motion for the pair distribution function. For this, we must
assume some prescription for calculation of the irreducible
interaction correction for any given potential, pair distribution
function, and density. Then we are able to calculate the pair
distribution function (or the static structure function) for any
potential λv(r) with 0 < λ < 1.

The Hellman-Feynman theorem [82,83] informs us that the
ground-state energy can be calculated by coupling-constant
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integration of the potential energy alone, simply

E

N
= ρ

2

∫
d3r v(r)

∫ 1

0
dλgλ(r), (2.26)

where gλ(r) is the pair distribution function calculated for
a potential strength λv(r). The total energy then becomes a
functional of v(r) and g(r) of the form

E

N
= ρ

2

∫
d3r v(r)g(r) + K

N
, (2.27)

where K is the kinetic energy.
Now, replacing v(r) by λv(r) in Eq. (2.6) and differentiat-

ing with respect to λ, we have

d

dλ

E

N
= ρ

2

∫
d3r v(r)gλ(r) +

∫
d3r

(
δ

δgλ

E

N

)
(r)

dgλ(r)

dλ
.

(2.28)

The second term in Eq. (2.28) vanishes; hence the result for
the energy from the coupling constant integration (2.26) is
the same as the energy functional. The above derivation also
shows that Eq. (2.26) is true not only for the exact ground
state, but also for any approximate energy functional, as long
as the pair distribution function is obtained by minimizing this
approximate energy functional.

F. Consistency

The long-wavelength limit of the structure function S(k),
and hence of Ṽp-h(k), is determined by the the hydrodynamic
speed of sound cs; thus

S(k) ∼ h̄k

2mcs
as k → 0+, (2.29)

Ṽp−h(0+) = mc2
s . (2.30)

The hydrodynamic speed of sound can, on the other hand, be
obtained from the equation of state through

mc2
s = d

dρ
ρ2 d

dρ

E

N
= ρ

d2

dρ2
ρ

E

N
. (2.31)

However, only an exact theory provides this consistency
[84,85]. In the present case of α matter we are interested
perforce in a density regime that is close to the spinodal
density. Accordingly, consistency between Eqs. (2.30) and
(2.31) is imperative. We have therefore resorted, as described
in Ref. [86], to a semiphenomenological modification of the
triplet correction to VI(k) in the long-wavelength regime to
ensure this consistency. This does not change the equation of
state in a noticeable way.

G. Finite temperatures

Historically, the first extension of our “generic” treatment
of the boson many-body problem to finite temperatures was,
once again, formulated within the Jastrow-Feenberg approach
[87]. In a rather involved analysis, the entropy, and from that

all other thermodynamic quantities of interest, were calculated
directly from a density-matrix constructed from the wave
function (2.1).

We have indicated above how, at zero temperature, the
generic many-body equations can be derived in different
ways. The same is true for the extension of the theory to finite
temperatures: The idea is basically that the long-range corre-
lations are determined by the low-lying excitations, which are
more affected by temperature. On the other hand, short-range
correlations are determined by the short-range interparticle
interaction, which is temperature independent. It is therefore
legitimate to utilize the Bethe-Goldstone equation as a zero-
temperature equation in which only the “rungs,” but not the
particle-particle “ladder” propagators, are treated at T > 0.
We can then focus on the RPA aspect expressed in Eqs. (2.17)
and (2.18). The procedure required has been implemented
within the parquet-diagram summation method [88,89].

At finite temperature, the connection between the dynamic
susceptibility and the dynamic structure function is

S(k, ω) = − 1

π

1

1 − exp(−h̄ω/T )
Imχ (k, ω)

= − 1

2π

eh̄ω/2T

sinh(h̄ω/2T )
Imχ (k, ω), (2.32)

the static structure function being just

S(k) =
∫ ∞

−∞
d (h̄ω)S(k, ω). (2.33)

For bosons, the frequency integration is simple. One writes
Eq. (2.17) as

χ (k, ω) = 2t (k)

(h̄ω + iη)2 − ε2
F(k)

, (2.34)

which yields

S(k, T ) = coth 1
2βεF(k)S0(k), (2.35)

where S0(k) is given by the expression (2.10), but where
Ṽp-h(k) depends implicitly on the temperature through the pair
distribution function.

It is now straightforward to verify that the equations of
motion can be obtained from the variational principle for the
free energy

F [g, n] = E0 +
∑

k

h̄2k2

2mS(k)
nk (1 + nk ) − T S (2.36)

with E0 given by Eq. (2.6), noting again that all functions
appearing in these expressions are temperature dependent.
Here, the nk are the occupation numbers of the quasiparticle
states, while

S =
∑

k

[(nk + 1) ln(nk + 1) − nk ln nk] (2.37)
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is the entropy of a Bose system with quasiparticle occupation
numbers nk . The two independent functions g(r) [or S(k)] and
nk are determined by the two extremum conditions

δF

δg
(r) = 0 and

δF

δn
(k) = 0, (2.38)

which have the solutions (2.35) and

nk = 1

exp(βεF(k)) − 1
. (2.39)

Considering the free energy now as a function of the scaled
interaction λv(r), we arrive at

dF

dλ
= ∂E

∂λ
+

∫
d3r

δF

δg
(r)

dg(r)

dλ
+

∑
k

δF

δn
(k)

dnk

dλ

= N
ρ

2

∫
d3rv(r)g(r), (2.40)

owing to the two optimization conditions. Hence the energy
functional is the result of coupling-constant integration.

H. Condensate fraction

Given the Feenberg wave function (2.1) and assuming that
the correlations are known, we may now proceed to calculate
the full one-body density matrix

ρ1(r, r′)

= N

∫
d3r2 . . . d3rN�0(r, r2, . . . , rN )�0(r′, r2, . . . , rN )∫

d3r1 . . . d3rN |�0(r1, . . . , rN )|2 .

(2.41)

Cumulant expansions for the density matrix were derived and
applied in Refs. [90–92] and full HNC summations carried
out in Ref. [93]. More in line with our present approach
of eliminating Jastrow-Feenberg type correlation functions in
favor of the pair distribution function is reformulation of the
relevant integral equations as carried out in Ref. [94]. Taking
the limit of a homogeneous system, Eqs. (5.23a)– (5.23c) of
that work become

�X (r) =
√

g(r) exp(�N (r)) − 1
2 g(r) − 1

2 − �N (r),

�Ñ (k) = (S(k) − 1)�X̃ (k), (2.42)

with which the condensate fraction is calculated from

ln nc = 2�X̃ (0+)

−
∫

d3k

(2π )3ρ
�Ñ (k)[�X̃ (k)S(k) + S(k) − 1]

+ 1

4

∫
d3k

(2π )3ρ

(S(k) − 1)3

S(k)
. (2.43)

These equations can be improved by adding elementary-
diagram corrections [93], although an extension to three-body
and higher-order correlations has, to our knowledge, not been
developed.

Some concerns about the validity of HNC-type expansions
for the density matrix from the standpoint of parquet-diagram
summations have been expressed in Ref. [95]; the issue has

not been investigated any further. Also, the formulation (2.43)
leaves out triplet and elementary diagram corrections.

I. Dynamics

The treatment of many-body dynamics has been most ex-
tensively studied along the lines of variational theory. One
does not need to assume explicitly a Jastrow-Feenberg wave
function; it suffices to assume that |�0〉 is the exact many-
body wave function or an approximation sufficiently close to
it.

A common formulation of most treatments of the dynamics
is to give the dynamic wave function a small, time-dependent
component

|�(t )〉 = e−iE0t/h̄ e
1
2 δU (t )|�0〉

〈�0|e 1
2 δU †(t )e

1
2 δU (t )|�0〉1/2

, (2.44)

where |�0〉 is the ground state and δU (t ) is an excitation
operator, written for the case of bosons in the form

δU (t ) =
∑

i

δu1(ri; t ) +
∑
i< j

δu2(ri, r j ; t ) + . . . . (2.45)

The amplitudes δun(r1, . . . , rn; t ) are determined by the time-
dependent generalization of the Ritz variational principle

δ

δun(r1, . . . , rn; t )

∫
dt 〈�(t )|H − ih̄∂t |�(t )〉 = 0. (2.46)

This general approach and its extension to Fermi systems
[96–98] has been referred to as “dynamic many-body theory
(DMBT)” and provides, to date, the most accurate overall mi-
croscopic description of the dynamics of strongly interacting
many-body systems.

For infinitesimal perturbations δU (t ) of the ground state,
one can linearize the equations of motion for the func-
tions δun(r1, . . . , rn) entering Eq. (2.45), leading to the
density-density response function χ (k, ω), from which the
dynamic structure function follows as S(k, ω) = Im χ (k, ω).
Restriction of the excitation operator to one-body fluctuations
δu1(r; t ) leads to the famous Feynman dispersion relation
(2.10) [60], whereas a “backflow” choice of δu2(ri, r j ; t )
yields the Feynman-Cohen estimate of e0(k). Unconstrained
variation with respect to δu1(r; t ) and δu2(ri, r j ; t ) gives,
in a specific convolution approximation for the three- and
four-body vertices, the correlated-basis formulation of Jack-
son and Feenberg [99,100], which is the boson version of
what is known in nuclear physics as “second RPA (SRPA)”
[101–105]. A more accurate evaluation of these vertices [106]
provides essentially no improvement. Permitting fluctuations
δun(r1, . . . , rn; t ) to all orders [107] finally leads to a response
function of the form

χ (k, ω) = S(k)

h̄ω − εF(k) − �(k, h̄ω)

+ S(k)

−h̄ω − εF(k) − �(k,−h̄ω)
, (2.47)
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where the self-energy is given by an integral equation

�(k, h̄ω) = 1

2

∫
d3k1d3k2

(2π )3ρ

δ(k − k1 − k2)|Ṽ3(k; k1, k2)|2
h̄ω − εF(k1) − �(k1, h̄ω − εF(k2)) − εF(k2) − �(k2, h̄ω − εF(k1))

, (2.48)

in which Ṽ3(k; p, q) is the three-phonon vertex

Ṽ3(k; k1, k2) = h̄2

2m

√
S(k1)S(k2)

S(k)
[k · k1X̃ (k1) + k · k2X̃ (k2) − k2X̃3(k, k1, k2)], (2.49)

where X̃ (k) = 1 − 1/S(k) and X̃3(k, k1, k2) is the fully irre-
ducible three-phonon coupling matrix element. In the simplest
approximation, X̃3(k, k1, k2) is replaced by the three-body
correlation ũ3(k, k1, k2). This approximation ensures that
long-wavelength properties of the excitation spectrum are
preserved [108]. The improved calculations mentioned above
[106] sum a three-point integral equation to guarantee satis-
faction of exact properties of X̃3(k, k1, k2) as k → 0+ and
of the Fourier transform X3(r1, r2, r3) for |r1 − r2| → 0 and
|r1 − r3| → 0 [106].

We include these corrections routinely; they have a small
but visible effect only for wave vectors between the maxon
and the roton. The correlated basis functions Brillouin-Wigner
(CBF-BW) approximation [109] is obtained by omitting
the self-energy corrections in the energy denominator of
Eq. (2.48).

J. Summary of theory

We have outlined above four different ways to arrive at
exactly the same set of basic equations for a strongly interact-
ing many-body system. At this juncture we need to stress the
simplicity of the method. All it takes is the iterative solution
of Eqs. (2.10)–(2.13) or, alternatively, Eqs. (2.15), (2.16), and
(2.13). In particular, both Eqs. (2.10) and (2.15) have been
at the center of many-body theory for decades. One simply

FIG. 2. Comparison between results for the equation of state of α

matter for the Ali-Bodmer interaction within the HNC framework in
HNC-EL//0 approximation as well as when triplets and elementary
diagrams are included (left scale). Also shown is the long-wavelength
limit, with mc2

s = Ṽp−h(0+) (right scale).

asks that the induced interactions are determined such that
their solutions are the same. The only quantity that requires
either diagrammatic or phenomenological input is the irre-
ducible interaction correction VI(r). Even the simplest choice,
VI(r) = 0, recovers about 80 percent of the binding energy
in liquid 4He and, as we shall see, around 90 percent of the
binding energy in α matter.

III. RESULTS

A. Energetics and structure

The saturation density (per nucleon) of isospin-symmetric
nuclear matter is 0.160 fm−3 [110], which corresponds to an
α-particle density of 0.04 fm−3. As will be seen, the latter
value is below both the spinodal density 0.053 fm−3 and the
saturation density of 0.082 fm−3 of α matter as predicted for
the Ali-Bodmer potential (cf. Fig. 2). We have also calcu-
lated the equation of state for the α-α interactions generated
from the D1 and D1N versions of the Gogny interactions by
the double-folding procedure applied in Ref. [13]. The version
D1 did not lead to binding; accordingly its results are not
shown. Version D1N led to a binding energy per particle of
−11.4 MeV at a saturation density of 0.034 fm−3, as seen in
Fig. 3. While the saturation density is more reasonable, the
binding energy is far too small to provide a faithful model for
generic nuclear matter.

Information on the reliability of our calculations can be
obtained by considering the convergence of the HNC-EL
calculations for α matter. Even the simplest approximation,

FIG. 3. Same as Fig. 2 but for the D1N interaction.
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FIG. 4. Comparison of Ali-Bodmer (solid line) and D1N (dashed
line) equations of state for α matter with that of liquid 4He for the
Aziz interaction (dash-dotted line), in dimensionless units, energy in
units of potential depth ε, and lengths in units of core size σ .

VI(r) = 0, recovers about 90 % of the binding energy at
saturation density. We have included four- and five-body ele-
mentary diagrams as described in Ref. [59]. Our results in the
HNC-EL//0 approximation agree generally quite well with
the results of Ref. [9]. Presumably due to limited computa-
tional resources then available, that early work only missed
the fact that HNC-EL//0 has no solution below the spinodal
density.

We have already stressed the similarity of alpha matter to
liquid atomic 4He. In fact, one sees here that the convergence
of energy calculations is much better than in 4He, where the
HNC-EL//0 approximation recovers only about 75 % of the
binding energy [59].

A rather different picture emerges when comparing equa-
tions of state expressed in dimensionless units, as suggested
by deBoer scaling. According to the values of the respective
deBoer parameters � [Eq. (1.2) and Table II], the three equa-
tions of state should be quite similar when expressed in these
units. Quite evidently, Fig. 4 shows that they are not. While the
scaled orders of magnitude are still comparable, α matter is
much more strongly bound and has a saturation density three
times higher. The source of this disparity is the much broader
attractive region of the α-α interactions as compared to the
Aziz He-He potential.

For completeness, Figs. 5 and 6 show the pair distribution
function and the static structure function obtained for α matter
as a function of density. Qualitatively, the results are not very
different from those for liquid 4He. However, a remarkable
feature of α matter is that, unlike the situation in 4He, the
“nearest neighbor peak” in both g(r) and S(k) seems to de-
crease as a function of density, indicating that, remarkably,
the system becomes more strongly correlated when the den-
sity is lowered.

We conclude this subsection with a comment on the impor-
tance of “beyond parquet” corrections that are represented by
the interaction correction VI(r) and the energy correction EI.
We have seen above that already the simplest approximation,
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FIG. 5. Pair distribution function g(r) as a function of density ρ

for the Ali-Bodmer interaction.

EI = 0, gives a very good prediction for the ground-state
energy. Caution should be exercised, however, when general-
izing that statement to other quantities. The error in the energy,
or, more generally the error in all quantities that follow from
a variational principle, is quadratic in the deviation of the
approximate wave function from the exact one. This applies
to all quantities considered here except, as we shall see, the
condensate fraction, which depends sensitively on the pair
distribution function.

Figures 7 and 8 show three different approximations to the
pair distribution function g(r) for the Ali-Bodmer potential.
It was necessary to go to rather high density, ρ = 0.07 fm−3,
because the HNC-EL//0 approximation has no solution at
lower densities.

An interesting feature is seen in the particle-hole interac-
tion, which again sets α matter apart from 4He. Phenomeno-
logically it is argued [111] that in liquid 4He the quantity
Vp-h(r) (called the “pseudopotential” by Aldrich and Pines)
should display:

(i) an enhancement of the short-distance repulsion due
to the cost in kinetic energy for bending the wave
function to zero at small interparticle distances, and

(ii) an enhanced attraction at the potential minimum due
to the presence of neighboring attractive particles.

In contrast to 4He where these effects are faithfully repro-
duced, they are not seen in our results for α matter.
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FIG. 6. Static structure function S(k) as a function of density ρ

for the Ali-Bodmer interaction.
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FIG. 7. Pair distribution function g(r) at the density
ρ = 0.07 fm−3, for the Ali-Bodmer interaction. The solid line
shows the result including three-body and elementary-diagram
corrections; the dashed line, the result including only three-body
correlations; and the dotted line, the HNC-EL//0 approximation.

B. Finite temperature

Results for our calculations at finite temperature are shown
in Figs. 9 and 10. We have limited these calculations to the
regime 0 � kBT � 10 MeV, because the theory formulated in
Sec. II G assumes a Feynman spectrum that has a roton min-
imum between 30 and 40 MeV, whereas the best prediction
for the collective excitations suggests a roton minimum of 20
to 30 MeV. (See Sec. III D.) Experience from 4He indicates
that rotons already contribute visibly to the thermodynamics
of the system at about a tenth of the roton energy [112]; for a
quantitative analysis, see Fig. 50 of Ref. [113].
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FIG. 8. Same as in Fig. 7, but for the particle-hole interaction
Vp-h(r). The two solid lines show Vp-h(r) when the semiphenomeno-
logical modifications discussed in Sec. II F are, respectively, included
or omitted. Also shown is the bare Ali-Bodmer potential (dash-dotted
line).
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FIG. 9. Free energy F/N per particle for the Ali-Bodmer interac-
tion in the temperature range kBT = 0, 1, . . . , 10 MeV.

An interesting feature that sets α matter apart from the
otherwise rather similar 4He fluid is that, within the tempera-
ture regime studied, we did not observe a significant change
of the spinodal density, whereas in 4He [114] this feature is
already observed at 4 K. There is a slight bending of the
spinodal line toward lower densities above 10 MeV, but we
did not pursue that behavior any further. Improvements of
the finite-temperature theory [115] lead to the replacement of
the Feynman spectrum by the one predicted by the CBF-BW
approximation [109].

C. Condensate fraction

Results for the condensate fraction nc of Eq. (2.43)
are shown in Fig. 11. One can improve upon this cal-
culation by including irreducible “elementary-” or “triplet
correlation-” diagram corrections in Eq. (2.43); see, for exam-
ple, Refs. [116,117]. We have deliberately not included these
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FIG. 10. Same as Fig. 9, but for the D1N interaction. Note that
the fact that the higher-temperature curves of F/N are concave does
not contradict the stability condition mc2

s > 0, since ρF/N must be
convex [see Eq. (2.31)].
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FIG. 11. Condensate fraction of α matter as a function of density.
The reference to “3-body and elems” refers to the input function g(r),
but no three-body correlations or elementary diagrams were retained
in the explicit expression, i.e., Eqs. (2.42) and (2.43) have been used
for all calculations. The labeled solid lines depict the most complete
calculations for the two interactions considered in this work; simpler
versions for the D1N interaction are not shown.

corrections, in order to demonstrate the sensitive dependence
of the results on the input pair correlation function.

The results for the Ali-Bodmer interaction are in reason-
able agreement with those of Ref. [13], although the latter
work uses rather simple cluster expansions and correlation
functions. We also show results for the cases where ele-
mentary diagrams and/or three-body correlations are omitted.
Obviously, the results are quite different and underscore our
statement above on the sensitive dependence of the conden-
sate fraction on the input data. For example, one may compare
the results in Fig. 7 with the values of nc at the same density.
Our results do not agree well with those of Ref. [13] for the
D1N interaction. Evidently, the reason for this disagreement
also lies in the fact that the condensate fraction depends sen-
sitively on the pair correlation function.

One can also judge the accuracy of our results by compar-
ing HNC-type calculations [116] for 4He with corresponding
Monte Carlo calculations [118–120], although the correlation
functions of Ref. [116] were also nonoptimized.

D. Dynamics

Implementation of the method outlined only briefly in
section II I has led to an unprecedented agreement be-
tween theoretical predictions [107] and experimental results
[113,121] in 4He. A small quantitative improvement can be
obtained by including four body CBF corrections [122]; these
have not been included in the present application. The quantity
of most immediate interest is the phonon dispersion relation
e0(k), which is given by the pole of the density-density re-
sponse function (2.47). Our results for a sequence of densities
around the equilibrium density for the Ali-Bodmer interaction
are shown in Fig. 12. A feature that immediately distinguishes
our results for α matter from those for 4He is that both the
energy of the roton minimum and that of the maxon are found
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FIG. 12. Zero-sound dispersion relation e0(k) for the Ali-
Bodmer interaction in Feynman approximation (long-dashed
lines), and DMBT [107] (solid lines), for the densities ρ =
0.06, 0.07, 0.08, 0.09 fm−3. The highest density corresponds to the
highest roton minimum.

to increase rather than decrease with density. This behavior is
consistent with the fact, pointed out above, that the behavior
of the nearest-neighbor peak in g(r) also indicates that the
lower-density system is more strongly correlated.

Our results for the D1N interaction shown in Fig. 13 basi-
cally support these results. The “roton minimum” appears at
a somewhat larger wavelength, which is expected because the
equilibrium density is substantially lower.

The phonon-roton dispersion relation is only a part of the
story: From the fact that we are close to the spinodal point we
can conclude that the phonon dispersion relation is anoma-
lous, which has the consequence that the phonon has a finite
width. Moreover, the existence of a typical phonon-maxon-
roton structure has the consequence that for larger momentum
transfers, there should be a “Pitaevskii Plateau” [123]. All
of these features are seen in the contour plots shown in
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FIG. 13. Same as Fig. 12, but for the D1N interaction and
densities ρ = 0.03, 0.04, 0.05, 0.06 fm−3. The highest density cor-
responds to the highest roton minimum.
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FIG. 14. Maps of S(k, ω) for the Ali-Bodmer potential for a sequence of densities ρ = 0.06 fm−3,...,ρ = 0.09 fm−3. The solid red line is
the phonon dispersion relation, also shown in Fig. 12.

Figs. 14 and 15. In fact, some of the features exhibited, such
as the extension of the plateau to long wavelengths and the
extension of the R+ roton to higher energies as well as its
Cherenkov damping, are seen more clearly than in 4He.

Figure 15 provides the same information for the D1N inter-
action. At the lowest densities, S(k, ω) exhibits a remarkably
rich structure at high energies, which can be attributed to
mode-mode couplings.

We conclude this section by commenting on what is
achieved by going beyond the CBF approximation. In that
treatment, the energy denominator in the self-energy (2.48)
contains only the Feynman spectrum εF(k). As a consequence,
“mode-mode” couplings would describe only the coupling
between Feynman phonons. The most obvious consequence
of this restriction is that the so-called “Pitaevskii plateau,”
caused by the fact that it is kinematically permitted for a per-
turbation to decay into two rotons, appears at twice the roton
energy of the Feynman spectrum. A less obvious consequence
is that the area above the zero-sound spectrum is filled by a
continuum.

IV. CONCLUSIONS

We have in this work examined the properties of a fictitious
system of α particles interacting via a local two-body interac-
tion based on scattering data as well as two versions of the α-α
interaction developed from Gogny models of the two-nucleon
interaction. We have treated the problem as an exercise of
modern microscopic quantum many-body theory, from which

much can be learned with relative ease, as in the case of
liquid 4He, given its boson constituents. In doing so, we have
stressed the fact that four a priori rather different many-body
methods, when developed to a level that they contain the same
physics, actually lead to the same equations to be solved.
These equations are, in fact, quite simple for bosons. The
only quantity that must be determined by either diagrammatic
expansion or phenomenological considerations is the “totally
irreducible” interaction VI(r). We have chosen here the route
suggested by Jastrow-Feenberg theory because the derivation
of the relevant quantities is then by far the simplest. The
parquet-diagram summations lead, to the extent that has been
determined so far [65], to the same answer [66].

We have highlighted the similarity of α matter to the far
better understood system of liquid 4He, but we have also
exposed its significant differences. From experience with the
latter system, we are confident that practically all of the results
presented here are quantitative, the only exception being those
for the condensate fraction. The phase diagram of α matter
should be very similar to that of 4He [124] displaying a
spinodal decomposition at low densities, a λ transition from
a superfluid to a normal liquid and (with the caveat that model
per se may be invalid at high densities) a liquid-solid phase
transition. In particular there is no indication that α particles
could form a Bose-Einstein condensate as found in ultracold
gases.

It is rather straightforward to extend the calculations to α

droplets, if that should be of interest, in analogy with the case
of 4He droplets [125–128]. However, the far more relevant

034315-12



α-CLUSTER MATTER REEXAMINED PHYSICAL REVIEW C 109, 034315 (2024)

ρ = 0.03 (fm-3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k  (fm-1)

0.0

10.0

20.0

30.0

40.0

50.0

h- ω
  (

M
eV

)

ρ = 0.04 (fm-3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k  (fm-1)

0.0

10.0

20.0

30.0

40.0

50.0

h- ω
  (

M
eV

)

10
-8

10
-6

10
-4

10
-2

0.05
0.10
0.15
0.20
0.35
1.0
2.0

ρ = 0.05 (fm-3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k  (fm-1)

0.0

10.0

20.0

30.0

40.0

50.0

h- ω
  (

M
eV

)

ρ = 0.06 (fm-3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k  (fm-1)

0.0

10.0

20.0

30.0

40.0

50.0

h- ω
  (

M
eV

)

10
-8

10
-6

10
-4

10
-2

0.05
0.10
0.15
0.20
0.35
1.0
2.0

FIG. 15. Same as Fig. 14 for the D1N interaction and a sequence of densities ρ = 0.03 fm−3,..., ρ = 0.06 fm−3.

problem is that of α-nucleon mixtures, a fermionic-bosonic
composite, whose treatment could follow much the same pat-
tern within the Feenberg-Jastrow framework. See Ref. [21] for
a mean-field treatment of this problem. Variational/parquet

theory is available for boson-fermion mixtures [66], as
well as for realistic nucleon-nucleon interactions [30,31,41–
43], though necessarily more laborious due to the fermion
statistics.
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