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Muonic atom transitions have been measured for almost all stable nuclei to extract nuclear structure properties,
including nuclear charge radii and quadrupole moment. To investigate the possibilities of extracting higher-
order radial moments of nuclear charge density from muonic atom spectroscopy, a theory-to-theory benchmark
analysis based on a model-independent density distribution, i.e., the Fourier-Bessel series expansion instead of
two-parameter Fermi distribution, is performed by taking *Pb as an example, where nuclear charge density
obtained from the relativistic continuum Hartree-Bogoliubov calculation is used as the benchmark. It is found
that the extractions of the higher-order moments, i.e., the fourth and sixth moments in addition to the second

moment, are feasible with high accuracy. Moreover, the charge form factor in the low-q region can also be well

extracted.
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I. INTRODUCTION

Nuclear charge radii /(r?) have been well measured in
recent decades by several electromagnetic methods as shown
in the compilations [1-3]. For example, the charge radii of
stable nuclei can be extracted from the parameterized charge
density in terms of Fourier-Bessel (FB) series expansion,
with coefficients determined from the cross-section data in
the elastic electron scattering experiments [4—6]. The charge
radii of stable nuclei have also been extracted by the muonic
transitions revealed from the muonic x rays, based on the
two-parameter Fermi (2pf) distribution [7-13]. In contrast,
the charge radii of unstable isotopes can only be measured
from the laser spectroscopy, which provides information on
the changes in mean-squared radii §(r2) [14-16].

In laser spectroscopy, the changes in mean-square charge
radii are deduced from the isotope shifts, which are extracted
from the hyperfine spectra on the atomic and ionic transitions
[15,17]. As one of the components of isotope shifts, the field
shift depends on the changes in nuclear charge distribution
and hence is responsible for the extraction of §(r2) [17]. In
addition to §(r2), it is demonstrated by Papoulia et al. [ 18] that
the extraction of changes in the fourth moment § (r*) for heavy
nuclei is possible through an improved description of the field
shift, since such information is inherently contained in the
field shift. From this viewpoint, it should also be possible
to extract the high-order moments of nuclear charge density,
such as the fourth and sixth moments, from muonic atom
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spectroscopy, considering that the mass of a muon is about
207 times heavier than that of an electron.

As shown in one of our previous studies [19], the influ-
ence of model dependency induced by employing the 2pf
distribution on the extraction of charge radii is quite small.
However, the extraction of additional nuclear information,
such as higher-order moments of charge density, could be lim-
ited by such a model dependency. Therefore, it is worthwhile
to investigate what kind of information can be extracted from
the muonic atom spectroscopy with the parametrization of
charge density in terms of a model-independent distribution,
such as the Fourier-Bessel series expansion [5]. For this rea-
son, a similar theory-to-theory benchmarking analysis will be
made in the present study. It is also demonstrated in Ref. [19]
that the charge radii of heavy nuclei can be extracted more
accurately than those of light nuclei. Thus, the double-magic
nucleus 2°®Pb will be taken as an example here, while the
theoretical charge density obtained from the covariant density
functional theory (CDFT) will be used as a tool to generate
pseudodata.

In recent decades, the CDFT has attracted extensive atten-
tion on account of its successful descriptions of many nuclear
phenomena [20-38]. To provide a unified and self-consistent
treatment of the continuum, the mean-field potentials, and
the pairing correlations, the relativistic continuum Hartree-
Bogoliubov (RCHB) theory [39,40] has been developed by
extending the CDFT with the Bogoliubov transformation
in the coordinate representation, and it has achieved great
success in various aspects [39,41-46]. In this work, the the-
oretical charge density of °*Pb is provided from the RCHB
calculations.

The paper is organized as follows. In Sec. II, we introduce
the RCHB method to construct the nuclear charge density

©2024 American Physical Society
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and the Dirac equation for muonic atom with the FB charge
distribution. In Sec. III, we illustrate an iteration scheme con-
structed to yield the best-fit FB distribution and discuss the
possibilities of extracting nuclear information, including the
second, fourth, and sixth moments, as well as the detailed
charge density and the corresponding charge form factor (FF).
Finally, the summary is presented in Sec. I'V.

II. THEORETICAL FRAMEWORK

A. Nuclear charge density from RCHB theory

In this study, the RCHB theory constructed with the con-
tact interaction in the point-coupling representation between
nucleons is adopted. The details of the RCHB theory can be
found in Refs. [47,48]. In the following, we briefly introduce
the theoretical framework of RCHB theory.

Starting from the Lagrangian density, the energy den-
sity functional of the nuclear system can be constructed
under the mean-field and no-sea approximations. By min-
imizing the energy density functional with respect to the
densities, one obtains the Dirac equation for nucleons within
the relativistic mean-field framework [49]. The relativistic
Hartree-Bogoliubov model provides a unified description of
both the mean-field and the pairing correlation.

In the RCHB theory, the proton and neutron densities can
be constructed by quasiparticle wave functions,

pr(r) =Y V] (rWilr), (1)

ket

with t € {p, n}. The nuclear charge density then includes the
contributions from the point neutron density, the proton and
neutron spin-orbit densities, and the single-proton and single-
neutron charge densities, in addition to that from the point
proton density [50-53]. The relativistic nuclear charge density
is finally written as

pe(r) =Y [per () + Wer (1), )

T

where

1 o0
perlr) =~ / o Wge(Ir —2)) — ge(r + 0ldx, (3)
0

1 o0
Wee (r) = ;/0 *We (O for (Ir = x) = for (r + X0)]dx. (4)

Here p.(r) is the point nucleon density in Eq. (1) and W (r)
is the spin-orbit density given in Refs. [51,53]. The functions
g:(x) and f>,(x) are given by

1 oo

g0 = 5 f ¢ G (), 5)
7T —00
1 * igx 2

frr) = o f ¢ By (q)dg, ©)
T J-oo

in which Gg, and F>; denote the electric Sachs and Pauli form
factors of a nucleon, respectively. The following forms [51]

are used in this study,

Gep(?) = ————,
! (1 +r2¢2/12)°
G 2) 1 1
En q = - 3
(1+2¢2/12)° (14 r2¢2/12)°
Gg
2 P
Fy(q7) = W,
P
GE _GEn/Mn
2y _ UEp
Fon(g™) = Ws )

with the proton charge radius r, = 0.8414 fm [54] and r} =
r2, & 1(r2), where rZ, = 0.81 fm” is the average of the mean-
square radii for positive and negative charge distributions,
while (r?) = —0.11 fm? [55] is the mean-squared charge ra-
dius of a neutron. See Refs. [56,57] for more details.

B. Dirac equation for muonic atom

The Dirac equation for the muonic atom reads

la-p+ BM, + VIOl (r) = e (r), ®)

where the eigenenergy &, of state k includes both the muonic
atom energy level E; and the reduced mass M,, i.e.,

MAm,L

e ~ Ey + M, with _
k r + M, My +m,

Mr = (9)
Note that Eq. (9) holds exactly only at the nonrelativistic
limit, while it is a good-enough approximation in the present
calculations. Following the treatment of our previous work
[19], the relativistic recoil correction [58] is not considered
here for simplifying the calculation. The mass of a muon
m,, = 206.7682830m, is adopted [54] and the nuclear mass
M, is taken from Ref. [59]. Since the electrostatic potential
V(r) made by the atomic nucleus is spherically symmetric,
the eigenfunctions can be written as

1 Py (r)YjIm(G, ®)
I/fm(m(r) =~ ] , (10)
One(r)(o -1)Y;,,(0,¢)

-
where P, (r) and Q,,(r) are its large and small components,
respectively.

The radial Dirac equation for the one-muon system can
then be written in the form of

Vi (5 -%) [Pnk(r)} . [Pnk(r)} an
(% + %) V(r)—2M, O (1) " Onc() ]’
where the mass term M, is subtracted on both sides of the

equation.
The electrostatic potential V (r) is obtained via [60]

r 2 [}
V(r) = —4na |:/ pc(r/)r—dr’ —l—/ pc(r/)r/dr’], (12)
0 r r

where « is the fine structure constant. In the present work, the
muonic energy levels are evaluated numerically.
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C. Model-independent Fourier-Bessel analysis

The Fourier-Bessel series expansion was introduced by
Dreher et al. [5] to perform a model-independent analysis of
measured electron scattering data, i.e., the differential cross
section do (E, 8)/dS2 for the elastic and inelastic scatterings
of an electron of energy E through an angle 6. In the first-order
Born approximation, the elastic cross section can be written as

do Ze? COSZ% 5
— o [F(I°,
n3

== 13
749 2E ] si (13

where g = (2E /hic) sin(6/2) is the momentum transfer. The
charge form factor F.(q) can be regarded as the representation
of charge density in momentum space, and it is given by
a Fourier-Bessel transformation of charge density with the
spherical symmetry imposed,

4o [ . )
F.(q) = — /0 pc(r)jolgr)radr, (14)

z
where jo(x) = (sinx)/x denotes the spherical Bessel function
of order zero and Z denotes the proton number.
The charge distribution can then be expanded into a
Fourier-Bessel series in the following form, assuming p.(r)
to be zero beyond a certain cutoff radius Ry,

Z:i] a,jo(gyr) forr < Rey,
pe(r) = (15)
0 for r > Ry,
with the normalization
o0 0 v+1 3
(=" a,R
4 / pe(Nrfdr =47y ———t — 7 (16)
0 ; (i)

The coefficients a, can be determined directly by the charge
FF,

@ _p (¢,) with T

a, = W1 =

v 27TRCU[ ey W Rcul

a7

The considered number of FB coefficients is related to the
maximum value of the momentum transfer gp,ax as

RcutCImax
N]:B = .
T

(18)

Combining Eq. (17) with Eq. (14), the FB coefficients can
be determined directly when the charge density is given. In
this way, a discrete charge density obtained from mean-field
calculations can be easily parameterized through the FB series
expansion, which is much more model-independent in com-
parison with the two-parameter Fermi distribution.

The nth moment can be obtained with a finite number of
FB coefficients

RCU‘
R, =(rl) = 4—71/0 pe(ryr’r'dr

Z
:4_71%61 RA" g (3%n.3 S+ vin?
Zv:1V3+n 2 727 27 4 )

19)

where ,Fy(ai,...,ap;by, ..., by 7) is the generlized hyper-
geometric function. In particular, the second, fourth, and sixth

moments are given by

P S (022 — 6)RS,, 20)
= - Ay ———"T 1 1
2 7 i (=) H+vpded

4 B (At — 200272 + 120)R]

Ri="2%a, @D

(—1)1+”v6716

(Vo8 — 4207 % + 840v272 — 5040)R,,
7 (—1)1+“v87'[8 :

(22)

The corresponding electrostatic potential V (r) is then given
by substituting Eq. (15) into Eq. (12),

B oa,w,(r)  for r < Rey,
Vo= [Dman) o <R
—=% for r > Rey,

with the weighting function of FB coefficients defined as

Rgm[(—l)‘”rl VU7 + Reye sin (;”uf)] e

w,(r) = —4nra 3
v3mdr

In addition, a dimensionless deviation factor € is used in
this work to characterize the degree of deviation between two
distributions,

_4n o

zZ ), lpe(r) — pL(r)|rPdr.

€ (25)

III. RESULTS AND DISCUSSION

Following the treatment of our previous work [19], the
numerical transition energies (with the absence of QED cor-
rections) based on the charge densities obtained from the
RCHB calculations are used as the pseudoexperimental data
to constrain the FB coefficients. The relativistic density func-
tional PC-PK1 [47], which provides one of the best density
functional descriptions for nuclear properties [61-68], is em-
ployed. The box size Rpox = 20 fm, the mesh size Ar = 0.1
fm, and the angular momentum cutoff Ji,,x = 19//2 are used
in the RCHB calculations. More numerical details can be
found in Ref. [48].

The Dirac equation for the muon is solved using the gen-
eralized pseudospectral method, whose powerful performance
has been shown in, e.g., Refs. [69-72]. Using the electrostatic
potential in Eq. (23), the calculations of eigenenergies for
the ground state and the lower-lying excited states can be
converged quickly.

To investigate how much information on the nuclear struc-
ture can be extracted from the muonic atom spectroscopy, we
perform a theory-to-theory benchmarking analysis by taking
208ph as an example, in which a set of best-fit FB coef-
ficients [denoted by “FB(AFE)”] that gives almost identical
transition energies with the targeted values is searched. The
root-mean-square deviation (RMSD) for muonic transition
energies between the target (i.e., the RCHB charge density)
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TABLE I. The second, fourth, and sixth moments of the RCHB charge density and the best-fit FB distributions constrained by transitions
with the number of FB coefficients Ngg increased from 8 to 16. The corresponding RMSD x and the deviation factor € between these FB

distributions and the RCHB charge density are also shown.

Nrp RCHB 8 9 10 11 12 13 14 15 16

R, (fm?) 30.310279 30.310247 30.310247 30.310247 30.310244 30.310241 30.310247 30.310248 30.310279 30.310276
R, (fm*) 1166.040 1166.006 1166.006 1166.007 1165.998 1165.997 1166.003 1166.008 1166.065 1166.015
R (fm®) 51965.159 51922.049 51932.275 51933.610 51921.390 51927.190 51931.155 51934.118 51963.390 51940.340
x (1075 keV) 4.0 2.6 3.0 23 29 2.1 23 22 3.6

€ 0.032 0.040 0.038 0.035 0.036 0.042 0.048 0.043 0.071

and the FB distribution is defined as

1/2
o= [y e amemy] e
i

where AEF® and AERCHB js the ith transition energy based
on the FB distribution and the RCHB charge density, re-
spectively, and N denote the total number of considered
transitions. Twelve transitions are considered in the present
work, i.e., 2p|/2 — 151/2, 2p3/2-151/2, 3d3/2-1S1/2, 3d5/2-151/2,
4fs2-15172, 4f7/2-181/2, 3p1/2-2512, 3p3/2-2512, 4d32-251)2,
4d5/2-2S1/2, 5f5/2-2S1/2, and 5f7/2-2S1/2.

It is a technical problem with respect to the numerical
computation for searching the best-fit FB coefficients. The
dependence of Dirac energies on the FB coefficients can be
deduced by the first-order perturbation theory as

da,

SE ~ (8V) ~ 27

v’
As a result, the parabolic behavior of mean-square deviation
x? versus the FB coefficients is approximately satisfied,

x> (a,, — aff'm)z, (28)
where a™" refer to the zero of the first-order partial derivative
of x? with respect to a,. Thus, the minimum value of x?2
for a certain coefficient can be easily converged by inverse
parabolic interpolation [73]. Meanwhile, it is indicated from
Eq. (27) that the sensitivities of transitions to the coefficients
satisfy the relationship: a; > a, > --- > ay,,. A feasible it-
eration scheme is then established to converge x? to the
minimum point within the Npg-dimension space, namely ad-
justing coefficients a, separately into a™" by inverse parabolic
interpolation in order with the index v from 1 to Ngg — 1
at each iteration. When the coefficients are changed, the last
coefficient ay,, is adjusted by Eq. (16) to keep the normaliza-
tion. The initial set of coefficients [denoted by “FB(init.)”]
are determined by fitting the 2pf distribution with parame-
ters + = 2.1821 fm and ¢ = 6.6977 fm which is the best fit
under the constrain of transition energies (see our previous
letter for details [19]). After performing the above iteration
scheme, the RMSD y is converged to a very small value, and
the corresponding best-fit FB distribution FB(AE) would be
exported. To investigate the influence of the number of FB
coefficients Ngg on the fitted FB(AE), the second, fourth,
and sixth moments of FB(AFE) with Ngg increased from 8 to
16 are compared with those of the RCHB charge density, as
shown in Table I. It can be seen that the results of the second,

fourth, and sixth moments of the corresponding FB(AE) are
insensitive to the number of FB coefficients, and they are in an
excellent agreement with the results of RCHB charge density.
Table I also shows that the deviation factors € between these
FB(AE) and the RCHB charge density are bigger than 0.03
for different values of Ngg. As a result, it is acceptable to take
the value of Ngp in the range from 8 to 16. In the following
discussion Ngp is taken as 15 since a relatively bigger Npg
could extract more information from transitions.

The best-fit FB distribution FB(AE) with Ngg = 15 is
compared with the RCHB charge density as shown in Ta-
ble II and Fig. 1. The results of FB distribution denoted by
“FB(fit prcup)” With coefficients determined by fitting the
RCHB charge density through Eqgs. (14) and (17) and the
results of the initial set FB(init.) are also shown for com-
parison. In Table II, the differences of the second, fourth,
and sixth moments between three FB distributions and the
RCHB charge density, as well as the deviation factor € and
the RMSD yx for transition energies, are displayed. It can be
seen that the second, fourth, and sixth moments of the best-fit
FB distribution obtained from the above iteration scheme are
in an excellent agreement with the benchmark, even better
than that of the FB(fit prcyp) fitting the density distribution
directly. This confirms the possibility of extracting the second,
fourth, and sixth moments of nuclear charge density from the
muonic atom spectroscopy. However, the deviation factor €
between them is not smaller but bigger than the initial value of
0.03. Meanwhile, the RMSD yx for transition energies for the
FB(fit prcyp) is an order of magnitude larger than that of the
best-fit FB distribution. This indicates that FB(AE) obtained
under the constraint of transitions with a finite number of

TABLE II. The second, fourth, and sixth moments of the RCHB
charge density for 2%Pb and the differences between the results of
three FB distributions with Nz = 15 and those of the RCHB charge
density. The RMSD y for transition energies and the deviation factor
€ between three FB distributions and the RCHB charge density are
also shown. See texts for details.

The difference: FB-RCHB

RCHB  FB(fit prers)  FB(init)  FB(AE)
R, (fm?» 30310279 —57x 1075 0.012139 —3x 10°°
Ry (fm*)  1166.040 0.021 3.306 0.025
Rs (fm®)  51965.159 6.705 671.486 ~1.769
x (keV) 1.3 x 10~ 0.34 22 %1075
€ 2.91 x 10~ 0.030 0.043
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£ 0.0
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---- FB(fit pyop)
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0.00 |-
1 | 1 | 1 |

r (fm)

FIG. 1. Comparison of nuclear charge densities between the
RCHB calculations and there FB distributions for 2*Pb. See the text
for details.

FB coefficients would not converge to an FB distribution that
close to the targeted density.

In Fig. 1, three FB distributions are compared with the
RCHB charge density. It can be visibly seen that the best-fit
FB distribution does not reproduce the targeted density in
detail. This indicates that the transitions are not sensitive to
the detailed charge density. Thus, one can conclude that ex-
tracting detailed nuclear charge density from the muonic atom
spectroscopy is not practical, but the extractions of the second,
fourth, and sixth moments with high accuracy are possible.

The charge FFs are also of interest here considering the
relationship between charge FF F, and the 2kth moments Ry
derived from Eq. (14) as (see, e.g., Ref. [74] for relevant
discussions)

F.(q) = Zi M (29)
S AT Y
and
2k + 1)! 3¥F,
Ry = _ QK+ D! (9) (30)

ki a(gd

The charge FFs of three FB distributions are compared in
Fig. 2 with the benchmark, i.e., the charge FFs corresponding
to the RCHB charge density. It can be seen from Fig. 2(a)
that the charge FFs of FB(init.) and FB(AFE) gradually devi-
ate from the benchmark with increasing g, while the charge
FF of FB(fit prcyg) is in an excellent agreement with the
benchmark. Furthermore, the absolute differences of charge
FFs between the three FB distributions and the benchmark
are shown in Fig. 2(b). One can see that the charge FF of
the best fit is in better agreement with the benchmark than
that of FB(fit prcyp) in the low-g region (g < 0.2 fm~).
Therefore, it can be concluded that the transitions are quite
sensitive to the low-q region of charge FF, i.e., it is possible to
extract charge FF in the low-¢q region from the muonic atom
spectroscopy.

10°

o RCHB

FB (AE)
---- FB(fit pyop)
—-— FB(init.)

107!

|F,(q) |

107

|F¥B (q) -FRCHB (q) |

- ———

e maas

o At
0.0 0.5 1.0 1.5 2.0 2.5

q (fm?)

FIG. 2. Charge form factors in *°*Pb, where panel (a) shows
the absolute value of charge FFs and panel (b) shows the absolute
differences of charge FFs between three FB distributions and the
targeted results. The vertical dotted lines denote the sampling points
qy = I;” withv =1,2,3,....

cut

On the other hand, according to Eq. (17), the vth coefficient
a, is directly related to the charge FF F.(q) at ¢ = g,. To
better understand the results of Figs. 1 and 2, the sensitiv-
ities of charge density, electrostatic potential, and transition
energies to the FB coefficients are investigated and indicated
in Figs. 3 and 4. Figure 3 shows the weight functions of
the FB coefficients a, with v =1,2,..., 15 for the charge
density and electrostatic potential, i.e., jo(g,r) and w,(r). It
can be seen from Fig. 3(a) that the weights are identical as
Jo(gyr) = 1 for all coefficients at the center r = 0. As a result,
all of these coefficients are of almost equal importance for the
description of charge density in the center region. In compari-
son, the leading-order coefficients are visibly more important
than the higher-order coefficients for the electrostatic poten-
tial as shown in Fig. 3(b). Thus, it is considered that the
leading-order coefficients should also be more important for
the transitions from the perspective of perturbation theory.

In Fig. 4, the variations of mean-square deviation x? with
the FB coefficients deviating from the best fit are shown. It
is indicated that the transitions are extremely sensitive to the

034309-5



HUI HUI XIE, JIAN LI, AND HAOZHAO LIANG

PHYSICAL REVIEW C 109, 034309 (2024)

E E|
= 107 E 3
s ]
&= - 3
g [ ]
&
10 E 3
= - .
g [ - ]
— 10°F "4

10—1 1 1 1 1 1 1 1 1 1 1 1 1 1

FIG. 3. The weight functions with respect to the charge density
and electric potential. Panel (a) shows the zeroth-order spherical
Bessel functions related to the FB coefficients and panel (b) shows
the absolute value of the weight functions of FB coefficients for the
electrostatic potential given by Eq. (24).

leading-order coefficients and are insensitive to the higher-
order coefficients. For example, a deviation of a; from the
best fit by only 10~8 fm™> makes x2 increased to 107 keV?,
in comparison with the deviation of a;, from the best fit by
0.008 fm 3. As a result, the great arbitrariness of higher-order
coefficients makes it difficult to extract the detailed charge
density from the muonic atom spectroscopy, and it can be seen
from Fig. 2(b) that the charge FF of FB(AE) tends to that of
the initial distribution [namely FB(init.)] with increasing g,
since the higher-order coefficients cannot be constrained well
by the transitions.

It should be noted that the shape and charge FF (for g >
0.2 fm~') of the best-fit FB distribution shown in Figs. 1
and 2 depend on the initial set FB(init.). For example, if
FB(fit prcup) is taken as the initial set, then the results of the
best fit converged by the present iteration scheme would be
closer to the benchmark, for the reason that the sensitivities of
transitions to the coefficients a, are weaker with the increasing
index v. While the second, fourth, and sixth moments as well

102

10°

1 0—1 0
107° 107 107° 107

|av_a£)lest fit | (fm—S)

FIG. 4. The mean-square deviation x? versus the deviation of FB
coeffcients from the best fit a®! i with the index of coefficient from

1 to 14. The last coefficient a;5 is adjusted to maintain normalization
of Eq. (16).

as the charge FF at low-¢q can be invariably extracted from the
muonic atom spectroscopy whatever the initial FB distribu-
tion is taken as discussed above. However, such a procedure,
i.e., taking FB(fit prcup) as the initial set, is not feasible in
practice, since the transition energies are supposed to be the
only available information when the corresponding analysis
is carried out.

While the uncertainties of FB coefficients have been qual-
itatively shown in Fig. 4, it is also of interest to analyze
the uncertainties quantitatively. To quantify the uncertainties
of FB coefficients, for example, here we take the tolerable
upper limit of the mean-square deviation x2_. as 1070 keV?.
According to Fig. 4, the upper limit of uncertainties of 14 FB
coefficients (noted by da,) can then be obtained as shown in
Fig. 5. It can be seen that the uncertainties vary largely from

W!'F T~ T T 1T T T T 17 T T T T 1

Uncertainty (fm™%)
=

1078 1 | 1 1 1 | 1 1 1 | 1 1 1 |
0 2 4 6 8 10 12 14

Index v of FB coefficients

FIG. 5. The upper limit of uncertainties of 14 FB coefficients
with x? < 10° keV2.
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].02 T T T T T T T T T T T T T T
%)
@ (V) (6
'4:' 101 SRG (fm)

0

4; 10
)
g 101
510 o SR (fu?)
o
31072
<
S
2,107
o
~
o107 i 8R{" ()
=

10—5 1 1 1 | 1 | 1 1 1 1 1 | 1 1

0 2 4 6 8 10 12 14

Index v of FB coefficients

FIG. 6. The uncertainties of the second, fourth, and sixth mo-
ments propagated from the uncertainty of each coefficient.

1078 t0 0.1 fm 2 as the index of FB coefficients changes from
1 to 14. These uncertainties of FB coefficients could hence
independently propagate to the calculations of the second,
fourth, and sixth moments. The propagation of uncertainties
can be derived from Egs. (20)—(22) as

4R> vir? —6 N2, 7% —6
) _ cut (V) FB
3Ry = 737 8a, (—=Dvv? NFB( 1)NFBN4 ’ (D
7 4
SRY) — 4R sa —20v%7% + 120
4 7z | (—1)vv®
oy Nigm® — 20Nz 4 120
+ 8a)) B R : (32)
FB (_1) FBNFB
SR 4R, 5 06 — 42v* 7% + 840v272 — 5040
6 T 77 v (—=1)vv8
+ sa NE7® — 42Nt + 840NZ; w2 — 5040
a )
Nrp (_1)NFB NFSB
(33)
where 8a(") M represent the changes of the

last coefﬁc:lent with the constraint of normalization. The
propagated uncertainties are shown in Fig. 6. Although
the upper-limit uncertainties of higher-order FB coefficients
shown in Fig. 5 are quite large, the propagated uncertainties of
the second, fourth, and sixth moments from these coefficients
are almost as large as those from lower-order FB coefficients,
since the higher-order coefficients have less weights in the
calculations of R,, R4, and Rg. The composite uncertainties
8R,, R4, and §Rg are shown in Table III, which are ob-
tained by averaging 8R§”), SRA(‘”), and SR(6”) for 14 coefficients,
respectively.

TABLE III. The upper limit of tolerable mean-
square deviation and the composite uncertainties
of the second, fourth, and sixth moments propa-
gated from the uncertainties of FB coefficients.

Uncertainty
x2 (keV?) 10°°
SR, (fm?) 249 x 10™*
SR, (fm*) 0.116
8R¢ (fm®) 33.4

IV. SUMMARY

In this work, it is explored how much information can
be extracted from the muonic atom spectroscopy using a
model-independent density distribution, i.e., the FB expan-
sion. Taking 2%Pb as an example and taking the RCHB
charge density as the benchmark, an iteration scheme has
been made and performed to search the minimum value of
the RMSD x and the corresponding best-fit FB coefficients.
By comparing the second, fourth, and sixth moments of three
FB distributions, i.e., FB(AFE), FB(fit prcug), and FB(init.)
with the targeted values, it is concluded that the extractions
of the second, fourth, and sixth moments can be performed
with high accuracy. Furthermore, the charge densities and
charge FF of three FB distributions are compared with the
benchmark. It is shown that the best fit cannot reproduce
the detailed charge density but can well describe the charge
FF in the low-g region. Then, the sensitivities of charge
density, electrostatic potential, and transitions to the FB co-
efficients are investigated and indicated that the difficulty of
the extraction of detailed charge density originates from the
arbitrariness of higher-order FB coefficients since the transi-
tions are insensitive to them. In the end, the uncertainties of
FB coefficients and the second, fourth, and sixth moments
are quantitatively investigated by taking the upper limit of
tolerable mean-square deviation as 107° keV?2. It is found that
the uncertainties of FB coefficients are in the range of seven
orders of magnitude with the index v from 1 to 14. In com-
parison, the uncertainties of R, R4, and R¢ propagated from
different FB coefficients are similar, since the higher-order
coefficients have less weights in the calculated moments.
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