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Microscopic cluster model in harmonic oscillator traps
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Microscopic cluster model (MCM) is a successful theoretical framework to investigate nuclear clustering
phenomena. In this work, we put it in a harmonic oscillator trap (HOT) and propose a new method abbreviated
as MCM-HOT to study scattering states of cluster systems in free space. As proofs of concept, we compute the
scattering phase shifts for some single-channel two-cluster systems. The numerical results given by MCM-HOT
agree well with those from the conventional microscopic R-matrix method, implying that our novel method
MCM-HOT can be useful in studying scattering processes of light neutron-nucleus systems.
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I. INTRODUCTION

Cluster structures play an important role in nuclear
many-body systems, attracting intensive attention from both
experimentalists and theorists. Microscopic cluster models
(MCMs) have achieved notable success in describing clus-
ter structures by taking nucleons as building blocks and
presuming the appearance of nuclear clusters. Several re-
alizations of MCMs have been proposed in the literature,
including resonating group method (RGM) [1–5], generator
coordinate method (GCM) [6–8], and the Tohsaki-Horiuchi-
Schuck-Röpke (THSR) wave function method [9–11]. They
all follow the general philosophy of MCMs and are different
from each other in technical aspects.

Due to the essential requirement for introducing open
quantum systems in many-body problems, the continuous
spectrum is also of paramount significance apart from the dis-
crete bound and resonant states. Within this context, scattering
phase shifts play a pivotal role as they provide fundamental
insights into the interaction between nucleons, which is crit-
ical for understanding the cluster structure, studying nuclear
interactions, and predicting complicated reactions. Both pre-
cise experimental measurements and theoretical calculations
of scattering phase shifts are of great importance. Therefore,
achieving a treatment of continuum scattering states within
the MCM emerges as a crucial endeavor. Various methodolo-
gies, such as complex scaling method [12–16], microscopic
R-matrix method [17–20], continuum level density method
[21–24], and so on, have already been proposed to address
the scattering problems.
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In general, dealing with the many-body scattering prob-
lems is a more complicated task than solving bound states.
If the properties of scattering states can be conveniently
extracted from bound state calculations, it would facili-
tate a more effective approach for investigating continuum
scattering states. The trap method is such an approach
that involves confining particles within an artificial poten-
tial trap to extract properties of the original system. It has
been successfully applied in atomic physics and nuclear
physics. Explicitly speaking, the properties of elastic scat-
tering between two particles in an infinite-volume system
can be related to discrete energy spectrum of a trapped
system through a closed-form formula, for example, the
Busch-Englert-Rzażewski-Wilkens (BERW) formula [25] in
harmonic oscillator traps [26–30]. Subsequently, the BERW
formula is extended to both coupled-channel and few-body
cases [31–35].

In this work, we aim to combine the trap method with
the microscopic cluster model and present a comprehensive
theoretical framework called MCM-HOT to calculate the
scattering phase shifts, which is applicable to various im-
plementations of microscopic cluster model such as RGM,
GCM, THSR, and so on. To confirm the validation of the
MCM-HOT, we take α + n and α + α (without Coulomb
force) systems as illustrative examples, while employing the
microscopic R-matrix method as a benchmark. In addition, we
introduce the complex virial theorem within the framework of
MCM to ensure the accuracy of discrete energy spectrum in
harmonic traps.

The rest parts are organized as follows. In Sec. II, we
provide the general framework of MCM-HOT, which is ap-
plicable to different concrete MCMs such as RGM, GCM,
and THSR. In Sec. III, the numerical results are presented and
discussed. Section IV summarizes the article. The complex
virial theorem in MCM and some formulas in GCM and
THSR are included in the Appendixes.
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II. THEORETICAL FORMALISM

A. Microscopic cluster model

In this part, we provide a concise theoretical framework
of the MCM. For more specific theoretical details of RGM,
GCM, and THSR, please refer to Refs. [36,37].

Considering a system composed of A nucleons, we assume
that it can be divided into two clusters with nucleon numbers
A1 and A2. The relative coordinate ρ between two clusters and
the translation-invariant internal coordinates ξ1,i, ξ2, j can be
expressed as follows:

ρ = Rc.m.,1 − Rc.m.,2,

ξ1,i = ri − Rc.m.,1, i = 1, . . . , A1,

ξ2, j = r j − Rc.m.,2, j = A1 + 1, . . . , A1 + A2, (1)

where Rc.m.,1 and Rc.m.,2 are the center-of-mass (c.m.) coordi-
nates of two clusters.

In the RGM, the total wave function can be constructed
from the internal cluster wave functions (denoted as φ1 and
φ2 for two-cluster system). These internal wave functions are
obtained through a harmonic oscillator model with an oscil-
lator parameter represented as b. Generally, it is assumed that
the oscillator parameters of all clusters are the same. Deviating
from this assumption can lead to serious technical challenges
due to spurious c.m. components. For two-cluster systems, the
RGM wave function can be formulated as

�(ξ1,i, ξ2, j, ρ) = A φ1(ξ1,i )φ2(ξ2, j )g(ρ)

=
∫

A φ1(ξ1,i )φ2(ξ2, j )δ(ρ − r)g(r)dr, (2)

where g(ρ) is the relative wave function and needs to be de-
termined by solving the Schrödinger equation. A represents
the antisymmetrization operator.

After substituting this wave function into the Schrödinger
equation, we obtain the RGM equation∫

(H (ρ, ρ′) − EtotalN (ρ, ρ′))g(ρ′)dρ′ = 0, (3)

where H and N are the nonlocal overlap and Hamiltonian
kernels defined as{

H (ρ, ρ′)
N (ρ, ρ′)

}
= 〈φ1φ2δ(ρ − r)|

{
H
1

}
|A φ1φ2δ(ρ′ − r)〉 ,

(4)

where the integrals are performed over the internal coordi-
nates ξ and the relative coordinate r. The kinetic energy of
the c.m. has already been subtracted in the Hamiltonian H .

In the GCM framework, the Brink wave function of two-
cluster can be expressed through the Slater determinant

�(R) = 1√
A!

det

{
φ̂1

(
− A2

A
R

)
· · · φ̂A1

(
− A2

A
R

)

× φ̂A1+1

(
A1

A
R) · · · φ̂A(

A1

A
R

)}

=
√

A1!A2!

A!
A

[
�1(−A2

A
R)�2(

A1

A
R)

]
, (5)

the individual orbitals φ̂ are factorized in space, spin, and
isospin components:

φ̂(S) = φ(r, S)χστ , (6)

where χστ is the spin-isospin wave function. The radial part
φ(r, S) is an harmonic oscillator function. In the case of s
wave, it reads

φ0s(r, S) = (πb2)−3/4 exp

(
− (r − S)2

2b2

)
, (7)

where b is called the oscillator parameter. When assuming a
common oscillator parameter b, Eq. (5) can be rewritten as

�(R) =
√

A1!A2!

A!
�c.m.A [φ(c1)φ(c2)�(ρ, R)], (8)

which involves the translation-invariant functions φ(c1) and
φ(c2) of two clusters. The center of mass and radial wave
functions read

�c.m.(Rc.m.) =
(

A

πb2

)3/4

exp

(
− A

2b2
R2

c.m.

)
, (9)

�(ρ, R) =
(

μ0

πb2

)3/4

exp

(
− μ0

2b2
(ρ − R)2

)
, (10)

where μ0 equals A1A2
A1+A2

.
The overlap kernel N (R, R′) and Hamiltonian kernel

H (R, R′) are calculated by

N (R, R′) = 〈�(R)| |�(R′)〉 ,

H (R, R′) = 〈�(R)| H |�(R′)〉 .
(11)

In contrast to the traditional picture of localized clustering
(Brink wave function in the GCM), nuclear clusters in the
nonlocalized cluster model are not fixed to specific geometric
positions but can move freely in a hypothetic nuclear con-
tainer. For nα boson system, the nonlocalized THSR wave
function can be expressed as a superposition of localized
Brink wave functions �B(R1, . . . , Rn):

�nα (βx, βy, βz ) =
∫

d3R1 · · · d3Rn exp

{
−

n∑
i=1

(
R2

ix

β2
x

+ R2
iy

β2
y

+ R2
iz

β2
z

)}
�B(R1, · · · , Rn),

�B(R1, · · · , Rn) = det{φ0s(r1, R1)χσ1τ1 · · · φ0s(r4n, Rn)χσ4nτ4n}, (12)
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where βx, βy, βz represent the deformation parameters along
three directions. For two α system we only handle the case
of axially symmetric deformation with the z axis being the
symmetry axis, namely, βx = βy �= βz.

The harmonic oscillator potential between two clusters
can be introduced by adding a direct local potential 1

2μω2r2

in RGM equation. As for GCM and THSR, introducing the
harmonic oscillator potential can be achieved through the
corresponding asymptotic relative wave functions. Specific
details can be found in Appendix B. For n clusters in the
MCM, the introduction of harmonic oscillator traps follows a
similar procedure. In the RGM, this means that for each of the
n − 1 coordinates within each Jacobi coordinate, we introduce
a local harmonic oscillator potential with the relevant reduced
mass. In the case of GCM and THSR, n − 1 asymptotic rel-
ative wave functions within each Jacobi coordinate should be
utilized to construct the matrix elements.

B. Harmonic oscillator trap

Generally, the scattering phase shift of two particles can
be formulated by the discrete energy spectrum of the trapped
system in a closed form:

det[cot(δ(E )) − F trap(E )] = 0, (13)

where δ(E ) represents the diagonal matrix of scattering phase
shifts, and the analytic matrix function F trap(E ) is determined
through the geometric and dynamic properties of the trap it-
self, which can be derived through the quantization condition.

If considering a harmonic oscillator potential, a formula
about the scattering length term for two cold atoms trapped in
it is initially proposed in Ref. [25], and later, it is extended
to compute full energy-dependent phase shifts and applied
to cases for partial waves beyond s wave. Here, it is called
Busch-Englert-Rzażewski-Wilkens (BERW) and formulated
for angular momentum l as

cot(δl (E )) = (−1)l+1

(
4μω

k2

)l+1/2 �
(

3
4 + l

2 − E
2ω

)
�

(
1
4 − l

2 − E
2ω

) , (14)

where μ is the reduced mass and δl is the scattering phase
shift. This formula holds at the eigenenergies E = k2

2μ
with

the center-of-mass energy already subtracted. In a harmonic
trap each particle experiences a potential 1

2 Mω2r2, where M
is its mass. One can only deal with the relative motion of
two particles based on the fact that the center-of-mass motion
can be factorized, namely, the interaction caused by harmonic
oscillator trap can be directly written as 1

2μω2r2, where r is
the relative coordinate.

For a two-body system with short-range interactions, the
analytic matrix function F trap(E ) in Eq. (13) can be formu-
lated in a generalized form [32]

F trap
l (E ) = 22l+2�(l + 3/2)2

2μk2l+1π

(�[
Gfree

l (r, r′, k)
]

(rr′)l
|r,r′→0

− Gtrap
l (r, r′, E )

(rr′)l
|r,r′→0

)
, (15)

sca�ering in free space confined in a harmonic oscillator poten�al

b

trapped

b=
1

discrete spectrum

E4

E3

E2

E1

...

FIG. 1. Left: scattering of α particle and neutron in free space.
Right: by introducing an artificial potential trap (illustrated here with
harmonic oscillator trap), α particle and neutron are confined in it.
The scattering properties in an infinite volume on the left can be
linked to the discrete energy spectra inside the trap on the right. The
trap size b is required to be much larger than the range of short-range
interactions between particles.

where Gfree
l (r, r′, k) is the free particle Green’s function

Gfree
l (r, r′, k) = −2iμk jl (kr<)h(+)

l (kr>), (16)

where jl and h(+)
l are regular spherical Bessel and Han-

kel functions with k = √
2μE being the wave number, r<

and r> denote the lesser and greater of (r, r′), respectively.
For the harmonic oscillator trap, the trap Green’s function
Gtrap

l (r, r′, E ) can be written as Gω
l (r, r′, E ) [38],

Gω
l (r, r′, E ) = − 1

ω(rr′)3/2

�
(

l
2 + 3

4 − E
2ω

)
�

(
l + 3

2

)
× M E

2ω
, l

2 + 1
4
(μωr2

<)W E
2ω

, l
2 + 1

4
(μωr2

>), (17)

where Ma,b(z) and Wa,b(z) are the Whittaker functions [39],
r< and r> denote the lesser and greater of (r, r′), respectively.

The BERW formula can be easily obtained through
Eqs. (13) and (15). For other types of traps such as spher-
ical hard wall trap [40–42], periodic cubic box, and so on,
obtaining their corresponding Green’s functions is sufficient.
Afterwards, following the framework outlined above, closed-
form phase shift formulas for these traps can be derived. More
detailed derivations can be found in Ref. [43].

The original BERW formula [Eq. (14)] is derived under
the assumption of short-range interactions, without taking into
account the long-range interactions. In the presence of the
Coulomb potential, Eq. (14) is not applicable and requires
complicated Coulomb corrections. At low energy, the long-
range Coulomb potential plays an important role for charged
particles. However, only in a few cases can the Coulomb po-
tential be analytically incorporated within trap method, such
as spherical hard wall and the confining potential described in
[44], where the potential equals 0 within a certain radius and
tends toward infinity as distance approaches infinity. Investi-
gating the microscopic cluster model within these potentials
may be also interesting.

By adding an artificial trap the particles are confined in a
finite volume and only bound states exist (as shown in Fig. 1).
The properties of scattering in infinite free space is encoded
in the confined system and connected with the eigenstates in
the trap through quantization condition. Furthermore, in order
to construct an interaction-independent modeling, the size of
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the finite volume induced by the trap should be significantly
larger than the range of short-range interactions, namely, the
width of the trap, denoted as b, should be guaranteed to satisfy
b 	 Rinter, where Rinter is the interaction range between parti-
cles. Therefore, we can find a region within the trap where
the interactions are insignificant. In this case, a connection
between the asymptotic form of the scattering wave function
with the trapped wave function can be established. Specifi-
cally for the harmonic oscillator trap, two spatial scales need
to satisfy bω = 1√

μω
	 Rinter.

III. NUMERICAL RESULTS

We have already implemented the harmonic oscillator trap
into the MCM with a generalized approach. In the following
part, we take α + n system handled with RGM as a proof-
of-concept example. As mentioned in the previous section,
the harmonic oscillator trap is introduced by adding a local
interaction 1

2μω2r2, which leads to the following new RGM
equation:{

1

2μ

[
d2

dr2
− l (l + 1)

r2

]
+ E − VN (r) − ηJlVs.o.(r)

− 1

2
μω2r2

}
φJl (r)

=
∫ ∞

0

[
kN

l (r, r′) + kC
l (r, r′) + ηJl k

s.o.
l (r, r′)

]
φJl (r

′)dr′

(18)

with

ηJl =
{

l, J = l + 1/2
−(l + 1), J = l − 1/2

, (19)

where direct nuclear potential VN and direct spin-orbit poten-
tial Vs.o., exchange potentials kN

l , kC
l , and ks.o.

l can be found in
Refs. [45–47].

The oscillator parameter b is set to 1.395 fm for α + n, and
the parameters in nucleon-nucleon potentials are all chosen
from Ref. [46]. In addition, it should be noted that the param-
eters for the spin-orbit interaction we utilized correspond to
the set I as defined in Ref. [46].

For a given parameter ω, solving the new RGM equa-
tion above yields a discrete energy spectrum. With the BERW
formula, the corresponding phase shifts at these eigenener-
gies (excluding negative eigenenergies) can be obtained. In
practice, the choice of ω should strike a balance between
achieving precision in bound-state solutions (i.e., ω should
not be too small) and satisfying the constraint imposed by the
trap method itself, which requires that ω should not be too
large. In other words, the width bω = 1√

μω
of the harmonic

oscillator potential trap should be larger than the range of
cluster-cluster short-range interactions as much as possible.
The specific range of ω will be provided in the subsequent
calculations and discussions.

In solving the RGM equation, we employ the Gaus-
sian basis functions φG

nl (r) = Nnl rle−r2/r2
n to expand the

wave function, with parameters ri = r0γ
i−1, i = 1, 2, . . . , 30,

where r0 = 0.1 fm and γ = 1.2. We begin our discussion

FIG. 2. The phase shifts of s-wave 1
2

+
state computed with

microscopic R matrix and MCM-HOT. The solid line represents
results with microscopic R-matrix method, the circular, triangular,
and square markers correspond to results obtained with MCM-HOT
using the first, second, and third eigenenergies, respectively. For
these first three eigenstates, the maximum values of ω adopted are
all less than or equal to 1.5 MeV. For the first, second, and third
eigenstates, the values of ω are {0.30, 0.35, 0.40, . . . , 1.50} MeV,
{0.50, 0.55, 0.60, . . . , 1.50} MeV, and {0.70, 0.75, 0.80, . . . , 1.50}
MeV, respectively.

by considering the case of l = 0. Figure 2 illustrates the
s-wave scattering phase shifts for α + n. The solid line
represents results obtained using the traditional microscopic
R-matrix method (for more specific details, please refer to
Refs. [18,48]), while the circular, triangular, and square mark-
ers correspond to results obtained through the MCM-HOT
using the first, second, and third eigenenergies, respectively.
Here, we have set the maximum value of ω to be 1.5 MeV,
and all eigenvalue calculations have undergone verification
through the virial theorem to reduce errors stemming from
BERW’s sensitivity to input energies. As mentioned above,
due to the inherent constraints of the trap method, ω cannot
be excessively large, as it would result in an overly narrow
harmonic oscillator trap. In our calculations, we have also
observed that taking an excessively large value for ω will lead
to inaccuracies in the results of phase shifts.

For the s-wave case, we observe a very good consistency
between the results obtained through MCM-HOT and the tra-
ditional microscopic R-matrix method. Next, we will examine
two states 1

2
−

and 3
2

−
corresponding to the p wave to further

validate the reliability of our approach.
Figure 3(a) and 3(b) displays the scattering phase shifts for

1
2

−
and 3

2
−

states, respectively. The solid lines still represent
results obtained using the microscopic R-matrix method. In
MCM-HOT, we utilize the first four eigenstates, indicated by
circular, square, triangular, and rhombus markers, to compute
the scattering phase shifts. The maximum value of ω is still
taken to be 1.5 MeV as the same as the s-wave case. It is
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(a) (b)

FIG. 3. (a) The phase shifts of 1
2

−
state computed with microscopic R matrix and MCM-HOT. For the first, second, third and fourth

eigenstates, the values of ω are {0.30, 0.35, 0.40, . . . , 1.00} MeV, {0.50, 0.55, 0.60, . . . , 1.50} MeV, {0.70, 0.75, 0.80, . . . , 1.50} MeV, and
{0.90, 0.95, 1.00, . . . , 1.50} MeV, respectively. (b) The phase shifts of 3

2

−
state computed with microscopic R matrix and MCM-HOT.

The maximum values of ω are also all less than or equal to 1.5 MeV for first four eigenstates. In both (a) and (b), the circu-
lar, square, triangular, and rhombus markers correspond to the results calculated with MCM-HOT using the first, second, third, and
fourth eigenenergies, respectively, the solid lines represent results with microscopic R matrix. For the first, second, third, and fourth
eigenstates, the values of ω are {0.20, 0.25, 0.30, . . . , 0.60} MeV, {0.30, 0.35, 0.40, . . . , 1.50} MeV, {0.50, 0.55, 0.60, . . . , 1.50} MeV, and
{0.70, 0.75, 0.80, . . . , 1.50} MeV, respectively.

evident that MCM-HOT performs well for these two resonant
states corresponding to the p wave. Moreover, MCM-HOT
can accurately reproduce the rapidly varying portions of the
phase shift curves at lower energies, which also indicates that
MCM-HOT offers a high accuracy.

As another supplement, we apply the MCM-HOT to the
α-α system (without Coulomb potential) within GCM and
THSR frameworks. As previously mentioned, the harmonic
oscillator trap is introduced into GCM and THSR via asymp-
totic relative wave functions. The parameters used in the
calculation can also be found in the Appendix B.

Figures 4 and 5 demonstrate the scattering phase shifts
calculated by microscopic R-matrix method and MCM-HOT
in GCM and THSR frameworks, respectively. The three sub-
figures in each figure correspond to the results of S, D, and
G waves, respectively. We mark the results from R-matrix
method with solid lines, the square, circle, left-triangle, right-
triangle symbols represent the phase shifts extracted from
different eigenstates of trapped system. It should be noted that
for both D and G waves we have chosen the energies of the
first four eigenstates. However, since the first eigenenergy of
S wave may be negative, which should be eliminated, we have
utilized the second to the fifth eigenstates for the S wave. In
addition, we have chosen the same upper limit of 1.5 MeV
for ω, while the lower limit is determined through the virial
theorem. In other words, we exclude values of ω that are too
small and would result in insufficient accuracy in bound-state
solutions.

We can find that regardless of GCM and THSR, the numer-
ical results obtained by MCM-HOT for scattering phase shifts
are consistent very well with each other, as well as being in
pretty good agreement with the results from R-matrix method.

This further validates the reliability of employing different
cluster methods within the MCM-HOT framework. As for
hybrid models like Brink-THSR, a similar approach can also
be applied to introduce the harmonic oscillator trap, with the
only distinction being the more complicated asymptotic rela-
tive wave function. Furthermore, MCM-HOT employed here
can also conveniently be implemented into general few-cluster
GCM or THSR frameworks.

As an additional supplement for accuracy of bound state
solutions, in Figs. 6 and 7, we illustrate the verification with
the virial theorem using the 1

2
−

state of α + n system and
the 2+ state of α + α system (without Coulomb potential)
as examples. The figures display the phase shifts obtained
from MCM-HOT, the eigenenergies and their deviation from
the virial theorem. When the eigenenergy and the wave func-
tion obtained within RGM framework are assumed as the
“exact” solutions Ec.m. and ψ , we can define EVirial as the
energy obtained by utilizing the virial theorem mentioned in
Appendix A:

EVirial =
{

1

2

[
〈ψ | r

∂V (r)

∂r

+ W (r, r′) + r
∂W (r, r′)

∂r
+ r′ ∂W (r, r′)

∂r′ |ψ〉

+ Ec.m. 〈ψ | N (r, r′) + r
∂N (r, r′)

∂r
+ r′ ∂N (r, r′)

∂r′ |ψ〉
]

+ V (r) + W (r, r′)
}
/ 〈ψ | 1 − N (r, r′) |ψ〉 , (20)
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FIG. 4. (a), (b), (c) The phase shifts of 0+, 2+ and 4+ states
of α + α system (without Coulomb interaction) computed with mi-
croscopic R matrix and MCM-HOT in the GCM framework. For
the eigenstates utilized, the maximum values of ω adopted are all
less than or equal to 1.5 MeV. For 0+ state, ωmin corresponding to
the second, third, fourth, and fifth eigenstates are 0.50, 0.70, 0.90,
1.10 MeV, respectively. For 2+ state, ωmin corresponding to the first,
second, third, and fourth eigenstates are 0.50,0.70,0.90,1.10 MeV, re-
spectively. For 4+ state, ωmin corresponding to the first, second, third,
and fourth eigenstates are 0.70, 0.90, 1.10, 1.30 MeV, respectively.
The step size for ω is 0.10 MeV. The 21 generator coordinates used
for solving the bound states are uniformly distributed in the range
[0.1, 21] fm.

FIG. 5. (a), (b), (c) The phase shifts of 0+, 2+, and 4+ states
of α + α system (without Coulomb interaction) computed with mi-
croscopic R matrix and MCM-HOT in THSR framework. For the
eigenstates utilized, the maximum values of ω adopted are all less
than or equal to 1.5 MeV. For 0+ state, ωmin corresponding to the
second, third, fourth, and fifth eigenstates are 0.50,0.70,0.90,1.10
MeV, respectively. For 2+ state, ωmin corresponding to the first,
second, third, and fourth eigenstates are 0.50, 0.70, 0.90, 1.10 MeV,
respectively. For the 4+ state, ωmin corresponding to the first, sec-
ond, third, and fourth eigenstates are 0.80, 1.00, 1.10, 1.30 MeV,
respectively. The step size for ω is 0.10 MeV. The parameters of
the THSR wave functions used for solving the bound states are
β⊥
b2

= 0.5, 1, 2, . . . , 10, βz = 10−6 fm.
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FIG. 6. (a) The phase shifts of 1
2

−
state for α + n system obtained by MCM-HOT and R-matrix method with first three eigen-

states. For the first, second, and third eigenstates, the solid symbols correspond to the following ω values: {0.3, 0.4, 0.5, . . . , 1.0} MeV,
{0.4, 0.5, 0.6, . . . , 1.5} MeV, and {0.5, 0.6, 0.7, . . . , 1.5} MeV, respectively. The hollow symbols correspond to ω = {1.75, 2, 2.25, 2.5} MeV.
(b) The discrepancy between EVirial and the eigenenergy Ec.m., The horizontal axis represents the numerical eigenenergy, while the vertical axis
displays the percentage difference between the values of Ec.m. and EVirial relative to Ec.m..

as for GCM and THSR frameworks, EVirial can be defined as

EVirial =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂η

∑
i, j (Ciψ (ηRi )|H |Cjψ (ηRj ))

∂η

∑
i, j (Ciψ (ηRi)|Cjψ (ηRj ))

∣∣∣∣∣
η=1

GCM

∂η

∑
i, j (Ciψ (ηβi )|H |Cjψ (ηβ j ))

∂η

∑
i, j (Ciψ (ηβi )|Cjψ (ηβ j ))

∣∣∣∣∣
η=1

THSR

,

(21)

where η = eiθ is introduced by the complex scaling method.
The parentheses “()” used above denote the c product required
by the non-Hermitian nature induced by the complex scaling
transformation.

From Figs. 6(b) and 7(b), it’s apparent that when there’s
a significant discrepancy between EVirial and the eigenenergy
Ec.m., indicating inadequate accuracy in solving the bound
state, there is a considerable deviation in the phase shift
obtained through MCM-HOT. Therefore, considering the ne-
cessity of the virial theorem, results with a large |EVirial −
Ec.m.|/Ec.m. discrepancy should be disregarded. In the

examples computed here, we have found that this relative
deviation ideally should be less than around 1%. For other
states of α + n and other states of α + α (without Coulomb
interaction) in the GCM framework, as well as computations
in the THSR framework, the results of the virial theorem
follow a similar pattern as shown in Figs. 6 and 7. Generally
speaking, for the same eigenstate, the smaller the value of ω,
the greater the deviation between eigenenergy and the virial
theorem; for the same ω, higher energy levels exhibit larger
deviations between eigenenergy and the virial theorem.

Based on condition bω = 1√
μω

	 Rinter, it is preferable for
ω to have smaller values. However, in practical computations,
considering the precision of eigenenergy solutions and the
need to cover a broad range of scattering energies, is is often
impractical to make bω significantly larger than Rinter. We need
to strike a balance to determine an appropriate range for ω.
In the examples we have calculated, setting the upper limit
of ω to be less than or equal to 1.5 MeV seems reasonably
suitable. In Figs. 6 and 7, we also demonstrate the phase shifts
obtained from larger ω with hollow symbols, along with the
discrepancy between the eigenenergy and the virial theorem.
It is noticeable that as ω continues to increase, the difference
between the phase shifts obtained through MCM-HOT and

FIG. 7. (a) The phase shifts of 2+ state for α + α system (without Coulomb potential) obtained by MCM-HOT and R-matrix
method with first three eigenstates. For the first, second, and third eigenstates, the solid symbols correspond to the following ω values:
{0.3, 0.4, 0.5, . . . , 1.5} MeV, {0.3, 0.4, 0.5, . . . , 1.5} MeV, and {0.4, 0.5, 0.6, . . . , 1.5} MeV, respectively. The hollow symbols correspond
to ω = {1.75, 2, 2.25, 2.5} MeV. (b) The discrepancy between EVirial and the eigenenergy Ec.m., The horizontal axis represents the numerical
eigenenergy, while the vertical axis displays the percentage difference between the values of Ec.m. and EVirial relative to Ec.m..
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TABLE I. The phase shifts obtained by MCM-HOT and R-matrix method with some typical values of ω for the first three eigenvalues
(for 0+ state of α + α (without Coulomb potential), the second, third and fourth eigenvalues). For a particular eigenstate of each state, three
ω values are chosen as examples for performing computations of α + n system in RGM framework, and α + α system (without Coulomb
potential) in GCM and THSR frameworks. In both GCM and TSHR framework, the channel radius in R-matrix method is taken as 8 fm,
and in RGM calculations the channel radius is taken as 11 fm. In the R-matrix method the parameters of the THSR wave functions are
β⊥
b2 = 0.5, 1, 1.5, 2, 2.5, 3, 4, . . . , 11, βz = tan( π

8 )β⊥ fm and the generator coordinates used in GCM framework are R = 1, 2, . . . , 15 fm.

α + n RGM framework

1st eigenstate 2nd eigenstate 3rd eigenstate

state ω(MeV) E (MeV) δBERW (◦) δR−matrix
1 (◦) ω E δBERW δR−matrix ω E δBERW δR−matrix

1
2

+
0.3 0.5139 −18.85 −18.78 0.5 1.951 −36.08 −35.99 0.7 4.254 −51.89 −51.79
0.9 1.691 −33.67 −33.61 1.0 4.066 −50.84 −50.74 1.1 6.832 −63.93 −63.82
1.5 2.993 −44.16 −44.06 1.5 6.279 −61.66 −61.55 1.5 9.471 −73.25 −73.10

1
2

−
0.3 0.7367 4.198 4.453 0.5 2.126 22.75 22.63 0.7 4.178 48.13 47.57
0.7 1.635 15.67 15.39 1.0 3.983 47.10 45.92 1.1 6.431 59.05 58.02
1.0 2.236 25.16 24.28 1.5 5.785 58.43 56.28 1.5 8.729 61.47 60.15

3
2

−
0.2 0.4684 15.01 17.85 0.3 1.042 92.43 93.40 0.5 2.576 121.0 121.0
0.4 0.7566 57.09 55.45 0.9 2.823 121.9 120.7 1.0 5.226 114.4 113.7
0.6 0.9334 85.60 81.74 1.5 4.791 116.8 115.1 1.5 7.975 106.3 105.4

α + α (without Coulomb) GCM framework

2nd eigenstate 3rd eigenstate 4th eigenstate

0+ 0.5 1.359 70.28 70.05 0.7 3.707 18.31 17.89 0.9 6.959 −20.88 −21.09
1.0 3.186 28.08 26.61 1.1 6.203 −12.48 −13.67 1.2 9.552 −41.36 −42.42
1.5 5.272 −1.317 −3.399 1.5 8.853 −36.13 −37.17 1.5 12.23 −58.95 −60.07

1st eigenstate 2nd eigenstate 3rd eigenstate

2+ 0.5 1.340 78.63 84.41 0.7 2.865 122.9 122.3 0.9 5.665 107.6 105.4
1.0 1.947 116.0 120.0 1.1 4.616 114.3 112.1 1.2 7.705 96.74 93.85
1.5 2.634 122.9 122.9 1.5 6.478 104.5 100.5 1.5 9.801 87.12 83.87

4+ 0.7 3.832 4.202 2.162 0.9 6.633 15.51 13.92 1.1 9.663 68.63 71.57
1.1 5.974 11.40 9.314 1.2 8.556 42.12 43.06 1.3 10.97 94.46 99.35
1.5 7.963 30.76 30.82 1.5 10.10 75.09 82.34 1.5 12.34 110.2 115.4

α + α (without Coulomb) THSR framework

2nd eigenstate 3rd eigenstate 4th eigenstate

0+ 0.5 1.362 69.68 69.90 0.7 3.720 16.72 17.66 0.9 6.979 −22.88 −21.22
1.0 3.194 27.43 26.44 1.1 6.214 −13.38 −13.74 1.2 9.568 −42.56 −42.50
1.5 5.306 −3.370 −3.786 1.5 8.889 −38.31 −37.39 1.5 12.27 −61.27 −60.38

1st eigenstate 2nd eigenstate 3rd eigenstate

2+ 0.5 1.347 77.60 85.37 0.7 2.871 122.2 122.2 0.9 5.676 106.5 105.3
1.0 1.973 115.0 120.4 1.1 4.627 113.6 112.0 1.2 7.717 95.89 93.76
1.5 2.678 121.9 122.8 1.5 6.496 103.5 100.4 1.5 9.819 86.05 83.84

4+ 0.8 4.377 4.657 3.292 1.0 7.317 21.80 21.01 1.1 9.678 67.54 72.02
1.2 6.492 14.76 12.78 1.3 9.109 53.74 56.98 1.3 10.97 94.44 99.31
1.5 7.963 30.76 30.83 1.5 10.10 75.08 82.37 1.5 12.34 110.2 115.4

those from the R-matrix method also enlarges. This deviation
becomes particularly pronounced, especially for lower energy
levels.

As an example of the final computed results, we also
present in Table I the phase shifts obtained by MCM-HOT
and R-matrix method with some typical values of ω for the
first few eigenvalues. In the R-matrix method, the parameters
utilized for RGM, GCM, and THSR computations are also
listed therein.

IV. CONCLUSIONS

In this work, we have provided a generalized framework
named microscopic cluster model in harmonic oscillator trap
(MCM-HOT) to extract the scattering phase shifts. This new
approach can be adapted to various microscopic cluster meth-
ods such as RGM, GCM, THSR wave function method, and
so on.

As a validation example, we have calculated the elas-
tic scattering phase shifts for 1

2
+

, 1
2

−
, and 3

2
−

states of
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α + n system within the RGM framework. The results of
MCM-HOT exhibit good agreement with those obtained
through the traditional microscopic R-matrix method. Addi-
tionally, we have studied the α + α system (without Coulomb
interaction) within the GCM and THSR frameworks. The
numerical results obtained by MCM-HOT also confirms its
reliability. For more complicated clusters and heavier nuclei,
the techniques of GCM is more concise compared to RGM
in practice, therefore the further development and extension
of MCM-HOT within GCM may be more systematical and
powerful to compute the scattering phase shift. Additionally,
in the numerical solutions of bound states, we introduce the
complex virial theorem in the microscopic cluster model to
ensure that the discrete energy spectra are sufficiently accurate
not to impact on the application of the BERW formula. The
complex virial theorem also encompasses the case of resonant
states thus can be of assistance when dealing with the complex
scaled cluster model.

In summary, we propose a new approach MCM-HOT and
employ it to conduct a preliminary investigation of elastic

scattering phase shifts in single-channel two-cluster systems
without Coulomb interaction. Incorporating the Coulomb in-
teraction in the trap method is relatively complicated to
handle [49] and we will conduct a detailed discussion and
study on systems involving the Coulomb potential in our
future work.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (Grants No. 11975167, No.
12035011, No. 11905103, No. 11947211, No. 11761161001,
No. 11961141003, and No. 12022517), by the National Key
R&D Program of China (Contracts No. 2018YFA0404403,
No. 2016YFE0129300, and No. 2023YFA1606503), by the
Science and Technology Development Fund of Macau (Grants
No. 0048/2020/A1 and No. 008/2017/AFJ), by the Funda-
mental Research Funds for the Central Universities (Grants
No. 22120210138 and No. 22120200101).

APPENDIX A: COMPLEX VIRIAL THEOREM IN MICROSCOPIC CLUSTER MODEL

With the help of complex scaling method, the original virial theorem can be extended to the complex energy plane [50].
Therefore, we refer to it as the complex virial theorem in the following. In microscopic cluster model, we still base on the
variational principle and obtain the complex virial theorem in MCM:

∂

∂η

(φ|H (η)|φ)

(φ|N (η)|φ)
= 0 (η = eiθ ) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂η(φ|H (ηr, ηr′)|φ)

∂η(φ|(1 − ηN (ηr, ηr′))|φ)
= (φ|H (ηr, ηr′)|φ))

(φ|(1 − ηN (ηr, ηr′))|φ)
= Eexact, for RGM

∂η(φ(bη−1)|H (ηr)|φ(bη−1))

∂η(φ(bη−1)|φ(bη−1))
= (φ(bη−1)|H (ηr)|φ(bη−1))

(φ(bη−1)|φ(bη−1))
= Eexact, for GCM and THSR

, (A1)

where N (r, r′) is the exchange norm kernel in RGM, b is the oscillator parameter. These formulas hold at the exact wave function
φ and Eexact is the exact eigenenergy (bound state or resonance) of the Schrödinger equation. The parentheses “()” used above
denote the c product required by the non-Hermitian nature, which is induced by the complex scaling transformation. The complex
virial theorem for GCM and TSHR mentioned above can be easily derived from the complex scaled cluster model [23,51]. The
energy spectrum of the trapped system is composed of discrete bound states, therefore we can simply set the complex scaling
angle θ to 0 in MCM-HOT. However, for the sake of generality, we still provide the form that includes η below.

Explicitly speaking, we have the following expressions in the framework of RGM, GCM and THSR, respectively:

RGM framework.

complex scaled Hamiltonian: H(ηr, ηr′) = η−2T + V(ηr) + ηW(ηr, ηr′)

2

η2
(φ|T |φ) =

(
φ|ηr

∂V (ηr)

∂ηr
|φ

)
+

(
φ|ηW (ηr, ηr′) + η2r

∂W (ηr, ηr′)
∂ηr

+ η2r′ ∂W (ηr, ηr′)
∂ηr′ |φ

)

+ Eexact

(
φ|ηN (ηr, ηr′) + η2r

∂N (ηr, ηr′)
∂ηr

+ η2r′ ∂N (ηr, ηr′)
∂ηr′ |φ

)
, (A2)

where V (r) and W (r, r′) represent the local and nonlocal potential, respectively. This formula can be regarded as an extension
of the original virial theorem to nonlocal interactions.

GCM framework.
Assuming the exact wave function φ can be approximately expressed as a superposition of a finite set of basis functions ψ (R)

(R represents the generator coordinate): φ = ∑
i Ciψ (Ri ). Therefore the complex virial theorem for GCM can be expressed as

∂η

( ∑
i Ciψ (ηRi )|H | ∑ j Cjψ (ηRj )

)
∂η

( ∑
i Ciψ (ηRi)|

∑
j Cjψ (ηRj )

) =
∑

i, j CiCj[Ri∂ηRi (ψ (ηRi)|H |ψ (ηRj )) + Rj∂ηRj (ψ (ηRi)|H |ψ (ηRj ))]∑
i, j CiCj[Ri∂ηRi (ψ (ηRi )|ψ (Rj )) + Rj∂ηRj (ψ (ηRi)|ψ (Rj ))]

=
( ∑

i Ciψ (ηRi )|H | ∑ j Cjψ (ηRj )
)

(∑
i Ciψ (ηRi )|

∑
j Cjψ (ηRj )

) = Eexact. (A3)
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THSR framework.
Similar to the case of GCM, we only need to replace the generator coordinate R with the deformation parameter β =

(βx, βy, βz ):

∂η

(∑
i Ciψ (ηβi )|H | ∑ j Cjψ (ηβ j )

)
∂η

( ∑
i Ciψ (ηβi )|

∑
j Cjψ (ηβ j )

) =
∑

i, j CiCj[βi∇ηβi
(ψ (ηβi )|H |ψ (ηβ j )) + β j∇ηβ j

(ψ (ηβi )|H |ψ (ηβ j ))]∑
i, j CiCj[βi∇ηβi

(ψ (ηβi )|ψ (β j )) + β j∇ηβ j
(ψ (ηβi )|ψ (β j ))]

=
(∑

i Ciψ (ηβi )|H | ∑ j Cjψ (ηβ j )
)

(∑
i Ciψ (ηβi )|

∑
j Cjψ (ηβ j )

) = Eexact. (A4)

For GCM and THSR frameworks, if the Hamiltonian and norm kernels can be obtained analytically, the kernels involving
derivative can also conveniently derived in the analytical forms.

APPENDIX B: HARMONIC OSCILLATOR TRAP IN GCM AND THSR FRAMEWORKS

We take the α-α system without Coulomb potential as an example to illustrate the application of the MCM-HOT within both
GCM and THSR frameworks. For this system, we use all the same parameters as the original ones in Ref. [51], namely, b = 1.36
fm, Majorana exchange parameter M = 0.573, and Volkov No. 1 force adopted as the effective two-body nuclear interaction.
Besides, in THSR wave function method we only handle the case of axially symmetric deformation with the z axis being the
symmetry axis, namely, βx = βy = β⊥ �= βz.

The kernels of the harmonic oscillator potential can be introduced through the asymptotic relative waves function as follows:

VH.O.(R, R′) = 〈�L(R, r)| 1
2μω2r2 |�L(R′, r)〉 , for GCM

VH.O.(β,β′) = 〈�L(β, r)| 1
2μω2r2 |�L(β′, r)〉 , for THSR, (B1)

where �L denotes the asymptotic relative wave function with angular momentum L:

�L(R, r) =
(

2

πb2

) 3
4

e
−

(r2 + R2)

b2 iL

(
2rR

b2

)
, for GCM

�L(β⊥, βz, r) = (2π )3/2βxβyβz

(
2

π

)3/4 b3/2

(b2 + 2β2
⊥)(b2 + 2β2

z )1/2
exp

(
− r2

b2 + 2β2
⊥

)

×
∫

d cos(θ )PL(cos(θ )) exp(−r2 cos2(θ )
2
(
β2

⊥ − β2
z

)
(b2 + 2β2

⊥)
(
b2 + 2β2

z

) ), for THSR, (B2)

where θ is the angle between r and z axis, iL is the modified spherical Bessel function of the first kind, PL(x) is the Legendre
function. Details of the derivation can be found in Ref. [24].

[1] J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
[2] J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
[3] D. Thompson, M. Lemere, and Y. Tang, Nucl. Phys. A 286, 53

(1977).
[4] K. Wildermuth, Y. C. Tang, and E. Sheldon, Phys. Today 30, 62

(1977).
[5] Y. C. Tang, in Topics in Nuclear Physics II A Comprehensive

Review of Recent Developments, edited by T. T. S. Kuo and
S. S. M. Wong (Springer, Berlin/Heidelberg, 1981), pp. 571–
692.

[6] H. Horiuchi, Prog. Theor. Phys. 43, 375 (1970).
[7] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).
[8] H. Horiuchi and K. Ikeda, in Cluster Models and Other Topics,

edited by Y. Akaishi et al. (World Scientific Publishing Co. Pte.
Ltd, Singapore, 1986), pp. 1–258.

[9] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.
Lett. 87, 192501 (2001).

[10] B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck,
A. Tohsaki, C. Xu, and T. Yamada, Phys. Rev. Lett. 110, 262501
(2013).

[11] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Rev. Mod.
Phys. 89, 011002 (2017).

[12] T. Myo, Y. Kikuchi, H. Masui, and K. Katō, Prog. Part. Nucl.
Phys. 79, 1 (2014).
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