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Multireference covariant density-functional theory for the low-lying states of odd-mass nuclei
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We extend multireference covariant density-functional theory (MR-CDFT) based on a relativistic point-
coupling energy functional to describe the low-lying states of odd-mass nuclei. The nuclear wave function is
constructed as a superposition of quadrupole-octupole deformed mean-field configurations, with projection onto
angular momentum, particle numbers, and parity within the framework of the generator coordinate method.
Using 25Mg as an example, we calculate the energy spectrum, electric multipole, and magnetic dipole transition
strengths based on three different schemes for the mean-field configurations of odd-mass nuclei. We find that the
low-energy structure of 25Mg is reasonably reproduced in all three schemes. In particular, the effect of octupole
correlation is illustrated in the application to the low-lying parity doublets of 21Ne. This work demonstrates
the success of the MR-CDFT for the low-lying states of odd-mass nuclei with possible strong quadruple-octupole
correlations.
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I. INTRODUCTION

The low-lying states of odd-mass nuclei contain rich nu-
clear structure information, including energy spectra, electro-
magnetic moments, and transition strengths. These quantities
are highly sensitive to the underlying configurations of the
states [1,2]. A detailed study of the corresponding observables
is crucial for understanding nuclear shell structure and collec-
tive excitations. Moreover, precise information regarding the
low-lying states of odd-mass nuclei is essential for interpret-
ing measurements related to dark matter candidates [3] and
nonzero atomic electric dipole moments [4]. The latter pro-
vides a valuable constraint on the strengths of time-reversal
symmetry-violating interactions. However, due to the inter-
play of single-particle and collective motions and the presence
of half-integer angular momenta, the low-energy structure of
odd-mass nuclei is complex, presenting a considerable chal-
lenge for nuclear models.

The low-lying states of odd-mass nuclei have primar-
ily been investigated utilizing a (quasi)particle-rotor model
(PRM) [1,2] or a (quasi)particle-phonon model [5], where the
unpaired valence (quasi)particle couples with nuclear collec-
tive rotations or vibrations. The PRM has proved successful
in describing the level structures of rotational and even transi-
tional nuclei. However, it introduces some phenomenological
parameters that need determination from data of the corre-
sponding nucleus. Notably, it does not account for the effects
of the Pauli exclusion principle between valence nucleons
and core nucleons, core-polarization excitations, and rotation-
induced internal structure changes. These effects can be well
incorporated in a cranking model, originally introduced by
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Inglis [6,7], where nucleons inside an atomic nucleus are
treated as independent particles moving in an average field
rotating with the coordinate frame. The cranking model, an
approximate variation after projection onto angular momen-
tum, when combined with modern energy density functionals
(EDFs), offers a self-consistent microscopic method for nu-
clear rotational motions [8–12]. Since the cranking model
is formulated in the intrinsic frame, nuclear wave function
is characterized by a definite value of cranking frequency
but lacks a well-defined angular momentum. Consequently,
interpreting nuclear spectroscopic data within this model can
be challenging. Furthermore, the cranking model fails to
explain the experimentally observed “Coriolis attenuation”
effect [13], and it cannot capture the interplay of collective
rotational motions and shape vibrations in transitional nuclei.

Over the past few decades, the majority of studies on
odd-mass nuclei, starting from self-consistent mean-field ap-
proaches that employ various EDFs [14–18], has primarily
concentrated on the mean-field level. In the Hartree-Fock
(HF) approach with the Bardeen-Cooper-Schrieffer (BCS)
theory for nuclear pairing correlation, the ground state of an
odd-mass nucleus is typically obtained similarly to that of
an even-even nucleus, with the unpaired nucleon fixed onto
one of the single-particle orbitals. Specifically, the occupa-
tion of the blocked orbital is v2

k = 1 and v2
k̄

= 0, where |k̄〉
is the time-reversal partner state of |k〉. In other words, the
blocked orbitals (|k〉, |k̄〉) do not contribute to pairing cor-
relations [2]. When the polarization effect of the unpaired
nucleon is considered self-consistently, the valence nucleon
of the blocked orbital generates nonzero currents, breaking
the time-reversal invariance of the mean-field state [19–21].
In this case, the HF+BCS approach is often replaced by the
Hartree-Fock-Bogoliubov (HFB) approach. For simplicity,
the equal filling approximation (EFA) is frequently adopted to
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handle the unpaired nucleon [15,16,22–24], i.e., v2
k = v2

k̄
=

0.5 in the canonical basis, where time-reversal symmetry
is restored, and polarization effect from time-odd fields is
omitted. Studies with the schemes of both EFA and exact
blocking, where the time-odd mean field is fully taken into
account, demonstrated that the impact of time-odd fields
is of the order of 100–200 keV [16,18]. In the HFB ap-
proach, the wave function of an odd-mass nucleus is usually
approximated as a one-quasiparticle state, and the wave func-
tion can be obtained simply by exchanging one column of
the Bogoliubov transformation matrices [2]. Alternatively,
the wave function of an odd-mass nucleus can be approx-
imated with one quasiparticle excitation on top of a false
quantum vacuum (FQV) state with an odd average particle
number [25].

Mean-field wave functions are typically determined using
the variational principle, leading to solutions corresponding
to local energy minima within the restricted Hilbert space.
However, this approach does not guarantee the full retention
of the symmetries of a given nuclear Hamiltonian in the
mean-field wave functions, making it challenging to compare
with data on nuclear low-lying states. To address these issues,
the core-(quasi)particle coupling model [26–29] and inter-
action boson-fermion models [30,31] have been developed.
These hybrid models employ phenomenological parameters
determined by the mean-field calculations for the even-even
nuclear core and have proved successful in global studies of
low-lying states of odd-mass nuclei. In the pursuit of a full mi-
croscopic and self-consistent description of nuclear low-lying
states, where mean-field configurations and collective wave
functions are derived from the same underlying effective nu-
clear interactions or EDFs, multireference density-functional
theory (MR-DFT) has been developed [32]. The MR-DFT in-
corporates projection techniques to restore broken symmetries
in mean-field solutions and utilizes the generator coordinate
method (GCM) to explicitly consider large-amplitude fluctu-
ations around the most probable mean-field solution. Review
papers [32–36] provide comprehensive insights into this field.
Compared to even-even nuclei, extending MR-DFT for odd-
mass or odd-odd nuclei is more complex, requiring mixing
of many nearly degenerate single-(quasi)particle excitation
configurations.

Early studies of the low-lying states of odd-mass nuclei
employed angular-momentum projection (AMP) based on
a Hartree-Fock (HF) state defined within one major shell
[37–39]. More advanced approaches include both AMP
and particle-number projection (PNP) on top of one or more
quasiparticle states defined within three shells using a pairing-
plus quadrupole interaction [40,41], as well as AMP+PNP on
top of one quasiparticle state using a microscopically derived
Brueckner G matrix with additional phenomenological
terms [42]. Other methods—such as antisymmetrized
molecular dynamics (AMD) combined with GCM [43,44];
the resonating-group method (RGM) combined with AMD
for one-neutron halo structure in 31Ne [45]; and three-
dimensional angular momentum projection (3DAMP) and
PNP combined with GCM based on triaxially deformed HFB
wave functions with time-reversal symmetry using Skyrme-
type EDFs for 25Mg [46], 129Xe [47], and 197Au [48]—have

been developed. Similar studies using the Gogny force have
been carried out for odd-mass magnesium isotopes [49–51].

In recent decades, covariant density-functional theory
(CDFT) has proved highly successful in various aspects of
nuclear physics [52]. Within CDFT, Lorentz invariance im-
poses stringent restrictions on the number of parameters in the
EDF. Notably, the relativistic framework of CDFT naturally
incorporates the spin-orbit potential, and the time-odd fields
can be included without introducing any additional free pa-
rameters. This feature is particularly important for describing
odd-mass nuclei and rotating nuclei. On the mean-field level,
the single-reference (SR) CDFT, or the relativistic mean-field
(RMF) theory with pairing correlation considered in the BCS
theory or with a general Bogoliubov transformation, pro-
vides a good description of the static ground-state properties
for finite nuclei [12,52–54]. Similar to other nuclear DFT,
however, SR-CDFT suffers from the drawbacks of symme-
try violation. To restore the broken symmetries, SR-CDFT
has been extended to a multireference framework with the
AMP [55–58], PNP, and parity projection for axially, triaxially
[59–62], and octupole deformed [63–65] nuclei, respectively.
The shape fluctuation effects can be taken into account with
GCM. The MR-CDFT has also been applied to the low-lying
states of hypernuclei [66,67], and the nuclear matrix element
of neutrinoless double-beta decay [68–71]. See, for instance,
the review papers [33,72,73]. All these studies were restricted
to even-even nuclei. In view of the success of the MR-CDFT,
we extend this framework to the low-lying states of odd-mass
nuclei.

The paper is arranged as follows. In Sec. II, we present
the framework of MR-CDFT for odd-mass nuclei, including
the construction of mean-field configurations for odd-mass
nuclei in three different schemes, the restoration of broken
symmetries in the configurations, and the mixing of these
configurations with the GCM. Taking 25Mg as an example,
we present the results on the energy spectra, electric multi-
pole, and magnetic dipole transitions in the low-lying states
in Sec. III. Besides, we demonstrate the applicability of the
method for 21Ne with strong quadrupole-octupole correlations
in the low-lying parity doublet states. A conclusion is drawn
in Sec. IV.

II. THEORETICAL FRAMEWORK

A. GCM for nuclear low-lying states

In the MR-CDFT, the wave functions of low-lying states
for an odd-mass nucleus are constructed with the symmetry-
projected GCM as follows:

∣∣�Jπ
α

〉 =
∑

c

f Jαπ
c |NZJπ ; c〉, (1)

Here, α distinguishes the states with the same angular momen-
tum J , and the symbol c is a collective label for the indices
(K, κ, q). The basis function with correct quantum numbers
(NZJπ ) is given by

|NZJπ ; c〉 = P̂J
MK P̂N P̂Z P̂π

∣∣�(OA)
κ (q)

〉
, (2)
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where P̂J
MK , P̂N,Z , and P̂π are projection operators that select

components with the angular momentum J , neutron number
N , proton number Z , and parity π = ± [2]:

P̂J
MK = 2J + 1

8π2

∫
d� DJ∗

MK (�)R̂(�), (3a)

P̂Nτ = 1

2π

∫ 2π

0
dϕτ eiϕτ (N̂τ −Nτ ), (3b)

P̂π = 1

2
(1 + πP̂ ). (3c)

The operator P̂J
MK extracts the component of angular mo-

mentum along the intrinsic axis z defined by K . The
Wigner D function is defined as DJ

MK (�) ≡ 〈JM|R̂(�)|JK〉 =
〈JM|eiφĴz eiθ Ĵy eiψ Ĵz |JK〉, where � = (φ, θ, ψ ) represents the
three Euler angles. The N̂ = ∑

k a†
kak and P̂ are particle-

number operator and space-inversion operator, respectively.
The mean-field configurations |�(OA)

κ (q)〉 for odd-mass nuclei
are chosen as one quasiparticle state,∣∣�(OA)

κ (q)
〉 = α†

κ |�(κ )(q)〉, (4)

where |�(κ )〉 is a quasiparticle vacuum from the SR-CDFT
calculation,

ακ |�(κ )(q)〉 = 0. (5)

The quasiparticle operators (α, α†) are connected to single-
particle operators (a, a†) via the Bogoliubov transformation
[2], (

α

α†

)
=

(
U † V †

V T U T

)(
a
a†

)
. (6)

More details on the SR-CDFT calculation are introduced in
the next subsection and Appendix A.

As usual, we optimize the energy of the state (1) with
respect to the weight function f Jαπ

c with the variational princi-
ple, which leads to the following Hill-Wheeler-Griffin (HWG)
equation [2,74],∑

c′

[
H NZJπ

cc′ − EJπ
α N NZJπ

cc′
]

f Jαπ
c′ = 0, (7)

where the Hamiltonian kernel and norm kernel are defined by

ONZJπ
cc′ = 〈NZJπ ; c|Ô|NZJπ ; c′〉, (8)

with the operator Ô representing Ĥ and 1, respectively. Simi-
lar to that for even-even nuclei, the kernel for odd-mass nuclei
is also evaluated with the mixed-density prescription [75]. The
details on the calculation of the kernels (8) can be found in the
Appendix A.

The HWG equation (7) for a given set of quantum num-
bers (NZJπ ) is solved in the standard way as discussed in
Refs. [2,56]. It is accomplished by diagonalizing the norm
kernel N NZJπ

cc′ first. A new basis set is constructed using the
eigenfunctions of the norm kernel with eigenvalue larger than
a prechosen cutoff value to remove possible redundancy in
the original basis. The Hamiltonian is diagonalized in this
new basis. In this way, one is able to obtain the energies
EJπ

α and the mixing weights f Jαπ
c of nuclear states |�Jπ

α 〉.
Since the basis functions |NZJπ ; c〉 are nonorthogonal to each

other, one usually introduces the collective wave function
gJπ

α (K, q) as

gJπ
α (K, q) =

∑
c′

(N 1/2)NZJπ
c,c′ f Jαπ

c′ , (9)

which fulfills the normalization condition. The distribution of
gJπ

α (K, q) over K and q reflects the contribution of each basis
function to the nuclear state |�Jπ

α 〉.

B. CDFT for the mean-field configurations of odd-mass nuclei

The wave functions of the mean-field configurations
|�(OA)

κ (q)〉 in (2) for an odd-mass nucleus are generated from
the SR-CDFT calculation in which the following EDF is opti-
mized with respect to single-particle wave functions:

E ′[ρi,∇2ρi, jμi ,∇2 jμi , κ, . . .
]

= ECDFT
[
ρi,∇2ρi, jμi ,∇2 jμi , κ, . . .

]
+

∑
τ=n,p

λτ (〈N̂τ 〉 − Nτ ) +
∑
λ,μ

Cλμ(〈Q̂λμ〉 − qλμ)2. (10)

Here, the second term is introduced to ensure the correct
average particle number 〈�(κ )(q)|N̂τ |�(κ )(q)〉 = Nτ , with Nτ

standing for the number of neutrons or protons. The quadratic
constraint terms are added with the stiff parameters Cλμ for the
multipole moments. ECDFT[ρi,∇2ρi, jμi ,∇2 jμi , κ, . . . ] repre-
sents the energy of nucleus, which is a functional of various
types of densities ρi, currents jμi and their derivatives [56]:

ECDFT
[
ρi,∇2ρi, jμi ,∇2 jμi , κ, . . .

]
=

∫
d3r

[ ∑
k

v2
k ψ

†
k (r)(α · p + βmN − mN )ψk (r)

+ αS

2
ρ2

S + βs

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS∇2ρS

+ αV

2
( jV )μ jμV + γV

4

[
( jV )μ jμV

]2 + δV

2
( jV )μ∇2 jμV

+ αTV

2
�jμTV (�jTV )μ + δTV

2
jμTV ∇2(�jTV )μ

+ 1

4
FμνFμν − F0μ∂0Aμ + eAμ jμρ

]
+ Epair[κ, κ∗].

(11)

Here, the densities and currents are defined by

ρS (r) =
∑

k

v2
k ψ̄k (r)ψk (r), (12a)

j μ
V (r) =

∑
k

v2
k ψ̄k (r)γ μψk (r), (12b)

�jμTV (r) =
∑

k

v2
k ψ̄k (r)�τγ μψk (r). (12c)

The subscript S stands for scalar-isoscalar, V for vector-
isoscalar, and TV for vector-isovector types of vertices; and
�τ is the isospin operator. The values of the coupling constants
are taken from the PC-F1 parametrization [76]. The use of
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the PC-PK1 [77] does not change the conclusion of the work.
The v2

k is the occupation probability of the kth single-particle
state, determined by the BCS theory. In this work, the pairing
energy Epair[κ, κ∗] is derived on the basis of a contact pairing
interaction,

Epair[κ, κ∗] = −
∑

τ=n,p

Vτ

4

∫
d3r κ∗

τ (r)κτ (r), (13)

where Vτ is a parameter for the pairing strength. The pairing
tensor κτ (r) of neutrons or protons in coordinate space is
given by

κτ (r) = −2
τ∑

k>0

fkukvk|ψk (r)|2, (14)

where an energy-dependent cutoff factor fk is introduced
to regulate the contribution from high-energy single-particle
states [22],

fk = 1

1 + exp [(εk − λτ − �Eτ )/μτ ]
. (15)

Here, εk is the energy of the kth single-particle state. The
symbol λτ in (10) and (15) is called Fermi energy. Following
Ref. [22], we choose the energy-window parameters �Eτ

and μτ = �Eτ /10 so that the condition 2
∑

k>0 fk = Nτ +
1.65N2/3

τ is fulfilled.
The variation of the EDF in (10) with respect to single-

particle wave function ψk (r) leads to a Dirac equation.
Since the Dirac equation contains scalar and vector potentials
depending on nucleon densities and currents, it is solved iter-
atively. See for instance Refs. [56,77] for more details. After
the solution, the total energy of an atomic nucleus is given by

ETot = ECDFT
[
ρi,∇2ρi, jμi ,∇2 jμi , κ, . . .

] + Ecm, (16)

where the energy correction from the center of motion is
determined by [56,78]

Ecm = − 1

2mN A
〈�(κ )|P̂2

cm|�(κ )〉, (17)

with mN being the mass of neutron or proton, and A mass
number, and P̂cm the operator of total momentum in the
center-of-mass frame.

The mean-field wave functions |�(OA)
κ 〉 for the odd-mass

nuclei have been given in (4). For simplicity, time-reversal
symmetry is maintained in this work. Under this circum-
stance, there are different schemes to construct the mean-field
wave functions for odd-mass nuclei. Here, we consider the
following three schemes in the BCS theory.

Scheme I: the quasiparticle vacuum |�(κ )〉 in (4) is cho-
sen as a BCS wave function for the even-mass
nuclear core,

|�(κ )〉EAC =
EA∏
j>0

(u j + v ja
†
j a

†
j̄
)|0〉, (18)

where EAC〈�(κ )|N̂ |�(κ )〉EAC is even for both
neutron and proton. This scheme is referred to
as even-mass-core (EAC) hereafter.

Scheme II: the quasiparticle vacuum |�(κ )〉 is chosen as a
FQV state [25],

|�(κ )〉FQV =
OA∏
j>0

(u j + v ja
†
j a

†
j̄
)|0〉, (19)

where FQV〈�(κ )|N̂ |�(κ )〉FQV is odd either for
neutron or proton, depending on the nucleus
of interest.

Scheme III the quasiparticle vacuum |�(κ )〉 is chosen ac-
cording to the EFA [15],

|�(κ )〉EFA = (1 + a†
ka†

k̄
)

EA∏
j 	=k

(u j + v ja
†
j a

†
j̄
)|0〉.

(20)

In this scheme, the wave function |�(κ )〉EFA
depends on the index k of the blocked single-
particle orbital.

It is noted that the number parity of the wave function
|�(κ )〉 is even in the above three schemes. The introduction
of the one-quasiparticle creation operator α†

κ in (4) changes
the number parity from even to odd. Therefore, the mean-field
wave function |�(OA)

κ 〉 has the correct number parity of odd-
mass nuclei. Moreover, the |�(OA)

κ 〉 with a given Kπ value is
chosen as the one which produces the quasiparticle state with
the lowest energy for simplicity, even though in principle one
should consider the mixing of different quasiparticle states to
enlarge the model space.

The single-particle wave function ψk (r) for nucleons is
a Dirac spinor which is composed of large and small com-
ponents. Both are expanded using the eigenfunctions |n〉 =
|nz, nr, ml , ms〉 of a harmonic oscillator in a cylindrical coor-
dinate system,

|ψk〉 =
( ∑

n fnk|n〉
i
∑

n̄ gn̄k|n̄〉

)
χtk (t ), (21)

where χtk (t ) represents the isospin part. The wave function for
the harmonic oscillator basis states is

〈r|n〉 = φnz (z)φml
nr

(r⊥)
1√
2π

eiml ϕχms (s), (22)

where χms (s) is the spin component and

φnz (z) = Nnz√
bz

Hnz (ξ )e−ξ 2/2, ξ = z

bz
(23)

φml
nr

(r⊥) = Nml
nr

b⊥

√
2ηml /2Lml

nr
(η)e−η/2, η = r2

⊥
b2

⊥
. (24)

Hnz (ξ ) and Lml
nr

(η) are the Hermite polynomials and the
Laguerre polynomials, respectively. The expression for the
normalization coefficient is

Nnz = 1√√
π2nz nz!

, Lml
nr

=
√

nr!

(nr + ml )
. (25)

After the solution of Dirac equation for |ψk〉, we carry out the
basis transformation fromthe cylindrical coordinate system to
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the spherical harmonic oscillator basis |m〉 = |nl jmj〉:

|ψk〉 =
( ∑

m Fmk|m〉
i
∑

m̄ Gm̄k|m̄〉

)
. (26)

The expansion coefficients Fkm and Gkm̄ are determined by

Fmk =
∑

n

fnk〈m|n〉, Gm̄k =
∑

n̄

gn̄k〈m̄|n̄〉. (27)

where the transformation coefficient 〈m|n〉 is calculated in
Ref. [79]. The representation of the rotation operator R̂(�)
in this basis is simply given by the Wigner D function [56].

C. Electromagnetic transition strengths

The strength of the electromagnetic multipole transition
from the initial state |�Jiπi

αi
〉 to the final state |�Jf π f

α f 〉 is de-
termined by

B(T λ, Jiαiπi → Jf α f π f ) = 1

2Ji + 1

∣∣∣∣∣∣
∑
c f ,ci

f Jiαiπi
ci

f
Jf α f π f
c f 〈NZJf π f , c f ||T̂λ||NZJiπi, ci〉

∣∣∣∣∣∣
2

, (28)

where the configuration-dependent reduced matrix element is simplified as follows:

〈NZJf π f ; c f ||T̂λ||NZJiπi; ci〉 = δπ f πi,(−1)λ (−1)Jf −Kf
Ĵ2

i Ĵ2
f

8π2

∑
νM

(
Jf λ Ji

−Kf ν M

)

×
∫

d� DJi∗
MKi

(�)
〈
�(OA)

κ f
(q f )

∣∣T̂λν R̂(�)P̂Z P̂N P̂πi
∣∣�(OA)

κi
(qi )

〉
, (29)

where Ĵ = √
2J + 1.

For the electric dipole (E1) and quadrupole (E2) transi-
tions, the tensor operator is simply given by

T̂λν = erλYλν, (30)

with Yλν standing for the spherical harmonic function of rank
λ. For the magnetic dipole (M1) transitions, the tensor opera-
tor is defined as

T̂1ν =
√

3

4π
μ̂1ν, (31a)

μ̂1ν =
(

1√
2

(μ̂x − iμ̂y), μ̂z,−
1√
2

(μ̂x + iμ̂y)

)
. (31b)

Here, the symbol μ̂k=x,y,z represents the k component of the
magnetic dipole moment operator determined by the effective
current operator, which is composed of Dirac current and
anomalous current [21,80],

μ̂ =
∫

d3r

[
mN c2

h̄c
eψ†(r)r × αψ (r) + κψ†(r)β�ψ (r)

]
,

(32)

with e being the electric charges of nucleons, κ the free
anomalous gyromagnetic ratio (called g factor) of the nucleon,
i.e., κp = 1.793 for protons and κn = −1.913 for neutrons,
and mN the mass of nucleon. The Dirac gamma matrices
read

α =
(

0 σ

σ 0

)
, β� =

(
σ 0
0 −σ

)
. (33)

Here, σ is the Pauli spinor. The unit of the magnetic dipole
moment μ̂ is the nuclear magneton (μN = eh̄/mN ).

The magnetic dipole moment μ(Jπ
α ) of the state |�Jπ

α 〉 can
be calculated by

μ
(
Jπ
α

) = 〈
�Jπ

α

∣∣μ̂10

∣∣�Jπ
α

〉
=

(
J 1 J

−J 0 J

) ∑
c f ,ci

f Jiαiπi
ci

f
Jf α f π f
c f

× 〈NZJf π f ; c f ||μ̂1||NZJiπi; ci〉. (34)

The spectroscopic quadrupole moment Qs(Jπ
α ) of the state

|�Jπ
α 〉 is given by

Qs
(
Jπ
α

) =
√

16π

5

〈
�Jπ

α

∣∣Q̂20

∣∣�Jπ
α

〉

=
√

16π

5

(
J 2 J

−J 0 J

) ∑
c f ,ci

f Jiαiπi
ci

f
Jf α f π f
c f

× 〈NZJf π f ; c f ||er2Y2||NZJiπi; ci〉. (35)

The reduced E2 transition matrix elements in (34) and (35)
can be computed with Eq. (29). Since the transition operator
is defined in the full single-particle space in the calculation,
the bare electric charges for protons and neutrons, i.e., ep =
1, en = 0, are employed.

III. RESULTS AND DISCUSSION

A. Numerical details

The Dirac spinor |ψk〉 in Eq. (21) for the nucleons is
expanded in a set of harmonic oscillator basis functions com-
prising eight major shells. This choice, as demonstrated in
Ref. [56], has proved sufficient to yield a reasonably conver-
gent mean-field binding energy curve for 24Mg. The oscillator
frequency is defined as h̄ω = 41A−1/3. Research conducted
in Ref. [51] indicates that the level of K mixing caused by

034305-5



E. F. ZHOU, X. Y. WU, AND J. M. YAO PHYSICAL REVIEW C 109, 034305 (2024)

TABLE I. The convergence of the neutron numbers (N), proton
numbers (Z), and the total energy ETot (MeV) of 25Mg in the PNP
calculation with respect to the number Nϕ of mesh points in the
gauge angles for both neutrons and protons, where the mean-field
configuration is constructed with the EAC scheme (18), and the
quasiparticle vacuum state is constrained to have quadrupole defor-
mation β2 = 0.3.

Nϕ 1 3 5 7 9

N 12.901 586 12.999 993 12.999 999 13.000 000 13.000 000
Z 12.000 000 11.999 991 12.000 000 12.000 000 12.000 000
ETot −198.453 −200.042 −200.041 −200.041 −200.041

triaxiality in the low-lying states of 25Mg is minimal. There-
fore, for the sake of simplicity, mean-field configurations are
constrained to possess axial symmetry, conserving the K value
in each state. Consequently, only one of the three Euler angles
in the AMP requires numerical integration within the interval
θ ∈ [0, π ], where the number of mesh points in this interval is
set as Nθ = 12.

Table I demonstrates the convergence of results with the
number of mesh points for the gauge angles ϕτ within the
interval [0, π ]. It is observed that choosing Nϕ = 5 allows for
the reproduction of particle numbers and yields a convergent
solution for the total energy of 25Mg. Further details regarding
the problems of singularity and finite steps are presented in
Appendix C.

B. Application to 25Mg with quadrupole correlations

1. Selection of lowest-energy quasiparticle configurations

The mean-field configurations for odd-mass nuclei are cho-
sen as the lowest-energy quasiparticle configurations with
different deformation parameters q. In the canonical basis,
the energy Ek of the quasiparticle state |�(OA)

κ (q)〉 defined in
Eq. (4) can be computed as follows:

Eκ =
√

(εk − λn)2 + f 2
k �2

k . (36)

Alternatively, one can define the energy EN
κ of the state with

the restoration of particle numbers, which for 25Mg is given
by

EN
κ (25Mg) =

〈
�(OA)

κ (q)
∣∣Ĥ P̂Z=12P̂N=13

∣∣�(OA)
κ (q)

〉
〈
�

(OA)
κ (q)

∣∣P̂Z=12P̂N=13
∣∣�(OA)

κ (q)
〉

− 〈�(q)|Ĥ P̂Z=12P̂N=12|�(q)〉
〈�(q)|P̂Z=12P̂N=12|�(q)〉 − λn, (37)

where λn is the Fermi energy of neutrons introduced in (10).
Figure 1(a) displays the change of the single-particle

energy levels of neutrons in 24Mg from the SR-CDFT calcu-
lations with the quadrupole deformation parameter β2, where
the dimensionless deformation parameter βλ for the multipole
moment is defined as

βλ = 4π

3ARλ
〈�(q)|rλYλ0|�(q)〉. (38)

The quasiparticle energies Eκ and EN
κ defined in (36) and (37)

are shown in Figs. 1(b) and 1(c), respectively. It is seen that
the two lowest-energy configurations in the weak deformation
region have Kπ = 3/2+ and Kπ = 5/2+, both of which origi-
nate from the splitting of the spherical d5/2 orbital located near
the neutron Fermi energy λn. In the largely deformed region,
the configuration with Kπ = 1/2+ splitting from the spherical
d3/2 orbital falls down in energy. In particular, the orderings of
the configurations by the Eκ and EN

κ could be very different,
indicating the importance of using the quasiparticle energy EN

κ

with PNP as a guideline in the selection of the lowest-energy
configuration. However, if the quantum numbers Kπ of the
configuration are fixed, one can still use the Eκ as a convenient
guideline to generate the lowest-energy one-quasiparticle state
|�(OA)

κ (q)〉.
Figure 2(a) displays the mean-field energies of quasiparti-

cle vacuum states for 24,25,26Mg, where the FQV scheme (19)
is employed for 25Mg. The results from the EFA scheme (20)
with the valence neutron blocked in the lowest-energy orbital
with different quantum numbers Kπ are plotted in Fig. 2(b).
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FIG. 1. (a) The single-particle energies εk of neutrons in 24Mg as a function of quadrupole deformation parameter β2. (b) The energies
Ek of one-quasiparticle neutron states as a function of β2. (c) The energies EN

k of one-quasiparticle neutron states projected onto the correct
nucleon numbers as a function of β2. See main text for details.
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FIG. 2. (a) The energies of mean-field states of 24,25,26Mg as a
function of the quadrupole deformation parameter β2. Energies are
normalized to the corresponding energy minima whose values are
193.2, 202.2, and 211.4 MeV. The mean-field states |�(β2)〉 for
25Mg are quasiparticle vacua from the calculation based on the FQV
scheme. (b) The energies of mean-field states (normalized to 201.74
MeV) from the calculation based on the EFA scheme for 25Mg,
where the block orbitals are selected as the lowest quasiparticle states
(σ = 1) with Kπ

σ = 5/2+
1 , 3/2+

1 , 1/2+
1 , 1/2−

1 , and 3/2−
1 .

It is seen that the energy difference between the oblate and
prolate energy minima is decreasing from 24Mg to 26Mg. It
was shown in Ref. [59] that 26Mg is actually a triaxial γ -soft
nucleus. For 25Mg, the energy curve by the FQV scheme
(19) is generally different from those by the EFA scheme.
In the latter case, the energy curve depends on the blocked
orbital labeled with Kπ , representing the energy of different
quasiparticle configurations |�(OA)

κ (q)〉.
Figure 3 displays the single-particle energies of neutrons in

24Mg and the energies of one-quasiparticle states in 25Mg by
the FQV and EFA schemes, respectively. In the EFA case, the
blocked orbital is chosen as Kπ = 1/2+, 3/2+, and 5/2+. The
single-particle energies are almost the same in all the cases.
However, the location of the neutron Fermi energy is much
different, which may bring changes into the energy ordering
of quasiparticle configurations, cf. Fig. 1. The energies of
the configurations with Kπ = 5/2+ by the three schemes and
with projection onto correct particle numbers for 25Mg are
compared in Fig. 4. It is shown that the energy curves by the
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FIG. 3. Comparison of Nilsson diagrams for the single-particle
energies of neutrons in (a) 24Mg (EAC), (b) 25Mg (FQV), and (c)–
(e) 25Mg (EFA), where the block orbitals in the EFA scheme are
chosen as the lowest quasiparticle states of 25Mg (FQV) with Kπ

σ =
1/2+

1 , 3/2+
1 , and 5/2+

1 , respectively. The Fermi energies of neutrons
in each case are indicated with square symbols.

three schemes are similar, but with evident differences in the
deformation region (β2 > 0.3) where pairing correlation col-
lapses, as shown in Fig. 5. One can see that pairing correlation
among neutrons in the EFA scheme collapses in the entire
deformation space, but it does not happen in the FQV case.
From this point of view, the FQV provide a better choice to
produce quasiparticle configurations for odd-mass nuclei.

2. Angular-momentum projection

The axially deformed mean-field wave function |�(OA)
κ (q)〉

labeled with Kπ can be decomposed into the eigenstates
|JMKπ〉 of the angular momentum operator Ĵ2, and its pro-
jection Ĵz [2]∣∣�(OA)

κ (q)
〉 =

∑
J�K

CJKπ (q))|JMKπ〉, (39)

where the probability of finding the component |JMKπ〉 is

|CJKπ (q))|2 = 〈
�(OA)

κ (q)
∣∣P̂J

KK P̂π
∣∣�(OA)

κ (q)
〉

= N J
KK (κq, κq). (40)

Here, only quadrupole-deformed configurations are employed
for 25Mg and thus parity is already conserved in the
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FIG. 4. The energies of particle-number projected states for
25Mg as a function of quadrupole deformation β2 from the three
schemes, where the intrinsic quasiparticle configurations have the
same quantum numbers Kπ

σ = 5/2+
1 .

configurations. With the above decomposition, one can
rewrite the norm overlap in terms of the weight of each com-
ponent,

n(κq, κq; θ ) ≡ 〈
�(OA)

κ (q)
∣∣R̂y(θ )

∣∣�(OA)
κ (q)

〉
=

∑
J�K

|CJKπ (q)|2dJ
KK (θ ). (41)

For an even-even nucleus, the predominant component of
the deformed mean-field wave function has the angular mo-
mentum J = 0. Because of dJ=0

00 = 1, the norm overlap
n(κq, κq; θ ) is always positive and can be well approximated

FIG. 5. (a) The occupation probability of the lowest-energy
quasiparticle state with Kπ

σ = 5/2+
1 in 25Mg from the calculations

with the three schemes. (b) Pairing energy of neutrons in the mean-
field states for 24Mg, 25Mg (FQV), and 25Mg (EFA), as a function of
quadrupole deformation β2.

FIG. 6. The norm overlaps n(κq, κq; θ ) of (a) spherical 25Mg
(EAC, β2 = 0) and (b) deformed 25Mg (EAC, β2 = 0.5) mean-field
states characterized with different Kπ , as a function of the Euler
angle θ . In panel (a), the three mean-field states of 25Mg (EAC) cor-
respond to the configurations with the valence neutron occupying the
multiplets Kπ = 1/2+, 3/2+, and 5/2+ of the spherical d5/2 orbital.
The results are compared with the Wigner d function d5/2

KK (θ ), with
K = 1/2, 3/2, and 5/2, respectively.

with a Gaussian function centered at θ = 0 [2]. In contrast, the
angular momentum for an odd-mass nucleus is half integer
with J � 1/2. In this case, the norm overlap can change
sign during the oscillation with the rotation angle θ . This
phenomenon is illustrated in Fig. 6. For the spherical quasi-
particle states of 25Mg with J = 5/2 and Kπ = 1/2+, 3/2+,
and 5/2+, respectively, the norm overlap n(κβ2 = 0, κβ2 =
0; θ ) is in line with the Wigner d function d5/2

KK (θ ). For the
deformed quasiparticle states of 25Mg, the norm overlap is
given by a linear combination of dJ

KK (θ ) with the mixing
weight given by |CJKπ (q))|2; cf. (41). In particular, it is shown
that the magnitude of oscillation around the rotation angle
θ = π is much larger for the quasiparticle configuration with
Kπ = 1/2− than that with Kπ = 1/2+. One can read from
Fig. 1 that the lowest 1/2+ quasiparticle state at β2 = 0.5 is
dominated by the components split from the spherical d3/2

orbital and s1/2 orbital, while the 1/2− quasiparticle state
at β2 = 0.5 is dominated by the component split from the
spherical f7/2 orbital. Thus, these two quasiparticle states
have different distributions of the weights |CJKπ (q)|2 over
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FIG. 7. Probability of components with angular momentum J in
the axially deformed wave function |�(OA)

κ (q)〉 for 25Mg (EAC, β2 =
0.5) characterized with Kπ = 1/2±.

the angular momentum J , as illustrated in Fig. 7. More-
over, the norm overlaps in all cases have the symmetry that
n(κq, κq; 2π − θ ) = −n(κq, κq; θ ), which is attributed to
the symmetry property of the dJ

KK (2π − θ ) = −dJ
KK (θ ) for all

the half-integer J; see Eq. (41).
Figure 8 displays the overlap of the magnetic dipole mo-

ment operators

μ1ν (κq, κq; θ ) ≡ 〈
�(OA)

κ q
∣∣μ̂1νeiθ Ĵy

∣∣�(OA)
κ (q)

〉
(42)
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FIG. 8. The overlap of the magnetic dipole moment operators

μ1ν (κq, κq; θ ) defined in (42) for neutrons (a) and protons (b) as
a function of the Euler angle θ , where the mean-field configurations
for 25Mg are constructed with the EAC scheme and the quadrupole
deformation of nuclear core is β2 = 0.5.
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FIG. 9. The convergence of the energies of angular-momentum
projected states for 25Mg (EAC) with Jπ = 5/2+, 7/2+, . . . , 15/2+

as a function of the number Nθ of mesh points for the Euler angle
θ ∈ [0, π ], where the quadrupole deformation of the intrinsic state is
β2 = 0.5. See main text for details.

for both neutrons and protons in 25Mg. It is shown that

μ1ν (κq, κq; 2π − θ ) = (−1)νμ1ν (κq, κq; θ ), (43)

which has to be convoluted with the Wigner d function
dJ

KK (θ ). It is worth noting that, differently from the case of
even-even nuclei, the norm overlap has the symmetry that
n(q, q; π − θ ) = n(q, q; θ ) [56], the norm overlap for the
odd-mass nuclei does not have this property any more. There-
fore, one has to compute the norm overlap explicitly for the
Euler angle θ in the interval [0, π ]. This argument is also
applied to the overlaps of other quantities.

Figure 9 displays the convergence of the energies of
angular-momentum projected states for 25Mg as a function of
the number Nθ of mesh points in the Euler angle θ , where the
mean-field configuration is generated with the EAC scheme
and the quadrupole deformation of the nuclear core 24Mg is
fixed at β2 = 0.5. It is shown that the choice of Nθ = 12 is
sufficient to provide a convergent solution to the state with
J � 15/2. In Fig. 10, we compare the energies of states
for 25Mg with projection onto the correct particle numbers
and different angular momenta based on different axially de-
formed states with Kπ = 5/2+. The projected energy curves
of the same spin-parity by the three schemes are similar to
each other, except for the weakly deformed regions where
the norm kernels for the states of interest are so small that
the energies can be strongly affected by numerical noises.
Similar phenomena are found in the projected states based
on the quasiparticle configurations with Kπ = 1/2+, 3/2+,
and 1/2−. We note that the observed discontinuity around
β2 = 0.3 in the projected energy curves by the EAC is due
to the fact that pairing correlation collapses in the mean-field
states of 24Mg with β2 � 0.3; cf. Fig. 5.

3. Low-energy spectra from configuration-mixing calculations

Figure 11 shows the comparison of the energy spectra for
25Mg by the three schemes. The low-lying states are obtained
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from the mixing of quantum-number projected configurations
with different axial deformation parameters. The states with
the same Kπ are put into the same column. One can see that
the entire energy spectra by the three calculations are qualita-
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FIG. 12. The distributions of collective wave functions |gJπ |2
defined in Eq. (9) as a function of quadrupole deformation β2 for the
low-lying states of 25Mg with different spin-parity quantum numbers
Jπ from three different types of calculations.

tively the same. Quantitatively, the predicted binding energy
of the ground state with Jπ = 5/2+ is 204.93, 204.40, and
205.03 MeV by the EAC, EFA, and FQV schemes, respec-
tively, slightly underbound compared with the data, 205.59
MeV [81]. The states of the Kπ = 1/2+ band by the EAC is
slightly higher than the other two cases. However, the states
of the Kπ = 3/2+ band by the EAC is significantly lower
than other two schemes. Otherwise, it is difficult to distinguish
the low-energy spectra by the three schemes. Figure 12 shows
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FIG. 11. Comparison of low-energy spectra for 25Mg from the calculations based on the three different schemes. See main text for details.
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the comparison of the collective wave functions for the states
of the Kπ = 5/2+ band. It is seen that in all the three cal-
culations the predominant component of the state is slightly
moving to larger deformed configurations with the increase
of angular momentum. In contrast, the distributions of the
collective wave functions for the states of Kπ = 1/2+ band
are not evidently changed with the angular momentum, as
shown in Fig. 13. The collective wave functions of the states
in the Kπ = 3/2+ band are displayed in Fig. 14, which shows
clearly that these states by the EAC scheme are significantly
different from those by the FQV and EFA schemes. For the
Kπ = 3/2+ band by the EAC, the predominant configuration
of the state remains in the oblate deformed state with β2 =
−0.4 with the increase of angular momentum. In contrast,
the predominant configuration by the FQV and EFA is shifted
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FIG. 14. Same as Fig. 12, but for the states of the Kπ = 3/2+

band.
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FIG. 15. Same as Fig. 12, but for the states of the Kπ = 1/2−

band.

gradually from the oblate state to a prolate state. It explains the
observed difference in the energy spectra of the Kπ = 3/2+
band, shown in Fig. 11. For all the states in the Kπ = 1/2−
band, their collective wave functions are broadly distributed in
the prolate deformed region and only slightly change with the
increase of angular momentum, as shown in Fig. 15. In short,
in most cases, the results by the FQV and EFA are closer to
each other in comparison with those by the EAC.

The energy spectra by the EAC are compared to available
data in Fig. 16. One can see that the observed three bands are
in excellent agreement with the predicted Kπ = 5/2+, 1/2+,
and 1/2− bands, except for the wrong energy orderings of
some states in the high-lying 1/2− band, which may need to
consider other quasiparticle configurations. Figure 17 shows
the excitation energies of the states in the Kπ = 5/2+, 1/2+
bands of 25Mg. If these states are pure rotational excitations,

FIG. 16. The energy spectra of low-lying states in the Kπ =
5/2+, 1/2+, and 1/2− bands of 25Mg from the calculation based on
the EAC scheme, in comparison with available data.
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FIG. 17. The excitation energies of the states in the Kπ = 5/2+

and 1/2+ bands of 25Mg from the calculation with the EAC scheme
as a function of J (J + 1), in comparison with corresponding data.

their energies as a function of J (J + 1) should fall in a straight
line. This phenomenon is shown in the Kπ = 1/2+ band, con-
sistent with the distribution of the collective wave functions
in Fig. 13. For the Kπ = 5/2+ band, the excitation energies
of the states in the low-spin region are in excellent agreement
with the data. However, a slight deviation shows up at rela-
tively high-spin regions. It can be understood from Fig. 12
that the distributions of the collective wave functions change
with the increase of the angular momentum.

4. Electromagnetic properties of low-lying states

The magnetic dipole moment of an axially deformed quasi-
particle state with projection onto the correct particle numbers
and angular momentum J is defined as

μ(JKπ , q) =
(

J 1 J
−J 0 J

) 〈NZJπ ; c||μ̂1||NZJπ ; c〉
〈NZJπ ; c|NZJπ ; c〉 ,

(44)

where the norm kernel and reduced matrix element were de-
fined in Eqs. (8) and (29), respectively.

To illustrate the importance of restoration of rotational
symmetry on the magnetic moment, we carry out the cal-
culations for the magnetic moments with and without AMP.
The magnetic dipole moments μ(Kπ , q) of the lowest-
energy quasiparticle state as a function of the quadrupole
deformation β2 without AMP are shown in Fig. 18, where
μ(Kπ , q) corresponds to μ(JKπ , q) in Eq. (44) without AMP.
The energy of the corresponding state is also shown for
comparison. It is seen that the lowest-energy quasiparticle
state corresponds to Kπ = 3/2+, 5/2+, and 1/2+ in the oblate
and the weakly and largely prolate deformed regions, re-
spectively. The magnetic dipole moments are very different
for the three quasiparticle configurations. In particular, the
quasiparticle configuration with Kπ = 5/2+ is in line with
the Schmidt value by the independent particle model [2].
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FIG. 18. (a) The energies of states projected onto the correct
particle numbers for 25Mg (EAC) with Kπ

σ = 5/2+
1 , 3/2+

1 , 1/2+
1 , and

1/2−
1 , as a function of intrinsic quadrupole deformation β2. (b) The

magnetic moments of the lowest-energy configurations indicated in
panel (a).

After restoration of rotational symmetry with projection onto
J = 5/2, 1/2, and 3/2 respectively for the quasiparticle con-
figurations of Kπ = 5/2+, 1/2+, and 3/2+, the corresponding
magnetic dipole moments are shown in Fig. 19. The results
with the mixing of different deformed configurations with
GCM are also presented in comparison with available data.
It is interesting to note that the magnetic dipole moment of
the particle-number projected quasiparticle configuration with
Kπ = 5/2+ varies significantly with the quadrupole defor-
mation from oblate to weakly prolate deformed shapes after
projection onto J = 5/2. In contrast, the magnetic moments of
the projected states with the quadrupole deformation β2 > 0.5
are almost constant. To understand this behavior, we compare
the results with those by the PRM with an axially deformed
rotor. In the strong coupling limit, the magnetic moment for
the state |JKπ 〉 with K 	= 1/2 is simply given by [2]

μ(JKπ ) = gR
J (J + 1) − K2

J + 1
+ gK

K2

J + 1
, (45)

where the value gR for 25Mg is gR = (Z/A)μN , and the gK in
the PRM is only determined by the spin g factor of the valence
neutron (gl = 0 for the orbital g factor) [2]

gK K = −1.913μN . (46)

According to (45), the magnetic moment of the state with
Jπ = 5/2+ and K = 5/2 is μ(5/2+) = −1.009μN , and that
of 3/2+ state with K = 3/2 is μ(3/2+) = −0.848μN . The
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FIG. 19. The magnetic dipole moments of the band head states of
the three bands with Kπ

σ = 5/2+
1 , 1/2+

1 , and 3/2+
1 in 25Mg from the

pure PNP+AMP calculation as a function of intrinsic quadrupole
deformation β2, where the mean-field wave function is constructed
with the EAC scheme. The results by the configuration-mixing
(GCM) calculation, PRM, and the Schmidt formula are also given
for comparison.

magnetic moments of the states with K = 1/2 in the PRM
contain an additional contribution which depends on an un-
known decoupling factor [2].

It is seen from Fig. 19 that the PRM can nicely repro-
duce the magnetic moments of the projected states with the
quadrupole deformation β2 > 0.5. It indicates that the picture
of strong the coupling limit of the PRM is realized in those
largely prolate deformed states. After configuration mixing
with GCM, the magnetic dipole moment of the Jπ = 5/2+
state is μ(5/2+) = −1.098μN , slightly different from the
value by the PRM. Both values are in reasonable agreement
with the data, μ(5/2+) = −0.855μN . Moreover, it is shown
in Fig. 19 that for the largely deformed states projected onto
Jπ = 3/2+ the magnetic dipole moments also agree with
the value μ(3/2+) = −0.848μN by the PRM. However, after
mixing of both oblate and prolate deformed states with the
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FIG. 20. Comparison of the E2 (blue) and M1 (red) transition
strengths in the low-lying states of the ground-state band of 25Mg
from the MR-CDFT calculations based on the three schemes. See
main text for details.

GCM, the magnetic dipole moment of this state becomes
μ(3/2+) = 0.364μN , which is very different from the value of
the PRM. This configuration mixing effect is to be confirmed
by future measurement.

Figure 20 shows the comparison of the E2 and M1
transition strengths in the low-lying states of Kπ = 5/2+
band in 25Mg from the calculations based on the three
schemes. The results by the MR-CDFT (EAC) and those
based on the quadrupole deformed state with β2 = 0.5 are
compared with available data in Fig. 21. The energy spec-
tra and transition strengths are reasonably well reproduced
in all the three cases. It is seen from Fig. 21 that the
B(M1) values by the single-configuration with β2 = 0.5 are
reduced by more than a factor of 2 after considering the
configuration mixing effect. This is shown more clearly in
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FIG. 21. Comparison of the E2 (blue) and M1 (red) transition
strengths of the states in the ground-state band (Kπ = 5/2+) of 25Mg
from the MR-CDFT (EAC) calculation, in comparison with corre-
sponding data [82]. In panel (c), the configuration with Kπ = 5/2+

and quadrupole deformation parameter β2 = 0.5 is employed.
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FIG. 22. The M1 transition strengths B(M1, Jπ
i → Jπ

f ) (μ2
N ) be-

tween the low-lying states in the Kπ = 5/2+ band of 25Mg from
different calculations as a function of the angular momentum Ji of
the initial state, in comparison with available data [82]. See main
text for details.

Fig. 22, where the M1 transition strengths B(M1, Jπ
i →

Jπ
f ) from different model calculations are compared with

the data.
In the PRM, the M1 transition strengths between the states

within the same band with K 	= 1/2 are given by [2]

B(M1, JiK
π → Jf Kπ ) = 3

4π
(gK − gR)2K2|〈JiK10|Jf K〉|2.

(47)

The change of the B(M1) value with the increase of Ji by the
PRM is mainly attributed to the Clebsch-Gordan coefficient
〈JiK10|Jf K〉, and this behavior is also seen in the results of
single-configuration calculations with β2 > 0.5. In contrast,
the data follow this behavior in low-spin states, but start to
deviate at Ji = 11/2, which is qualitatively reproduced by the
GCM, even though the B(M1) values are about two thirds of
the data for Ji = 7/2 and Ji = 9/2. It is shown in Fig. 22 that
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FIG. 23. The E2 transition strengths B(E2, Ji → Jf ) (e2fm4) be-
tween the low-lying states in the Kπ = 5/2+ band of 25Mg from
different calculations as a function of the angular momentum Ji of
the initial state, in comparison with available data [82]. See main
text for details.

the use of configurations with different quadrupole deforma-
tion β2 has an impact on the B(M1) values of the low-lying
states of 25Mg. This is different from the observation in 9Be�

that the B(M1) values are barely dependent on the quadrupole
deformations of the configurations [83]. This difference is
attributed to the fact that the orbital of the valence neutron
changes significantly with β2, while the � hyperon remains
in the lowest orbital coming from the spherical s1/2 orbital in
9Be�.

The theoretical results (except for those by the single-
configuration calculation with β2 = 0.5) exhibit the feature

TABLE II. The magnetic dipole moments (in unites of μN ) and spectroscopic quadrupole moments (in units of e fm2) of the low-lying
states in the Kπ = 5/2+ band of 25Mg from the GCM calculations on the basis of different EDFs, in comparison with the prediction of PRM.

CDFT CDFT CDFT Gogny SLyMR0
Expt. EAC FQV EFA [51] [46] PRM

μ(5/2+) −0.855 −1.098 −0.982 −0.973 −1.054 −1.009
μ(7/2+) 0.229 0.297 0.270 −0.007
μ(9/2+) 1.350 1.367 1.310 0.812
μ(11/2+) 2.178 2.195 2.161 1.533
Qs(5/2+) 20.1(3) 19.5 19.9 21.2 22.2 23.25
Qs(7/2+) 3.1 2.8 3.1 3.8
Qs(9/2+) −6.3 −6.2 −6.3 −6.8

Qs(11/2+) −10.9 −10.9 −10.8 −11.6
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FIG. 24. The energies of states with K = 3/2 (obtained with the FQV scheme) in the quadrupole-octupole deformation plane for 21Ne with
projection onto the correct particle numbers and different parities, where the red squares indicate the optimal configurations.

of transition from strong-coupling limit to decoupling limit,
where a strong E2 transition connects the states with �J = 1
and �J = 2, respectively. In particular, one notices that the
E2 transition between states with �J = 2 increases with J ,
while that between states with �J = 1 decreases with J . This
feature is also exhibited in the available data and can be
understood from the prediction by the PRM [2]:

B(E2, JiK
π → Jf Kπ ) = Q2

20
5

16π
|〈JiK20|Jf K〉|2, (48)

where the Clebsch-Gordan coefficient 〈JiK20|Jf K〉 between
states with �J = 2 (�J = 1) is increasing (decreasing) with
Ji. Figure 23 displays clearly the change of B(E2, JiKπ →
Jf Kπ ) for both �J = 1 and �J = 2 cases as a function
of the angular momentum Ji of the initial state determined

from the single-configuration calculation based on different
quadrupole deformed states and from the configuration-
mixing calculation. The results by the PRM formula and
available data are also given, where the parameter Q2

20 (=
2927 e2fm4) in Eq. (48) is determined by the data on the
B(E2, JiKπ → Jf Kπ ) at Ji = 7/2 for the transition with
�J = 1.

The magnetic dipole moments and spectroscopic
quadrupole moments of the low-lying states in the Kπ = 5/2+
band of 25Mg from different calculations are presented in
Table II, in comparison with available data. One can see that
there is no essential difference among the calculations of
the three schemes, and those of a similar calculation based
on the Skyrme [46] and Gogny force [51], where triaxiality
effect is included. Both the magnetic dipole moment and

FIG. 25. Contour plots of total density ρm of neutrons and protons in the x-z plane (y = 0), corresponding to the energy-minimal states
with positive and negative parities, and the quadrupole-octupole deformation parameters (β2, β3) = (0.6, 0.3) and (0.7, 0.6), respectively.
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FIG. 26. Same as Fig. 24, but with additional projection onto different angular momenta and parities.

spectroscopic quadrupole moment of the Jπ = 5/2+ state are
reasonably reproduced in all the cases.

C. Application to 21Ne with quadrupole-octupole correlations

Previous studies with the MR-CDFT have demonstrated
the importance of octupole correlations in the low-lying states
of 20Ne [64] and 21

� Ne[67]. In this work, we extend these
studies to the low-lying states of 21Ne by considering fluc-
tuations in both quadrupole and octupole deformed shapes.
The calculation for 21Ne is more complicated than that for
25Mg as the octupole deformed states do not have good parity.

The parity π of the state can be recovered with the parity
projection operator P̂π .

Figure 24 shows the energy surfaces of 21Ne in the
quadrupole-octupole deformation plane with projection onto
correct particle numbers, and positive or negative parities. A
quadrupole-octupole deformed energy minimum appears at
around β2 = 0.6, β3 = 0.3 on the energy surface with posi-
tive parity, while the energy minimum of negative-parity states
is located around β2 = 0.7, β3 = 0.6. The distributions of the
total densities for these two states are plotted in Fig. 25, where
a pear-like structure similar to that in 20Ne [64] is observed.
Figure 26 displays the energy surfaces of 21Ne with projec-
tion onto Jπ = 3/2±, 5/2±, 7/2±, and 9/2±, respectively. It
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FIG. 27. The energy spectra of low-lying parity-doublet states in
21Ne from two different calculations, in comparison with available
data. See main text for details.

is seen that the octupole deformation of the positive-parity
states is decreasing with the increase of the angular momen-
tum, which is similar to, even though not as much as, that
in 20Ne. In contrast, the distributions of the collective wave
functions for the negative-parity states are rather stable against
the rotation, which is different from that in 20Ne.

Figure 27 shows the comparison of the energy spectra of
low-lying parity-doublet states with K = 3/2 in 21Ne from
both configuration-mixing GCM and single-configuration cal-
culations with the data. Since the GCM calculation with the
mixing of all the deformed states in the quadrupole-octupole
plane is time consuming, only the optimal configurations
indicated with red squares in Fig. 24 are included, similar
to Ref. [67]. It is seen from Fig. 27 that the positive-parity
states are reasonably reproduced in both calculations. In
contrast, the excitation energies of the negative-parity states
are significantly overestimated by the single-configuration
calculation. With the configuration mixing, the excita-
tion energies of negative-parity states decrease by about
2.0 MeV. Moreover, it is interesting to note that the low-
lying energy spectra of 21Ne differ from those of 21Ne�

[67]. In 21Ne�, the positive parity states follow the pattern
1/2+, (3/2+, 5/2+), (7/2+, 9+/2), . . . , while the negative
parity states follow (1/2−, 3/2−), (5/2−, 7/2−), . . . . No-
tably, the two states with �J = 1 in the parentheses are nearly
degenerate. In contrast, such degeneracy is not observed in
21Ne. This distinction arises from the fact that the � hyperon
in 21Ne� is exempt from the Pauli exclusion principle, thus
favoring occupation of the lowest-energy s1/2 orbital with
K = 1/2. The coupling of the � with nuclear core states re-
sults in nearly degenerate doublets. Conversely, for 21Ne, the
lowest-energy orbital for the valence neutron is the multiplet
of the d5/2 orbital with K = 3/2. We note that the excitation
energies of negative-parity states are overestimated. From the
recent study on 21Ne� [67], one anticipates that the mixing of
quasiparticle excitation configurations will lower the negative-
parity states significantly.

FIG. 28. The distributions of the collective wave functions |gJπ |2
for the low-lying parity-doublet states in 21Ne as a function of the
deformation parameters (β2, β3) of mean-field configurations by the
FQV scheme.

The collective wave functions of the parity-doublet states
in 21Ne are shown in Fig. 28. The positive-parity states are
dominated by the configurations around β2 � 0.6, β3 = 0.3,
while the negative-parity states by the configurations around
β2 � 0.8, β3 = 0.6, consistent with the location of the en-
ergy minima in Fig. 26. With the increase of the angular
momentum, the distributions of the collective wave functions
of positive-parity states are changing slightly, while those of
negative-parity states are barely changed.

The spectroscopic quadrupole moment Qs(Jπ ) and E2
transition strengths of the low-lying states for the parity dou-
blet bands with K = 3/2 are given in Table III. The results
from the MR-CDFT calculation are compared with available
data. It is shown that the Qs(3/2+) of the bandhead state and
the transition strengths are reasonably reproduced. Notably,
the MR-CDFT captures the observed trend where E2 tran-
sition strengths with �J = 1 (�J = 2) decrease (increase)
with the angular momentum J . Additionally, E1 transitions
between positive and negative-parity states are presented, and
it is evident that these transitions are reproduced in the same
order, albeit with an enhancement factor of about 4–5.

The E3 transition strengths B(E3, Jπi
i → J

π f

f ) for the
transitions J+ → (J − 1)− and J− → (J − 1)+ from the
MR-CDFT calculation with the FQV scheme are shown in
Fig. 29(a). Those for the transitions J+ → (J − 3)− and
J− → (J − 3)+ are shown in Fig. 29(b). These states belong
to Kπ = 3/2± bands. It is observed that the values for the
transitions with �J = 1 first decrease to zero at Ji = 7/2 and
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TABLE III. The spectroscopic quadrupole moments Qs(Jπ ),
electric dipole (λ = 1) and quadrupole (λ = 2) transition strengths
B(Eλ, Jπ

i → Jπ
f ), and magnetic dipole moments μ(Jπ ) and magnetic

dipole transition strengths B(M1, Jπ
i → Jπ

f ) between the low-lying
states in 21Ne from the MR-CDFT calculation, where the mean-field
configurations are constructed in the FQV scheme. The data are taken
from Refs. [81,84].

Qs(Jπ ) (efm2) B(E2, Jπ
i → Jπ

f ) (e2fm4)

Jπ Expt. CDFT Jπ
i → Jπ

f Expt. CDFT

3/2+ 10.3(8) 10.9 5/2+ → 3/2+ 83.6(61) 102.4
5/2+ −4.0 7/2+ → 3/2+ 32.0(27) 42.1
7/2+ −10.7 7/2+ → 5/2+ 37.8(137) 60.2
9/2+ −14.3 9/2+ → 5/2+ 54.0(76) 59.6
11/2+ −15.9 9/2+ → 7/2+ 31.0(172) 36.8
13/2+ −17.3 11/2+ → 7/2+ 66.9
15/2+ −23.0 11/2+ → 9/2+ 20.6(130) 23.2

13/2+ → 9/2+ 70.4

3/2− 14.4 5/2− → 3/2− 177.9
5/2− −5.2 7/2− → 3/2− 73.4
7/2− −14.4 7/2− → 5/2− 109.1
9/2− −19.6 9/2− → 5/2− 109.3

9/2− → 7/2− 69.8

μ(Jπ ) (μN ) B(M1, Jπ
i → Jπ

f ) (μ2
N )

Jπ Expt. CDFT Jπ
i → Jπ

f Expt. CDFT

3/2+ −0.66 −0.73 5/2+ → 3/2+ 0.1275(25) 0.19
5/2+ 0.49(4) 0.24 7/2+ → 5/2+ 0.2615(21) 0.24
7/2+ 0.99 9/2+ → 7/2+ 0.43(5) 0.25
9/2+ 1.68 11/2+ → 9/2+ 0.36(7) 0.27
11/2+ 2.46 13/2+ → 11/2+ 0.33
13/2+ 3.02 15/2+ → 13/2+ 0.28
15/2+ 3.27
3/2− −0.73 5/2− → 3/2− 0.36
5/2− 0.19 7/2− → 5/2− 0.48
7/2− 0.94 9/2− → 7/2− 0.53
9/2− 1.60 11/2− → 9/2− 0.57

B(E1, Jπ
i → Jπ

f ) (10−4 e2fm2)

Jπi
i → J

π f
f 3/2− → 5/2+ 5/2− → 3/2+ 9/2− → 7/2+

Expt. 1.11(12) 0.68(11) 1.16(2)
CDFT 4.4 3.4 5.4

then increase steady with the increase of Ji. In contrast, the
values for the transitions with �J = 3 increases rapidly with
Ji. These features are also predicted by the PRM, even though
the increasing slopes are different quantitatively. In the PRM,
B(E3) is given by

B
(
E3, JiK

π
i → Jf Kπ

f

) = Q2
30

7

16π
|〈JiK30|Jf K〉|2, (49)

where the parameter Q2
30(= 12543 e2fm6) for 21Ne is de-

termined by the theoretical value B(E3, 5/2− → 3/2+) with
K = 3/2. According to the PRM, the systematic of the E3
transition strengths with respect to Ji is again governed by the
the Clebsch-Gordan coefficient 〈JiK30|Jf K〉, which is zero
for Ji = 7/2, Jf = 5/2, and K = 3/2.

FIG. 29. The E3 transition strengths B(E3, Jπi
i → J

π f
f ) (e2fm4)

between the low-lying states in the Kσ = 3/21 band of 21Ne from
different calculations as a function of the angular momentum Ji of
the initial state, in comparison with the PRM values (49). See main
text for details.

IV. SUMMARY

The dynamics of odd-mass nuclei are governed by a com-
plex interplay between single-particle and collective motions,
leading to intricate low-energy structures characterized by
the mixing of numerous nearly degenerate states. Accurately
describing these low-energy structures poses a significant
challenge for beyond mean-field approaches. In this study, we
extended the MR-CDFT for investigating the low-lying states
of odd-mass nuclei, utilizing a relativistic point coupling en-
ergy functional.

In the MR-CDFT, three different schemes were employed
to generate quasiparticle configurations with odd-number par-
ity, where a quasiparticle is created on top of three different
quasiparticle vacuum states with either an even or odd aver-
age nucleon number. For simplicity, we considered only the
lowest-energy one-quasiparticle configurations constrained to
have various quadrupole or quadrupole-octupole deforma-
tions. These quasiparticle configurations are projected onto
correct particle numbers, angular momentum, and parity using
projection techniques. The wave function of nuclear state is
finally constructed as a linear combination of these projected
one-quasiparticle configurations within the framework of the
generator coordinate method (GCM).
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The MR-CDFT has been tested through its application to
the low-lying states of 25Mg which are organized into the
bands labeled with Kπ = 5/2+, 1/2+, 3/2+, and 1/2−. The
energy spectra, electric quadrupole, and magnetic dipole tran-
sitions have been discussed in comparison with available data.
Our results illustrate that the low-lying states of 25Mg are
reasonably reproduced by all the three schemes, even though
the results by the FQV and EFA schemes are closer to each
other compared with the EAC scheme. We note that if the
mean-field wave functions for the odd-mass nuclei are solved
with the time-odd fields self-consistently with the variation
principle, one does not have these three schemes. Considering
the fact that the mean-field wave functions |�(OA)

κ 〉 only serve
as configuration basis for the GCM wave function, as long
as the number of configurations is sufficient, different ways
of constructing wave functions for the configurations should
give the same results. In other words, the observed differences
in the results by the three schemes are expected to be reduced
when the model space is extended by considering additionally
the mixing of different quasiparticle configurations.

Furthermore, the MR-CDFT was applied to the parity-
doublet states in 21Ne with Kπ = 3/2±. The main findings of
the present study are as follows:

(i) The determination of the lowest-energy one-
quasiparticle configuration for a given K value
can be achieved simply through the BCS formula in
Eq. (36) for the quasiparticle energy Ek . However, it
is important to note that if K value is not specified,
the resulting energy ordering of quasiparticle states
might differ from that obtained with Eq. (37) for the
energies of quasiparticle states with PNP.

(ii) The restoration of rotational symmetry is crucial
for accurately describing nuclear magnetic moments
and transition strengths. By employing angular-
momentum projection, it has been demonstrated that
the electromagnetic properties of configurations ex-
hibiting significant prolate deformations closely align
with the predictions of the simple particle-rotor
model (PRM). However, configurations with oblate or
weakly prolate deformations tend to deviate from the
predictions of the PRM.

(iii) The predominant feature observed in the low-lying
parity-doublet states of 20Ne is retained in those of
21Ne. Specifically, the E2 transition strengths be-
tween negative-parity states are consistently larger
than those between positive-parity states. The exci-
tation energies of negative-parity states are overesti-
mated, which is likely improved with the mixing of
quasiparticle excitation configurations.

Given the success of the current implementation of the
MR-CDFT for low-lying states of 25Mg and 21Ne, it is in-
teresting to carry out a systematical study of the low-lying
states of both even-even and odd-mass nuclei in the isotopes
and isotones of interest, examining the evolution of nuclear
shell structure and shapes towards drip lines. In particu-
lar, our method provides a tool of choice to study nuclear
Schiff moments for the odd-mass nuclei with experiment

interest, examining the impact of static and dynamical oc-
tupole correlation effects. An accurate value of the Schiff
moment is of importance to constrain the low-energy coupling
constants of time-reversal violating nucleon-nucleon inter-
actions based on the latest measurement of the permanent
electric dipole moment in corresponding atoms. In the some
of the above applications, we may need to extend the current
model space by including higher-order deformations, crank-
ing states, and many-quasiparticle excitation configurations
in the configuration-mixing calculation. Moreover, it is also
interesting to extend the MR-CDFT with both the weight
function and the mean-field configurations optimized simulta-
neously during the variation procedure, as proposed recently
with a Skyrme EDF [85].
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APPENDIX A: EVALUATION OF KERNELS

In this section, we present the detailed formulas for the
norm and Hamiltonian kernels for the case where the mean-
field configurations are restricted to have axial symmetry and
can be labeled with quadrupole-octupole deformation param-
eters, i.e., q = (β2, β3). In this case, there is no K mixing in
the wave functions of the low-lying states. The kernels of the
operators Ô = 1, Ĥ can be written as

ONZJπ
cacb

= (2J + 1)

2

∫ 2π

0

dϕN

2π
e−iNϕN

∫ 2π

0

dϕZ

2π
e−iZϕZ

×
∫ π

0
dθ sin θdJ∗

KK (θ )
〈
�(OA)

κa
(qa)

∣∣ÔR̂(θ, ϕN , ϕZ )

× P̂π
∣∣�(OA)

κb
(qb)

〉
, (A1)

where the overlap is defined as〈
�(OA)

κa
(qa)

∣∣ÔR̂(θ, ϕN , ϕZ )P̂π
∣∣�(OA)

κb
(qb)

〉
= 1

2

〈
�(OA)

κa
(qa)

∣∣Ô(1 + πP )eiθ Ĵy e−iϕN N̂ e−iϕZ Ẑ
∣∣�(OA)

κb
(qb)

〉
.

(A2)

For the norm kernel, the first term in the overlap is simply
given by

1

2

〈
�(OA)

κa
(qa)

∣∣R̂(θ, ϕN , ϕZ )
∣∣�(OA)

κb
(qb)

〉

= 1

2

〈
�(OA)

κa
(qa)

∣∣R̂(g)
∣∣�(OA)

κb
(qb)

〉
〈
�(κa )(qa )

∣∣R̂(g)
∣∣�(κb)(qb)

〉 · n(κaqa, κbqb; g),

(A3)
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where the norm overlap n(κaqa, κbqb; g) of two quasiparticle
vacua with the collective label g = (θ, ϕN , ϕZ ) is determined
by [86]

n(κaqa, κbqb; g) ≡ 〈
�(κa )(qa )

∣∣R̂(g)
∣∣�(κb)(qb)

〉
= (−1)M(M+1)/2 Pf

(
Z (b)

g −I

I −Z (a)∗

)
2M×2M

,

(A4)

where I is a unity matrix Ii j = δi j , and the skew matrices are
defined as

Z (b)
g = V (qb, g)U −1(qb, g), Z (a) = V (qa)U −1(qa). (A5)

The normalized norm overlap between two mean-field config-
urations for odd-mass nuclei can be simplified as〈

�(OA)
κa

(qa)
∣∣R̂(g)

∣∣�(OA)
κb

(qb)
〉

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
=

〈
�(κa )(qa)

∣∣αka R̂(g)β†
kb

∣∣�(κb)(qb)
〉

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
= 〈

�(κa )(qa)
∣∣αka β̃

†
kb

∣∣�(κb)(qb; g)
〉
, (A6)

where the rotated quasiparticle operator is introduced as

β̃
†
k ≡ R̂(g)β†

k R̂†(g), (A7)

and the rotated quasiparticle vacuum

∣∣�(κb)(qb; g)
〉 ≡ R̂(g)

∣∣�(κb)(qb)
〉

〈
�(κa )(qa)

∣∣R̂(g)
∣∣�(κb)(qb)

〉 . (A8)

The quasiparticle operators for the two states |�(κa )(qa)〉 and
|�(κb)(qb; g)〉 are connected by(

β̃

β̃†

)
=

(
U (g) V ∗(g)
V (g) U∗(g)

)(
α

α†

)
, (A9)

where

U† = U †(qa)U (qb, g) + V †(qa)V (qb, g), (A10)

V † = U †(qa)V ∗(qb, g) + V †(qa)U ∗(qb, g), (A11)

with the U (q, g),V (q, g) for the rotated quasiparticle state
|�(κb)(qb; g)〉 being given by

U (q, g) = R(g)U (q), V (q, g) = R∗(g)V (q). (A12)

On one hand, one has the relation〈
�(κa )(qa)

∣∣R̂(g)βkβ
†
l

∣∣�(κb)(qb)
〉

= 〈
�(κa )(qa)

∣∣β̃kR̂(g)β†
l

∣∣�(κb)(qb)
〉

=
∑

k′
Ukk′ (g)

〈
�(κa )(qa)

∣∣αk′R̂(g)β†
l

∣∣�(κb)(qb)
〉
. (A13)

On the other hand, with the anticommutation relation
{βk, β

†
l } = δkl , the left-hand side of the above expression is

simplified as 〈
�(κa )(qa)

∣∣R̂(g)βkβ
†
l

∣∣�(κb)(qb)
〉

= 〈
�(κa )(qa)

∣∣R̂(g)δkl

∣∣�(κb)(qb)
〉
, (A14)

where the following relation is used:

βk

∣∣�(κb)(qb)
〉 = 0. (A15)

Combining (A13) and (A14), one finds [56]〈
�(κa )(qa)

∣∣αkR̂(g)β†
l

∣∣�(κb)(qb)
〉 = [U−1]kl . (A16)

The second term in the norm kernel contains the space-
inversion operator P , which brings one additional phase
(−1)� for (U,V ) [73]:

U P
mk = (−1)�mUmk, V P

mk = (−1)�mVmk, (A17)

where m and k are the indices for the spherical harmonic
oscillator basis and quasiparticle state.

In the Hamiltonian kernel, the overlap becomes〈
�(OA)

κa
(qa)

∣∣ĤR̂(θ, ϕN , ϕZ )P̂π
∣∣�(OA)

κb
(qb)

〉
= 1

2

〈
�(OA)

κa
(qa)

∣∣Ĥ (1 + πP )eiθ Ĵy e−iϕN N̂ e−iϕZ Ẑ
∣∣�(OA)

κb
(qb)

〉
,

(A18)

where the first term is determined by

1
2

〈
�(OA)

κa
(qa)

∣∣Ĥeiθ Ĵy e−iϕN N̂ e−iϕZ Ẑ
∣∣�(OA)

κb
(qb)

〉
= 1

2

〈
�(OA)

κa
(qa)

∣∣ĤR̂(g)
∣∣�(OA)

κb
(qb; g)

〉 · n(κaqa, κbqb; g).

(A19)

Here, n(κaqa, κbqb; g) has been given in (A4). Besides, we
have defined the rotated one-quasiparticle state

∣∣�(OA)
κb

(q; g)
〉 ≡ R̂(g)

∣∣�(OA)
κb

(q)
〉

〈
�

(OA)
κa (qa)

∣∣R̂(g)
∣∣�(OA)

κb (qb)
〉 . (A20)

APPENDIX B: CALCULATION
OF THE HAMILTONIAN OVERLAPS

With the help of the generalized Wick theorem (GWT)
[87], the Hamiltonian overlap in (A19) for a given Hamilto-
nian composed of one-body and two-body interactions,

Ĥ =
∑

i j

ti ja
†
i a j + 1

4

∑
i jkl

Vi jkl a
†
i a†

j al ak, (B1)

is given by〈
�(OA)

κa
(qa)

∣∣ĤR̂(g)
∣∣�(OA)

κb
(qb; g)

〉
=

∑
i j

ti jρ
(ab)
ji (g) + 1

2

∑
i jkl

Vi jklρ
(ab)
ki (g)ρ (ab)

l j (g)

+ 1

4

∑
i jkl

Vi jklK (ab)∗
i j (g)K (ab)

kl (g), (B2)

where the one-body mixed density and pairing tensor are
defined as

ρ
(ab)
ji (g) = 〈

�(OA)
κa

(qa)
∣∣a†

i a j

∣∣�(OA)
κb

(qb; g)
〉
, (B3a)

K (ab)
ji (g) = 〈

�(OA)
κa

(qa)
∣∣aia j

∣∣�(OA)
κb

(qb; g)
〉
, (B3b)

K (ab)∗
i j (g) = 〈

�(OA)
κa

(qa)
∣∣a†

i a†
j

∣∣�(OA)
κb

(qb; g)
〉
. (B3c)

According to the mix-density prescription [34], in the
EDF-based calculation, the Hamiltonian overlap is replaced
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with an EDF which becomes a functional of mixed densities,
pairing tensors and currents,〈

�(OA)
κa

(qa)
∣∣ĤR̂(g)

∣∣�(OA)
κb

(qb; g)
〉 = E [ρ(g),∇2ρ(g), . . . ].

(B4)

The matrix element of the mixed density can be evaluated
with the GWT:

ρ
(ab)
ji (g) =

〈
�(κa )(qa)

∣∣αka a†
i a jR̂(g)β†

kb

∣∣�(κb)(qb)
〉

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
×

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
〈
�(κa )(q)

∣∣ακa R̂(g)β†
κb

∣∣�(κb)(qb)
〉

= 1

[U−1]ka,kb

〈
�(κa )(qa)

∣∣αka a†
i a j β̃

†
kb

∣∣�(κb)(qb, g)
〉

= 1

[U−1]ka,kb

Pf
(Sρ

[κa,i, j,κb]

)
, (B5)

where the expression for the overlap of one-quasiparticle wave
functions (A16) is used. The elements of the 4 × 4 skew
matrixSρ

[κa,i, j,κb] are the contractions of two different operators
with respect to quasiparticle vacuum states, determined by[Sρ

12

]
κai ≡ 〈

�(κa )(qa)
∣∣ακa a†

i

∣∣�(κb)(qb, g)
〉

= [U−1U †(qb, g)]κai, (B6)[Sρ
13

]
κa j ≡ 〈

�(κa )(qa)
∣∣ακa a†

j

∣∣�(κb)(qb, g)
〉

= [U−1V †(qb, g)]κa j, (B7)[Sρ
14

]
κa,κb

≡ 〈
�(κa )(qa)

∣∣ακa β̃
†
κb

∣∣�(κb)(qb, g)
〉

= [U−1]κa,κb (B8)[Sρ
23

]
i j ≡ 〈

�(κa )(qa)
∣∣a†

i a j

∣∣�(κb)(qb, g)
〉

= [V (qa)U−1V †(qb, g)]i j (B9)[Sρ
24

]
iκb

≡ 〈
�(κa )(qa)

∣∣a†
i β̃

†
κb

∣∣�(κb)(qb, g)
〉

= [V (qa)U−1]iκb (B10)[Sρ
34

]
jκb

≡ 〈
�(κa )(qa)

∣∣a j β̃
†
κb

∣∣�(κb)(qb, g)
〉

= [U (qa)U−1] jκb, (B11)

where the quasiparticle operators (α, α†), the rotated quasi-
particle operators (α̃, α̃†), and the particle operators (a, a†)
are connected by the Bogoliubov transformation.

The matrix elements for the mixed pairing tensor are given
by

K (ab)
ji (g) =

〈
�(κa )(qa)

∣∣αka aia jR̂(g)β†
kb

∣∣�(κb)(qb)
〉

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
×

〈
�(κa )(q)

∣∣R̂(g)
∣∣�(κb)(qb)

〉
〈
�(κa )(q)

∣∣ακa R̂(g)β†
κb

∣∣�(κb)(qb)
〉

= 1

[U−1]ka,kb

〈
�(κa )(qa)

∣∣αka aia j β̃
†
kb

∣∣�(κb)(qb, g)
〉

= 1

[U−1]ka,kb

Pf
(SK[κa,i, j,κb]

)
, (B12)

where [SK12

]
κai = [U−1V †(qb, g)]κai, (B13)[SK13

]
κa j = [SK12

]
κa j, (B14)[SK14

]
κaκb

= [Sρ
14

]
κaκb

, (B15)[SK23

]
i j = [U (qa)U−1V †(qb, g)]i j, (B16)[SK24

]
iκb

= [Sρ
34

]
iκb

, (B17)[SK34

]
jκb

= [SK24

]
jκb

. (B18)

Similarly, one finds

K (ab)∗
i j (g) = 1

[U−1]ka,kb

〈
�(κa )(qa)

∣∣αka a†
i a†

j β̃
†
kb

∣∣�(κb)(qb, g)
〉

= 1

[U−1]ka,kb

Pf
(SK∗

[κa,i, j,κb]

)
, (B19)

where [SK∗
12

]
κai

= [Sρ
12

]
κai

, (B20)[SK∗
13

]
κa j = [SK∗

12

]
κa j, (B21)[SK∗

14

]
κaκb

= [Sρ
14

]
κaκb[SK∗

23

]
i j = [V (qa)U−1U †(qb, g)]i j, (B22)[SK∗

24

]
iκb

= [Sρ
24

]
iκb

, (B23)[SK∗
34

]
jκb

= [SK∗
24

]
jκb

. (B24)

For the most simple case that there is no rotation, i.e.,
R(g) = 1, and the bra and ket states are the same |�(qa)〉 =
|�(qb)〉 = |�(q)〉, one has U−1 = I, and obtains the density
matrix for the one-quasiparticle state |�(OA)

κ (q)〉,
ρ ji = Pf

(Sρ
[κ,i, j,κ]

)
= [Sρ

12

]
κi

[Sρ
34

]
jκ − [Sρ

13

]
κa j

[Sρ
24

]
iκb

+ [Sρ
14

]
κκ

[Sρ
23

]
i j

= U †
κiUjκ − V †

κ jViκ + [V ∗V T ] ji, (B25)

and the pairing tensors

K ji = Pf
(SK[κ,i, j,κ]

)
= [SK12

]
κi

[SK34

]
jκ − [SK13

]
κ j

[SK24

]
iκ + [SK14

]
κκ

[SK23

]
i j

= UjκV †
κi − V ∗

jκU T
κi + [V ∗U T ] ji (B26)

and

K∗
i j = Pf

(SK∗
[κ,i, j,κ]

)
= [SK∗

12

]
κi

[SK∗
34

]
jκ − [SK∗

13

]
κ j

[SK∗
24

]
iκ + [SK∗

14

]
κκ

[SK∗
23

]
i j

= U ∗
iκV T

κ j − ViκU †
κ j + [VU †]i j . (B27)

As mentioned in the main text, the mixed-density pre-
scription is employed in the MR-CDFT. In other words, the
Hamiltonian overlap (B2) is replaced by the energy density
functional (11) provided that the densities and pairing tensors
are replaced by the mixed ones as discussed above.
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APPENDIX C: EXAMINATION OF THE PROBLEMS
OF SINGULARITY AND FINITE STEPS

IN THE MR-CDFT CALCULATIONS

The restoration of broken symmetries with modern nuclear
EDFs usually meets the problems of spurious divergences
[88–90] and finite steps [91,92]. The solution to this problem
in a proper way is still an open question. These issues can
be avoided if the same interaction is employed for both the
particle-hole and particle-particle channels. This is applied
for Hamiltonian-based frameworks [93–95], but usually not
for EDF frameworks. In this section, we are examining the
appearance and possible impact of the singularity problem and
finite steps on the results of the CDFT calculation with PNP,
where the EAC scheme is employed for 25Mg. In this scheme,
the norm overlap of one-quasiparticle wave functions for the
odd-mass nucleus is given by

n(κq, κq, ϕ)

≡ 〈
�(OA)

κ (q)
∣∣eiϕN̂

∣∣�(OA)
κ (q)

〉
=

∏
i, j>0

〈0|(ui + viaīai )αkeiϕN̂α
†
k (u j + v ja

†
j a

†
j̄
)|0〉

= eiϕ(
u2

k + v2
k e2iϕ

) ∏
j>0

(
u2

j + v2
j e

2iϕ
)
, (C1)

where the following relations were used:

αk = uka†
k − vkak̄, α

†
k = ukak − vka†

k̄
, (C2)

and

eiϕN̂ ake−iϕN̂ = e−iϕak, eiϕN̂ a†
ke−iϕN̂ = eiϕa†

k . (C3)

The energy of the state with projection onto the particle
numbers N0 (neutrons and protons) is given by

EN0 =
〈
�(OA)

κ (q)
∣∣Ĥ P̂N0

∣∣�(OA)
κ (q)

〉
〈
�

(OA)
κ (q)

∣∣P̂N0
∣∣�(OA)

κ (q)
〉

=
∫ 2π

0 e−iϕN0 dϕ
〈
�(OA)

κ (q)
∣∣ĤeiϕN̂

∣∣�(OA)
κ (q)

〉
∫ 2π

0 e−iϕN0 dϕ
〈
�

(OA)
κ (q)

∣∣eiϕN̂
∣∣�(OA)

κ (q)
〉

=
∫ 2π

0 e−iϕN0 dϕE [ρ(ϕ),K (ϕ),K∗(ϕ)]n(κq, κq, ϕ)∫ 2π

0 e−iϕN0 n(κq, κq, ϕ)dϕ
.

(C4)

Here, according to Eq. (B5) and

U (q, ϕ) = eiϕU (q), V (q, ϕ) = e−iϕV (q), (C5)

the one-body mixed density (B3a) in the canonical basis is
simplified as

ρ
(κκ )
lm (ϕ) =

〈
�(OA)

κ (q)
∣∣a†

maleiϕN̂
∣∣�(OA)

κ (q)
〉

〈
�

(OA)
κ (q)

∣∣eiϕN̂
∣∣�(OA)

κ (q)
〉

= δlme2iϕ

(
v2

l + u2
l δlk − v2

l δl̄k

u2
l + v2

l e2iϕ

)
(C6)

FIG. 30. (a) Particle-number projected energy curves for 24Mg
and 25Mg with an odd number Nϕ = 5, 99, 199 or an even num-
ber Nϕ = 10, 20 respectively. (b) The Nilsson diagram for the
single-particle energies of neutron orbitals νd5/2 in 24Mg. (c) The oc-
cupation probability of the neutron single-particle states with Kπ =
1/2+, 3/2+, and 5/2+.

and the pairing tensors from (B5) and (B19),

κ
(κκ )
lm̄ (ϕ) =

〈
�(OA)

κ (q)
∣∣am̄al eiϕN̂

∣∣�(OA)
κ (q)

〉
〈
�

(OA)
κ (q)
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∣∣�(OA)

κ (q)
〉

= δlmulvl e
2iϕ

(
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u2
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l e2iϕ

)
, (C7)

κ
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m̄l (ϕ) =
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κ (q)
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. (C8)
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FIG. 31. The energy of the particle-number projected state for
25Mg with β2 = −0.3 as a function of the Nϕ .

Compared to the expressions for even-even nuclei [88], one
has two additional two terms (the second and third terms
in the numerators) for odd-mass nuclei. In both cases, the
mixed density is generally a complex number. It may cause
an issue in the MR-EDF calculations with a noninteger power
of densities [91]. This issue is not serious in the MR-CDFT as
the EDF in (11) contains only integer powers of densities and
currents [56].

The integration over the gauge angle ϕ in Eq. (C4) is
usually carried out using the trapezoidal rule based on the
Fomenko expansion method [96] in which the PNP operator
(3b) becomes

P̂Nτ = 1

Nϕ

Nϕ∑
m=1

ei(N̂τ −Nτ )ϕm , ϕm = m

Nϕ

π, (C9)

where the gauge angle ϕτ ∈ [0, π ] is discretized with Nϕ

points. In the case with ul = vl and ϕ = π/2, the factor
1/(u2

l + v2
l e2iϕ ) in the matrix elements diverges. This phe-

nomenon happens in the calculation with an even number of
Nϕ , as shown in Fig. 30. The energy curves of both 24Mg
and 25Mg present the divergent behavior around β2 = −0.3,
where one of the spherical νd5/2 orbitals has occupation prob-
ability v2

k close to 0.5. To avoid the numerical ambiguity from

-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10
-184.0

-183.5

-183.0

-182.5

-182.0

-181.5

-181.0

E
(M
eV
)

β2

Nϕ = 5

Nϕ = 99

Nϕ = 199

24Mg(PNP)

FIG. 32. Same as Fig. 30(a), but with denser mesh points around
β2 = −0.28.

the division by a small number, an odd number of mesh points
in the integration over the gauge angles for PNP is usually rec-
ommended. It is seen that the energy curves by the Nϕ = 5, 99,
and 199 become normal in the sense the divergence does not
show up. To see it more clearly, we plot the energy of the
particle-number projected state for 25Mg with β2 = −0.3 as
a function of the Nϕ in Fig. 31. Of particular interest is the
observation of the staggering of the energy with the choices of
odd and even numbers of the Nϕ . One can see that the energy
by using an even value of Nϕ is systematically lower than that
by an odd value of Nϕ , and the discrepancy is decreasing with
the increase of Nϕ .

Besides, we also examine the problem of finite steps
caused by the self-interaction and self-pairing [91] in our
MR-CDFT. Figure 32 displays the particle-number projected
energy curves for 24Mg. One can see that the energy curve by
Nϕ = 199 is not smooth around β2 = −0.28. In contrast, the
discontinuity in the projected energy curve is not shown evi-
dently in the calculations with a small value of Nϕ and spare
discretization points in the deformation space; cf. Fig. 30.
The impact of these problems on the GCM calculation for the
properties of nuclear low-lying states is negligible, as the low-
lying states are predominated by the prolate configurations.
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