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Triplet-odd pairing in finite nuclear systems: Even-even singly closed nuclei
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Background: The appearance of the pairing condensate is an essential feature of many-fermion systems. There
are two possible types of pairing: spin-singlet and spin-triplet. However, an open question remains as to whether
the spin-triplet pairing condensate emerges in finite nuclei.
Purpose: The aim of this work is to examine the coexistence of the spin-singlet and spin-triplet like-particle
pairing condensates in nuclei. We also discuss the dependence on the type of pairing functional.
Method: The Hartree-Fock-Bogoliubov calculations with a Skyrme + local-pair energy-density functional
(EDF) are performed to investigate the pairing condensate in the spherical ground states of Ca and Sn isotopes.
Results: The spin-singlet pair EDF induces not only the spin-singlet but also the spin-triplet pairing condensates
due to a strong spin-orbit splitting. By discarding the spin-orbit EDF, only the spin-singlet pairing condensate
appears. The spin-triplet pair EDF, however, induces the spin-orbit splitting and accordingly the spin-singlet
pairing condensate.
Conclusions: The spin-orbit splitting plays an essential role in the coexistence of the spin-singlet and spin-triplet
pairing condensates in nuclei.
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I. INTRODUCTION

The pairing is universal in many-fermion systems [1,2]. A
mean-field model was first introduced by Bardeen, Cooper,
and Schrieffer (BCS) for describing the electronic supercon-
ductivity [3]. Within the original BCS theory, assumed is the
condensation of a Cooper pair with a relative angular momen-
tum being s wave, the total spin zero, and the center-of-mass
momentum zero. A variety of forms of pairing, unconven-
tional pairings, that are different from the BCS type have
been also found or predicted; see the reviews [4–7] and the
references therein. Especially, in electronic and cold-atomic
systems, the spin-triplet Cooper pair has been actively in-
vestigated. The first example is the superfluidity of helium-3
atoms [8–10], where the spin-fluctuation interaction induces
the spin-triplet Cooper pairs of fermionic atoms. The Fulde-
Ferrell-Larkin-Ovchinnikov type of superconductivity, where
the center-of-mass momentum is not zero, has been also
discussed for decades [11–15]. In several spices of heavy-
fermion metals and ferromagnetic Mott insulators [16–20],
the spin-triplet type of superconductivity is expected. It is
worthwhile to mention that spin-triplet pairing is a basic
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concept of topological superconductivity. For the emergence
of spin-triplet pairing, the spin-orbit interaction often plays an
essential role [4,6,21–23].

The pair correlation by a nucleon Cooper pair contributes
significantly to low-energy nuclear physics. The BCS theory
was applied to atomic nuclei soon after the original work [3]
by Bohr et al. [24,25]. The like-particle spin-singlet pairing
has been investigated mostly and is a key to understanding the
low-energy properties of the nuclear structure, for example,
the odd-even staggering (OES) of nuclear masses, the col-
lectivity of the low-lying Jπ = 2+ states in even-even nuclei,
and the moments of inertia of deformed nuclei [26,27]. The
unconventional pairings have also been studied in nuclear
systems. Since a deuteron is the only two-nucleon system that
is bound in nature, the spin-triplet proton-neutron pairing has
been investigated for a long time and is under lively discus-
sions [7]. Similarly, due to the attractive nature of the nuclear
force in the 3P2 channel at high momentum, the emergence
of the triplet-odd pairing has been predicted and studied in
neutron-star matter [28–30].

For the study of nuclear superfluidity in medium-mass and
heavy nuclei, a self-consistent mean-field or energy-density
functional (EDF) approach has been adopted [31]. This choice
is advantageous as it naturally provides the anomalous (pair)
density and the pairing gap as an order parameter and the
medium effects, which are known to be strong [1,32], can
be captured in the EDF. Since the proton-neutron spin-triplet
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pairing, as well as the isovector spin-singlet ones, can be char-
acterized by local pair densities, there have been many studies
for these types of pairing [33]. On the other side, discussions
on the triplet-odd pairing in nuclei have been less active. In
Refs. [34,35], the connection between the magnetic-dipole
excitation to the triplet-odd pairing is suggested. However,
experimental evidence of the triplet-odd pairing has not been
observed.

In this work, we study the like-particle spin-triplet super-
fluidity in an EDF approach. To this end, we introduce the
spin-triplet nonlocal pair density as an order parameter. We
also investigate the connection between spin-orbit splitting
and triplet-odd pairing.

II. FORMALISM

We describe the spin-singlet and spin-triplet pairing within
the local density approximation of the EDF. Details on this
framework are well summarized in Refs. [31,36,37], and in
particular, we focus on the pairing part in this section.

A. Nonlocal pair density

The building block of the pairing in the Hartree-Fock-
Bogoliubov (HFB) theory is the pair density matrix. We define
it with the standard phase for the case without the proton-
neutron pairing as

ˆ̃ρ(r1s1, r2s2; t ) = −2s2〈�|ĉr2−s2t ĉr1s1t |�〉, (1)

where ĉrst represents the nucleon annihilation operator at po-
sition r, spin s, and isospin t , and |�〉 is the HFB state.

The spin-singlet and spin-triplet nonlocal pair densities are
defined by

ρ̃t (r1, r2) =
∑

s

ˆ̃ρ(r1s, r2s; t ), (2)

s̃t (r1, r2) =
∑
s1s2

ˆ̃ρ(r1s1, r2s2; t )σ̂s2s1 . (3)

One can express the pair density matrix as
ˆ̃ρ(r1s1, r2s2; t ) = 1

2 ρ̃t (r1, r2)δs1s2 + 1
2 s̃t (r1, r2) · σ̂s1s2 , (4)

where σ̂ is the spin Pauli matrix. We note that the nonlocal
pair densities show the spatial property of the nucleon pair;
the spin-singlet pair is symmetric and the spin-triplet pair is
antisymmetric for the exchange of the coordinate variables,

ρ̃t (r1, r2) = ρ̃t (r2, r1), (5)

s̃t (r1, r2) = −s̃t (r2, r1). (6)

The spin-triplet nonlocal pair density vanishes at r1 = r2, indi-
cating that a simple local density approximation does not work
for the spin-triplet pair, and the nonlocality plays a major role
here.

B. Density matrix expansion

The nuclear interaction energy derived from a local two-
body interaction can be expressed with the local densities by
a density matrix expansion technique. This has been discussed
in Ref. [31] for the particle-hole part of the interaction. Here
we apply the density matrix expansion for the pair density
matrix (nonlocal pair density).

We introduce the following coordinates of the pair:

r1 = r + rrel

2
, r2 = r − rrel

2
, (7)

assuming that the pair density matrix vanishes quickly with
increasing rrel. This allows us to expand the nonlocal pair
densities in terms of the relative coordinate rrel:

ρ̃t (r1, r2) = ρ̃t

(
r + rrel

2
, r − rrel

2

)

= ρ̃t (r, r) + ∂

∂rrel
ρ̃t

(
r + rrel

2
, r − rrel

2

)∣∣∣∣
rrel=0

· rrel

+ 1

2

∂2

∂r2
rel

ρ̃t

(
r + rrel

2
, r − rrel

2

)∣∣∣
rrel=0

r2
rel

+ O(|rrel|3)

= ρ̃t (r) + 1

2
(∇1 − ∇2)ρ̃t (r1, r2)

∣∣∣∣
r1=r2=r

· rrel

+ 1

8
(∇1 − ∇2)2ρ̃t (r1, r2)

∣∣∣∣
r1=r2=r

r2
rel + O(|rrel|3)

= ρ̃t (r) + 1

8
[�ρ̃t (r) − 4τ̃t (r)]r2

rel + O(|rrel|3). (8)

We use ρ̃t (r1, r2) = ρ̃t (r2, r1) to remove the first-order term,
and the local pair density and kinetic pair density are
defined as

ρ̃t (r) = ρ̃t (r, r), (9)

τ̃t (r) = (∇1 · ∇2)ρ̃t (r1, r2)|r1=r2=r. (10)

The spin-triplet nonlocal pair density is expanded as

s̃t (r1, r2) = s̃t

(
r + rrel

2
, r − rrel

2

)

= rrel ·
[

∂

∂rrel
⊗ s̃t

(
r + rrel

2
, r − rrel

2

)]
rrel=0

+ O(|rrel|2)

= 1

2
rrel · [(∇1 − ∇2) ⊗ s̃t (r1, r2)]

∣∣∣∣
r1=r2=r

+ O(|rrel|2)

= irrel · J̃t (r) + O(|rrel|2), (11)

where

J̃t (r) = 1

2i
(∇1 − ∇2) ⊗ s̃t (r1, r2)

∣∣∣∣
r1=r2=r

(12)

is the tensor (spin-current) pair density, we use s̃t (r1, r2) =
−s̃t (r2, r1) to remove the zeroth-order term, and v · (u ⊗
w) ≡ (v · u)w. Spin-triplet anisotropic pairing in condensed-
matter physics requires an odd wave-number k dependence,
and the tensor pair density corresponds to the order pa-
rameters of the p-wave superfluidity that consists of nine
components [4].

The density matrix expansion of the nonlocal pair density
provides the local EDF starting from a local two-body spin-
singlet and spin-triplet pairing interaction. The general form
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of the pair EDF is given by [38]

ES=0
pair,t =

∫
dr1dr2v

S=0
pair,t (|r1 − r2|)|ρ̃t (r1, r2)|2, (13)

ES=1
pair,t =

∫
dr1dr2v

S=1
pair,t (|r1 − r2|)|s̃t (r1, r2)|2, (14)

where vS=0
pair,t and vS=1

pair,t are the spin-singlet and spin-triplet
pairing interaction strengths that depend on the absolute value
of the relative coordinate of the two nucleons.

Inserting the density matrix expansion in the nonlocal pair
densities, we have

ES=0
pair,t =

∫
dr

{
C̃ρ

t |ρ̃t (r)|2 + C̃�ρ
t Re[ρ̃∗

t (r)�ρ̃t (r)]

+ C̃τ
t Re[ρ̃∗

t (r)τ̃t (r)]
}
, (15)

ES=1
pair,t =

∫
drC̃J

t |J̃t (r)|2. (16)

The coupling constants are related to the local potential as

C̃ρ
t =

∫
drrelv

S=0
pair,t (|rrel|), (17)

C̃�ρ
t = −1

4
C̃τ

t = 1

4

∫
drrelr2

relv
S=0
pair,t (|rrel|), (18)

C̃J
t =

∫
drrelr2

relv
S=1
pair,t (|rrel|). (19)

These are the coupling constants for the spin-singlet pairing
C̃ρ

t and its next-order terms C̃�ρ
t and C̃τ

t , and the spin-triplet
coupling constant C̃J

t .
By using the G3RS- 1E -1 potential introduced by

Tamagaki [28], for instance, C̃ρ
t = −697.087 MeV fm3 and

C̃�ρ
t = 1363.253 MeV fm5 are obtained for the spin-singlet

coupling constants. For the spin-triplet coupling, on the other
hand, by using the G3RS-3O-1 potential for vS=1

pair,t , we obtain

C̃J
t = 6794.724 MeV fm5. Note that we assumed the 3P1

channel to obtain this value and that this is repulsive in this
channel.

In the lowest order in terms of the nonlocality, the local
pair density ρ̃t (r) and the pair EDF that is proportional to
|ρ̃t (r)|2 represent the spin-singlet pair condensation and EDF,
while the spin-current pair density J̃t (r) and the term propor-
tional to |J̃t (r)|2 represent the spin-triplet pair condensation
and EDF.

Zero-range Skyrme interactions also produce the terms
related to the spin-singlet and spin-triplet pair condensation.
Only the SkP interaction [39] includes the spin-singlet and
spin-triplet terms, and other standard Skyrme EDFs do not
consider pairing terms other than those proportional to |ρ̃t (r)|2
due to unrealistic pairing properties [31].

We note that the spin-triplet pair density and thus the EDF
can be decomposed into trace (pseudoscalar), antisymmetric
(vector), and symmetric (pseudotensor) parts [37]:

J̃t (r) =
∑

a=x,y,z

J̃taa(r), (20)

J̃ta(r) =
∑

b,c=x,y,z

εabcJ̃tbc(r), (21)

J̃tab(r) = 1
2 J̃tab(r) + 1

2 J̃tba(r) − 1
3 J̃t (r)δab. (22)

This decomposition of the spin-current quantity is also applied
in the discussion of 3P2 superfluidity [40,41], and these three
components are relevant to 3P0, 3P1, and 3P2 superfluidity,
respectively.

For a general pair EDF that is not based on an effective
interaction, each coupling constant in the spin-singlet pair
EDF (15) can be taken independently, except that the relation
between C̃�ρ

t and C̃τ
t in Eq. (18) is a requirement from the

local gauge invariance [37]. The spin-triplet pair EDF has a
structure similar to that of the tensor functional in the particle-
hole EDF and can have a more general form [42]:

ES=1
pair,t =

∫
drC̃J0

t |J̃t (r)|2 + C̃J1
t |J̃t (r)|2 + C̃J2

t |J̃t (r)|2. (23)

Unlike the particle-hole part, these three coupling constants
are not constrained by the local gauge invariance and can be
taken independently. When the pair EDF is derived from a
nonlocal effective interaction of the form (14), three coupling
constants are related by C̃J

t = 3C̃J0
t = 2C̃J1

t = C̃J2
t . However,

the tensor and spin-orbit interactions, which are not in the
form of Eq. (14), allow independent contributions to the three
coupling constants.

C. Mean-field approach

The mean-field equations for protons and neutrons, ob-
tained by the functional derivative of the EDF, are given in
Refs. [37,39]. The pair Hamiltonian has the following form:

h̃(t )
ss′ (r) = [Ũt (r) − ∇M̃t (r) · ∇]δss′

+ 1

2i
{∇ · [B̃t (r) · σ̂ss′ ] + [B̃t (r) · σ̂ss′ ] · ∇}, (24)

where the potential energy Ũt , the effective inertia parameter
M̃t , and the spin-orbit form factors B̃t are given by

Ũt (r) = 2C̃ρ
t ρ̃t (r) + 2C̃�ρ

t �ρ̃t (r) + C̃τ
t τ̃t (r), (25)

M̃t (r) = C̃τ
t ρ̃t (r), (26)

B̃tab(r) = 2C̃J0
t J̃t (r)δab − 2C̃J1

t

∑
c=x,y,z

εacbJ̃tc(r)

+ 2C̃J2
t J̃ tab(r). (27)

As the pair Hamiltonian (24) depends on the spins s and
s′ when spin-triplet pair EDF is considered, we define the
pairing gap by averaging out the pair Hamiltonian using the
spin-dependent lower component of the quasiparticle wave
function φ

(t )
2 (μ, rs) as

�t =

∫
dr

∑
ss′μ

φ
(t )∗
2 (μ, rs′)h̃(t )

s′s (r)φ(t )
2 (μ, rs)

∫
dr

∑
sμ

|φ(t )
2 (μ, rs)|2

= 1

Nt

∫
dr[Ũt (r)ρt (r) + M̃t (r)τt (r) + B̃t (r) · Jt (r)],

(28)

where Nt = N or Z , and the density ρt , the kinetic density τt ,
and the tensor (spin-current) density Jt are defined using the
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nonlocal particle-hole densities [defined in a similar way as
Eqs. (2) and (3) but for the particle-hole density matrix] as

ρt (r) = ρt (r, r), (29)

τt (r) = (∇1 · ∇2)ρt (r1, r2)|r1=r2=r, (30)

Jt (r) = 1

2i
(∇1 − ∇2) ⊗ st (r1, r2)

∣∣∣∣
r1=r2=r

. (31)

Although Eq. (28) is a natural extension of the average gap
for a generalized pair Hamiltonian [43], the discrepancy of
the pairing gap and experimental OES has been pointed out
when the singlet-pair EDF contains the kinetic terms C̃τ

t and
C̃�ρ

t [44].

D. Expression within spherical symmetry

We assume the spherical symmetry for the HFB state for
simplicity. The spherical symmetry cancels the two of the
spin-current pair densities J̃t (r) and J̃t (r), and only the ra-
dial component of the vector spin-current pair density can
exist, J̃t (r) = J̃tr (r)er [45]. Within the spherical symmetry,
the quasiparticle wave function can be decomposed into the
radial and angular part:

φ
(t )
i (E , rs) = u(t )

i (nl j, r)

r
Ylml (r̂)

〈
lml

1

2
s| jm

〉
(i = 1, 2),

(32)

where i = 1 and 2 correspond to the upper and lower compo-
nents, respectively. The local pair density and the spin-current
pair density are given by

ρ̃t (r) = − 1

4πr2

∑
nl j

(2 j + 1)u(t )
1 (nl j, r)u(t )

2 (nl j, r), (33)

J̃tr (r) = − 2

4πr3

∑
nl j

(2 j + 1)〈l · s〉u(t )
1 (nl j, r)u(t )

2 (nl j, r),

(34)

where 〈l · s〉 = 1
2 [ j( j + 1) − l (l + 1) − 3

4 ]. Notice that these
quantities have different dimensions.

III. NUMERICAL CALCULATIONS

A. Spin-singlet pair EDF

We utilize the HFBRAD code [46] for spherical Skyrme-
HFB calculations in the following. The SLy4 and spin-singlet
volume-type contact pair EDF with the strength C̃ρ

n =
−46.625 MeV fm3 (in the standard notation V0 = 4C̃ρ

n =
−186.5 MeV fm3) is employed with the cutoff parameter of
60 MeV. This strength has been adjusted to reproduce the
neutron pairing gap 1.245 MeV in 120Sn.

We evaluate the spin-singlet and spin-triplet pair conden-
sations with the following pairing components:

Sρn =
∫

dr|ρ̃t (r)|2, (35)

SJn = R2
∫

dr|J̃t (r)|2. (36)
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n
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S J

n
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-3
)

N

Sρn
SJn

FIG. 1. Spin-singlet and triplet pairing components of neutrons,
Sρn and SJn , respectively, in the Ca and Sn isotope chains.

They have exactly the same local density dependence that
appears in the pair energy. The constant R2 = 10 fm2 is
estimated from the ratio |C̃J

t /C̃ρ
t | of the G3RS potential

and is introduced to make the units of the two quantities
identical.

In Fig. 1, the results from neutron pair densities in the
Ca and Sn isotopes are presented. The spin-singlet compo-
nent Sρn shows finite values except in neutron closed-shell
nuclei. Even though the attractive pair EDF is present only
in the spin-singlet channel, our results show nonzero values
for the spin-triplet component SJn , namely, a coexistence of
the spin-singlet and spin-triplet condensates is suggested in
finite nuclei. This is also expected in Eqs. (33) and (34). A
similar feature has been discussed in condensed matter [21]
and ultracold Fermi gas [22,23,47] in the presence of the spin-
orbit (k ⊗ σ type) interaction. Notice that a direct comparison
of Sρn and SJn does not make sense as their relative value
depends on the introduced constant R2. However, the isotopic
dependence indicates that the spin-triplet pairing is more sen-
sitive to the shell orbits involved than the spin-singlet one is.
Sρn is enhanced in the midshell region with high degeneracy,
such as in the f7/2 and f5/2 orbits in Ca isotopes and 50 <

N < 82 and 82 < N < 126 in Sn isotopes, while SJn shows
a stronger orbital dependence; we see an enhancement (a re-
duction) in SJn in the isotope where the neutron Fermi energy
is around j> ( j<) orbit in f7/2 and f5/2 in Ca isotopes and an
enhancement in the intruder region in the middle shell in Sn
isotopes.
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FIG. 2. The neutron local pair density ρ̃n(r) and the radial com-
ponent of the neutron tensor pair density J̃nr (r) of 42Ca and 56Ca and
the contributions from 1 f7/2 and 1 f5/2 orbits.

To analyze the contributions from the j> and j< orbits, we
take 42Ca and 56Ca as representative cases, where two parti-
cles are supposed to occupy the f7/2 and f5/2 orbits mainly.
The pair density distributions ρ̃n(r) and J̃nr (r) together with
the contributions from f7/2 and f5/2 orbits are plotted in Fig. 2.
Both the spin-singlet and spin-triplet neutron pair densities
have finite values in the 42Ca and 56Ca nuclei. There, the f7/2

and f5/2 neutrons have dominant contributions as expected.
For the spin-singlet density, they have a coherent contribution,
and the total pair densities are composed of the coherent
addition from the other orbits as well (not shown in the figure),
whereas the neutrons in the f7/2 and f5/2 orbits contribute in
a destructive way to the spin-triplet density. The dominant
contribution for J̃nr (r) in 42Ca is from the f7/2 orbit, while
J̃nr (r) in 56Ca is composed of the multiple orbits including
those not shown in the figure. This indicates the magicity at
N = 34 is weaker than that at N = 28.

B. Spin-triplet pair EDF

In place of the spin-singlet pair EDF, we employ the spin-
triplet pair EDF. The coupling constant of the spin-triplet
pair EDF is adjusted to reproduce the pairing energy of 44Ca
obtained in the spin-singlet pair EDF (C̃J1

n = −46.125 MeV
fm5). The pairing energy is −5.08 and −5.25 MeV in the
singlet-pair EDF and triplet-pair EDF, as shown in Figs. 4(c)
and 4(d).
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)

N
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0
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3
3.5triplet-pair EDF (d)

S J
n
(fm

-3
)

N

FIG. 3. Spin-singlet and spin-triplet pairing components, Sρn and
SJn , calculated in the Ca isotopes by changing the coupling constant
of the spin-orbit EDF. The labels 1.0 LS, 0.5 LS, and no LS represent
the calculations with the original spin-orbit EDF, the reduced one
multiplied by a factor of 0.5, and the calculation without the spin-
orbit EDF, respectively.

Figure 3 shows the spin-singlet and spin-triplet pairing
components calculated with either the spin-singlet or the spin-
triplet pair EDF for the Ca isotopes. The spin-singlet pairing
component calculated with the spin-singlet pair EDF and the
spin-triplet pairing component calculated with the spin-triplet
pair EDF have very similar properties: one sees the collapse
of the pairing at the magic numbers N = 20, 28, 32, and 40
(there is a tiny difference in N = 34) and the neutron-number
dependence of the relative size of the pairing component.
We also note that there is little difference in the pairing
energy, the chemical potential, and other observables of the
particle-hole type. The coupling constant of the spin-triplet
pair EDF C̃J1

t can be related to the Skyrme parameters as
C̃J1

t = [t2(1 + x2) + 5to + 2W0)]/8 and are repulsive for many
Skyrme interactions such as SIII (18.125 MeV fm5) [48],
SLy4 (30.75 MeV fm5), SLy5 (31.5 MeV fm5) [49], and
SkP (5.486 MeV fm5), but can be attractive for the Skyrme
interactions that include the tensor interaction such as SLy5
+ T (−53.5 MeV fm5) [50], and 14 Skyrme parameters out
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FIG. 4. Pairing gap |�n| and pairing energy ES=0,1
pair,n calculated for

the singlet- and triplet-pair EDFs in the Ca isotopes by changing the
coupling constant of the spin-orbit EDF.

034302-5



HINOHARA, OISHI, AND YOSHIDA PHYSICAL REVIEW C 109, 034302 (2024)

of 36 TIJ parameter sets in Ref. [51]. Although the coupling
constants of the EDF can be taken arbitrarily in the framework
of the nuclear density functional theory, the tensor interaction
will have a large impact on the property of the spin-triplet
pairing coupling constant.

C. Roles of the spin-orbit EDF

The spin-orbit splitting is expected to play an impor-
tant role in the spin-triplet pairing as anticipated from the
expression of the tensor pair density (34). In Fig. 3, we
also present the pairing components Sρn and SJn obtained by
changing the coupling constant of the spin-orbit EDF while
keeping the pairing coupling constants to the original values.
Three spin-orbit EDFs are considered: the original spin-orbit
EDF (1.0 LS), the reduced one multiplied by a factor of 0.5
(0.5 LS), and no spin-orbit EDF (No LS). First, suppose that
the spin-orbit EDF is neglected. Then, the spin-singlet pair
EDF promotes only the spin-singlet pair condensate, and the
spin-triplet pairing component SJn is zero [Figs. 3(a) and 3(b)].
One is tempted to the opposite conclusion when the spin-
triplet pair EDF is considered. However, the appearance of
the spin-triplet pairing component inevitably induces the spin-
orbit splitting and the spin-singlet pairing component. This
results in a nonzero spin-singlet pairing component, although
the induced amount is tiny. As a result, commonly with the
spin-singlet and spin-triplet EDFs, the corresponding pairing
component takes the maximum at around N = 28, which is
around the half-filled situation of the 14-fold degenerated f
orbit [Figs. 3(a) and 3(d)]. The pairing component becomes
zero at LS-closed shells N = 20 and N = 40.

The behavior of the pairing components Sρn and SJn shows
a drastic change with the value of the coupling constant of the
spin-orbit EDF, although we do not change the pair EDF itself.
The spin-orbit EDF decreases the pairing component due to
the lower degeneracy of the single-particle levels [Figs. 3(a)
and 3(d)], but it enhances the coexistence of Sρn and SJn

[Figs. 3(b) and 3(c)].1 By comparing the 0.5 LS and 1.0 LS
cases, one can see an enhancement of the mixing in the region
20 < N < 28 and the suppression in the neutron-rich side
with N > 30. The suppression is common for the main pairing
component and the induced pairing component due to the
lesser degeneracy of the single-particle levels with increasing
the coupling constant of the spin-orbit EDF.

We also plot the pairing gap and the pairing energy in
Fig. 4. Figures 3(a) and 4(a) show that the singlet-pairing
component Sρn and the pairing gap �n behave in a similar
way in the case of singlet-pair EDF, while the triplet-pairing
component SJn [Fig. 3(d)] and the pairing gap [Fig. 4(b)] in the
case of the triplet-pair EDF behave in a different way. A strong
reduction of the averaged gap for the triplet pairing in the “No
LS” case [Fig. 4(b)] is due to a low tensor density J. The
pairing energies for the singlet-pair EDF [Fig. 4(c)] and the

1The mixture of the spin-singlet (even-parity) and spin-triplet (odd-
parity) components due to the spin-orbit field was discussed in the
proton-neutron channel within the three-body model for 16O +p + n
[52].
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FIG. 5. Occupation numbers of p f -shell orbits in Ca isotopes
calculated with the singlet- and triplet-pair EDFs.

triplet-pair EDF [Fig. 4(d)] take similar values as a function
of the neutron number, although the coupling constants of the
two pair EDFs are adjusted only at N = 24. The agreement of
the pairing energy shows that the triplet-pair EDF can include
a contribution similar to that of the singlet-pair EDF.

D. Relevant observables

The small values of the pairing gap defined by Eq. (28) may
not correspond to the experimental OES for the triplet-pair
EDF [Fig. 4(b)], similar to when the singlet-pair Hamiltonian
contains derivative terms [44]. We note that another average
gap in which φ

(t )∗
2 is replaced by φ

(t )∗
1 in Eq. (28) behaves

even worse in the case of the triplet-pair EDF, because of the
singlet-pair amplitude in the denominator that is very small as
expected from Fig. 3(c).

To analyze the influence of the type of pairing in the
occupation, we plot the occupation of each neutron orbit in
Fig. 5. The occupation number increases in the order of the
single-particle energies with the neutron number increases,
showing that the dominant pair correlation is within a single
orbit near the Fermi energy. There is no significant difference
between the occupation numbers calculated with the singlet-
and triplet-pair EDFs. The difference is barely visible around
34 � N � 38.

The pairing rotational moment of inertia can be a relevant
observable of the pairing condensation [53] even in the pres-
ence of the triplet-pair EDF. Figure 6 shows the two-neutron
separation energies S2n(N ) = E (N − 2) − E (N ) and the neu-
tron pairing rotational moments of inertia calculated from
the three HFB energy differences Jn(N ) = 4/�S2n(N ) =
4/[E (N + 2) − 2E (N ) + E (N − 2)]. Unlike the relation be-
tween the pairing gap and the OES, the pairing rotational
moment of inertia holds a good correspondence with the
experimental values of the double binding-energy differ-
ences. The moment of inertia at N = 30 becomes negative
(−17.86 MeV−1) for the triplet-pair EDF, while the singlet-
pair EDF reproduces the experimental value. The negative
value originates from the staggering behavior of S2n at N = 30
seen in Fig. 6(a). Two of the HFB states (N = 28 and 32)
used to computed the inertia at N = 30 are in the normal
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FIG. 6. Two-neutron separation energies and moments of inertia
of the neutron pairing rotation in the Ca isotopes calculated for the
singlet- and triplet-pair EDFs. The inertia calculated with the triplet-
pair EDF at N = 30 (−17.86 MeV−1) is not shown in the figure.

states corresponding to the f7/2 and p3/2 shell closures, and the
inertia at N = 30 does not correspond to the pairing indicator,
as the expression of the inertia based on the double binding-
energy differences assumes that the three nearby isotopes
have similar pairing structures, and this assumption does not
hold in this case. We can see a difference in the moment of

inertia in the neutron-rich region at N = 36 and 38 for the
singlet-pair and triplet-pair EDFs. The binding energies in the
neutron-rich isotopes may determine the coupling constant of
the triplet-pair EDF.

IV. SUMMARY

We analyzed the spin-triplet pair condensation of like par-
ticles in singly closed nuclei. The relevant quantity to the
spin-triplet pair condensation is the nine-component spin-
current pair density. One component can be finite in the
HFB calculation within the spherical symmetry. We have
demonstrated that the spin-singlet and spin-triplet pairing con-
densates coexist in open-shell nuclei, and one component of
the pair EDF can induce the other component. The spin-orbit
splitting is shown to play an essential role in the coexistence
of the two types of pair condensates, because the spin is no
longer a good quantum number.

The inclusion of both the spin-singlet and spin-triplet pair
EDFs into the nuclear EDF will enable us more detailed
description of the nuclear pairing condensation, including the
isotope and isotone dependence, and deepen the understand-
ing of the origin of the spin-orbit splitting and the role of the
tensor force in the pairing channel. In describing open-shell
nuclei with deformation, the pseudoscalar and pseudotensor
components should be considered. In subsequent works, we
will present such developments.
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[35] T. Oishi, G. Kružić, and N. Paar, Discerning nuclear pairing
properties from magnetic dipole excitation, Eur. Phys. J. A 57,
180 (2021).

[36] D. Vautherin and D. M. Brink, Hartree-Fock calculations with
Skyrme’s interaction. I. Spherical nuclei, Phys. Rev. C 5, 626
(1972).
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