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Scattering experiments with three free nucleons in the ingoing channel are extremely challenging in terrestrial
laboratories. Recently, the ALICE Collaboration successfully measured the scattering of three protons indirectly,
by using the femtoscopy method in high-energy proton-proton collisions at the Large Hadron Collider. In order to
establish a connection with current and future measurements of femtoscopic three-particle correlation functions,
we analyze the scenarios involving nnn and ppp systems using the hyperspherical adiabatic basis. The correlation
function is a convolution of the source function and the corresponding scattering wave function. The finite size
of the source allows for the use of the free scattering wave function in most of the adiabatic channels except
the lowest ones. The scattering wave function has been computed using two different potential models: (i) a
spin-dependent Gaussian potential with parameters fixed to reproduce the scattering length and effective range
and (ii) the Argonne v18 nucleon-nucleon interaction. Moreover, in the case of three protons, the Coulomb
interaction has been considered in its hypercentral form. The results presented here have to be considered as a first
step in the description of three-particle correlation functions using the hyperspherical adiabatic basis, opening
the door to the investigation of other systems, such as the pp� system. For completeness, the comparison with
the measurement by the ALICE Collaboration is shown assuming different values of the source radius.
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I. INTRODUCTION

In the past few years, the femtoscopy technique [1–3] has
been applied in high-energy pp and p-Pb collisions at the
Large Hadron Collider (LHC) to study the residual strong
interaction between hadrons [4]. In such collisions, particles
are produced and emitted at relative distances of the order of
a femtometer, in the range of the nuclear force. The effect of
the mutual interaction between hadrons is reflected as a cor-
relation signal in the momentum distributions of the detected
particles which can be studied using correlation functions. The
latter incorporate information on the emission process as well
as on the final state interaction of the emitted pairs at the fem-
toscopic scale. Therefore, by measuring correlated particle
pairs at low relative energies and comparing the yields to theo-
retical predictions, it is possible to perform a new study of the
hadron dynamics. The high precision measurements obtained
by the ALICE Collaboration in the strangeness sector made
it possible to test lattice calculations for the first time and to
challenge effective field theory results (for a comprehensive
review see [4] and references therein).

The next challenge is to extend the method to test the
hadronic interactions in three-body systems. Recently, the
ppp and pd correlation functions were measured by the
ALICE Collaboration [5,6]. The interpretation of the former
measurement requires a correct treatment of the three-proton
scattering wave function which has to be used as input
in the computation of the corresponding correlation func-

tion. This observable reflects a complex structure mainly
determined when the three hadrons have low relative mo-
menta. Traditional low-energy scattering experiments with
three free hadrons in the ingoing channel are currently not
yet available. Therefore the femtoscopic measurement gives
a unique opportunity to study a 3 → 3 scattering process.
In the pd case a very detailed discussion was recently per-
formed [7], showing that the description of the data is possible
when a very sophisticated pd scattering wave function is
used.

In the present work, we would like to set the basis for
the study of the three-particle correlation function. Specifi-
cally, we will focus on the ppp correlation function, whose
description presents intrinsic difficulties due to the long-range
Coulomb interaction. The asymptotic description of three
charged particles has always attracted a lot of attention since
it is present in many different systems: atomic, nuclear, and
subnuclear systems (for a recent discussion see Ref. [8]). In
this preliminary study, we perform a simplification in the
asymptotic description of the three protons and concentrate
on the different steps needed in the computation of the ppp
correlation function. However, at the end of the study we give
indications of the corrections due to a complete treatment of
the Coulomb interaction.

We would like to stress that the present study represents
the first step in the description of the three-particle correlation
functions and will serve as a guideline for future studies of
systems including hyperons such as the pp� system.
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The paper is organized as follows: after introducing the
main ingredients of the method and the correlation func-
tion, we briefly present the two-body case needed to define
the notation and the procedure. The results are compared to
previous calculations and the data published by the ALICE
Collaboration [9]. Then we describe the three-body case: first
the nnn and then the ppp system. In all cases, we discuss how
to construct the free asymptotic wave function with the proper
symmetry. In fact, more and more partial waves are needed
to correctly describe the correlation function when increasing
the energy. The calculated ppp correlation function is finally
compared to measurements by the ALICE Collaboration in
pp collisions at center-of-mass energy 13 TeV at the LHC.
The last section is devoted to the conclusions.

II. CORRELATION FUNCTION

In order to compute the ppp correlation function, two main
ingredients are needed: the source function and the ppp wave
function at different energies. The former is modelled as the
product of three single Gaussian emitters, depending only on
the size of the source. For the latter, we use the hyperspher-
ical harmonic (HH) method [10,11] in conjunction with the
adiabatic harmonic (HA) basis [12]. These two methods have
been extensively used in the description of the three-nucleon
continuum [13–17].

In the present case, we apply these methods to describe
the ppp system. Essentially we decompose the ppp wave
function in partial waves having well-defined values of to-
tal angular momentum and parity, Jπ . After introducing the
hyperspherical coordinates we solve the hyperangular Hamil-
tonian including the different partial waves compatible with
the lowest values of the grand angular quantum number K .
Here we show that the lowest adiabatic channel provides
sufficient accuracy. We pay particular attention to the con-
struction of the different spatial and spin symmetries entering
in the description of the wave function. We discuss these
elements first in the nnn case, where the Coulomb interaction
is not present. Then we extend the analysis to the ppp case
considering the Coulomb interaction in the hypercentral ap-
proximation. In this way, the asymptotic wave function can be
evaluated analytically. It will be shown that the structure of the
ppp and the nnn correlation functions are mostly determined
by the lowest partial waves in which the nuclear interaction
appreciably distorts the free scattering wave function.

Regarding the pp or nn interactions, taking advantage of
the fact that the pp and nn systems are located inside the uni-
versal window [18], we first use a Gaussian potential model
constructed to reproduce the corresponding scattering lengths
and effective ranges. This potential acts only in s wave. Then
we incorporate in the study the results obtained using a more
realistic potential, the Argonne v18 potential (AV18) [19] al-
ready used in earlier studies of the pp correlation function.
At the end, we will estimate three-nucleon interaction effects
using the AV18 potential in conjunction with the Urbana IX
three-nucleon force [20].

First, the two-body case will be presented. The study of
the two-particle scattering through the measurement of their
correlation function is based on the femtoscopy method [1,3].

This method is used in high-energy collisions and measures
correlated pairs of particles having low values of relative
momentum. It was recently applied to measure hadron-hadron
correlation functions such as pp [21], pK± [22,23], p� [24],
p�0 [9], �� [25], p�− [26], �K± [27] p�− [28], �� [29],
pφ [30] and baryon-antibaryon [31]. The final state interaction
between measured particles was then studied by comparing
the experimental values to the theoretical predictions.

For two-body systems, the correlation function is defined
in terms of the relative momentum k between the particles in
the pair rest frame by the Koonin-Pratt equation [32,33]

C12(k) =
∫

dr S12(r)|�s|2, (1)

where S12(r) is the so-called source function, which is an
effective parametrization of the properties of the particle emis-
sion process, defined in terms of the relative distances r
between the particles, and |�s|2 is the square of the scattering
wave function of the two particles.

The correlation function can be generalized for a three-
particle case as

C123(Q) =
∫

ρ5dρ d�ρ S123(ρ)|�s|2, (2)

where S123(ρ) is a three-particle source function. Here, Q is
the hypermomentum, ρ is the hyperradius, �ρ corresponds
to the set of five hyperangles, and |�s|2 is the square of the
scattering wave function of the three particles. The details of
these variables are given in Sec. IV. While the two-particle
scattering wave function has been already estimated for many
different hadron-hadron and hadron-nucleus pairs, it has never
been evaluated for the three-particle case, which is the goal of
this work.

III. THE TWO-BODY CASE

As a preliminary step to analyze a three-particle scattering
process, we discuss first the scattering wave function for two
protons. Considering only the Coulomb interaction, the scat-
tering wave function for two protons is

�0
s = 4π

∑
JJz

∑

mSSz

i

F
(η, kr)

kr

×(
mSSz|JJz )YJJz


S (�r )Y ∗

m(�k ), (3)

where 
, S, and J are the relative orbital angular momentum,
total spin, and total angular momentum, respectively, with
projections m, Sz, and Jz; and �r and �k are the polar and
azimuthal angles describing the directions of the relative co-
ordinate (r) and the relative momentum (k).

In the expression above, F
(η, kr) is the regular Coulomb
function with Sommerfeld parameter η = e2μ/(h̄2k), where
μ is the reduced mass, and

YJJz


S (�r ) =
∑
mSz

(
m SSz|JJz )Y
m(�r )χSSz , (4)

where χSSz is the spin function arising from the coupling of
two spin- 1

2 particles to S = 0, 1, and Y
m(�r ) is a spherical
harmonic function.
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For two uncharged particles (η = 0), the Coulomb
function, F
(η, kr), reduces to the Riccati-Bessel function
kr j
(kr), and Eq. (3) becomes

�0
s = eik·r ∑

SSz

χSSz . (5)

The expressions above are general, and valid for systems
without any well-defined symmetry. However, for two iden-
tical nucleons the quantum numbers 
 and S are restricted to
those combinations allowed from the antisymmetry require-
ment. In this case 
 and S are not independent, and we then
introduce the index [
S] indicating that S = 0 (S = 1) for even
(odd) values of 
.

The norm of the scattering wave function, |�0
s |2�, is defined

as the average over the angular coordinates of the square of the
wave function, i.e.,

∣∣�0
s

∣∣2

�
= 1

(4π )2

∫
d�r

∫
d�k

∣∣�0
s

∣∣2
, (6)

which for the free case (no Coulomb), without any symmetry,
and after introducing Eq. (5), becomes

∣∣�0
s

∣∣2

�
= NS, (7)

where NS = ∑
SSz

1 = ∑
S (2S + 1) = 4 is the number of spin

states.
In the case of antisymmetric wave functions some structure

appears, and use of Eq.(3) leads to

∣∣�0
s

∣∣2

�
= 2

NS

∑
[
S]

(
F
(η, kr)

kr

)2

N[
S], (8)

where the factor of 2 is due to the fact that we are dealing
with two identical particles, and where the 1/NS factor—
see Eq. (7)—has been introduced to impose |�0

s |2� → 1 as
r → ∞.

The quantity N[
S] is the number of allowed states. Without
considering a particular symmetry the number of states would
be N[
S] = 4(2
 + 1). However, for antisymmetric states we
have that

N[
S] =
{

(2
 + 1) if 
 even,

3(2
 + 1) if 
 odd,
(9)

which leads to the following expression for the norm:

|�0
s |2� = 1

2

∑

≡even

(
F
(η, kr)

kr

)2

(2
 + 1)

+3

2

∑

≡odd

(
F
(η, kr)

kr

)2

(2
 + 1). (10)

In Fig. 1 the norm of the free scattering wave function,
Eq. (10), is shown for the nn and pp systems, considering
different values of η [for the nn case, η = 0 and F
(η, kr)
has to be replaced by kr j
(kr)]. The convergence has been
achieved after the inclusion of 
 values up to 
 = 40.
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FIG. 1. The norm of the scattering wave function, Eq. (10), for
the nn and pp cases. For the latter, different values of η have been
considered.

A. Introducing the strong interaction

For convenience let us write Eq. (3) as

�s = 4π
∑
JJz

∑

mSSz

i
�JJz


S (
mSSz|JJz )Y ∗

m(�k ), (11)

where �
JJz


S = (kr)−1F
(η, kr)YJJz


S (�r ) is just the coordinate
wave function of the system with quantum numbers 
, S, J ,
and Jz.

If the nuclear short-range interaction is considered, the
scattering wave function is still given by Eq. (11), but the
coordinate wave function takes now the form

�
JJz


S =
∑
λS′

uλS′

S (k, r)

kr
YJJz

λS′ (r̂), (12)

where we assume that, given an incoming channel with orbital
angular momentum and spin {
, S}, the short-range interaction
can mix it with an outgoing channel with quantum numbers
{λ, S′}.

The general large distance behavior of the radial equa-
tions in Eq. (12) is given by

uλ

 → δλ
F
(η, kr) + Tλ
O
(η, kr), (13)

where for simplicity we have assumed that the potential is
diagonal in the spin, uλ


 ≡ uλS

S , and O
(η, kr) = G
(η, kr) +

iF
(η, kr) describes the outgoing wave function. In the expres-
sion above Tλ
 denotes the T -matrix elements which, in the
case of a single channel, reduce to the usual form, sin δ
eiδ
 ,
where δ
 is the phase shift.

The antisymmetry requirement of the two-body wave func-
tion implies that {
, S} and {λ, S} become again [
S] and [λS],
which indicate that S = 0 (S = 1) for even (odd) values of

 and λ. Therefore, from Eqs. (11) and (12), and following
the same procedure as in the free case, the norm of the wave
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function results in

|�s|2� = 1

2

∑
λ,
≡even

(
uλ


 (kr)

kr

)2

(2
 + 1)

+3

2

∑
λ,
≡odd

(
uλ


 (kr)

kr

)2

(2
 + 1), (14)

which trivially reduces to Eq. (10) when the short-range inter-
action is absent.

B. Integration on a spherical source

To model the correlation function in Eq. (1) a parametriza-
tion of the source function is required. Starting from a
single-particle emission source of a Gaussian form, the fol-
lowing two-body source function is obtained [Eq. (A4) in the
Appendix]:

S12(r) = 1

8π3/2R3
e−(r2/4R2 ), (15)

where R is the source radius. The source function is normal-
ized to unity in the coordinate space, and, therefore, it can
be interpreted as the probability to emit particles at relative
distance r.

The ALICE Collaboration developed a data-driven ap-
proach, called the resonance source model (RSM), able to
describe the emission source in pp collisions at the LHC [34].
The RSM assumes the existence of a common emission source
for all baryons, composed of a Gaussian core, from which
all primordial particles are emitted, and an exponential tail
caused by the strong decays of resonances into particles of
interest. In Ref. [34], the core radius was determined from
the fit of the measured pp correlation function as the pp
interaction is already well constrained from scattering and
nuclear data and the corresponding wave function can be
precisely calculated for different energies. The pp correlation
function was computed using the “Correlation Analysis Tool
using the Schrödinger equation” (CATS) [35], which is a
numerical framework capable of evaluating the correlation
function by taking as input either an interaction potential or
a two-particle wave function, as well as an emission source of
any form. The Schrödinger equation was solved for the AV18
potential including s, p, and d waves, the Coulomb potential,
and properly antisymmetrizing the pp wave function. The fit
was performed for different transverse mass (mT ) ranges of
the pairs and the scaling trend as a function of mT , typically
observed in heavy-ion experiments, was found. The transverse
mass is defined as mT = (k2

T + m2)1/2, where kT and m are the
average transverse momentum and the average mass of the
pair, respectively. Further, in Ref. [34] it is demonstrated that
with the proper inclusion of the strongly decaying resonances,
the obtained Gaussian core radius in p� measurements is,
indeed, identical to the pp results, supporting the existence
of a common emitting source for baryons in pp collisions.

The assumption of a common source for all the baryon-
baryon pairs was used to test the interaction models of several
hadron pairs and to access their low energy scattering prop-
erties through the correlation function. The source radius R
for the hadron pairs of interest is determined from the mT

scaling, by using the average mT of the measured pairs and
considering the effective enlargement induced by the strong
decaying resonances. In the case of pp pairs measured by
the ALICE Collaboration, the effective mT -integrated source
radius amounts to R = 1.249 ± 0.008(stat.)+0.024

−0.021(syst.) fm
[9].

As shown in the Appendix, Eq. (A14), since the source is
spherical, the correlation function can be computed as given
in Eq. (1), but replacing |�s|2 by |�s|2�. After insertion of
Eq. (10) the angular integration can be trivially performed,
and we obtain that for particles interacting only through the
Coulomb force the correlation function is given by

C0
12(k) = 1

4
√

πR3

1

k2

∫
dr e−(r2/4R2 )

×
( ∑


≡even

F 2

 (η, kr)(2
 + 1)

+ 3
∑


≡odd

F 2

 (η, kr)(2
 + 1)

)
. (16)

As an example, let us consider now the specific case in
which the short-range interaction is limited to act on the 
 = 0
singlet state. In this case the norm, Eq. (14), can be written as

|�s|2� = ∣∣�0
s

∣∣2

�
+ 1

2

[(
u0(kr)

(kr)

)2

−
(

F0(η, kr)

(kr)

)2
]
, (17)

where we have added and subtracted the 
 = 0 free case
contribution. The correlation function results in

C12(k) = C0
s + C00

=
∫

dr S12(r)

[∣∣�0
s

∣∣2

�
− 1

2

(
F0(η, kr)

kr

)2

+ 1

2

(
u0(kr)

kr

)2
]
. (18)

The first term, C0
s , is the component of the correlation func-

tion calculated with the free wave function without including
the 
 = 0 contribution (the first two terms of the integral in the
equation above), whereas the second term, C00, is the 
 = 0
component including the interaction. Both terms are shown
in Fig. 2 (top panel) using a source radius R = 1.249 fm to-
gether with the correlation function, C0

12(k), considering only
the Coulomb force. The 
 = 0 radial wave function, u0(r),
has been calculated using a Gaussian potential constructed to
reproduce, in association with the Coulomb interaction, the
pp scattering length and effective range. Specifically

Vpp(r) = V0e−(r/r0 )2P0 + e2

r
(19)

with V0 = −30.45 MeV and r0 = 1.815 fm, P0 is a projec-
tor on spin S = 0. In fact, the s wave is well suited for a
low-energy representation of the nucleon-nucleon (NN) po-
tential by a two-parameter function, as the Gaussian used
here, due to the dominance of the large value of the scattering
length. This introduces the two-nucleon system inside the
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FIG. 2. Top panel: The pp correlation function calculated using
a Gaussian potential acting in the singlet 
 = 0 channel. The source
radius has been fixed to R = 1.249 fm. The 
 = 0 contribution is
given by the black curve, the contribution of the other (free) par-
tial waves is given by the red curve while the total result is given
by the green curve. The correlation function considering only the
Coulomb force is given by the red dashed curve. Bottom panel:
The pp correlation function measured by the ALICE Collaboration
(cyan data points) compared to the calculations obtained using the
AV18 potential, considering only s wave (magenta band) and the
prediction obtained using the Gaussian potential (orange band). The
width of the bands represents the uncertainty due to the experimental
determination of the source radius. The theoretical curves have been
corrected to account for the experimental effects (see the text for the
details).

universal window [18] in which universal behavior can be
observed. A Gaussian representation of the NN interaction
has been used many times in recent studies of the two-,
three-, and four-nucleon systems [16,17,36,37], and even of
nuclear matter [38]. The AV18 has been considered too,
showing that essentially the two interactions give extremely
close results for the s-wave component of the correlation
function.

C. Comparison with the experimental data

In this section, the computed pp correlation function is
compared to the experimental measurement published by the
ALICE Collaboration [9]. The experimental correlation func-
tion is shown in Fig. 2 (bottom panel) with the cyan data
points. The error bars include the combined contribution from
the statistical and systematic uncertainties of the experiment,
added in quadrature.

The experimental correlation function is obtained in terms
of the particle momentum distributions (the formal derivation
is shown in Ref. [1])

C(p1, p2) ≡ P(p1, p2)

P(p1) · P(p2)
, (20)

where P(p1, p2) is the two-particle momentum distribution,
P(p1) and P(p2) are the single-particle momentum distri-
butions. In absence of momentum correlations P(p1, p2) =
P(p1) · P(p2), leading to C(p1, p2) = 1.

After removal of the two-body center-of-mass motion,
Eq. (20) becomes

C(k) = N A(k)

B(k)
, (21)

where k = |p1 − p2|/2 is the relative momentum between the
two protons, A(k) and B(k) are the relative momentum dis-
tribution of correlated and uncorrelated protons, respectively,
and N is a normalization constant. In the experimental anal-
yses, B(k) is obtained by pairing particles emitted in different
collisions, using the so-called event mixing technique [3]. The
obtained mixed event distribution needs to be then properly
normalized to A(k) in a k range where the interaction is absent.
This normalization is absorbed in the factor N . Following
the arguments in Refs. [1,33], the correlation function in
Eq. (21) can be related to the source and wave functions via
the Koonin-Pratt formula introduced in Eq. (1).

To compare the experimental and the theoretical correla-
tion functions, the latter has to be corrected for the following
experimental effects: (1) momentum resolution of the detec-
tor which results in a smearing of the correlation function
at low relative momenta; (2) the presence of secondary and
misidentified protons in the experimental data sample. In
the measurement performed by the ALICE Collaboration,
the fraction of correctly identified primary protons amounts
to λpp = 0.67, secondary protons are mainly produced in
the decay of the � hyperons, corresponding to a fraction
λpp�

= 0.203, while the other secondary and misidentifica-
tion contributions amount to λX = 0.127 [9]. The pairs with
misidentified or secondary particles contribute to the mea-
sured correlation function as follows

C(k) = λppCpp(k) + λpp�
Cpp�

(k) + λXCX(k). (22)

The genuine pp correlation function Cpp(k) is obtained from
the theoretical correlation function C12(k) shown in Fig. 2, top
panel, further corrected for the momentum resolution of the
detector. As shown in Eq. (22), the comparison with the ex-
perimental correlation function requires an additional scaling
by the factor λpp. The contribution Cpp�

(k) results from the
pairing of primary protons with those emitted in the decay of
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a primary � particle, carrying the effect of the primary p�
interaction. The p� correlation function has been modeled
using chiral effective field theory calculations at the next-to-
leading order (NLO) [39] and transformed into the relative
momentum of the pp pairs by applying the corresponding
decay matrices [9]. Following Ref. [9], all the remaining con-
tributions to the measured correlation function are assumed to
be flat, i.e., CX(k) = 1.

The correlation function represented with a orange (ma-
genta) band in the bottom panel of Fig. 2 is the resulting
correlation function obtained from Eq. (22), by assuming the
Gaussian (AV18) potential for the pp s-wave interaction de-
scribed in the previous section to calculate Cpp(k). The widths
of the bands accounts for the experimental uncertainty on the
source radius given in Ref. [9]. In this reference the pp cor-
relation function was calculated using the AV18 interaction in
s, p, and d waves, showing that the effects of the 
 > 0 partial
waves are appreciable for k > 100 MeV/c, very far from the
peak at 20 MeV/c. The agreement of the calculations with the
ALICE data provides the benchmark of the procedure that will
be extended to the three-body sector in the next section.

IV. THE THREE-BODY CASE

Three-body wave functions are usually described by means
of the Jacobi coordinates x and y, which for three identical
particles read x = r2 − r1 and y = √

4/3 [r3 − (r1 + r2)/2],
where ri is the position vector of particle i.

From these coordinates it is common to construct the
hyperspherical coordinates, which contain one radial coordi-
nate, the hyperradius ρ = (x2 + y2)1/2, and five hyperangles
[the four angles describing the direction of x and y plus
α = arctan(x/y)] that we collect into �ρ . From the x and
y conjugate momenta, kx and ky, we can also construct the
hypermomentum Q = (k2

x + k2
y )1/2 and the five hyperangles

�Q equivalent to �ρ , but in momentum space.
These coordinates are the ones employed in the hy-

perspherical harmonic (HH) formalism (see Ref. [40] and
references therein). Within this method the three-body scat-
tering wave function can be written as described in detail in
the Appendix of Ref. [41], and which takes the form

�s = (2π )3

(Qρ)5/2

∑
JJz

∑
Kγ

�
JJz
Kγ

∑
MLMS

(LMLSMS|JJz )Y
x
y

KLML
(�Q)∗,

(23)

where γ groups the quantum numbers {
x, 
y, L, sx, S}. Then

x and 
y are the relative orbital angular momenta associated
to the Jacobi coordinates x and y, which couple to the to-
tal orbital angular momentum L (with projection ML). The
spin sx denotes the total spin of the two nucleons connected
by the x coordinate, which couples to the spin of the third
nucleon to give the total three-body spin S (with projection
MS). The angular momenta L and S then couple to the total
angular momentum of the system J with projection Jz. Finally,
K = 2ν + 
x + 
y (with ν = 0, 1, 2, . . . ) is the grand-angular

momentum quantum number, and Y
x
y

KLML
are the usual hyper-

spherical harmonic functions.

Equation (23) is the three-body partner of Eq. (11). In fact,
the coordinate wave functions, �

JJz
Kγ , take the general form

�
JJz
Kγ =

∑
K ′γ ′

�
K ′γ ′
Kγ (Q, ρ)ϒK ′γ ′

JJz
(�ρ ), (24)

with

ϒ
Kγ
JJz

(�ρ ) =
∑

MLMS

(LMLSMS|JJz )Y
x
y

KLML
(�ρ )χ sx

SMS
, (25)

which are the three-body equivalents of Eqs. (12) and (4),
respectively. As in Eq. (12), the radial wave function, �

K ′γ ′
Kγ ,

corresponds to a process with incoming and outgoing chan-
nels characterized by the set of quantum numbers {K, γ } and
{K ′, γ ′}, respectively.

Following Eq. (6), we define again the norm of the scatter-
ing wave function as the average over the angular coordinates
of the square of the wave function, i.e.,

|�s|2� = 1

π6

∫
d�ρ

∫
d�Q|�s|2. (26)

The three-body wave function as defined above does not
have a well-defined symmetry under particle exchange. In
order to introduce the correct symmetry we proceed as in the
two-body case, and consider in Eq. (25) only the HH functions
that, coupled to the spin functions, provide the correct total
symmetry.

If the spin of the three-nucleon system is S = 1
2 , we have

that Eq. (25) is given by

ϒ
Kγ
JJz

(
S = 1

2

)

=
∑

MLMS

(
LML

1

2
MS|JJz

) ∑
λ

(−1)λ
Y
x
y,λ̄

KLML
(�ρ )χλ

1
2 MS√

2
,

(27)

where we have introduced the HH functions Y
x
y,λ̄

KLML
having

well defined values of angular momentum LML and mixed
spin symmetry of type λ coupled to the spin S = 1

2 of three
nucleons defined as

χλ
SSz

=
∑
σxσy

(
λσx

1

2
σy|SSz

)
χλσx χ 1

2 σy
, (28)

where χλσx and χ 1
2 σy

are, respectively, the spin functions of
the two-body system formed by the nucleons 1 and 2, and
the one of the third nucleon. The quantum number λ = 1, 0
corresponds to the mixed spin symmetry, symmetric or an-
tisymmetric with respect to the exchange of particles 1,2,
respectively. With λ̄ we indicate the conjugate symmetry,
λ̄ = 1 when λ = 0 and vice versa.

In the case of S = 3
2 , since the spin part is always symmet-

ric under exchange of nucleons 1 and 2, we have that

ϒ
Kγ

JJz

(
S = 3

2

)
=

∑
MLMS

(
LML

3

2
MS|JJz

)
Y
x
y,a

KLML
(�ρ )χ1

3
2 MS

,

(29)
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where we have introduced the antisymmetric HH functions,
Y
x
y,a

KLML
, coupled to the symmetric spin S = 3

2 of three nucle-
ons. Note that in both cases, S = 1

2 and 3
2 , the index γ no

longer includes the value of the spin of the two nucleons, sx,
since it is fixed by the symmetry requirements. This is similar
to the two-body case, where the value of sx is determined by
the odd or even value of 
x.

A. The case of three free neutrons

For the case of three free neutrons, since the Coulomb
potential is absent, we have that [15]

�
K ′γ ′
Kγ (Q, ρ) = iK

√
QρJK+2(Qρ)δKK ′δγ γ ′, (30)

where JK+2(Qρ) is the Bessel function of order K + 2, and
the continuum wave function (23) simply becomes

�0
s = eiQ·ρ ∑

SMssx

χ
sx
SMS

. (31)

Here the partial wave expansion of the three-body plane wave
is given by

eiQ·ρ = ei(kx ·x+ky·y)

= (2π )3

(Qρ)2

∑
K
x
yLML

iK JK+2(Qρ)Y
x
y

KLML
(�ρ )Y
x
y

KLML
(�Q)∗.

(32)

Using this partial wave expansion, we can verify that the norm
of the three-body plane wave, Eq. (26), is given by

16

3(Qρ)4

∑
K

J2
K+2(Qρ)(K + 3)(K + 2)2(K + 1) = 1, (33)

where we have used the following property of the HH func-
tions:∑


x
yLML

Y
x
y∗
KLML

Y
x
y

KLML
= 1

12π3
(K + 3)(K + 2)2(K + 1). (34)

Insertion of Eq. (31) into Eq. (26) leads to the same result
for the norm of the free scattering function as in Eq. (7), i.e.,
|�0

s |2� = NS , but where now NS = 8 (four spin states from
S = 3

2 , two from S = 1
2 with λ = 0, and two from S = 1

2 with
λ = 1).

Considering antisymmetrization, we obtain that the norm
of the free three-neutron scattering state, Eq. (26), becomes

∣∣�0
s

∣∣2

�
= 6

NS

26

(Qρ)4

∑
K

J2
K+2(Qρ)NST (K ), (35)

where, again, the factor of 6 (= 3!) enters due to the fact that
we are dealing with three identical particles, the factor 1/NS

is introduced in order to impose |�0
s |2� → 1 as Qρ → ∞, and

where NST (K ) is the number of states, depending on the grand
angular quantum number K .

To calculate NST (K ) we have to consider that for each value
of the grand angular quantum number, K , the HH functions
can be symmetric, mixed, or antisymmetric. For the three-
nucleon system in isospin T = 3/2, only the last two can
contribute to the wave function since the spin vector could

be either of mixed symmetry (S = 1
2 ) or symmetric (S = 3

2 ).
There is no antisymmetric spin state of three nucleons. The
two mixed symmetry spin states having S = 1

2 and λ = 0, 1
combine with two mixed HH functions, resulting in an anti-
symmetric state, whereas the symmetric spin state with S = 3

2
is combined with the HH antisymmetric functions. Therefore
the norm is∣∣�0

s

∣∣2

�
= 6

NS

26

(Qρ)4

∑
K�1

J2
K+2(Qρ)

[
Nm

ST (K ) + 4Na
ST (K )

]
(36)

with Nm
ST (K ) the number of mixed HH functions and Na

ST (K )
the number of antisymmetric HH functions for each value of
K . The factor 4 in front of Na

ST (K ) is the spin degeneracy,
whereas the spin degeneracy of 2 in the case of the mixed
symmetry cancels out with the factor in the two-term sum as
given in Eq. (27). The fact that the spatially symmetric state is
not present implies that the sum starts with K = 1.

The following algorithm can be used to determine the num-
ber of HH functions having different symmetries. The number
of HH functions for a given K is [see Eq. (34)]

N = (K + 1)(K + 2)2(K + 3)

12
. (37)

The resulting ratio rn = N/Nm
ST is

rn =
{

3
2

(n3−1)(n3+1)
n2

3+3
, n3 − 2 = K,

1
2

(n3+1)(n3+2)
n3(n+1) , n3 − 2 �= K,

(38)

where we have introduced the integer n defined as the integer
part of (K + 2)/3 and n3 = 3n. Therefore Nm

ST = N/rn. The
number of antisymmetric HH functions is

Na
ST =

{
N−Nm

ST
2 , K odd,

N−Nm
ST −m
2 , K even,

(39)

with m = K
2 + 1.

With the above considerations, the result from Eq. (36)
is shown in Fig. 3. As seen in the figure, the norm tends
to zero as x → 0, since the sum starts at K = 1, and goes
asymptotically to 1.

B. Integration on a spherical source

In the case of three particles, the source function, analo-
gous to Eq.(15), can be modeled as

S123(ρ) = 1

π3ρ6
0

e−(ρ/ρ0 )2
, (40)

with the normalization condition∫
S123(ρ)ρ5dρ d�ρ = 1. (41)

The parameter ρ0 of the three-particle source function is re-
lated to RM , the parameter of the two-body source function,
i.e., ρ0 = 2RM . This relation is discussed in the Appendix.
The value of RM must be determined experimentally from the
mT distribution of proton pairs emitted in ppp triplets. For
this reason, we used a different notation with respect to the
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FIG. 3. Norm of the free scattering wave function for three neu-
trons, Eq. (36).

radius R introduced in Sec. II B. In general, the average mT

of two protons which are emitted in pairs or triplets could be
different in the experimental data sample and, additionally, the
properties of the source function for three particles has not
been studied yet. Recently, a numerical framework capable of
simulating the effective emission source of a n-body system,
based on the properties of the single particles, was developed
[42], but it has not been tested yet to the data due to the
limitations in terms of statistics of the Run 2 ALICE data. This
will be possible thanks to the larger statistics that has being
acquired during the ongoing LHC Run 3 data campaign. By
approximating RM 	 R = 1.249 fm, which is the value used
to model the pp correlation function, we find ρ0 	 2.5 fm. For
the reasons mentioned above, this value of ρ0 is not anchored
to any realistic three-body source model and, therefore, a scan
over different values of ρ0 will be done in the next sections.

The three-body correlation function is defined in Eq. (2).
As in the two-body case (see the Appendix), due to the spher-
ical symmetry of the source function, we can replace |�s|2,
given in Eq. (23), by |�s|2�, given in Eq. (26). In the particular
case of free nnn, making use of Eq. (35) with NS = 8, we
trivially get from the definition in Eq. (2) that

C123(Q) = 6

8

26

Q4ρ6
0

∫
ρ dρ e

− ρ2

ρ2
0

∑
K

J2
K+2(Qρ)NST (K ).

(42)

In Fig. 4 we can see the correlation function C123 calculated
using different source sizes. Note that Q refers to the total
energy E = h̄2Q2/2m whereas the three-body momentum Q3,
used in some figures, is defined in Sec. V C. It verifies Q3 =√

6Q and is the experimentally detected quantity.

C. Introducing the interaction

The analytical form of the three-body continuum wave
function given in Eqs. (23) and (24) is completely general.
As shown in Eq. (30), for three noninteracting nucleons, the
matrix formed by the radial wave functions, �

K ′γ ′
Kγ , is diago-

0 200 400 600 800 1000
)c (MeV/3Q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2) 3
Q(

12
3

C

 = 1.0 fm
0

ρ
 = 1.2 fm

0
ρ

 = 1.4 fm
0

ρ
 = 1.6 fm

0
ρ

 = 1.8 fm
0

ρ
 = 2.0 fm

0
ρ

 = 2.2 fm
0

ρ
 = 2.4 fm

0
ρ

FIG. 4. The correlation function using the free scattering wave
function for three neutrons, Eq. (42), calculated using different
source sizes.

nal. However, when a short-range particle-particle interaction
is present, this matrix is in general nondiagonal, in such a
way that the incoming and outgoing channels, characterized
by quantum numbers {K, γ } and {K ′, γ ′}, respectively, can be
different.

When using the HH formalism, one of the difficulties is
that the basis set used in the wave function expansion in
Eq. (24) can be quite large, which leads to a large system of
coupled radial equations from which the matrix of radial wave
functions can be obtained.

On many occasions, it is convenient to employ a different
basis set, that we denote as �

JJz
n (ρ,�ρ ), where n labels the

different terms of the basis, depending not only on the hyper-
angles, �ρ , but also on the hyperradius, ρ. The transformation
between this basis set and the one in Eq. (25) is given by

�JJz
n (ρ,�ρ ) =

∑
Kγ

〈
ϒ

Kγ
JJz

(�ρ )
∣∣�JJz

n (ρ,�ρ )
〉
�ρ

ϒ
Kγ
JJz

(�ρ ),

(43)

where the functions ϒ
Kγ
JJz

(�ρ ) are given in Eq. (25), 〈 | 〉�
represents integration over the angular coordinates, and the
summation over the HH quantum numbers K and γ ≡
{
x
yLS} has to be truncated at some maximum values Kmax

and γmax.
Using the new basis set, the three-body continuum wave

function can be written as described in detail in Appendix D
of Ref. [15], and takes the form

�s = (2π )3

(Qρ)5/2

∑
JJz

∑
n

uJ
n

∑
sxSMs

〈
χ

sx
SMS

∣∣�JJz
n (Q,�Q)

〉∗
, (44)

where

uJ
n =

∑
n′

un′
n (Q, ρ)�JJz

n′ (ρ,�ρ ), (45)

and the incoming and outgoing channels are now n and n′,
respectively.
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Equations (44) and (45) are equivalent to Eqs. (23) and (24)
in the HH formalism. In fact, the latter are recovered from
Eqs. (44) and (45) simply by using that [15]

un′
n (Q, ρ) =

∑
K ′γ ′

∑
K
x
yL

�
K ′γ ′
Kγ (Q, ρ)

〈
�

JJz

n′ (ρ,�ρ )
∣∣ϒK ′γ ′

JJz

× (�ρ )
〉
�ρ

〈
ϒ

Kγ

JJz
(�Q)

∣∣�JJz
n (Q,�Q)

〉
�Q

, (46)

and recalling that
∑

n |�n〉〈�n| = 1.
In this work, we shall use the hyperspherical adiabatic

(HA) expansion method, described in detail in Ref. [12],
where the {�n} basis set is chosen to be formed by the eigen-
functions of the angular part of the Hamiltonian equation,

H��JJz
n (ρ,�ρ ) = Un(ρ)�JJz

n (ρ,�ρ ), (47)

in such a way that the eigenvalue functions, Un(ρ), enter as
effective potentials in a coupled set of radial equations from
which the un′

n radial functions are obtained (see [12] for de-
tails).

One of the main advantages of the HA method is that most
of the dynamics of the system is captured by the lowest terms
in the adiabatic expansion in Eq. (44). As a consequence,
very few terms in the expansion, typically around ten, are
enough for an accurate description of the continuum wave
function [15,43]. This reduces drastically the number of radial
equations to be computed, and therefore the size of the matrix
formed by the radial wave functions, un′

n .
The reason for such a convenient behavior of the HA

expansion can be understood by noting that, when only short-
range interactions are involved (as in the nnn case), each
adiabatic potential Un(ρ) in Eq. (47) behaves asymptotically
as K (K + 4)/ρ2. In such a way, each term of the HA basis
tends to a single HH basis element term:

�JJz
n (ρ,�) → ϒ

Kγ
JJz

(�). (48)

This permits one to associate a specific grand-angular mo-
mentum value, K , to each adiabatic channel n. In fact, the
asymptotic behavior of the continuum un′

n (Q, ρ) functions
takes the form

un′
n (Q, ρ → ∞)

→ iK ′√
Qρ[δKK ′JK ′+2(Qρ) + TKK ′OK ′+2(Qρ)],

(49)

where K and K ′ are the grand-angular momentum values
associated with the incoming and outgoing channels n and n′,
respectively, OK+2(Qρ) = YK+2(Qρ) + iJK+2(Qρ) is the out-
going asymptotic wave function, TKK ′ is a T -matrix element,
and JK+2(Qρ),YK+2(Qρ) are the regular and irregular Bessel
functions.

It should be noticed that when inserting Eq. (49) into the
expression of the full continuum wave function, Eq. (44), the
second term, proportional to the T matrix, tends to zero as
K increases, since the interaction that produces the coupling

between the different HH channels remains hidden by the cen-
trifugal barrier K (K + 4)/ρ2. On the other hand channels with
increasing values of K are important as the energy increases.

Following Eqs. (35) and (49), the norm of the scattering
wave function for the three-body state with total angular mo-
mentum J tends asymptotically to

|�J |2�(ρ → ∞)

= (2J + 1)
6

8

26

(Qρ)5

∑
KK ′

∣∣uK ′
K (Q, ρ → ∞)

∣∣2
NST (K ),

(50)

where uK ′
K (Q, ρ → ∞) is normalized as given in Eq. (49),

and the (2J + 1) factors appears after summation over all
the possible Jz projection quantum numbers. After summation
over all the possible J states, the norm becomes∑

J

|�J |2�

= 6

8

26

(Qρ)4

∑
J

(2J + 1)

×
⎛
⎝ K0∑

KK ′

∣∣∣∣∣uK ′
K (Q, ρ)√

Qρ

∣∣∣∣∣
2

+
∑

K>K0

J2
K+2(Qρ)

⎞
⎠NST (K ),

(51)

where K0 is the quantum number indicating the maximum
value of K at which the interaction distorts the free scat-
tering state. For K > K0 the wave function is taken as the
free solution; i.e., for K > K0, uK ′

K (Q, ρ) is replaced by
iK ′√

QρδKK ′JK ′+2(Qρ).

D. The nnn correlation function

In order to calculate the three-neutron correlation function,
we model the nn interaction with a Gaussian potential for the
singlet channel, S = 0:

Vnn(r) = V0e−(r/r0 )2P0, (52)

with the parameters V0 = −30.42 MeV and r0 = 1.8148
fm selected to reproduce the nn s-wave scattering length
and effective range of −18.9 ± 0.4 fm and 2.8 ± 0.1 fm,
respectively [44].

Since the spatially symmetric state is not present in the nnn
system, we have that the only states for which the lowest adia-
batic HH channel (going asymptotically to K = 1) contributes
are the Jπ = 1/2−, 3/2− states.

We first consider the Jπ = 1/2− state with total angular
momentum L = 1 (
x = 0, 
y = 1) and total spin S = 1/2. If
we consider the K = 1 adiabatic channel only, making use of
Eqs. (45), (48), and (49) we get that the asymptotic form of
Eq. (44) is given by

�
1/2−
HA

ρ→∞−→ i(2π )3

(Qρ)2
[J3(Qρ) + T11O3(Qρ)]ϒ1γ1

1
2

− (�ρ )
〈
χS= 1

2

∣∣ϒ1γ1
1
2

− (�Q)
〉
, (53)

where γ1 ≡ {
x = 0, 
y = 1, L = 1, S = 1
2 }.
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If we assume that the interaction distorts very little the behavior of the adiabatic channels for n > 1, the wave function of the
1/2− state can be written as

�1/2− = �
1/2−
HA + �

1/2−
0 , (54)

where the free wave function is defined as

�
1/2−
0 = (2π )3

(Qρ)2

∑
K�3

iK JK+2(Qρ)ϒKγ1
1
2

− (�ρ )
〈
χS= 1

2

∣∣ϒKγ1
1
2

− (�Q)
〉
. (55)

Here the sum over K starts at K = 3 since the K = 1 asymp-
totic term is included in �

1/2−
HA .

The norm of the wave function of Eq. (54) can be computed
as given in Eq. (26), and it can be written as∣∣�1/2− ∣∣2

�
= ∣∣�1/2−

HA

∣∣2

�
+ ∣∣�1/2−

0

∣∣2

�

+ 〈
�

1/2−
HA

∣∣�1/2−
0

〉
�

+ 〈
�

1/2−
0

∣∣�1/2−
HA

〉
�
, (56)

where the first two terms in the right-hand side are the norms
of �

1/2−
HA and �

1/2−
0 , respectively. The last two terms arise

from the interference between the two wave functions, and,
by use of Eqs. (44) and (55), one can easily get that

〈
�

1/2−
HA

∣∣�1/2−
0

〉
�

= (2π )6

(Qρ)5

Kmax∑
K>1

wK
1 (ρ)JK+2(Qρ), (57)

where wK
1 (ρ) = √

Qρ u1
1(ρ)〈ϒKγ

1
2

− |�
1
2

−

1 〉�ρ
.

The correlation function is then computed after insert-
ing the expression given in Eq. (56) into Eq. (2). It can
be seen that the contribution of the interference terms of
Eq. (57) is very small, since the term K = 1 is not present
and w1

K (ρ → ∞) = 0 for K > 1, whereas JK+2(Qρ → 0) =
(Qρ/2)K+2/(K + 2)!. This is illustrated in Fig. 5, where the
contribution to the correlation function arising from the Jπ =
1/2− state is shown when one and two adiabatic channels are
considered. The label “tail” indicates that free contributions
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2 adiabatic 
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FIG. 5. The Jπ = 1/2− contributions to the correlation function.
One or two adiabatic channels are considered with and without the
inclusion of higher contributions treated as free (tail).

are included for values of K > 1 or K > 3 in each of the
two cases. As we can see, inclusion of the second adiabatic
channel slightly modifies the computed curve only in the
large momentum region. In fact, as seen in the inset of the
figure (where a zoom of the curves is shown), the result with
one adiabatic channel plus the tail basically overlaps with the
result with two adiabatic channels (for which the inclusion
of the tail makes no visible change). When the square of the
wave function is taken, Eq. (56), the interference terms are
automatically included. However, in the inset of the figure we
can also see that removal of the interference contributions
hardly modifies the computed curve. The conclusion is that
one adiabatic channel is sufficient to treat the interaction,
whereas higher channels can be considered as free.

In Fig. 6 the correlation function including the Jπ =
1/2− and Jπ = 3/2− states with ρ0 = 2 fm is analyzed. The
convergence in terms of Kmax, the maximum grand-angular
momentum quantum number used to describe the adiabatic
potentials, is very fast; a value of Kmax = 31 is already suf-
ficiently accurate. Moreover the lowest adiabatic component,
n = 1, gives the main contribution to the correlation function.
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)c (MeV/3Q

0

0.5

1

1.5

2

2.5

3

) 3
Q(

12
3

C

 = 1, n = 1maxK
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 = 41, n = 1, 2maxK

 = 1, 3maxKBessel
 = 1, 3, 5maxKBessel

Total

FIG. 6. The contribution to the correlation function of the states
Jπ = 1/2−, 3/2− for three neutrons computed with one (n = 1) or
two (n = 2) adiabatic channels calculated up to the indicated value
of Kmax. The curves indicated by “Bessel” use Bessel functions as
hyperradial functions in the indicated channels (see text). The total
curve (black) is the correlation function computed using one adia-
batic channel for the states Jπ = 1/2−, 3/2−, calculated using HH
functions up to Kmax = 31, with the other states starting at K = 2
considered free.
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In fact, in the figure the contribution of the second component,
n = 2, is shown, and it almost overlaps with the results given
just using only one adiabatic component. The curves labeled
by “Bessel Kmax = 1, 3” and “Bessel Kmax = 1, 3, 5” are cal-
culated using the Bessel functions as hyperradial function and,
as can be seen, they overlap above 200 MeV with the curves in
which the interaction has been considered. This indicates that
for high values of Q3 the correlation function can be calcu-
lated using the free form. The total curve includes the effects
of the interaction in the lowest two adiabatic channels with
the rest of the contribution coming from the other channels
considered as free, as given in Eq. (51).

V. THE CASE OF THREE PROTONS: INCLUDING
THE COULOMB FORCE

The Coulomb force for a system of three protons is

VCoul =
∑
i< j

e2

ri j
, (58)

where ri j is the distance between particles i and j. Imple-
mentation of this interaction in a three-body calculation has
the significant complication that the matrix formed by the
matrix elements of this potential between different basis terms
(either within the HH or the HA methods) is not diagonal,
even asymptotically. Furthermore, the asymptotic behavior of
the continuum wave functions is not known analytically, and
this makes it rather difficult to extract the T matrix that enters,
for instance, in Eq. (53).

We postpone a complete treatment of the Coulomb interac-
tion to a forthcoming work, and explore here the influence of
the Coulomb force in the correlation function as an average of
the force on the hyperangles, i.e.,

VCoul(ρ) = 1

π3

∫
d�ρ

∑
i< j

e2

ri j

= 3(4π )2

π3

∫
dα sin2 α cos2 α

e2

ρ cos α
= 16

π

e2

ρ
,

(59)

which transforms the Coulomb potential into a function de-
pending only on the hyperradius ρ. The above equation can
be considered as a 0-term in an expansion of the Coulomb
potential in terms of HH multipoles (K expansion). It should
be noticed that a symmetric K = 2 HH function does not
exist, and, therefore, the next term of the expansion will be
the 4-term. This property makes operative the hypercentral
approximation of the Coulomb in the calculation of the ppp
correlation function (for a more complete treatment of the
Coulomb interaction see Refs. [45,46]).

When solving the three-body problem, the hypercentral
Coulomb potential enters directly as a potential in the set of
coupled equations providing the hyperradial wave functions.
Disregarding for the moment the nuclear force, the radial
equations for each value of the grand-angular momentum K
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Antisymmetrization and Coulomb

FIG. 7. The norm of the free scattering wave function for three
protons with and without considering the hypercentral Coulomb
force and antisymmetrization.

are given by(
∂2

∂z2
+ 1 − 2η

z
− (K + 3

2 )(K + 5
2 )

z2

)
uK (z) = 0, (60)

with z = Qρ and η = 16me2/(π h̄2Q), where m is the proton
mass.

When η �= 0 (ppp case), the solution of the equation above
is

uK (z) = FK+ 3
2
(η, z), (61)

which is the regular Coulomb function with order K + 3
2 and

Sommerfeld parameter η, and which for η = 0 (nnn case)
reduces to

uK (z) = z jK+ 3
2
(z) =

√
πz

2
JK+2(z). (62)

Therefore, for the free ppp system, the norm of the contin-
uum wave function is the same as in the nnn case, Eq. (35),
but with the replacement

JK+2(z) −→
√

2

πz
FK+ 3

2
(z). (63)

When this is done, we get

∣∣�0
s

∣∣2

�
= 96

π

1

(Qρ)5

∑
K

F 2
K+3/2(Qρ)NST (K ). (64)

As in the nnn case, if the antisymmetrization of the three
protons is not taken into account, the number of states is given
in Eq. (37), whereas in the case of antisymmetrization it is

NST (K ) = Nm
ST (K ) + 4Na

ST (K ). (65)

The results for the norm given in Eq. (64) are shown in
Fig. 7. Note that the curve obtained implementing antisym-
metrization, but without the Coulomb interaction, coincides
with the one of Fig. 3.
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FIG. 8. Same as Fig. 7 but for the correlation function.

A. Integrating on a spherical source

The free ppp correlation function obtained after integrating
on a spherical source, Eq. (2), coincides with the one of
the nnn system, Eq. (42), with the substitution indicated in
Eq. (63). We therefore obtain

C123(Q) = 96

π

1

Q5ρ6
0

∫
dρ e

− ρ2

ρ2
0

∑
K

F 2
K+3/2(Qρ)NST (K ).

(66)

In Fig. 8 we show C123(Q3) obtained using ρ0 = 2 fm,
and we compare the no Coulomb case (red curve) with the
Coulomb case (violet curve). The green curve shows the case
in which no antisymmetrization of the three protons is taken
into account.

B. Introducing the interaction

The procedure used to introduce the interaction among the
three protons is the same as described for the nnn system.
We therefore use the HA expansion method, and the only
difference is that the numerical solutions for the radial func-
tions, un′

n , in Eq.(45), are obtained including the hypercentral
potential of Eq. (59).

The consequence is that the asymptotic behavior of the
un′

n (Q, ρ) functions is now

un′
n (Q, ρ → ∞)

→ iK ′
√

2

π

[
δKK ′FK ′+ 3

2
(η, Qρ) + TKK ′OK ′+ 3

2
(η, Qρ)

]
,

(67)

which is simply the same as for the nnn system, Eq. (49),
but, once more, with the substitution of Eq. (63), which ap-
plies as well for the irregular functions, in such a way that
OK (η, Qρ) = iFK (η, Qρ) + GK (η, Qρ).

With the same procedure adopted for the nnn case, we ob-
tain, in analogy with Eq. (51), that the norm of the scattering

wave function for the ppp systems is given by∑
J

|�J |2�

= 96

π

1

(Qρ)5

∑
J

(2J + 1)

×
⎛
⎝ K0∑

KK ′

∣∣∣∣∣uK ′
K (Q, ρ)√

2/π

∣∣∣∣∣
2

+
∑

K>K0

F 2
K+ 3

2
(η, Qρ)

⎞
⎠NST (K ),

(68)

where, again, K0 is the quantum number indicating the max-
imum value of K at which the interaction distorts the free
scattering state. Note that the factor

√
2/π that divides the

uK ′
K (Q, ρ) function is a consequence of the normalization

given in Eq. (67), and permits recovering the regular Coulomb
function in the free case.

As a first application of the formalism to the ppp case we
consider two different models for the pp interaction. First, as
in the two-body case, we model the short-range pp interaction
with a Gaussian potential in spin S = 0 [see Eq. (19)], with the
parameters selected to reproduce the pp scattering length and
effective range of −7.8063 ± 0.0026 fm and 2.773 ± 0.014
fm, respectively [44]. In addition we consider also the AV18
NN interaction.

As in the nnn system, we use the HA method and solve
the hyperradial equations for the lowest adiabatic channel.
The only two states having asymptotically the lowest HH
channel (K = 1) compatible with parity and antisymmetriza-
tion are the Jπ = 1/2− and 3/2− states. In the same way,
the lowest adiabatic channel with K = 2 is consistent with
the Jπ = 1/2+, 3/2+, and 5/2+ states. For the Gaussian in-
teraction, the adiabatic channels calculated with the values
Kmax = 31 (Kmax = 30) odd (even) parity states are sufficient
to get convergence in the corresponding adiabatic channels.
However when using the AV18 interaction much higher val-
ues are considered, Kmax = 151 (Kmax = 150) for odd (even)
parity states. After solving the adiabatic equations to obtain
the hyperradial functions uK ′

K (Q, ρ), the norm of the scattering
ppp wave function is completely determined. The states with
Jπ = 1/2−, 3/2− and Jπ = 1/2+, 3/2+, 5/2+ are given by
the first term of Eq. (68) with K0 = 2, whereas the second
term includes all the other channels. Making use of the norm,
and integrating over ρ as given in Eq. (2), we obtain the ppp
correlation function for each of the cases.

We first study the impact of Kmax on the correlation func-
tion. In Fig. 9 this is shown for the two potential models
and using a source size value of ρ0 = 2 fm. As mentioned,
the interaction has been included in the Jπ = 1/2−, 3/2−
states and Jπ = 1/2+, 3/2+, 5/2+ states with K0 = 1 and
K0 = 2, respectively. The free scattering wave function has
been considered for K > 2. In other words, the figure shows
the correlation function obtained using Eq. (68) with K0 = 2
and, for the AV18 potential, at different values of Kmax in
the computation of the hyperradial functions uK ′

K (Q, ρ). It
is interesting to observe that the converged results for the
Gaussian and the AV18 potential are on top of each other in
the very low Q region. However the values of Kmax needed to
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FIG. 9. The ppp correlation function with a source size of ρ0 =
2 fm, calculated using the first adiabatic channel for asymptotic
states with K = 1, 2, considering different values of Kmax. For K > 2
the free scattering function is considered. The full free case is also
shown.

reach convergence are very different. In fact, as can be seen
in the figure, the AV18 curves for Kmax � 130 almost overlap.
Moreover, we can observe a higher peak when this potential
is used. This is due to contributions beyond the pure s wave at
which the Gaussian potential is limited. We also see that with
increasing Q the effect of the short-range interaction smears
out and the correlation function is well described by the free
scattering wave function.

We now study different partial wave contributions to the
ppp correlation function. This is shown in Fig. 10 where the
different Jπ contributions are shown explicitly for the two
potential models. The results were computed using a source
size of 2.0 fm. We observe that the use of the realistic force
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FIG. 10. The ppp correlation function using the AV18 potential
(solid lines) and comparison to the results using a Gaussian inter-
action (dashed lines). The source size ρ0 = 2.0 fm was used. The
Coulomb free contribution is also shown.

slightly increases the observable value around the peak, which
is mainly due to the contribution of the Jπ = 3/2− state. As
is evident from the figure, the peak of the observable is almost
completely constructed by the odd-parity components of the
wave function. This means that detailed measurements of the
ppp correlation function around the peak could be used to
asses the capability of the potential models to produce the
correct splitting of the three-body P waves’ phase shifts, a
problem already observed in the description of asymmetries
as the pd Ay analyzing power (for a recent discussion see
Ref. [47]).

To complete the study of the correlation function, we also
performed calculations using the AV18 potential plus the Ur-
bana IX three-body force. We observed differences, in the
direction of reducing the correlation function, of the order
of 1% or lower. This confirms the very small effect of the
three-body force in the ppp and nnn systems already observed
in Ref. [16] for the latter. This is mainly due to the Pauli
principle which prevents the three equal nucleons from being
close enough to feel the influence of the three-nucleon force.

Finally we discuss the effects of the source size. In the top
panel of Fig. 11, we show, as a function of the hyperradius, the
overlap of the source function, π3ρ5S123(ρ), with the short-
range potential averaged on the hyperangles, i.e., defined as

V (ρ) = 1

π3

∫
d�ρ

∑
i< j

V0(ri j ). (69)

For this purpose we have used the s-wave part of the AV18
potential. As can be seen from the figure, the effect of the
potential is more appreciable for source sizes larger than 2 fm.
In the bottom panel, the correlation function is shown for
the different source radii. Moreover, the correlation function
considering only the Coulomb potential is explicitly shown as
dashed lines.

C. Comparison with the experimental data

In this section, the calculated ppp correlation function
is compared to the experimental one published by the AL-
ICE Collaboration in Ref. [5]. The experimental correlation
function is shown in Fig. 12 as cyan squares.1 The vertical
lines correspond to the statistical uncertainties while the boxes
denote systematic ones. The measured three-body correlation
function is obtained in a similar way as explained for the
two-body case in Sec. III C. However, Eq. (21) is extended
to three particles as

C(Q3) = N A(Q3)

B(Q3)
. (70)

Here, A(Q3) corresponds to the same event triplets, while
the distribution B(Q3) is obtained by combining three par-
ticles from three different events. The observable Q3 is
Lorentz invariant and is estimated experimentally as Q3 =√

−q2
12 − q2

23 − q2
31, where qi j is the norm of the four-vector

1The first bin, published by the ALICE Collaboration, is not shown
here; however, it is at a correlation function value of 3.5.
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FIG. 11. Top panel: Overlap between the average s-wave poten-
tial and the source function for different radii. Bottom panel: The ppp
correlation function calculated using the AV18 potential for different
source radii (solid lines). The Coulomb free contributions are shown
with dashed lines.

corresponding to the relative momentum between particles
i and j [5]. The normalization constant N is such that the
measured correlation function is equal to unity at Q3 region,
where particles are expected to not interact anymore via final
state interaction [5].

As has been explained previously, the calculated correla-
tion functions cannot be compared directly to the measured
ones since the experimental effects such as momentum resolu-
tion and the presence of secondary and misidentified protons
must be taken into account. The momentum resolution can
be included by performing a convolution of the theoretical
correlation function, the mixed event distribution, and the
momentum resolution matrix as described in Ref. [24]. This
was done by employing the mixed event distribution and
momentum resolution matrix recently published by the AL-
ICE Collaboration in Ref. [48]. The effect of secondary and
misidentified protons can be taken into account by employing
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FIG. 12. The comparison of the ppp correlation function mea-
sured by the ALICE Collaboration [5] (cyan full squares) and the
calculated correlation functions corrected for experimental effects
(bands). The vertical lines on the data points correspond to the sta-
tistical uncertainties and the boxes to the systematic ones. Different
color bands correspond to the different source sizes. For details of
corrected correlation functions, refer to the text.

Eq. (22) extended to the three-particle case as

C(Q3) = λpppCppp(Q3) + λppp�
Cppp�

(Q3) + λXCX(Q3).
(71)

Cppp(Q3) is here included as the calculated correlation
function shown in Fig. 11 with the fraction of genuine ppp
triplets being λppp = 0.618 [5]. The residual pp� correlation
function Cppp�

(Q3), where one of the protons is a product of �

decay, is obtained by taking the Cpp�(Q3) correlation function
and performing a convolution with the decay matrix which
maps the Q3 of initial pp� triplet to the Q3 of the resulting
ppp triplet after the � decay. The pp� correlation function
is known only experimentally and has been measured by the
ALICE Collaboration [5]. However, the published values are
provided only up to Q3 = 0.8 GeV/c. When used to estimate
the Cppp�

(Q3) correlation function, this results in edge effects
at the range Q3 > 0.55 GeV/c. For this reason, the pp�
correlation function at values larger than Q3 = 0.8 GeV/c
is assumed to be equal to the projector values published in
Ref. [5], which are shown to be in good agreement with data.
The fraction of pp� triplets in the experimental sample is
λpp� = 0.196 [5]. In Eq. (71), the λXCX(Q3) term includes
the rest of the contributions, such as protons stemming from
other hyperon decays or misidentified proton contribution.
The correlation functions for CppH (Q3), where H denotes
hyperons other than � which decay to protons, are not known.
However, the λ parameters for single channels are very small
and thus, after accounting for the decay kinematics, CpppH (Q3)
are expected to be equal to unity. The correlation function
for misidentified protons is also assumed to be equal to unity.
Thus CX(Q3) in Eq. (71) is also assumed to be equal to unity.
The resulting correlation functions C(Q3) are shown in Fig. 12
as colorful bands for different source sizes, already accounting
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for momentum resolution effects. The bands include propa-
gated systematic and statistical uncertainties of Cpp�(Q3).

The comparison in Fig. 12 shows that the calculated cor-
relation functions are systematically below the experimental
data in the entire range Q3 < 0.8 GeV/c, independently of
the chosen value for the source size ρ0. In contrast, the shape
is well reproduced. The experimental correlation function
obtained in Ref. [5] was normalized to unity in the range
1.0 < Q3 < 1.2 GeV/c, assuming that any effect induced by
the final state interaction of the three protons is absent in
such an interval. This argument was motivated by the anal-
ysis of the pp pair correlations in ppp triplets and Monte
Carlo studies (see Ref. [5] for more details). Interestingly, the
calculation performed in this paper evidences the presence
of residual correlations also at large Q3. These correlations
result in a dominantly repulsive effect at Q3 > 0.5 GeV/c
mainly due to the antisymmetrization of the ppp wave func-
tion. A proper comparison between the data and the theory
would require extending the experimental measurements to a
larger Q3 interval, including the region where the theoretical
correlation function converges to unity. Note that this study
has to be considered preliminary, as further improvements in
the modeling are required concerning, in particular, the source
function.

VI. CONCLUSIONS

In the present work we have made a detailed analysis of the
nnn and ppp correlation functions. This study was motivated
by the recent effort to measure the ppp correlation function
from high-energy pp collisions at the LHC. The main diffi-
culties in the computation of this observable arise from the
complicated structure of the asymptotic ppp wave function
induced by the long range Coulomb interaction and the differ-
ent spatial-spin structures needed to fulfill the Pauli principle
requirements. In this analysis we performed a simplification
and treated the Coulomb interaction using the hypercentral
approximation. This approximation is well motivated by the
absence of the K = 2 term in the expansion of the Coulomb
interaction in terms of HH functions. Accordingly we can
solve the associate dynamical equations with boundary condi-
tions similarly to the nnn case. To this end we made use of HA
method, showing that the lowest adiabatic potential already
gives an extremely accurate description of the dynamics. In
a first step we used a simple potential model consisting in
a Gaussian interaction parametrized in order to reproduce
the pp scattering length and effective range. This simplified
interaction captures most of the structure of the observable in
both, the two-body and the three-body sectors. This is mainly
motivated by the large value of pp scattering length when
the Coulomb interaction is switched off. Motivated by the
encouraging results in the description of the ppp correlation
function using the mentioned approximations, in a second step
we considered the AV18 interaction. The main modification
with the precedent results was found in the 3/2− state with
a higher peak and, consequently an overall increase of the
observable. Note that the inclusion of the Urbana IX three-
body force, very important in the description of nuclei, gives a
negligible contribution in the correlation function mainly due

to the low probability of having three protons close to each
other.

The present results complete the study of the three-nucleon
correlation function initiated with the study of the pd cor-
relation function [6,7]. It shows that the measurements of
these observables from high energy collisions open the door
to a new way of studying reactions in different three-body
systems. In particular it would be possible to use the present
method, the HH basis in conjunction with the HA expansion,
to describe the pp� correlation function already measured by
the ALICE Collaboration.
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APPENDIX: THE SOURCE FOR TWO AND THREE
PARTICLES

The correlation function of a pair of (identical) particles
can be written in general as (here, for simplicity, we disregard
the particle spins)

C12(p1, p2) =
∫

d3r1 d3r2S1(r1)S1(r2)

×|�(p1, p2, r1, r2)|2, (A1)

where �(p1, p2, r1, r2) denotes the two-particle scattering
wave function that asymptotically describes particle 1 (2) with
momentum p1 (p2). In Eq. (A1) S1(r) describes the spatial
shape of the source for single-particle emissions. It can be
approximated as a Gaussian probability distribution with a
width RM , which is defined as follows:

S1(r) = 1(
2πR2

M

) 3
2

e−r2/2R2
M . (A2)

RM is also known as the source size for single particle emis-
sion. Equation (A1) can be simplified by noting that in the
wave functions the dependence on the overall center-of-mass
(CM) coordinate can be trivially factored out. Introducing
the CM coordinate RCM ≡ r1+r2

2 and the relative distance
r ≡ r1 − r2, and rewriting the two-particle wave function as
�(p1, p2, r1, r2) = e−iRCM·Pψk(r), lead to the Koonin-Pratt re-
lation for two-particle correlation function [32,33], which we
write here as

C12(k) =
∫

d3r S(r)|ψk(r)|2, (A3)
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where ψk(r) represents the two-particle relative wave func-
tion, with k = (p1 − p2)/2, and S(r) is the two-particle
emission source, given by

S(r) =
(

1

4πR2
M

)3/2

e
− r2

4R2
M . (A4)

This source is identical to that given in Eq. (15), so we can
identify R with the single-particle source radius RM .

The generalization to the calculation of the correlation
function of three identical particles is given by

C123(Q) =
∫

d3r1d3r2d3r3 S1(r1)S1(r2)S1(r3)|�s|2, (A5)

where Q and �s were defined at the beginning of Section IV.
Since we are considering the case of three identical particles,
for all of them the source is assumed to have the same form as
that given in Eq. (A2).

Equation (A5) can be simplified by introducing the follow-
ing variables:

x = r2 − r2, y′ = r3 − r1 + r2

2
, R3 = 1

3
(r1 + r2 + r3).

(A6)

Now

d3r1d3r2d3r3 = d3R3d3xd3y′ (A7)

and

S1(r1)S1(r2)S1(r3) = e−(3R2
3+ 2

3 y′2+ 1
2 x2 )/2R2

M(
2πR2

M

) 9
2

. (A8)

Integrating over d3R3 (the wave function �s does not depend
on R3), we obtain

C123(Q) =
∫

d3xd3y′ e−( 4
3 y′2+x2 )/4R2

M(
3πR2

M

) 3
2
(
4πR2

M

) 3
2

|�s|2. (A9)

In term of the Jacobi vector y =
√

4
3 y′ (see the beginning of

Sec. IV), this integral can be rewritten as

C123(Q) =
(

3

4

) 3
2
∫

d3x d3y

× e−(x2+y2 )/4R2
M(

3πR2
M

) 3
2
(
4πR2

M

) 3
2

|�s|2 . (A10)

Introducing the hyperradius (see again the beginning of
Sec, IV), given by ρ =

√
x2 + y2, and the hyperangular vari-

ables �ρ [10], such that d3x d3y = ρ5dρ d�ρ , we finally
obtain

C123(Q) =
∫

ρ5dρd�ρ S123(ρ)|�s|2, (A11)

where

S123(ρ) = e−ρ2/4R2
M

(4πR2
M )3

, (A12)

and which after comparison with Eqs. (2) and (40) permits us
to identify ρ0 = 2RM (see, however, the discussion at the end
of Sec. V C).

Starting with a Gaussian shape for the single-particle
emission, the result is that two- and three-particle emission
sources are spherical. Accordingly, the correlation functions
in Eqs. (1) and (2) can be obtained after replacing |�s|2 by the
“angle averaged” square modulus of the wave functions.

For example, in the experimental detection of two protons,
all pairs with the same k but arbitrary direction �k are counted
to construct C12(k). This is equivalent to performing the aver-
age 1

4π

∫
d�k|�s|2, and the correlation function in Eq. (1) can

then be computed as

C12(k) =
∫

r2dr d�rS12(r)

[
1

4π

∫
d�k|�s|2

]
. (A13)

Since the source function is spherical, Eq. (A13) can be
trivially rewritten as

C12(k) =
∫

r2dr d�′
rS12(r)

[
1

(4π )2

∫
d�r

∫
d�k|�s|2

]
,

(A14)

which makes clear that the correlation function C12(k) can be
computed as given in Eq. (1), but replacing |�s|2 by the “angle
averaged” norm of the scattering wave function as defined in
Eq. (6).

The same situation results in the three body case. The
detection of three protons at a fixed value of Q is equiva-
lent to performig the average over �Q. Noting that

∫
d�Q =∫

d�ρ = π3, and following the same reasoning as shown
above for the two-body case, we have that the correlation
function C123(Q) can also be computed as given in Eq. (2),
but replacing now |�s|2 by the “angle averaged” norm of the
scattering wave function given in Eq. (26).
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