
PHYSICAL REVIEW C 109, 034004 (2024)

Neural network solutions of bosonic quantum systems in one dimension
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Neural networks have been proposed as efficient numerical wave function Ansätze, which can be used to
variationally search a wide range of functional forms for ground-state solutions. These neural network methods
are also advantageous in that more variational parameters and system degrees of freedom can be easily added.
We benchmark the methodology by using neural networks to study several different integrable bosonic quantum
systems in one dimension and compare our results to the exact solutions. While testing the scalability of the
procedure to systems with many particles, we also introduce using symmetric function inputs to the neural
network to enforce exchange symmetries of indistinguishable particles.
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I. INTRODUCTION

Solving many-body quantum mechanical systems involves
obtaining solutions to a high-dimensional partial differential
equation or diagonalizing exponentially large Hamiltonians,
both of which pose significant challenges. Thus, analytically
solved models are few and far between [1–7].

Various methods have been developed to obtain approx-
imate solutions to complex quantum systems. For one such
method called variational Monte Carlo, a variational Ansatz
for the ground-state wave function is assumed and an estimate
for the ground-state energy is obtained by minimizing the
energy of the system over the parameters of the chosen ap-
proximate wave function form. The use of trial wave functions
has been used to study a broad range of many-body systems,
from Fermi and Bose gases to quantum chemistry [8–17]. In
particular, the Slater-Jastrow [18] wave function Ansatz has
been employed widely [19–21] because, by construction, it
captures correlations between interacting particles and incor-
porates the correct intuitive functional form of the physical
system. Tensor networks and density matrix renormalization
group methods [22] were shown to efficiently encode low-
lying eigenstates of local, gapped Hamiltonian spin systems
using only a polynomial number of parameters. This elimi-
nates the need to search through an exponentially large Hilbert
space.

More recently, established machine learning techniques
such as neural networks have found their way into quantum
physics [23,24]. In the context of studying ground states of
quantum systems, neural networks conveniently provide a
numerical wave function Ansatz for which one can vary to
minimize the system energy cost function. The minimization
can be done efficiently using established machine learning
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methods of back propagation and gradient descent. Another
appeal of using neural networks is that they were shown to
be universal function approximators [25,26] and thus can be
used to describe any general wave function. As a consequence,
the number of variational parameters is not intrinsically tied
to the function form (i.e., Jastrow) of the Ansatz and can be
increased easily.

Carleo and Troyer [27] showed that a type of neural net-
work called restricted Boltzmann machines were sufficient to
describe ground-state wave functions of spin systems with
a reasonable number of parameters. Later, restricted Boltz-
mann machines was found to map directly to matrix product
state approximations of spin states [28,29]. For particles in-
teracting via continuous-space potentials, several systems of
indistinguishable particles have also been studied using neu-
ral networks including the Calogero-Sutherland model [30],
nuclear models [31–35], and chemical systems [36,37].

Quantum systems involving indistinguishable particles
must have ground-state wave functions, which satisfy position
exchange (anti)symmetries. This poses a challenge in which
the constructed neural network trial wave function should
satisfy these constraints. In one spatial dimension, Bose sym-
metry can be satisfied by feeding in ordered coordinates of the
bosons into the neural network [30]; however, this method is
not easily generalizable to systems of higher dimensions. Pfau
et al. [37] developed the FermiNet neural network structure
to impose fermionic antisymmetry to study electron-electron
and electron-ion interactions in atoms. The FermiNet structure
constructs the most general fermionic wave function space for
which one can search for the ground state through by tak-
ing Slater determinants of permutation-equivariant functions.
The permutation-equivariance of such functions are enforced
through permutation-equivariant neural network layers.

In this paper, we instead propose the use of carefully
selected symmetric inputs to enforce the Bose symmetry of
the neural network Ansatz. By using symmetric functions as
inputs to the neural network, we are able to construct the
most general Bose symmetric function as we increase the
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number of nodes and layers; this gives us full flexibility in
changing the architecture of the network. We benchmark the
use of symmetric functions by computing ground-state ener-
gies and wave functions of several one-dimensional, exactly
solvable quantum systems and comparing both quantitative
and qualitative results. Our methodology is not restricted to
studying exactly solvable systems and we also explore sys-
tems in which no analytical solution is known. We further
demonstrate the scalability and versatility of our neural net-
work Ansatz by calculating ground states of systems with
dozens of particles.

In Sec. II, we outline the various models for which we
study and compare numerical results to. In Sec. III, we explic-
itly construct the Bose symmetric neural network functions
and outline our procedure for computing ground states. Sec-
tion IV discusses our results; we find that our neural network
Ansatz is able to accurately compute ground-state energies
and features of the many-body systems considered over their
various phases. Then we conclude with Sec. V by exploring
prospects of using symmetric function constructions to write
general bosonic and fermionic trial wave functions in a higher
number of spatial dimensions.

II. MODELS

To show the validity of our symmetric input neural network
solutions, we apply our neural-network-based methodologies
to solve for the ground-state wave functions and energies
for several different one-dimensional quantum systems. We
consider both a system of cold bosons in a harmonic trap and
a system of trapped bosons with short- and long-range interac-
tions. Both quantum systems are inspired by the Lieb-Liniger
model [1,2], a homogeneous gas of indistinguishable bosons
interacting via a contact δ-function potential which was shown
to be exactly solvable in one dimension through the use of
Bethe Ansatz [38–41]. These Lieb-Liniger-inspired models
have rich phase structure and have been studied through the
lenses of both finding exact solutions and performing numer-
ical analyses [7,10,42–45]. Thus, they provide good test beds
for comparison of both quantitative and qualitative ground-
state results.

A. Cold bosons in a harmonic trap

The first Hamiltonian that we consider describes spinless
bosons in a harmonic trap. The interactions of the condensate
are approximated by a contact potential. Using units where
h̄ = 1, the Hamiltonian is

Ĥ =
N∑

i=1

(
− 1

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

)
+

N∑
i< j

gδ(xi − x j ). (1)

In general, we take m = ω = 1. The interaction is repulsive
when g > 0 and attractive when g < 0. When g > 0, the in-
teraction strength g is proportional to the two-boson s-wave
scattering length [42]. Although the addition of the harmonic
trap causes the system to no longer be analytically solvable
[10] for the general case of many particles, the two-boson case
has been solved exactly [10,42].

B. Trapped bosons with short- and long-range interactions

Recently, another quantum system has been shown to be
exactly solvable for a general case of N bosons [7]. The model
consists again of particles in harmonic confinement interact-
ing with a δ-function potential of strength g. Additionally, a
long-range linear interaction potential of strength σ is added,
which, in one dimension, corresponds to either Coulomb re-
pulsion (σ < 0) or gravitational attraction (σ > 0).

Ĥ =
N∑

i=1

(
− 1

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

)

+
N∑

i< j

(gδ(xi − x j ) + σ |xi − x j |). (2)

Again, we take m = ω = 1. The model was found to be
integrable when σ = −mωg/2 [45].1 In that case, g > 0 cor-
responds to both interaction terms being repulsive and g< 0
corresponds to both terms being attractive. The coupling
strength is again related to the one-dimensional s-wave scat-
tering length as = −2/(mg). The exact expression for the
ground-state energy of the Hamiltonian (2) was found to be

E0 = Nω

2
− mg2 N (N2 − 1)

24
(3)

with a corresponding (non-normalized) ground-state wave
function

ψ0(x1, ...xN ) =
∏
i< j

e−|xi−x j |/as
∏

i

e−x2
i /(2a2

ho ), (4)

where aho = √
1/(mω) denotes the harmonic oscillator

length.
When g > 0, the ground-state wave function is maximized

at |xi − x j | = Na2
ho/as and the bosons tend to spread out with

equal spacing about the center of the harmonic trap. When
a weak repulsion is turned on, the system forms an incom-
pressible liquid of flat density [46,47]. In the limit of strong
repulsion g � 1 the probability of overlap between any two
particles drops to zero and the system forms a Wigner crystal
[48]. In the other regime, when g < 0, the bosons collapse into
the center of the trap. In the limit of g → −∞, the ground-
state wave function of (2) becomes

ψ0(x1, ..., xN ) =
∏
i< j

e−|xi−x j |/as (5)

resembling a McGuire bound-state solution [41] describing a
bright soliton [49]. It is surprising that despite the fact that
different signs of the interaction strength g yield such differ-
ent behaviors, the expression (3) for the ground-state energy
of the system implies that the ground-state energy does not
depend on the sign of g.

1References [7,45] claim the solution found is for the regime where
σ = −mωg. However, we analytically find that the provided solution
is correct not for σ = −mωg, but for σ = −mωg/2.
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III. METHODS

Given a Hamiltonian describing a quantum system of N
indistinguishable bosons, we would like to solve the time-
independent Schrödinger equation for the ground-state energy
and wave function. To do this, we employ the variational prin-
ciple; any arbitrary wave function ψ must have an expectation
value of the energy at least as large as the ground-state energy.

〈E〉0 � 〈E (θ )〉 =
∫

dX ψ†(X, θ )Ĥψ (X, θ )∫
dX ψ†(X, θ )ψ (X, θ )

. (6)

Here X stands for the positions of the N bosons. Typically, one
begins with an Ansatz for the wave function ψ (X, θ ), where
the θ are its variational parameters and then minimize 〈E (θ )〉
with respect to θ to obtain an estimate for the ground state of
the quantum system.

A. Neural network wave function Antsätze

The quality of the estimate for the ground-state energy and
wave function depends both on the number of variational pa-
rameters one uses as well as the particular functional form of
ψ . Although one could successfully make well-posed guesses
as to the correct functional form of the ground-state wave
function based on expectations on the underlying physics of
the system, we would like to more systematically search the
space of potential ground-state wave functions. In this context,
the application of neural networks is powerful.

1. Neural networks

We define a neural network with L layers as a function,
which takes n1 = N inputs and produces nL = M outputs,
defined in the following way:

Ii+1 = Oi = f (Wi�Ii + �bi ), 1 � i � L − 1

OL = WL �IL + �bL. (7)

The inputs Ii at layer i are multiplied by an ni+1 × ni matrix of
weights Wi.2 A bias vector �bi of length ni+1 is added before
applying an activation function f to each resulting vector
element. The output Oi of the ith layer then becomes the input
for the (i + 1)th layer, where the same procedure is repeated
with a different set of weights and biases. While in general,
a different activation function can be used at each layer, we
choose to keep the same function throughout. To ensure that
the neural network produces an output whose range is over
all reals, an activation function is not used in the final output
layer.

Neural networks are useful in the context of writing down
a variational Ansatz for the wave function because multilayer
neural networks have been shown to be universal function
approximators [25,26]. The advantage is that, without needing
to change the architecture of the neural network function, we
can explore a general space of functions to find the ground-
state wave function by varying the parameters θ = {Wi, �bi}.

2For clarity, n1 = N and nL = M; ni is the number of nodes at
layer i.

The efficiency of the functional expressivity for many-body
wave functions, however, is not clear and is a property we seek
to explore. We denote our Ansatz neural network function as
A(I1, . . . , IN ); it takes in N inputs and returns a single output
(M = 1).

2. Enforcing ground-state symmetries

A neural network Ansatz for the ground-state wave func-
tion of a system of N indistinguishable bosons should satisfy
the following two constraints. First, the wave function must
obey Bose exchange symmetry.

ψ (. . . , xi, . . . , x j, . . .) = ψ (. . . , x j, . . . , xi, . . .), (8)

where the xn are the positions of the bosons. Thus we must
construct our neural network such that it is fully symmetric
under exchange of particle positions. To do this, we look for
a bijection between the set of particle positions {xi} and a
set of functions of {xi}, which are symmetric under xi ↔ x j .
The simplest such bijection generates the set of elementary
symmetric polynomials

ei =
∑

1� j1< j2<...< ji�N

x j1 x j2 . . . ji . (9)

For instance, for N = 3:

e1 = x1 + x2 + x3,

e2 = x1x2 + x1x3 + x2x3,

e3 = x1x2x3.

(10)

We can see this by noting that the ei are the coefficients of
a degree-N polynomial over an auxiliary variable t whose N
roots are the positions xi, namely

f (t ) = (t − x1)(t − x2) . . . (t − xN ). (11)

For ease of implementation, however, we note that the
Newton-Girard identities define a further bijection between
the set of {ei} to the set of power sums

ξi =
N∑

k=1

xi
k . (12)

Since the set of {ξi} are also fully symmetric under exchange
of xi, we can construct a Bose symmetric neural network
function by feeding in the {ξi} as inputs (Ii = ξi). In practice,
for large N , |ξi| can easily become extremely large; thus, we
normalize the initial particle positions by a factor w

ξ̃i =
N∑

k=1

(
xk

w

)i

(13)

such that the ξ̃i are at most O(1) throughout the search for
the ground-state wave function. The coordinate rescaling fac-
tor w is chosen to be an estimate of the magnitude of the
largest typical xk sampled from π (X ) ∝ ψ0(X )2. Because the
ground-state wave function is not known a priori for systems
without analytic solutions, the proper w must often obtained
through trial and error. Insufficiently large w manifest as
numerical instabilities when computing the neural network
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outputs

ψ (x1, . . . , xN ) ∼ A(ξ̃1, . . . , ξ̃N ). (14)

The {ξ̃i} retains information about the original particle coordi-
nates but loses information about their ordering, as desired.

Second, the ground-state wave function of a system of
indistinguishable bosons can be taken to be real and positive.
Thus, we constrain our neural network weights and biases to
be real valued. We can also, without loss of generality, write
the wave function Ansatz as

ψ (x1, . . . , xN ) = e−A(ξ̃1,...,ξ̃N ) × e−

∑N

i=1 x2
i . (15)

Since we are looking for bound ground-state solutions of
the Hamiltonians models we consider, we want to search the
space of wave functions, which vanish at infinity. We multiply
our neural network function by the Gaussian factor to ensure
that this property is satisfied even when the neural network
function itself may be relatively flat over its inputs for a given
set of weights and biases. Because the bosons in the quantum
systems we study are confined in a harmonic trap with m =
ω = 1, we choose 
 = 0.5. The neural network function A,
then, is purely responsible for capturing the complexities of
particle interactions. At zero interparticle interaction strength,
A should minimize trivially to zero everywhere in the ground
state.

B. Neural network architecture

To search for the ground-state energy and wave function of
a quantum system, we first construct a neural network wave
function Ansatz of the form in (15). For the neural network,
we choose to use the continuously differentiable CELU as our
activation function f .

CELU(x) =
{

x x > 0
ex − 1 x � 0 . (16)

Furthermore, we initialize the real-valued weights and biases
of the neural network to be O(1) and nonzero, drawn ran-
domly from a normal distribution centered around zero with
standard deviation σ = 1. Using 〈E〉 as a cost function, we
perform gradient descent using the standard Adam optimizer
[50] to approach the ground state. Adam utilizes an adaptive
learning rate that allows for a quicker convergence toward
minima at a reduced training cost relative to other gradient de-
scent methods. We use Adam step sizes of between 10−3 and
10−6, decreasing the step size as the minimization approaches
closer to convergence. Using relatively large step sizes in cer-
tain regions of parameter space close to convergence can lead
to being stuck in orbit cycles and exhibit oscillatory behavior
in the cost function [51]. The other hyperparameters of the
Adam optimizer describing the decay rates of the moments
and ensuring numerical stability are kept at their default val-
ues: β1 = 0.9, β2 = 0.999, ε = 10−8.

Because the integrals involved in obtaining 〈E〉 and
〈∂E/∂θ〉 are difficult to compute exactly for a compli-
cated neural network function and for many particles N , we
estimate the energy and the gradient using Metropolis im-
portance sampling, drawing from the distribution π (X ) ∼
ψ (X, θ )2/

∫
dX ψ (X, θ )2. However, the Hamiltonians that we

FIG. 1. Shows the relative error of the ground-state energies for
the quantum system of N bosons described by the Hamiltonian in
(2) as the number of neural network parameters β is increased. Eight
layers were used in the neural network throughout. The statistical
error bars from the Monte Carlo calculations on some points are too
small to be seen. 〈E〉0 here is taken to be the value of the ground-state
energy computed with the largest β.

study contain potential terms, which involve δ functions in
position. This creates a zero-overlap problem in the Monte
Carlo evaluation of this integral in which none of the sampled
position configurations induce a contribution to the energy or
gradient from those δ-function terms. We introduce a remedy
in Appendix. Although computing the gradient using Monte
Carlo methods is not as precise as an analytic calculation,
the stochasticity tends to aid in avoiding being stuck in local
minima during the minimization [52–54].

In general, there has not been a systematic solution to
choosing an optimal number of layers and nodes of a neu-
ral network for any given problem [55]. Here, we arbitrarily
choose to construct our neural network function with between
4–10 layers. Although a more careful analysis in choosing the
number of layers has yet to be done, we decide to use more
layers when solving quantum systems of more particles since
we expect that more layers are needed to capture the ground
state of a more complicated system. Keeping the same number
of layers in solving a particular system, we systematically
increase the number of nodes at each layer until we find that
our prediction for the ground-state energy ceases to decrease
within error bars given by the finite Monte Carlo sampling.
Figure 1 shows convergence in 〈E (β )〉 as we increase the
total number of variational parameters (weights and biases)
in the neural network. We find that an increasing number of
parameters for systems of more particles is needed; however,
this dependence appears to be slower than exponential in
number of particles.

Finally, to perform the neural network computations and
gradient descent minimizations, we utilize Google’s JAX [56]
package in PYTHON. JAX has built-in automatic differentiation,
just-in-time compilation speed up, and vectorization features,
which make it an appealing and convenient choice to run
neural network computations.
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FIG. 2. Shows the ground-state energies of the quantum system
described in Sec. II A. We plot the results computed from our neural
network Ansatz (red) against the exact results (black) given by Busch
et al. [42]. The statistical error bars from the Monte Carlo integration
of the energy in most cases are too small to be seen. Convergence
towards the exact result is seen as the number of parameters β in the
neural network Ansatz is increased.

IV. RESULTS

To check that our variational neural network wave function
Ansatz (15) is universal enough to capture the ground-state
behaviors of many different quantum systems, we use our
Ansatz to compute the ground states in various phases of the
Hamiltonian models described in Sec. II. We compare our
results to the analytic solutions of the exactly solvable models.
We then also explore an unsolved regime of one of these
models.

A. Cold bosons in a harmonic trap

Preliminarily, we first study a one-dimensional system of
two indistinguishable bosons (N = 2) in a harmonic trap,
interacting via a contact potential (Sec. II A). An exact ex-
pression for the ground-state energy of the system was given
by Busch et al. [42]. Using our neural network Ansatz, we
compute the ground-state energies of the system at various
interaction strengths g. Figure 2 shows a comparison of the
two results. As we increase the number of parameters β in the
neural network Ansatz, we find that, over the wide range of
g, the neural network ground-state energies converge towards
agreement with those of the analytic solution to within error
bars. The mean values are also consistent with the exact ex-
pression to approximately 1–2 % precision. Throughout the
final calculations for this model, we fixed our neural network
to have four layers and roughly 5 × 104 variational parame-
ters. Although this likely uses more parameters than needed
to describe the simpler two-boson system, the results give
confidence that our Bose symmetric neural network Ansatz,
as desired, is able to capture the ground-state physics of the
different systems without needing to specify a particular func-
tional form for the Ansatz or adjusting the architecture of the
neural network.

B. Trapped bosons with short- and long-range interactions

Next, we examine the model in which the bosons interact
with a long-range linear potential along with the δ-function
potential whose properties are summarized in Sec. II B. We
are able to use the neural network Ansatz to study both the
exactly solvable regime of σ = −g/2 solved by Beau et al. [7]
as well as the regime σ = −g in which no analytic solution is
known.

1. Exactly solvable regime (σ = −g/2)

We again begin with a simpler system of just two particles.
Using our neural network Ansatz, we compute the ground-
state energies and wave functions for various values of the
coupling in the exactly solvable regime g = −σ/2 and com-
pare the results to the analytic solution. Figure 3 displays
the ground-state wave function of the system as computed by
the neural network method while Fig. 4 shows a comparison
of the ground-state energies. We find that the ground states
given by the neural network Ansatz give the same behavior as
described by the exact ground-state wave function (4). When
g > 0 and the interactions are both repulsive, the two bosons
separate an equal distance apart from the center of the har-
monic trap. Alternatively, when g < 0 and the interactions are
both attractive, the bosons collapse towards the center of the
trap and form a bright soliton. Quantitatively, the ground-state
energies computed using the variational method also agree
with the analytic expression (3) to within 2% statistical errors.
The unintuitive quadratic dependence of the ground-state en-
ergy on g is also confirmed.

Having shown the ability of our neural network Ansatz to
accurately compute ground-state wave functions and energies
of smaller, simpler systems, we further demonstrate the versa-
tility and generalizability of the neural network methodology
by computing ground-state properties of the quantum system
in (2) with 50 indistinguishable bosons.3 We study both a
repulsive system (g = 0.05) and an attractive system (g =
−0.03). Using a neural network Ansatz with β ≈ 2 × 105,
we find that the computed ground-state energies fall within
1% of those predicted by the exact E0 (3); the calculations
yielded for g = 0.05, ENN

0 = 12.083(72) as compared with
E0 = 11.984 375 and for g = −0.03, ENN

0 = 20.367(76) as
compared with E0 = 20.314 375.

To comprehensively check of the ground-state features of
the system, we also calculate the local density profile

n(x) =
∫

dx2 . . . dxNψ0(x = x1, x2, . . . , xN )2 (17)

and the density-density correlation function

g2(y) =
∫

dx1 . . . dxN δ(y − |x1 − x2|)ψ0(x1, . . . , xN )2

(18)

3The calculations with N = 50, β ≈ 2 × 105 took roughly 2
min/training step CPU run time using 8 × 105 Monte Carlo
steps/training step on a 32-core Lambda workstation.
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FIG. 3. Shows ground-state behaviors of two bosons interacting
with short- and long-range interactions described in Sec. II B in
the exactly solvable regime σ = −g/2. We plot the position-space
probability density; brighter colors indicate a larger value of ψ (x, y)2

and the bosons have a higher probability of being there. The blue
lines, which run through y = −x, are shown to guide the eye. The
top shows the system with a repulsive potential (g = 1.5) while the
bottom shows the system with an attractive potential (g = −1.0).

for both the analytic ψ0 (4) and the ground-state wave func-
tion given by the neural network Ansatz ψNN

0 .4 The density
functions n(x) and g2(y) are computed by generating his-
tograms of positions x1 and distances x1 − x2, respectively,
both taken from Monte Carlo samples drawn from the dis-
tribution π (X ) ∼ ψ0(X )2/

∫
dXψ0(X )2. Figure 5 shows the

4The choices x = x1 and δ(y − |x1 − x2|) in n(x) and g2(y), respec-
tively, are arbitrary because ψ0 is Bose symmetric.

FIG. 4. Shows a comparison of the ground-state energies of the
system (2) with two bosons at potential strengths σ = −g/2. The
black line shows the analytic expression for the ground-state energy
E0 from Beau et al. (3) and the red points are ground-state energies
computed from the neural network Ansatz.

density functions from both ψ0 and ψNN
0 plotted on top of

one another. We find close agreement between the two in both
phases of the model (g > 0 and g < 0). This gives evidence
that the neural network Ansatz is not only able to provide
an accurate estimate for the ground-state energy but can also
faithfully encode information about the ground-state wave
function for bosonic systems in one dimension.

2. Nonintegrable regime (σ = −g)

The variational approach using neural network Ansätze is
not restricted to computing integrable systems. We also apply
the methodology to explore the system of bosons interacting
with short- and long-range interactions (2) with symmetric
coupling strengths σ = −g for which no exact ground state
has been found. We then compare our computed ground-state
properties to those of the exactly solvable system σ = −g/2
(see Ref. [7]). The results show that although the ground-state
energies behave quantitatively very differently, the general
phase structures of the two regimes are similar in nature.

We begin by looking at a system of four bosons with a
strong repulsive coupling g = −σ = 2.5 and another with an
attractive coupling g = −σ = −1.0. Figure 6 shows the local
density and the pair-correlation function for both four-boson
systems. Just as with the exactly solvable model, a crystal
structure is clearly seen in the case of strong repulsion. The
local density shows four distinct equally spaced peaks. The
pair-correlation function shows that the probability of two
particles being in the same position is close to zero. Instead,
the correlation function is maximal at distinct separations
corresponding to y = ±|x1 − x2| = nd, n ∈ Z where d is the
interparticle spacing between two nearest neighbors in the
crystal. In the case of attraction on the other hand, both the
density profile and the pair density peak strongly at y = 0;
again, all of the particles clump towards the center of the
harmonic trap and form a bright soliton [49].
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FIG. 5. Shows the ground-state density functions for the system
of 50 bosons with σ = −g/2. The top panel displays the normalized
local density while the bottom displays the normalized pair correla-
tion. The points are heights of the position/distance binning and are
linearly interpolated to guide the eye. The dark/light red show the
density functions from the analytic/neural network wave function,
respectively, in the attractive case while the dark/light blue show the
density function from the analytic/neural network wave function in
the repulsive case.

We further use our neural network Ansatz to search for the
ground states of systems of 10 and 50 particles at various
coupling strengths g = −σ . Figure 7 shows the computed
ground-state energies as a function of g while Fig. 8 shows the
single-particle and pair density profiles. We find that here, the
energies exhibit the same asymptotic behavior of E0 → −∞
as |g| → ∞ as in the exactly solvable model. However, the
ground-state energy is no longer independent of the sign of g
and changes asymmetrically as the interactions in the system
flip from repulsion to attraction. When g > 0, the energy drops
more rapidly than in the exactly solvable case while when
g < 0, the energy of the resulting soliton initially rises before
dropping again at higher attractive coupling.

The qualitative features, however, again match the behav-
iors of the system at σ = −g/2. From the local density profile,

FIG. 6. Shows the ground-state density functions for the system
of four bosons. The top panel displays the normalized local density
while the bottom displays the normalized pair correlation. Each
panel contains results for the attractive (red) and the repulsive (blue)
systems.

we see that as we turn on a repulsive potential (g > 0), the
bosons begin to spread symmetrically about the center of
the harmonic trap. As the repulsion becomes stronger, the
particle density shows a mesalike feature of finite width w.
This resembles, for example, the behavior of nuclei at satu-
ration density. The addition of particles to the system does
not change the density but instead increases the droplet size.
The two-body correlation for many particles at weak repul-
sion increases monotonically from the maximal separation
y = ±w inwards towards y = 0 since more pairs of particles
have smaller rather than larger separations. In the vicinity of
zero separation, the probability of finding two particles in
the same location is decreased and we expect a slight dip
in the pair-correlation function. This is clearly seen in the
system with ten particles where the repulsion was stronger; the
dip is not seen in the 50-particle system because the weaker
repulsion allows the bosons to retain a tendency of remaining
close to one another. On the other hand, we again find that
if we instead turn on an attractive interaction between the
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FIG. 7. Shows a comparison of the ground-state energies of the
Hamiltonian (2) with N = 10 and 50 bosons. The red points are en-
ergies computed from the neural network Ansatz at the nonintegrable
regime σ = −g. The statistical error are too small to be seen. The
black line shows the analytic expression for E0 when σ = −g/2 for
comparison.

particles, the local density as well as the pair-correlation peak
sharply at the center of the harmonic trap and zero separation,
respectively. This structure is again characteristic to that of a
bright soliton.

V. CONCLUSIONS

Neural networks and machine learning techniques provide
powerful tools for the variational Monte Carlo approach to
solving many-body quantum systems. We used a neural net-
work to parametrize a variational wave function Ansatz for
the ground state of systems of indistinguishable bosons in one
dimension. Then using the Ansatz, we were able to success-
fully numerically compute the ground-state energies and wave
functions of several quantum systems of various qualitative
phases, ranging from 2–50 particles. The advantages of using
a neural network Ansatz include being able to search the most
general space of possible ground-state wave functions without
needing to limit to specific functional forms. Neural networks
also have convenient scalability; it is straightforward both to
increase the number of variational parameters in the Ansatz

FIG. 8. Shows the ground-state density functions for systems of
10 and 50 bosons. In each panel, the (light) blue shows the (repulsive)
attractive system for N = 10 and the (light) red shows the (repulsive)
attractive system for N = 50.

as well as increase the number of particles in the system. The
application of such Ansätze also does not need to be restricted
to solvable systems and can be used to explore properties of
nonintegrable systems.

Many important many-body systems, including conden-
sates, atoms, and nuclei involve indistinguishable particles.
Wave functions of such systems must satisfy Fermi or Bose
exchange symmetry. We advocated and demonstrated that us-
ing symmetric functions of the original particle coordinates
as inputs to the neural network aptly enforces Bose exchange
symmetry in one dimension. The symmetric inputs are chosen
to be bijective to the original set of coordinates and so we do
not limit the generality of the wave function space spanned by
the neural network. In addition, we propose a method to deal
with δ-function interactions without the need to regularize
them. Our study of applying neural network methods, us-
ing symmetrized inputs, to solve one-dimensional many-body
systems of bosons can be regarded as a stepping stone to-
wards solving three-dimensional systems of indistinguishable
bosons and fermions. The successful development of such
machine learning techniques would enable the computation of
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important properties of nuclear many-body systems, including
binding energies, spectra, and decay rates.

The use of symmetric inputs to enforce exchange sym-
metries of the system can be generalized to use to study
systems in a higher number of spatial dimensions in a
straightforward way. To enforce Bose symmetry in three di-
mensions, one needs to find a bijection between the set of
vector coordinates {�ri}, i = 1, . . . , N and symmetric functions
{s j (rx

1, ry
1, rz

1, . . . , rx
N , ry

N , rz
N )}, j = 1, . . . , M where M may

be greater than 3N . The {s j} must be symmetric in exchanges
�rn ↔ �rm but not in exchanges of individual coordinate direc-
tions (i.e., rx

n ↔ rx
m). Given the set of {s j}, one should be

able to reconstruct the set of {rx
i , ry

i , rz
i } including the fact

that particular sets of three coordinates specify the position of
individual particles. To write a Fermi antisymmetric function
in three dimensions, one theoretically simply needs to take a
single Slater determinant of functions φi(�r j ; {�r j/}), where φi

is Bose symmetric under exchange of any �rn → �rm, m, n �= j
[37]. Thus if one finds a bijection to a set of symmetric
functions necessary for enforcing Bose symmetry in three
dimensions, one can use the same bijection to enforce Fermi
symmetry. Work to find such a mapping is being pursued.
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APPENDIX: IMPORTANCE SAMPLING
FOR δ-FUNCTION OBSERVABLES

Consider the Lieb-Liniger Hamiltonian [1,2] for a system
of N indistinguishable bosons

Ĥ =
N∑

i=1

−1

2

∂2

∂x2
i

+
N∑

i< j

gδ(xi − x j ) (A1)

and a positive and real wave function

ψ (X ) = e−A(x1,...,xN ), (A2)

We would like to compute the energy associated with the wave
function.

〈E〉 =
∫

dx1..dxN ψĤψ∫
dx1 . . . dxN ψ2

= K + V, (A3)

where

K =
∫

dx1 . . . dxN e−2A(X ) ∑
i

1
2

(
∂2A
∂x2

i
− (

∂A
∂xi

)2)
∫

dx1 . . . dxN e−2A(X )

V =
∫

dx1 . . . dxN e−2A(X ) ∑
i< j gδ(xi − x j )∫

dx1 . . . dxN e−2A(X )
. (A4)

The kinetic term K can be computed easily using importance
sampling

K =
〈

N∑
i=1

1

2

(
∂2A

∂x2
i

−
(

∂A

∂xi

)2
) 〉

ψ2

, (A5)

where 〈. . .〉ψ2 denotes an average over samples drawn from
the distribution

�ψ2 (x1, . . . xN ) = e−2A(X )∫
dx1 . . . dxN e−2A(X )

. (A6)

Using the same importance sampling technique to compute
the potential term V leads to a zero-overlap problem as
described in Sec. III B. Instead we restructure the integral
involved in V to become amenable to importance sampling
using the following manipulations.

We first explicitly integrate out the x2 coordinate using the
δ functions. The choice of x2 is arbitrary due to the Bose
exchange symmetry of the wave function

V = g
N (N − 1)

2
I

I =
∫

dx1dx3 . . . dxN e−2A(X̃ )∫
dx1dx2 . . . dxN e−2A(X )

,

(A7)

where X̃ denotes the set of positions where x2 is replaced by
x1 (i.e., {x1, x1, x3, . . . , xN }). We use the Bose symmetry of
the wave function to eliminate the sum over pairs of particles.
Next, we rewrite the integral I as

I =
∫

dx1 . . . dxN
exp[−2A(X̃ )]
exp[−2A(X )]D(x2) exp[−2A(X )]∫

dx1 . . . dxN exp[−2A(X )]
, (A8)

where D(x2) is any function such that

∫ ∞

−∞
dx2 D(x2) = 1. (A9)

In practice, we choose a Gaussian form

D(x2) = 1

α
√

π
e−x2

2/α2
. (A10)

The parameter α, which is different for each different ψ , is
chosen arbitrarily such that D(y∗) ≈ 10−5 where y∗ is the
maximum value of |x2| over many position samples taken
from �ψ2 (X ). In this way, D(x2) is neither too wide such
that we emphasize unimportant regions of ψ2 not sampled by
the Monte Carlo method nor too narrow such that we do not
capture all of the important regions of ψ2.

Now, we can also compute V by drawing samples from
�ψ2 (X ), just as we did for K .

V = g
N (N − 1)

2

〈
e−2A(x1,x1,x3,...,xN )

e−2A(x1,x2,...,xN )
D(x2)

〉
ψ2

. (A11)

We note that this method of avoiding the zero-overlap prob-
lem occasionally produces large variances and may fail to
converge if e−2A(X ) is small for many different sampled X .
However, the method is still overall reliable because this is
precisely the region of e−2A(X ) that is sampled the least by the
Metropolis algorithm.
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