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The interiors of neutron stars contain matter at the highest densities realized in our Universe. Interestingly,
theoretical studies of dense matter, in combination with the existence of two-solar-mass neutron stars, indicate
that the speed of sound cs has to increase to values well above the conformal limit (c2

s = 1/3) before decreasing
again at higher densities. The decrease could be explained by either a strong first-order phase transition or a
crossover transition from hadronic to quark matter. The latter scenario leads to a pronounced peak in the speed of
sound, reaching values above the conformal limit, naturally explaining the inferred behavior. In this work, we use
the nuclear-physics multimessenger astrophysics (NMMA) framework to compare predictions of the quarkyonic
matter model with astrophysical observations of neutron stars, with the goal of constraining model parameters.
Assuming quarkyonic matter to be realized within neutron stars, we find that there can be a significant amount of
quarks inside the cores of neutron stars with masses in the two-solar-mass range, amounting to up to ≈0.13M�,
contributing ≈5.9% of the total mass. Furthermore, for the quarkyonic matter model investigated here, the radius
of a 1.4M� neutron star would be 13.44+1.69

−1.54(13.54+1.02
−1.04 ) km, at 95% credibility, without (with) the inclusion of
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I. INTRODUCTION

Measurements of neutron stars’ masses, radii, and de-
formabilities serve as probes of the nuclear equation of state
(EOS) of neutron-rich matter at high density and low tem-
perature [1]. This part of the QCD phase diagram cannot be
accessed in lattice QCD simulations due to the sign problem,
which plagues the importance sampling of gauge configu-
rations. Thus, neutron-star measurements remain one of the
few tools to explore the behavior of dense cold matter. For
instance, the feasibility of constraining the EOS via measure-
ment of neutron stars’ tidal deformabilities with gravitational
waves has been demonstrated [2,3]. Constraints on the radius
R of neutron stars obtained from gravitational-wave data sug-
gest that R < 13.5 km [4–7], which in turn implies that the
EOS of matter is soft at nuclear densities, of the order of
the nuclear saturation density nsat � 0.16 fm−3. On the other
hand, observations of heavy pulsars indicate that the EOS
needs to be sufficiently stiff at higher densities in order to
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support neutron stars with masses of more than twice the solar
mass [8–12].

This soft-stiff behavior of the EOS also reveals an inter-
esting feature of the speed of sound (cs) in dense matter as
a function of density. The speed of sound can be calculated
with uncertainty estimates at nuclear densities using chiral
effective field theory (χEFT) [13–16] and at very high density
using perturbative QCD [17–19]. Thus, we know that the
speed of sound cs is small, c2

s � 1, at low densities, and
approaches the conformal bound of cs = 1/3 from below at
very high densities. At intermediate densities, where neither
chiral EFT nor perturbative QCD are applicable, the speed of
sound could, in principle, be a monotonic or nonmonotonic
function of baryon density. The soft-stiff EOS obtained from
neutron-star measurements reveals that the speed of sound,
in fact, is likely a nonmonotonic function of baryon density,
violating the conformal bound at a few times the nuclear
saturation density [14,20]. More specifically, c2

s increases
monotonically from nuclear saturation density to a few times
the nuclear saturation density, overshooting the conformal
bound of 1/3 and reaching a peak at intermediate densities.
With even larger densities, c2

s then decreases below the con-
formal bound, reaching a minimum and eventually increasing
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FIG. 1. Illustration of the Fermi sphere for quarkyonic matter at
low baryon number densities before the quark onset (left panel) and
at high densities after the quark onset (right panel). The quark Fermi
momentum in dynamic quarkyonic-matter models well below n0 is
negligible and not shown in this figure.

to asymptotically approach the conformal bound from below.
Given that we do not have the tools to obtain the EOS of dense
matter from direct calculations in QCD, it is important to
assess various models which can replicate this nonmonotonic
behavior of the speed of sound and simultaneously describe
mass and radius measurements of neutron stars.

One such model is “quarkyonic matter” [21–23] in which
a special arrangement of nucleons and quarks in a combined
Fermi sphere forces a peak in the sound speed. In the quarky-
onic model, the nucleon and quark degrees of freedom (DOF)
are described by a single Fermi distribution function, as illus-
trated in Fig. 1. At high densities, the Fermi momentum for the
baryons is large and the DOF deep within the Fermi sphere are
Pauli blocked. Creating a particle-hole excitation from deep
within the Fermi sea requires large energy and momentum,
and so these DOF can be regarded as weakly interacting. Since
QCD is asymptotically free, we expect the existence of quark
matter at high densities where quarks behave as nearly free
particles, thus motivating treating the DOF deep within the
Fermi sphere as quarks. The DOF near the Fermi surface can,
however, be excited with low energy and momentum trans-
fers. Thus, confining forces should remain important. This
motivates treating the DOF near the Fermi surface as nucleons
arising from quark correlations.

At low densities, the radius of the inner quark Fermi sphere
in the quarkyonic model is zero. As the density increases, the
inner quark Fermi sphere starts forming at some threshold
density. The peak in the speed of sound arises right at those
densities where the inner quark Fermi sphere first appears.

Interestingly, the introduction of quarks in other models
is typically accompanied by a first-order phase transition. A
first-order transition forces the pressure gradient to drop to
zero, leading to a lower pressure than one would encounter
in the absence of a phase transition. In the quarkyonic case,
however, the transition to quark matter happens through a
crossover. Not only does this mean that the pressure gradient
is nonzero during the transition, it also does not decrease
nearly as fast after the peak in the speed of sound as it does

in the first-order transition case. This keeps the EOS stiff for
a larger range of densities. The quarkyonic model, therefore,
differs from other models of quark matter in this regard.

Although quarkyonic models have been successful in pro-
ducing a peak in the speed of sound, there have not been
any studies to infer the quarkyonic-matter model parameters
from astrophysical data. In particular, given an unconstrained
quarkyonic model, we would like to investigate what we can
learn about the model parameters from astrophysical data and
what the quark content is in neutron stars. In this paper, we
answer these questions using Bayesian analysis and adopting
a quarkyonic excluded-volume model proposed in Ref. [23].

The astrophysical observations considered here are the
gravitational-wave detections of the binary neutron-star merg-
ers GW170817 [24] and GW190425 [25] by Advanced LIGO
[26] and Advanced Virgo [27], the GW170817-associated
electromagnetic counterparts AT2017gfo [28], the NICER ob-
servations on PSR J0030 + 0451 [29,30] and PSR J0740 +
6620 [31,32], and the radio observations on PSR J0348 +
4032 [10] and PSR J1614 − 2230 [33].

This paper is organized as follows: We start by describing
the employed quarkyonic-matter model [23] in Sec. II A. We
then describe our Bayesian inference approach in Sec. II B,
and give a short description of our implementation in Sec. II C.
Finally, we present our results followed by our conclusions in
Secs. III and IV.

II. METHODS

A. Quarkyonic-matter EOS

A nondynamic quarkyonic matter model was first proposed
in Ref. [21], followed by a dynamic model for quarkyonic
matter introduced in Ref. [22]. In this dynamic model, both
hadrons and quarks appear as quasiparticles and are described
using a single Fermi distribution which has an outer shell of
nucleons and an inner sphere of quarks. The baryon density of
nucleons nN

B for a particular configuration of quarkyonic mat-
ter is computed by evaluating the momentum space volume
of the outer Fermi shell, whereas the quark baryon density
nQ

B is computed by evaluating the volume of the inner sphere.
The total baryon density is given by the sum of the two:
nB = nN

B + nQ
B. Thus, for a fixed baryon density, one can vary

the shell width made of the nucleons (or the radius of the inner
quark Fermi sphere) while maintaining a constant nB, to probe
different configurations of quarkyonic matter for that particu-
lar total baryon density. The dynamical model in Ref. [22]
also introduces an energy density functional for the systems,
defined as the sum of individual energy density functionals of
the nucleons and quarks. By minimizing the energy density
functional for the quarkyonic Fermi distribution with respect
to the shell radius of the quarkyonic phase space, one can find
the equilibrium quarkyonic matter configuration for a fixed
baryon density. One can then construct the EOS of dense
matter by computing the energy density for the equilibrium
configuration as a function of density. Note that the dynamical
model of Ref. [22] considers only symmetric nuclear matter.
This model was extended to account for the astrophysically
more relevant system of pure neutron matter in Ref. [23]. We
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use this extended model in this work. In the next subsection,
we describe the construction of the relevant energy density
functionals, starting with the neutrons, and then moving on to
the quarks.

1. Neutron part of the EOS

In the excluded volume model for quarkyonic neutron mat-
ter, we consider neutrons to be hard spheres of volume vh

exhibiting two spin DOF. This allows us to define an effective
density for neutrons. If we insert N neutrons in a volume V ,
then the unoccupied volume Vex is given by

Vex = V − Nvh ≡ V − N

n0
. (1)

In the above, we have defined the hard core density of neu-
trons as n0 ≡ v−1

h . If we now add another neutron to this
N-neutron system, this extra neutron can only occupy a vol-
ume vh within the available volume Vex. This gives rise to an
increased effective density for the neutrons, which we will
denote as the neutron excluded volume density nN

ex:

nN
ex ≡ N

Vex
= V nN

B

V − N
n0

= nN
B

1 − N
V n0

= nN
B

1 − nN
B

n0

. (2)

This implies that the neutron density nN
B is constrained to be

lower than the hard-core density n0 since otherwise the vol-
ume occupied by neutrons would be larger than V . Because of
this, the energy density associated with nucleons will increase
faster than that of a free Fermi gas as a function of baryon
number density. If we then consider quarks to be free point
particles, as we will describe in the next subsection, the sum
of the energy density contributions from quarks and neutrons
will eventually be lower if some of the baryon density is stored
in quark DOF compared to a pure neutron phase. This is the
main idea behind this excluded volume model: as we increase
the number of neutrons in a constrained volume, it eventually
becomes energetically favorable for some of those neutrons
to split into their constituent quarks, leading to a smooth
crossover between a hadronic phase and a quark matter phase.

Keeping in mind that the neutron excluded volume density
is the effective density for the neutrons, we can write nN

ex in
terms of neutron Fermi momentum �,

nN
ex = 2

∫ �

0

d3k

(2π )3
, (3)

where the factor of 2 accounts for the neutron’s two spin DOF.
From this, it follows that the noninteracting pure neutron
energy density functional for hard-core neutrons is given by

εN = 2

(
1 − nN

B

n0

) ∫ �

0

d3k

(2π )3

√
M2

N + k2, (4)

where MN is the neutron mass.
To properly describe neutron stars, we will have to include

neutron interactions in our energy density functional. For this,
we use a potential ansatz inspired by Ref. [21], and include a

nuclear potential of the form

V
(
nN

B

) = ãnN
B

(
nN

B

ρ0

)
+ b̃nN

B

(
nN

B

ρ0

)2

, (5)

where ρ0 is the saturation density, and ã and b̃ are free
parameters. The parameters ã < 0 and b̃ > 0 are to mimic
the short-range repulsion and long-range attraction between
neutrons, respectively, at densities nB � 2ρ0.

However, this is not sufficient to reproduce the EOS of
low-density neutron matter. The excluded volume energy den-
sity for the neutrons in Eq. (4) is desirable at high densities
to force quark onset, but the excluded volume model has
the undesirable feature of significantly modifying the low-
density neutron EOS as well. In order to correct for this effect,
Ref. [23] proposed the following approach: We introduce a
modified potential Ṽ (nN

B ), and the energy density functional

εN = 2

[
1 −

(
nN

B

n0

)] ∫ �

0

d3k

(2π )3

√
M2

N + k2 + Ṽ
(
nN

B

)
, (6)

to minimize the effect of the excluded volume at low density.
Ṽ is designed such that, in a low-density expansion in powers
of nN

B/n0, the excluded volume energy density of Eq. (6)
mimics the energy density of low density neutron matter
given by

ε = 2
∫ kF

0

d3k

(2π )3

√
k2 + M2

N + V
(
nN

N

)
(7)

up to corrections that go as some high power in the expansion
parameter. Note that nN

B = 2
∫ kF

0
d3k

(2π )3 . The model proposed in
Ref. [23] demands that the two energy densities match up to
corrections that go as (nN

B/n0)3. The corresponding expression
for Ṽ is given by

Ṽ
(
nN

B

) = V
(
nN

B

) − 2

3

(
3π2nN

B

)5/3

10π2MN

(
nN

B

n0

)

− 5

9

(
3π2nN

B

)5/3

10π2MN

(
nN

B

n0

)2

. (8)

2. Free quark part of the EOS

We will now discuss the energy density functional for the
quarks. We treat the quarks as almost free point particles of
mass Mq = MN/Nc = MN/3, where Nc is the number of quark
colors and fixed at Nc = 3. The only effect of interactions of
quarks is taken into account through the constituent quark
mass, Mq. Here, we include two species of quarks, up and
down, with two spin DOF. We can then express the contribu-
tion to the baryon density from quarks in terms of the quark
Fermi momentum kq

F, so that

nq
B = 2

∫ kq
F

0

d3k

(2π )3
, (9)

where q = {u, d} denotes the quark flavor, and the factor of
2 again comes from the spin DOF. The quark energy density
functional is then given by

εq = 2
∫ kq

F

0

d3k

(2π )3

√
M2

q + k2. (10)
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Using this formulation of the quark part to the EOS, it was
previously found that the quark onset in this model happens
too abruptly, leading to a violation of causality and negative
speeds of sound in some cases [22]. Reference [22] proposed
to cure this issue by scaling the quark density of states by a
factor

g(k) =
√

�2 + k2

k
, (11)

where � is a free parameter. This modification is motivated by
having the correct high energy behavior, g(k) → 1 as k → ∞,

which is consistent with a free Fermi gas. The regulator � can
be viewed as the energy scale at which nonperturbative effects
become unimportant. We should, therefore, expect � to be of
the same order of magnitude as the QCD confinement scale
�QCD.

However, Ref. [23] pointed out that this modification to the
quark density of states, while curing the unphysical behavior
of the speed of sound, introduces a non-negligible density
of quarks at all baryon densities, which itself is unphysical.
Ref. [23] proposed a remedy to this effect by giving a density
dependence to �, � = �(nB), with

�(nB) =
{

�0
[ − 20

( nB
n0

)7 + 70
( nB

n0

)6 − 84
( nB

n0

)5 + 35
( nB

n0

)4]
for nB < n0,

�0 for nB � n0.
(12)

This choice is motivated as follows: We know that the ex-
cluded volume quarkyonic matter model does not produce
quarks at low baryon density when the regulator � is set to
zero. The need for a nonzero � arises only to remedy the
unphysical behavior of the speed of sound at high densities.
Thus, if we introduce a density dependence in � such that
it is zero at low baryon density and close to the QCD scale
near the quark onset density, we will eliminate quarks at low
densities while also eliminating the unphysical behavior of
the speed of sound at high densities. If we then want all
thermodynamic properties to stay unaffected by � at nB = 0,
we need �(0) = dn�(0)/d(nB)n = 0 for n � 3. Furthermore,
we want �(nB) to be in full effect once a significant amount of
quarks is present. It is then natural to impose that �(nB) = �0

for nB � n0, where �0 is a parameter of order �QCD. We
further demand that dn�(nB)/(dnB)n is continuous for n � 3
to ensure that chemical potential, pressure, and speed of sound
are all smooth functions of nB. The polynomial (12) was cho-
sen as it is the lowest order polynomial that satisfies all these
criteria. However, as long as �(nB) follows the properties
discussed above, its exact functional form is not found to
be of significant importance [23]. The quark energy density
functional then becomes

εq = 2Nc

∫ kq
F

0

d3k

(2π )3

√
M2

q + k2

√
�2(nB) + k2

k
, (13)

where

kq
F =

√[
3π2nq

B + �3(nB)
]2/3 − �2(nB). (14)

We note that the introduction of a density dependent �(nB)
smears out the onset density for the quarks. Hence, they ap-
pear gradually as a function of baryon density [23]. However,
the quark density is essentially zero compared to the neutron
density up to baryon densities close to n0, and so the picture
in Fig. 1 still holds.

To allow for two flavors of quarks (up and down), we
describe the total quark baryon density as

nQ
B = nu

B + nd
B, (15)

and relate the up (nu
B) and down (nd

B) quark baryon densities
by enforcing charge neutrality,

nd
B = 2nu

B. (16)

Then, the total quark energy density functional is given by

εQ = 2Nc

∑
q=u,d

∫ kq
F

0

d3k

(2π )3

√
M2

q + k2

√
�2(nB) + k2

k
. (17)

3. Full quarkyonic EOS

In the quarkyonic model, the free quarks and the neutrons
have a single Fermi distribution, where the bottom of the
neutron Fermi sea is set by the Fermi momentum of the d
quarks, kd

F. That is, kF ≡ Nckd
F as illustrated in Fig. 1. Com-

bining Eqs. (6) and (17), the total energy density functional is
given by

ε = 2

[
1 −

(
nN

B

n0

)] ∫ �

0

d3k

(2π )3

√
M2

N + k2 + Ṽ
(
nN

B

)

+ 2Nc

∑
q=u,d

∫ kq
F

0

d3k

(2π )3

√
M2

q + k2

√
�2(nB) + k2

k
,

(18)

where

� = (
3π2nN

ex + k3
F

)1/3 − kF. (19)

The equilibrium configuration at a given baryon density is
then found by minimizing ε with respect to either nQ

B or kF.
Once the equilibrium configuration is found, it is straight-
forward to obtain the energy density of this equilibrium
configuration from the energy density functional. Other inter-
esting thermodynamic properties can then be obtained using
the thermodynamic relations

μ(nB) = dε(nB)

dnB
(chemical potential), (20)

P(nB) = nBμ(nB) − ε(nB) (pressure), (21)

c2
S (nB) = dP(nB)

dε(nB)
(speed of sound) (22)

for the equilibrium configuration.
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We would like to point out some of the limitations of the
quarkyonic matter model employed here that have not yet
been discussed. First, we have assumed the baryonic part
to be purely made up of neutrons, and have ignored beta
equilibrium because it is not trivial to treat the Fermi sphere
for quarkyonic matter in a dynamic model when it involves
more than one species of nucleons. We note, whoever, that
there are nondynamic quarkyonic matter models accounting
for beta equilibrium [34,35]. It can nevertheless be argued that
the fraction of protons to neutrons is less than � 10% [21] and
should, therefore, not have a significant effect on neutron-star
masses and radii. Second, we have only considered two fla-
vors of quarks. In principle, strange quarks could be included
as well and there are three-flavor excluded volume models
of quarkyonic matter in the literature [36,37]. However, the
inclusion of strange quarks introduces hyperons, for which
the nuclear interactions are not well understood. This leads to
the introduction of additional free parameters, complicating
the analysis in this paper. Recently, there have been develop-
ments in mean-field approaches to quarkyonic matter [38,39]
as well. However, we note that there are no such models
that dynamically set the neutron shell width like the excluded
volume model we present here. We, therefore, leave the anal-
ysis of such models for future work. The quarkyonic model
described in this section was shown to be in agreement with
neutron-star mass-radius data [23] for �0 close to the QCD
scale and n0 of the order of the nuclear saturation density.
In the next section, we are going to be agnostic about these
and the other model parameters and extensively investigate
what astrophysical data tells us about their values, as well as
the macroscopic significance of the quarkyonic matter model,
using a Bayesian approach.

B. Bayesian inference

By using Bayes’s theorem, the posterior p(
θ |d,H) on a set
of parameters 
θ under the hypothesis H and with data d is
given by

p(
θ |d,H) = p(d|
θ,H)p(
θ |H)

p(d|H)
→ P (
θ ) = L(
θ )π (
θ )

Z ,

(23)
where P (
θ ), L(
θ ), π (
θ ), and Z are the posterior, likelihood,
prior, and evidence, respectively. The prior describes our
knowledge of the parameters before any observations. The
likelihood quantifies how likely the hypothesis can describe
the data at a given point 
θ in the parameter space. Finally,
the evidence, also known as the marginalized likelihood,
marginalizes the likelihood over the whole parameter space
with respect to the prior, i.e.,

Z =
∫
V

d
θ L(
θ )π (
θ ). (24)

Two hypotheses, H1 and H2, can be compared by calculat-
ing the odds ratio between them, O1

2, given by

O1
2 ≡ p(d|H1)

p(d|H2)

p(H1)

p(H2)
≡ B1

2	
1
2, (25)

where B1
2 and 	1

2 are the Bayes factor and prior odds, respec-
tively. If O1

2 > 1, H1 is more plausible than H2, and vice
versa. Throughout this work, the prior odds is set to 1, in
which case the Bayes factor is the same as the odd ratio.

To combine multiple independent observations, we express
the likelihood as

L(
θ ) =
∏

i

Li(
θ ), (26)

where Li(
θ ) is the likelihood corresponding to the i-th obser-
vation. Therefore, the combined posterior P (
θ ) is given by

P (
θ ) = π (
θ )

Z L(
θ ) = π (
θ )

Z
∏

i

Li(
θ ). (27)

C. Implementation

The nuclear-physics multimessenger astrophysics
(NMMA) framework [40,41] has been known for its
capability and flexibility of including various multimessenger
astrophysical observations, nuclear-theory calculations, and
heavy-ion collision experiments [42]. Here, however, we
only consider the astrophysical observations to constrain
our theoretical model so that we obtain an astrophysics-only
motivated result.

To calculate the likelihood for different observational data
given the quarkyonic EOS model, an approach similar to those
in previous works is used [43–46]. In particular, the likelihood
of the EOS parameters 
E ≡ {ã, b̃, n0,�0} given the ith obser-
vation is given by

L( 
E ) =
∫

d
θmacro
π (
θmacro| 
E )

π (
θmacro)
P (
θmacro), (28)

where 
θmacro, π (
θmacro| 
E ), and π (
θmacro) are the macroscopic
parameters of interest, and the priors on 
θmacro with and with-
out an EOS imposed, respectively. The inference logic is
summarized in Fig. 2. The joint posterior is explored using the
nested sampling algorithm MULTINEST [47] implemented in
PYMULTINEST [48,49]. The details of the likelihood evaluation
for each observation are described in the following.

1. PSR J0348 + 4032 and PSR J1614 − 2230

The radio observations on PSR J0348 + 4042 [10], and
PSR J1614 − 2230 [33] have provided a lower bound on the
maximum mass of a neutron star. For these two observations,
the mass of the pulsar is the macroscopic parameter of interest.
The likelihood is given by

LPSR- j ( 
E ) =
∫ mmax

0
dmP (m|PSR- j), (29)

where P (m|PSR- j) is the posterior distribution of the pulsar
j′s mass, and mmax is the maximum mass supported by the
EOS with parameter 
E . We approximate the posterior distri-
bution of the two pulsars to be Gaussian with the reported
values and 1σ uncertainty, similarly to Ref. [40].
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FIG. 2. The inference logic of our multimessenger analysis. Each shaded node corresponds to parameter(s) to be sampled. The unshaded
nodes refer to the latent parameters calculated based on the sample parameters and required for the likelihood evaluation. An arrow
pointing from A to B refers to B depending on A. The NICER likelihood LNICER ≡ LJ0740+6620 × LJ0030+0451, and the PSR likelihood
LPSR ≡ LJ0348+4032 × LJ1614−2230. In total, eight neutron stars are taken into account for the analysis.

2. PSR J0030 + 0451 and PSR J0740 + 6620

The Neutron Star Interior Composition Explorer (NICER)
mission aims to measure both the masses and the radii of
pulsars. It has provided estimates for the mass and radius for
the pulsars J0030 + 0451 [29,30] and J0740 + 6620 [31,32].1

For J0740 + 6620, data from the XMM-Newton telescope
[51,52] have been additionally used for improving the total
flux measurement.

The corresponding likelihood for the NICER measurement
of pulsar j is given by

LNICER- j ( 
E , m) =
∫

dRPNICER- j (m, R)
π (m, R| 
E )

π (m, R|I )

∝
∫

dRPNICER- j (m, R)δ(R − R(m, 
E ))

∝ PNICER- j (m, R = R(m, 
E )), (30)

where PNICER- j (m, R) is the joint-posterior distribution of
mass and radius as measured by NICER and we use the facts
that (i) the radius is a function of mass for a given EOS and
(ii) the prior for the mass and radius is taken to be uniform
in Refs. [29–32].2 Similar to Ref. [42], we use the results of
Ref. [29] for PSR J0030 + 0451, while for PSR J0740 + 6620
we average over the results presented in Refs. [31,32].

1An update of the NICER analysis on J0740 + 6620 is presented
in Ref. [50]. Due to the agreement between the previous results and
the updated ones, here we are using the previous, original results.

2The mass measurement for J0740 + 6620 using radio observations
[53] is taken as the prior on the mass for the NICER analysis on
J0740 + 6620 [31,32]. Hence, we consider it to be part of the NICER
likelihood for that star. Therefore, the prior on the mass of J0740 +
6620 can be considered uniform.

3. GW170817 and GW190425

By analyzing the gravitational-wave signals GW170817
[24] and GW190425 [25], the masses mi and the tidal de-
formability �i of the two neutron stars in the binary can be
estimated.3 The corresponding likelihood is given by

LGW- j ( 
E , mi ) =
∫

d�i
π (mi,�i| 
E )

π (mi,�i|I )
PGW- j (mi,�i )

=
∫

d�i

∏
i δ(�i − �(mi; 
E ))

π (�i|mi, I )

× π (mi| 
E )

π (mi|I )
PGW- j (mi,�i )

∝ PGW− j (mi,�i )

π (�i|, mi, I )

∣∣∣∣
�i=�(mi ; 
E )

, (31)

where PGW- j (mi,�i ) is the joint-posterior distribution on
mass and tidal deformability of the binary neutron star j
measured by its gravitational-wave signal. We use the fact
that the tidal deformability is a function of mass for a given
EOS. For both events, we use the publicly available posterior
samples [57,58].

4. AT2017gfo

For analyzing the observed kilonova AT2017gfo, we have
done the Bayesian inference with a Gaussian likelihood func-

3Note that it was also proposed that GW190425 originated from a
neutron-star–black-hole merger [54–56].
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tion given by

LEM(
θ ) ∝ exp

⎛
⎝−1

2

∑
i j

(
m j

i − m j,est
i (
θ )

σ
j

i

)2
⎞
⎠, (32)

where m j
i and σ

j
i are the observed apparent magnitude and its

corresponding statistical uncertainties, at observation time ti,
respectively. Moreover, m j,est

i are the theoretically predicted
apparent magnitudes for a given filter j (a passband for a
particular wavelength interval).

For this analysis, the model presented in Ref. [59] is used.
For this model, the macroscopic parameters of interest are the
dynamic ejecta mass mdyn

ej and the wind ejecta mass mwind
ej . The

dynamic ejecta refer to the material ejected during the merger
via torque and shocks while the wind ejecta refer to material
released from the disk formed during the merger.

In order to connect the ejecta masses with the EOS and the
masses of the two neutron stars in the binary, fits to numerical-
relativity simulations are used. For the dynamical ejecta mass
mdyn

ej , the fit formula is given by [60]

mdyn
ej,fit

10−3M�
=

[
a

C1
+ b

(
m2

m1

)n

+ c C1

]
+ (1 ↔ 2), (33)

where mi and Ci are the masses and the compactness of the
two components of the binary and the best-fit coefficients are
given by a = −9.3335, b = 114.17, c = −337.56, and n =
1.5465. As presented in Ref. [60], this relation provides an
accurate estimation of the ejecta mass with an error that is
well approximated by a zero-mean Gaussian with a standard
deviation of 0.004M�. Therefore, the dynamic ejecta mass is
described by

mdyn
ej = mdyn

ej,fit + α, (34)

where α ∼ N (μ = 0, σ = 0.004M�).
For the wind ejecta mass, we assume it to be proportional

to the disk mass,

mwind
ej = ζ × mdisk,fit, (35)

where ζ is an independent parameter in [0,1). To estimate the
disk mass mdisk, we follow the relation presented in Ref. [40],

log10

(
mdisk,fit

M�

)

= max

{
−3, a

[
1 + b tanh

(
c − (m1 + m2)M−1

thr

d

)]}
,

(36)

with a and b given by

a = ao + δa × ξ,

b = bo + δb × ξ .
(37)

The parameter ξ is given by

ξ = 1
2 tanh [β(q − qtrans)], (38)

where q ≡ m2/m1 � 1 is the mass ratio and β and qtrans are
free parameters. The best-fitting parameters are ao = −1.725,

TABLE I. Priors imposed for the EOS parameters in
the analysis. “Uniform(a, b)” is a uniform distribution
in the range of [a, b) and “LogUniform(a, b)” is a log-
uniform distribution in the range of [a, b). Therefore, if
x ∼ LogUniform(a, b), log x ∼ Uniform(log a, log b).

Parameter Prior

ã Uniform (−50 MeV, 50 MeV)
b̃ Uniform (−50 MeV, 50 MeV)
n0 LogUniform (10−2nsat, 20nsat )
�0 LogUniform (10−5 GeV, 10 GeV)

δa = −2.337, bo = −0.564, δb = −0.437, c = 0.958, d =
0.057, β = 5.879, qtrans = 0.886. The threshold mass Mthr

is estimated to follow the prediction presented in Ref. [61].
Because a fitting error in the disk mass is degenerate with the
proportionality parameters ζ , no additional error parameters,
similar to α introduced in Eq. (34), are included. We point out
that the relations Eqs. (34) and (36) are generally calibrated to
a large set of numerical-relativity simulations covering a large
range of the parameter space, and while these relations are
found to be “quasiuniversal,” i.e., applicable independently of
the exact EOS, they have not been tested against quarkyonic
binary neutron-star mergers, which could result in a hidden
systematic uncertainty in our analysis.

The likelihood for the EOS parameters 
E and the compo-
nent masses of the two neutron stars, mi, is given by

LAT2017gfo( 
E , mi, α, ζ )

=
∫

dmdyn
ej dmwind

ej

π
(
mdyn

ej , mwind
ej

∣∣ 
E , mi, α, ζ
)

π
(
mdyn

ej , mwind
ej

∣∣I )

× PAT2017gfo
(
mdyn

ej , mwind
ej

)
∝ PAT2017gfo

(
mdyn

ej , mwind
ej

)∣∣
mdyn

ej =mdyn
ej ( 
E ,mi,α),mwind

ej ( 
E ,mi,ζ ).

(39)

III. RESULTS

In the following section, we discuss the results of our
analysis of astrophysical multimessenger observations when
applying the quarkyonic EOS model. As mentioned in
Sec. II C 4, the “quasiuniversal” relations needed for analyz-
ing AT2017gfo have not been tested against the quarkyonic
model. Therefore, we report results without the inclusion of
AT2017gfo as our main, conservative results and results with
the inclusion of AT2017gfo in parentheses. All quoted values
are medians with their 95% credible intervals unless men-
tioned otherwise.

A. Estimation on EOS parameters

The priors for the EOS parameters ã, b̃, n0, and �0 are
defined Table I. Additionally, we impose that

(1) each parameter sample results in a valid EOS, i.e.,
(a) the crust and core EOSs intercept, and
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FIG. 3. Posterior on the microscopic parameters of the quarkyonic EOS model. The two-dimensional contours are shown at 68% and
95% levels. The priors on each of the parameters are also shown (grey). In addition to the distributions shown in Table I, the priors shown
additionally impose that the resulting EOS can support a neutron star.

(b) the EOS explores densities beyond the neutron-
star crust,

(2) and the EOS produces stable neutron stars, indicated
by a stable M-R-� curve.

In Fig. 3, we show the priors and the posteriors with
their median values and with the uncertainty quoted at 95%
credibility.

The posterior on ã skews towards positive values, while
the posterior on b̃ is centered around 0, with both of them
having sizable uncertainty. This shows that interactions with
higher-order density dependences between neutrons are not
pronounced within this model. This finding can be attributed
to the relatively low n0, which indicates the characteristic den-
sity at which quark matter starts to appear. This low n0 causes
the quark part of the EOS to dominate over the neutrons’ inter-
actions. However, we note that there are large uncertainties in
the neutron matter parameters ã and b̃, mainly due to the fact
that we have only used astrophysical observations to constrain
them.

More interestingly, we find that the parameter n0 is favored
to be on the order of a few times the nuclear saturation density,
which is comparable to the densities reached inside the heav-
iest neutron stars. This implies that, assuming our quarkyonic
matter model describes supranuclear-dense matter, there will
be a significant amount of quarks in the cores of neutron stars
with masses in the two-solar-mass range. We will investigate
this in more detail in the next section.

Finally, we comment on the parameter �0. As mentioned
in Sec. II A 2, the inclusion of �0 was motivated by regulat-
ing the infrared divergence that occurs at low densities due
to the nonperturbative effects of QCD. We therefore expect
that �0 ≈ �QCD. If we take �QCD to be defined by the Lan-
dau pole of the QCD strong coupling, one finds �QCD ≈
200–400 MeV, depending on the renormalization scheme
used [62]. This is indeed consistent with what we obtain for
�0, as seen in Fig. 3. We emphasize that, although this is
an expected result, the value of �0 is extracted completely
by comparison with astrophysical data. It is interesting and
reassuring that observations of neutron stars can constrain
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FIG. 4. Posterior on the neutron star radius as a function of mass.
The darker/solid (lighter/dashed) band shows the 68% (95%) credi-
ble interval of the radius at a given mass. The prior band is shown in
the 95% band.

this microscopic parameter of our model in a way that is
consistent with expectations from QCD. This is because the
confinement scale is important for the high-density behavior
of the EOS, which, in turn, has a high impact on the mass
of a neutron star. Conversely, this explains, in part, why we
are not able to constrain ã and b̃ very well, as they mostly
describe the low-density behavior of the EOS. These findings
are consistent with similar results showing that the correlation
between the low- and high-density EOS can be broken in
neutron stars [63,64].

The posterior of the radius of neutron stars as a function of
mass is shown in Fig. 4. Within this quarkyonic-matter model,
the radius of a 1.4M� neutron star, R1.4, is estimated to be
13.44+1.69

−1.54(13.54+1.02
−1.04) km, at 95% credibility, without (with)

the inclusion of AT2017gfo; the kilonova observation signifi-
cantly tightens the radius constraint. The extracted value for
R1.4 is higher than in previous estimations (e.g., Table I in
Ref. [41]),4 reflecting the difference of model-independent
and model-dependent data analyses of neutron-star observa-
tions, as well as the absence of the constraint from chiral
effective field theory at low densities [14]. The latter also
contributes to the wide posteriors on ã and b̃.

B. Presence of quark matter

To study the presence of quarks in the cores of
neutron stars, we estimate the maximum quark baryon
density max{nQ

B} and the maximum quark-to-baryon ratio
max{nQ

B/nB}. That is, we consider the density of quarks and
quark-to-baryon ratio inside the center of the neutron star with
the largest mass. The estimated distributions of max{nQ

B} and
max{nQ

B/nB} are shown in Figs. 5 and 6, respectively. In both

4Please note that the NICER Collaboration recently published a
reanalysis of their observation of J0030 + 0451[65], which could
influence the inferred properties of a canonical neutron star.

FIG. 5. Posterior on the maximum quark density observed within
a neutron star. The posterior and prior are reweighted such that the
prior on the maximum quark density is log-uniform, i.e., uniform in
log nQ

B.

cases, we reweighted the distributions to respect a log-uniform
prior to enhance the impact of astrophysical observations.
Based on the estimated distributions, the quarkyonic model
is predicting max{nQ

B} � 1nsat and the ratio max{nQ
B/nB} �

10%, showing a significant presence of quarks within the most
massive neutron stars.

To give a concrete picture of the abundance of quarks in
neutron stars, we further estimate the total mass that the free
quarks contribute to neutron stars; see Table II. As expected,
the quark core mass is low for most of the neutron stars. How-
ever, PSR J0740 + 6620, which is one of the most massive
neutron stars observed, would carry about ≈0.05M� of free
quarks, or ≈2.6% of its mass. For a neutron star at maximum

FIG. 6. Posterior on the maximum quark-to-baryon ratio ob-
served within a neutron star. The posterior and prior are reweighted
such that the prior on the ratio is log-uniform, i.e., uniform in
log nQ

B/nB.
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TABLE II. Estimated quark core mass mq within neutron stars
and the associated mass fraction mq/m for the stars.

Without AT2017gfo With AT2017gfo

mq (M�) mq/m (%) mq (M�) mq/m (%)

GW170817-m1 0.01+0.02
−0.01 0.41+1.45

−0.37 0.00+0.02
−0.00 0.34+1.36

−0.31

GW170817-m2 0.00+0.01
−0.00 0.23+0.91

−0.20 0.00+0.01
−0.00 0.25+1.07

−0.22

GW190425-m1 0.02+0.05
−0.02 0.98+2.88

−0.94 0.02+0.06
−0.02 0.98+3.16

−0.94

GW190425-m2 0.01+0.03
−0.01 0.52+1.79

−0.48 0.01+0.03
−0.01 0.51+1.96

−0.47

PSR J0030+0451 0.01+0.03
−0.01 0.40+1.65

−0.36 0.01+0.03
−0.01 0.40+1.74

−0.37

PSR J0740+6620 0.05+0.11
−0.05 2.57+5.41

−2.48 0.05+0.12
−0.05 2.57+5.82

−2.47

Maximal mass 0.13+0.14
−0.10 5.87+6.72

−4.72 0.13+0.14
−0.11 5.86+7.08

−4.87

mass, the quark core can grow to ≈0.13M�, or ≈5.9% of the
stellar mass.

Moreover, a strong presence of free quarks shows a correla-
tion with macroscopic parameters. In Fig. 7, we show a corner
plot connecting the maximum quark baryon density max{nQ

B},

the maximum baryon density max{nB}, the quark mass in the
maximal-mass neutron star, MQ

TOV, and the associated radius
RTOV. We observe a strong positive correlation between the
quark core mass and the radius for the maximal mass neutron
star within the quarkyonic-matter model. Although it may
seem counterintuitive that stars containing quarks have large
radii, we note that a star’s radius is mostly attributed to matter
properties at intermediate densities. At these densities, the
parameter n0 roughly sets the density at which quarks appear,
leading to a sudden increase in the pressure gradient around
nB = n0. The earlier this increase happens, the larger the radii
of the star will be. A larger radii is then consistent with having
more quarks, considering that the amount of quarks inside a
star is inversely correlated with the n0 parameter.

C. Speed of sound and normalized trace anomaly

We further examine the speed of sound within neutron stars
and show it as a function of density in Fig. 8. It is obvious that
the quarkyonic-matter model violates the conformal limit of
c2

s = 1/3 at about 3 times the nuclear saturation density, but
the speed of sound drops below that limit at higher densities.

FIG. 7. Posterior on the (log10) maximum quark baryon density max{nQ
B}, the (log10) maximum baryon density max{nB}, the (log10) quark

core mass for maximal mass neutron star, MQ
TOV, and the associated radius RTOV. A strong positive correlation is observed between the quark

core mass and the radius, and between maximum quark baryon density and quark core mass.

025807-10



PROBING QUARKYONIC MATTER IN NEUTRON STARS … PHYSICAL REVIEW C 109, 025807 (2024)

FIG. 8. Posterior on the speed of sound c2
s as a function of den-

sity. The darker/solid (lighter/dashed) band shows the 68% (95%)
credible interval of the speed of sound at a given density. The prior
band is shown at 95% confidence level. Moreover, we show the
range predicted from the chiral effective field theory calculation of
Ref. [14] up to 1.5nsat .

For comparison, the range predicted by chiral effective field
theory is also shown in Fig. 8, and is on the lower end of
the quarkyonic-matter prediction. The maximum speed of
sound, the densities at which the maximum occurs, and the
quark-to-baryon ratio at this density are shown in the corner
plot in Fig. 9. The estimate for the maximum speed of sound
and its density agree with the result reported in Ref. [66], in
which a nonparametric EOS model is used. The maximum

FIG. 9. Posterior on the maximum speed of sound max{c2
s } and

the associated number density nB|max cs and the quark-to-baryon ratio
nQ

B/nB|max cs . A strong negative correlation is observed between the
maximum speed of sound and the ratio nQ

B/nB|max cs .

FIG. 10. Posterior on the normalized trace anomaly �ta as a
function of density. The darker/solid (lighter/dashed) band show
the 68% (95%) credible interval of the speed of sound at a given
density. The prior band is shown in the 95% band. Moreover, the
predicted range based on the chiral effective field theory calculation
of Ref. [14] is shown up to 1.5nsat .

speed of sound and the quark-to-baryon ratio show a strong
negative correlation, reflecting the intuition that quark matter
is generally softer than nucleonic matter.

Recently, the authors of Ref. [67] suggested that a peak in
the speed of sound, as in Fig. 8, is a sign of strongly coupled
conformal matter. This was demonstrated by examining the
behavior of the normalized trace anomaly, which is defined as

�ta ≡ 1

3
− P

ε
. (40)

From the definition it is evident that, as matter approaches
conformality, �ta → 0. Even though the speed of sound
and the trace anomaly are closely related, the behavior at
intermediate densities is different and provides complemen-
tary information. By expressing the sound speed in terms
of the trace anomaly and its derivative, Ref. [67] showed that
the peak in the sound speed is, in fact, not a violation of the
conformal bound, but it is a steep approach to the conformal
limit. In this work, we check this interpretation by computing
the trace anomaly as a function of the density (see Fig. 10),
and comparing it with the behavior of the sound speed. In
Fig. 10, we show that at n ≈ 6nsat, �ta → 0, as can be inferred
from the behavior of the speed of sound in Fig. 8. However,
at intermediate densities, �ta decreases towards its conformal
value, exactly at those densities where we find a peak in the
sound speed. These results are similar to what was observed
in Ref. [67]. Note, however, that the quarkyonic-matter model
employed in this work does not explicitly include any interac-
tions between quarks and therefore it cannot be interpreted as
strongly coupled matter. This suggests that inferring the pres-
ence of strongly coupled conformal matter from neutron-star
observations is nontrivial since the corresponding character-
istic behavior of the trace anomaly can also be produced by
weakly interacting matter.
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Given the presence of quarks within the neutron stars
within the quarkyonic-matter model, we further investigate
the consistency between the model and the perturbative QCD
(pQCD) calculations of the EOS at ≈40nsat [18]. Following
the approach of Ref. [68], we connect to the integral pQCD
constraints of Ref. [69] at the maximum-mass configuration
because we are interested only in the EOS of stable neutron
stars.5 We use the parameters associated with the maximally
massive neutron star, i.e., the associated central pressure pTOV,
the baryon number density nTOV and the chemical potential
μTOV to check if a given EOS is consistent with the high-
density pQCD constraint by verifying

(1) �pmin < ppQCD − pTOV < �pmax and
(2) nTOV < npQCD,

where ppQCD and npQCD are functions of μpQCD, which is set
to 2.6 GeV. Furthermore, �pmin and �pmax are calculated
using Eqs. (12) and (13) of Ref. [70] respectively. If the
proposed EOS satisfies both of the above criteria, it has a
consistency of 100% and 0% otherwise. Since the pQCD cal-
culation [18] depends on the renormalization scale parameter
X , we calculate the consistency of a given EOS with pQCD by
marginalizing over X ∼ LogUniform(1, 4). Given the poste-
rior samples, without (with) the inclusion of AT2017gfo, the
average consistency, i.e., the average of the aforementioned
calculation over all EOSs, is 99.88% (99.89%) with a mini-
mum consistency of 93.9% (94.7%). Therefore, we conclude
that the quarkyonic-matter model is consistent with pQCD
calculations.

IV. CONCLUSIONS

In this work, we have studied a dynamic quarkyonic-matter
model for supranuclear matter inside neutron stars. This
model is employed within the nuclear multi-messenger astro-
physics framework, which includes radio and x-ray (NICER)
observations of pulsars, gravitational-wave observations from
binary neutron-star mergers, in particular GW170817, and
electromagnetic observations of the kilonova associated with
GW170817. Assuming that the quarkyonic-matter model
describes neutron stars, we constrain the properties of quarky-
onic matter using astrophysical observations. The main results
can be summarized as follows:

(1) We constrained the four model parameters without
(with) AT2017gfo at 95% credibility to be

ã = 2.62+18.83
−12.00

(
3.52+20.27

−12.70

)
MeV,

b̃ = −1.10+8.20
−7.53

(−1.30+8.77
−8.12

)
MeV,

n0 = 3.86+2.08
−1.38

(
3.851.98

−1.36

)
nsat,

�0 = 306.51+120.87
−92.72

(
305.76+108.07

−105.03

)
MeV. (41)

(2) The model is predicting a substantial presence of
quarks within neutron stars, in particular

5See Ref. [70] for a similar analysis but with a matching density of
10nsat .

(a) the maximum quark baryon density exceeds 1nsat,
(b) the maximum quark-to-baryon ratio exceeds 10%,

and
(c) the mass contribution due to quarks can reach

≈0.13M�, attributing to ≈6% of the neutron star’s
mass.

(3) The quarkyonic-matter model predicts a peak in the
speed-of-sound in neutron stars, and the conformal
limit is subsequently restored at ≈6nsat.

(4) The quarkyonic-matter model predicts R1.4 =
13.44+1.69

−1.54(13.54+1.02
−1.04) km at 95% credibility level,

without (with) the inclusion of AT2017gfo.

Our work demonstrates that the quarkyonic-matter model
can explain the current observations on neutron stars and
allows for a significant presence of quarks within them. It is,
therefore, a viable alternative to other models, including free
quarks.

Moreover, we have shown that the observations of neu-
tron stars constrain the nuclear equation-of-state at higher
densities, while the constraints at lower densities are weaker.
At these densities, nuclear experiments such as FOPI [71],
ASY-EOS [72], or PREX [73], and nuclear theory calcula-
tion, e.g., in the framework of χEFT, have a larger impact
on determinations of the equation-of-state. Therefore, for
a complete picture of the nuclear equation of state such
constraints should be included. In addition, recent observa-
tion of a low-mass pulsar, HESS J1731-347 [74], can also
shed light on the constraint on nuclear matter at a lower
density.

Although it is impossible to establish the existence of
quarkyonic matter with current neutron-star observations, fu-
ture observations using next-generation gravitational-wave
observatories, such as the Einstein telescope [75,76] or Cos-
mic Explorer [77], will likely provide crucial new data.
Together with advancements in theoretical nuclear physics,
this will allow us to better understand the nature of dense
matter in the future.

ACKNOWLEDGMENTS

P.T.H.P. and C.V.D.B. are supported by the research
programme of the Netherlands Organisation for Scientific
Research (NWO). L.S. and S.S. are supported by the U.S. De-
partment of Energy, Nuclear Physics Quantum Horizons pro-
gram through the Early Career Award No. DE-SC0021892.
R.S. acknowledges support from the Nuclear Physics from
Multi-Messenger Mergers (NP3M) Focused Research Hub
which is funded by the National Science Foundation under
Grant No. 21-16686, and by the Laboratory Directed Research
and Development program of Los Alamos National Labo-
ratory under Project No. 20220541ECR. T.D. acknowledges
funding from the EU Horizon under ERC Starting Grant, No.
SMArt-101076369, support from the Deutsche Forschungsge-
meinschaft, DFG, Project No. DI 2553/7, and from the Daim-
ler and Benz Foundation for the project “NUMANJI”. Views
and opinions expressed are those of the authors only and do
not necessarily reflect those of the European Union or the Eu-
ropean Research Council. Neither the European Union nor the

025807-12



PROBING QUARKYONIC MATTER IN NEUTRON STARS … PHYSICAL REVIEW C 109, 025807 (2024)

granting authority can be held responsible for them. The work
of I.T. was supported by the U.S. Department of Energy, Of-
fice of Science, Office of Nuclear Physics, under Contract No.
DE-AC52-06NA25396, by the Laboratory Directed Research
and Development program of Los Alamos National Labora-
tory under Projects No. 20220541ECR and No. 20230315ER,
and by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) NUCLEI
program. This material is based upon work supported by
NSF?s LIGO Laboratory which is a major facility fully funded
by the National Science Foundation. M.W.C acknowledges
support from the National Science Foundation with Grants
No. PHY-2308862 and No. PHY-2117997.

[1] F. Özel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401
(2016).

[2] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502(R)
(2008).

[3] W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck, and
S. Vitale, Phys. Rev. Lett. 111, 071101 (2013).

[4] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen, Phys. Rev.
Lett. 120, 172703 (2018).

[5] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Phys. Rev. Lett. 121, 161101 (2018).

[6] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger, and
C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018).

[7] I. Tews, J. Margueron, and S. Reddy, Phys. Rev. C 98, 045804
(2018).

[8] A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016).
[9] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.

Hessels, Nature (London) 467, 1081 (2010).
[10] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch

et al., Science 340, 1233232 (2013).
[11] C. Drischler, S. Han, J. M. Lattimer, M. Prakash, S. Reddy, and

T. Zhao, Phys. Rev. C 103, 045808 (2021).
[12] G. Raaijmakers, S. K. Greif, T. E. Riley, T. Hinderer, K.

Hebeler, A. Schwenk, A. L. Watts, S. Nissanke, S. Guillot, J. M.
Lattimer, and R. M. Ludlam, Astrophys. J. 893, L21 (2020).

[13] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,
Astrophys. J. 773, 11 (2013).

[14] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.
860, 149 (2018).

[15] C. Drischler, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips,
Phys. Rev. Lett. 125, 202702 (2020).

[16] J. Keller, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. 130,
072701 (2023).

[17] T. Gorda, A. Kurkela, P. Romatschke, S. Säppi, and A.
Vuorinen, Phys. Rev. Lett. 121, 202701 (2018).

[18] T. Gorda, A. Kurkela, R. Paatelainen, S. Säppi, and A.
Vuorinen, Phys. Rev. Lett. 127, 162003 (2021).

[19] T. Gorda, R. Paatelainen, S. Säppi, and K. Seppänen, Phys. Rev.
Lett. 131, 181902 (2023).

[20] P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, 031103
(2015).

[21] L. McLerran and S. Reddy, Phys. Rev. Lett. 122, 122701
(2019).

[22] K. S. Jeong, L. McLerran, and S. Sen, Phys. Rev. C 101, 035201
(2020).

[23] S. Sen and L. Sivertsen, Astrophys. J. 915, 109 (2021).
[24] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),

Phys. Rev. Lett. 119, 161101 (2017).
[25] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),

Astrophys. J. Lett. 892, L3 (2020).
[26] J. Aasi et al. (LIGO Scientific Collaboration), Class. Quantum

Grav. 32, 074001 (2015).

[27] F. Acernese et al. (VIRGO Collaboration), Class. Quantum
Grav. 32, 024001 (2015).

[28] Astrophys. J. 848, L12 (2017).
[29] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[30] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019).
[31] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021).
[32] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021).
[33] Z. Arzoumanian et al. (NANOGrav Collaboration), Astrophys.

J. Suppl. Ser. 235, 37 (2018).
[34] J. Margueron, H. Hansen, P. Proust, and G. Chanfray, Phys.

Rev. C 104, 055803 (2021).
[35] T. Zhao and J. M. Lattimer, Phys. Rev. D 102, 023021 (2020).
[36] D. C. Duarte, S. Hernandez-Ortiz, and K. S. Jeong, Phys. Rev.

C 102, 025203 (2020).
[37] D. C. Duarte, S. Hernandez-Ortiz, and K. S. Jeong, Phys. Rev.

C 102, 065202 (2020).
[38] A. Kumar, D. Dey, S. Haque, R. Mallick, and S. K. Patra,

arXiv:2304.08223.
[39] C.-J. Xia, H.-M. Jin, and T.-T. Sun, Phys. Rev. D 108, 054013

(2023).
[40] T. Dietrich, M. W. Coughlin, P. T. H. Pang, M. Bulla, J. Heinzel,

L. Issa, I. Tews, and S. Antier, Science 370, 1450 (2020).
[41] P. T. H. Pang et al., Nat. Commun. 14, 8352 (2023).
[42] S. Huth et al., Nature (London) 606, 276 (2022).
[43] B. D. Lackey and L. Wade, Phys. Rev. D 91, 043002

(2015).
[44] R. Essick, I. Tews, P. Landry, S. Reddy, and D. E. Holz, Phys.

Rev. C 102, 055803 (2020).
[45] D. Wysocki, R. O’Shaughnessy, L. Wade, and J. Lange,

arXiv:2001.01747.
[46] P. T. H. Pang, T. Dietrich, I. Tews, and C. Van Den Broeck,

Phys. Rev. Res. 2, 033514 (2020).
[47] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. R. Astron.

Soc. 398, 1601 (2009).
[48] J. Buchner, A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, M.

Brightman, A. Merloni, M. Salvato, J. Donley, and D. Kocevski,
Astron. Astrophys. 564, A125 (2014).

[49] J. Buchner, Pymultinest 2.9 documentation.
[50] T. Salmi et al., Astrophys. J. 941, 150 (2022).
[51] L. Strüder et al., Astron. Astrophys. 365, L18 (2001).
[52] M. J. L. Turner et al., Astron. Astrophys. 365, L27 (2001).
[53] E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021).
[54] R. J. Foley, D. A. Coulter, C. D. Kilpatrick, A. L. Piro, E.

Ramirez-Ruiz, and J. Schwab, Mon. Not. R. Astron. Soc. 494,
190 (2020).

[55] M.-Z. Han, S.-P. Tang, Y.-M. Hu, Y.-J. Li, J.-L. Jiang, Z.-P.
Jin, Y.-Z. Fan, and D.-M. Wei, Astrophys. J. Lett. 891, L5
(2020).

[56] K. Kyutoku, S. Fujibayashi, K. Hayashi, K. Kawaguchi, K.
Kiuchi, M. Shibata, and M. Tanaka, Astrophys. J. 890, L4
(2020).

025807-13

https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevLett.111.071101
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevC.98.045804
https://doi.org/10.1103/RevModPhys.88.021001
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.1103/PhysRevC.103.045808
https://doi.org/10.3847/2041-8213/ab822f
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1103/PhysRevLett.125.202702
https://doi.org/10.1103/PhysRevLett.130.072701
https://doi.org/10.1103/PhysRevLett.121.202701
https://doi.org/10.1103/PhysRevLett.127.162003
https://doi.org/10.1103/PhysRevLett.131.181902
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevC.101.035201
https://doi.org/10.3847/1538-4357/abff4c
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.1103/PhysRevC.104.055803
https://doi.org/10.1103/PhysRevD.102.023021
https://doi.org/10.1103/PhysRevC.102.025203
https://doi.org/10.1103/PhysRevC.102.065202
https://arxiv.org/abs/2304.08223
https://doi.org/10.1103/PhysRevD.108.054013
https://doi.org/10.1126/science.abb4317
https://doi.org/10.1038/s41467-023-43932-6
https://doi.org/10.1038/s41586-022-04750-w
https://doi.org/10.1103/PhysRevD.91.043002
https://doi.org/10.1103/PhysRevC.102.055803
https://arxiv.org/abs/2001.01747
https://doi.org/10.1103/PhysRevResearch.2.033514
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1051/0004-6361/201322971
https://doi.org/10.3847/1538-4357/ac983d
https://doi.org/10.1051/0004-6361:20000066
https://doi.org/10.1051/0004-6361:20000087
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1093/mnras/staa725
https://doi.org/10.3847/2041-8213/ab745a
https://doi.org/10.3847/2041-8213/ab6e70


PETER T. H. PANG et al. PHYSICAL REVIEW C 109, 025807 (2024)

[57] The LIGO Scientific Collaboration and the Virgo Collaboration,
Parameter estimation sample release for GWTC-1, report, 2019
(unpublished).

[58] The LIGO Scientific Collaboration and the Virgo Collaboration,
Parameter estimation sample release for GW190425, report,
2020 (unpublished).

[59] M. Bulla, Mon. Not. R. Astron. Soc. 489, 5037 (2019).
[60] C. J. Krüger and F. Foucart, Phys. Rev. D 101, 103002 (2020).
[61] A. Bauswein, S. Blacker, V. Vijayan, N. Stergioulas, K.

Chatziioannou, J. A. Clark, Niels-Uwe F. Bastian, D. B.
Blaschke, M. Cierniak, and T. Fischer, Phys. Rev. Lett. 125,
141103 (2020).

[62] A. L. Kataev and V. S. Molokoedov, Phys. Rev. D 92, 054008
(2015).

[63] R. Essick, I. Tews, P. Landry, and A. Schwenk, Phys. Rev. Lett.
127, 192701 (2021).

[64] R. Essick, P. Landry, A. Schwenk, and I. Tews, Phys. Rev. C
104, 065804 (2021).

[65] S. Vinciguerra et al., Astrophys. J. 961, 62 (2024).
[66] I. Legred, K. Chatziioannou, R. Essick, S. Han, and P. Landry,

Phys. Rev. D 104, 063003 (2021).
[67] Y. Fujimoto, K. Fukushima, L. D. McLerran, and M.

Praszalowicz, Phys. Rev. Lett. 129, 252702 (2022).

[68] R. Somasundaram, I. Tews, and J. Margueron, Phys. Rev. C 107,
L052801 (2023).

[69] O. Komoltsev and A. Kurkela, Phys. Rev. Lett. 128, 202701
(2022).

[70] T. Gorda, O. Komoltsev, and A. Kurkela, Astrophys. J. 950, 107
(2023).

[71] A. Le Fèvre, Y. Leifels, W. Reisdorf, J. Aichelin, and C.
Hartnack, Nucl. Phys. A 945, 112 (2016).

[72] P. Russotto et al., Phys. Rev. C 94, 034608 (2016).
[73] D. Adhikari, H. Albataineh, D. Androic, K. Aniol, D. S.

Armstrong, T. Averett, C. Ayerbe Gayoso, S. Barcus, V. Bellini,
R. S. Beminiwattha et al. (PREX Collaboration), Phys. Rev.
Lett. 126, 172502 (2021).

[74] V. Doroshenko, V. Suleimanov, G. Pühlhofer, and A.
Santangelo, Nat. Astron. 6, 1444 (2022).

[75] M. Punturo et al., Class. Quantum Grav. 27, 084007 (2010).
[76] S. Hild et al., Class. Quantum Grav. 28, 094013 (2011).
[77] D. Reitze, R. X. Adhikari, S. Ballmer, B. Barish, L. Barsotti,

G. Billingsley, D. A. Brown, Y. Chen, D. Coyne, R. Eisenstein,
M. Evans, P. Fritschel, E. D. Hall, A. Lazzarini, G. Lovelace, J.
Read, B. S. Sathyaprakash, D. Shoemaker, J. Smith, C. Torrie,
S. Vitale, R. Weiss, C. Wipf, and M. Zucker, Bull. Am. Astron.
Soc. 51, 35 (2019).

025807-14

https://doi.org/10.1093/mnras/stz2495
https://doi.org/10.1103/PhysRevD.101.103002
https://doi.org/10.1103/PhysRevLett.125.141103
https://doi.org/10.1103/PhysRevD.92.054008
https://doi.org/10.1103/PhysRevLett.127.192701
https://doi.org/10.1103/PhysRevC.104.065804
https://doi.org/10.1103/PhysRevD.104.063003
https://doi.org/10.1103/PhysRevLett.129.252702
https://doi.org/10.1103/PhysRevC.107.L052801
https://doi.org/10.1103/PhysRevLett.128.202701
https://doi.org/10.3847/1538-4357/acce3a
https://doi.org/10.1016/j.nuclphysa.2015.09.015
https://doi.org/10.1103/PhysRevC.94.034608
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1038/s41550-022-01800-1
https://doi.org/10.1088/0264-9381/27/8/084007
https://doi.org/10.1088/0264-9381/28/9/094013

