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Correlating isothermal compressibility to nucleon fluctuations in the inner crust of neutron stars
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The question of how and which physical observables or thermodynamic parameters can best predict the onset
of a possible phase transition in the inner crust of neutron stars remains largely unresolved. Using semiclassical
Monte Carlo simulations, we investigate the isothermal compressibility and density fluctuations in a region of
relevance to the dynamics of the inner crust. We show that the isothermal compressibility serves as a robust
observable to characterize the transition from the nonuniform crust to the uniform core for proton fractions
over 0.2. Moreover, we show explicitly how the two-component isothermal compressibility, computed using
the Kirkwood-Buff theory, is directly connected to the fluctuations in the number density, recorded in the
grand canonical ensemble by monitoring the number of particles in a small volume located at the center
of the simulation box. That is, we compute mean-square particle fluctuations and compare them against the
isothermal compressibility for different proton fractions. Although our results show that the mean-square particle
fluctuations are proportional to the isothermal compressibility, the lack of a perfect correlation is attributed
to the relatively small number of particles included in the simulations. The nonunity slope observed in the
dimensionless isothermal compressibility—total nucleon fluctuation variance relationship suggests that the inner
crust of neutron stars is composed of anisotropic and inhomogeneous matter.
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I. INTRODUCTION

Shortly after being discovered by Bell and Hewish in
1967 [1], neutron stars have been identified as unique lab-
oratories for the study of hadronic matter under extreme
conditions. Given their enormous density range, it is well
accepted that neutron stars are stratified into a low-density
nonuniform crust and a homogeneous core, both embedded in
a uniform neutralizing leptonic Fermi gas [2,3]. Given that the
baryon density varies by more than five orders of magnitude
from the inner core to the outer crust [4], it is anticipated that
the transition from a Coulomb crystal of neutron-rich nuclei
at low densities to the homogeneous core is accompanied by a
dramatic change in the topology of the nuclear clusters, the so-
called pasta phases [5,6]. In addition, as the transition density
to uniform matter is predicted to occur between a third and a
half of nuclear matter saturation density, investigations of the
crustal region could inform how a neutron-rich skin emerges
in neutron-rich nuclei such as 48Ca and 208Pb nucleus [7].

It was back in 2004 when Horowitz et al. kindled the
first sparks of the possible impact of the pasta phases on
neutrino transport in supernovae and protoneutron stars [8].
Traditionally, both Monte Carlo (MC) and molecular-dynamic
(MD) simulations have been used to simulate the complex
dynamics of a system displaying Coulomb frustration—a
universal phenomenon that emerges from the competition be-
tween attractive short-range interactions and the long-range
Coulomb repulsion. Numerical simulations of this kind have
been carried out as a function of baryon density ρ, proton

fraction yp, and temperature T , for a range of values that
span a region in the inner crust where the pasta phases are
expected to emerge [9–14]. The significant impact of the pasta
phases on the dynamics of the inner crust has been invoked to
explain the lack of x-ray-emitting isolated pulsars with long
spin periods, pulsar glitches, the elasticity of the inner crust,
the possibility of enhanced neutrino cooling via the direct
Urca process, the delay in the arrival of the neutrino signal,
and on magnetic field decay. For instance, Pons et al. unveiled
that a highly resistive layer in the inner crust limits the spin
period to a maximum value of about 10–20 s [15]. In turn,
Piekarewicz et al. found that uncertainties in the equation of
state of neutron-rich matter are large enough to accommodate
theoretical models that predict large fractal crustal moments
of inertia that are essential to explain pulsar glitches [16].
Moreover, using MD simulations with a large number of
particles, Caplan et al. studied the breaking mechanism of
idealized nuclear pasta plates by applying tensile and shear
strains for specific values of the density and proton fraction of
ρ = 0.05 fm−3 and yp = 0.4, respectively. Their results sug-
gest that nuclear pasta may be the strongest known material,
with a shear strain larger than 0.1 and a shear modulus of
1030 ergs cm−3 [17]. Finally, by modeling a variety of pasta
phases with different topologies, Lin et al. demonstrated that
the neutrino luminosity from the direct Urca process in the
inner crust can be 3–4 orders of magnitude larger than that
from the modified Urca process in the stellar core [18]. In
a subsequent work, it was concluded that the scattering of
neutrinos from the complex pasta structures may slow their
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diffusion, thereby increasing the late-times neutrino signal
from the collapse of the stellar core [19].

Further, significant resources have been devoted to iden-
tifying physical observables sensitive to the crust-core tran-
sition, a task that has proven to be highly challenging. For
instance, and departing from the MC/MD paradigm, Burrello
et al. presented results obtained in a quasiparticle mean-field
Hartree-Fock-Bogoliubov (HFB) theory in the Wigner-Seitz
approximation [20]. Their results revealed a peak in the heat
capacity at the critical temperature at which the nuclei melt
into a gas of free particles and resonances in the inner crust.
Although properly incorporating quantum effects, mean-field
approaches miss some of the complex clustering correla-
tions that are properly captured in the semiclassical approach.
Instead, using a quantum MD simulation in which the single-
nucleon wave functions are represented by Gaussian wave
packets, Nandi and Schramm reported that various transport
properties in the inner crust—such as the electrical and ther-
mal conductivity as well as the shear viscosity—are of the
same order of magnitude as those found without the pasta
phase [21]. These results call into question the reliability of
such transport properties in identifying exotic behavior asso-
ciated with the existence of the pasta phases. Recently, we
reported using an MC simulation that the isothermal com-
pressibility computed in the framework of the Kirkwood-Buff
theory, reaches a maximum when isolated non-symmetric
clusters are formed in an extremely dilute neutron gas at
ρ = 0.008 and 0.01 fm−3 and for yp = 0.4 and 0.2, respec-
tively [22]. Such behavior would be reminiscent of a critical
point (albeit not explicitly) associated with a maximum in the
density fluctuations. This phenomenon has been extensively
investigated in the phase diagram of conventional liquids such
as water. However, our previous simulation results are limited
by the numerical challenge of generating numerous configu-
rations covering the vast thermodynamic conditions that exist
within the inner crust.

In the present work, we perform MC simulations for a
wide range of temperatures, baryon densities, and proton frac-
tions. Based on these results, we propose the two-component
isothermal compressibility as a robust thermodynamic ob-
servable for identifying the onset of the phase transition. In
turn, we correlate the isothermal compressibility in the critical
region to the variance in the nucleon number. Computing den-
sity fluctuations is implemented here by selecting a “small”
portion of the simulation box as the system of interest and let-
ting the “large” portion of the box acts as the particle reservoir.
To our knowledge, no previous work has attempted to connect
the isothermal compressibility to the density fluctuations in
such a manner.

The paper is organized as follows. Section II describes
the temperature-dependent semiclassical MC simulation, the
theoretical formalism used to calculate the isothermal com-
pressibility, and our proposed method to record the variance
in the number density. Section III is devoted to a discussion
of our results for the evolution of isothermal compressibility
and its connection to the variance in the density. Moreover,
in this section, we illustrate how these observables serve to
identify the onset of the phase transition. Finally, we offer our
conclusions in Sec. IV.

II. FORMALISM

In this section, we describe the computational and theoret-
ical formalism that will be used to simulate nuclear matter
under the thermodynamic conditions relevant to the inner
crust of neutron stars. We commence by providing a concise
overview of the Monte Carlo simulation. The rest of this
section is dedicated to the computation of various observables
associated with neutron stars.

A. Semiclassical Monte Carlo simulation

The MC simulation employed in this study follows closely
the methodology implemented in our recent publication [22].
Yet, for the sake of clarity, we present a brief overview of the
key points. For all the simulations we adopt a fixed number
of A = 5000 nucleons. Hence, to account for baryon densities
spanning the 0.08–0.005 fm−3 range, we must vary the box
length L from 39.69 to 100 fm, respectively. In turn, the proton
fraction was set at three fixed values, namely, y= Z/A= 0.1,
0.2, and 0.4, where Z represents the number of protons, which
in all cases equals the number of neutralizing electrons that
are treated as a noninteracting Fermi gas.

The total potential energy of the A-body system is given in
terms of the following two contributions:

V (r1, . . . , rA) = VN(r1, . . . , rA) + VC(r1, . . . , rA), (1)

where VN and VC stand for the short-range nuclear and long-
range Coulomb potentials, respectively. The vector ri denotes
the position of the nucleon labeled with the index i. The
functional form of the underlying nucleon-nucleon potential,
the implementation of the Ewald summation for a periodic
box, and details of the Metropolis algorithm can all be found
in earlier reports [11,23]. The use of periodic boundary condi-
tions is used to mitigate finite-size effects associated with the
limited size of the simulation box.

To start the MC simulation, we select an initial temperature
of T = 2 MeV and with all A = 5000 nucleons distributed
randomly throughout the box. Once the initial thermalization
phase has been completed, the system is cooled gradually to a
final temperature of T = 0.5 MeV using a cooling schedule of
0.1 MeV per 4000 sweeps. We note that each sweep consists
of A individual MC steps so that on average each nucleon
is tagged one time. Once the final temperature is reached,
an additional 50 000 sweeps are performed to ensure full
thermalization of the system. The simulation concludes with
5000 additional sweeps to accumulate enough statistics on the
relevant physical observables. A similar process is followed
in reverse as we investigate the dynamics at higher tempera-
tures. In this case, starting at T = 0.5 MeV, the temperature
increases in steps of 0.25 MeV until the target temperature is
reached. At each temperature stage, we use 50 000 thermaliza-
tion sweeps and finish with 5000 additional sweeps to collect
statistics at the target temperature.

B. Isothermal compressibility

As in our recent work [22], we employ a formalism de-
veloped by Kirkwood and Buff more than 70 years ago
to compute the isothermal compressibility κT of a system
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consisting of an arbitrarily large number of constituents [23].
Concisely, Kirkwood and Buff developed a general method
based on the theory of composition fluctuations in the grand
canonical ensemble to compute the isothermal compressibility
for an m-component system [23]. In the particular case of a
two-component system as the one considered in this work, the
isothermal compressibility is given by the following expres-
sion [22]:

ρ T κT = 1 + ρnGnn + ρpGpp + ρnρp
(
GnnGpp − G2

np

)
[
1 +

(
ρnρp

ρ

)
(Gnn + Gpp − 2Gnp)

] , (2)

where Gi j is the angle-averaged integral of the pair correlation
function for species i and j, namely,

Gi j =
∫ ∞

0
[gi j (r) − 1]4πr2dr, (3)

and where gi j (r) is the radial distribution (or pair correlation)
function given by

gi j (r) = L3

4πr2NiNj

〈∑
i

∑
j �=i

δ(r − |ri − r j |)
〉
. (4)

Here, the brackets indicate an ensemble average over all
MC configurations and gi j (r) is normalized to unity as r
approaches L/2. The pair correlation function is both an
insightful and important observable. Indeed, for pairwise in-
teractions, as we assume here, fundamental thermodynamic
observables, such as the internal energy, pressure—and, of
course, the isothermal compressibility—may be readily ob-
tained by performing suitable integrals involving the pair
correlation function. Moreover, given that in MC simulations
one keeps track of the positions of all the particles, gi j (r) is an
observable that is relatively simple to compute.

C. Particle number fluctuations

Given that to this date most MC and MD simulations have
been carried out in the canonical ensemble where the number
of particles, the temperature, and the volume are the control
thermodynamic variables, how does one compute fluctuations
in the number of particles in such a scenario? To do so we
introduce a scheme which, as shown in Fig. 1, consists of
dividing the original simulation box into two regions: a central
sphere of radius R = 0.36 L containing approximately 20%
of the original volume and a particle reservoir containing the
remaining 80%, responsible for enforcing chemical equilib-
rium. As such, one monitors the number of protons Np(s),
neutrons Nn(s), and the total number of nucleons Nt (s) =
Np(s) + Nn(s) in the smaller volume as a function of the
Monte Carlo step s, and then compute suitable averages over
the total number of sweeps S = 5000. The fluctuations in
the particle number of a given species (μ = p, n, t) are then
calculated by

σ 2
μ = 1

S

S∑
s=1

(Nμ(s) − 〈Nμ〉)2 = 〈
N2

μ

〉 − 〈Nμ〉2. (5)

neutron
proton

L

erutcurts
atsaproretsulc

R

central sphere

FIG. 1. Schematic illustration of a configuration confined to a
simulation box of length L. For large systems, one could in principle
implement a grand canonical formulation by adopting the central
sphere of radius R as the system of interest and letting the rest of the
box act as the particle reservoir. The orange arrows show the possible
trajectories of some nucleons during the MC simulation.

We conclude this section by connecting three seemingly
distinct physical observables encoding: (i) the structural prop-
erties of the system S(q), (ii) the underlying equation of state
κT , and (iii) the statistical fluctuations in the number of parti-
cles 〈N2〉 − 〈N〉2. That is,

S(q = 0) = ρ T κT = 〈N2〉 − 〈N〉2

〈N〉 , (6)

where κT is obtained from the pair-correlation function as
indicated in Eq. (2). Consistency among all these quantities
provides a robust and nontrivial test of the entire formalism.

III. RESULTS AND DISCUSSIONS

A. Thermalized configurations

Figure 2 shows the snapshots of various thermalized
nucleon configurations under different thermodynamic con-
ditions, classified into four categories as follows:

(i) yp�0.2 for ρ�0.01 fm−3 and yp = 0.1 for ρ �
0.03 fm−3. In this case, the thermodynamic conditions favor
the formation of nonsymmetric isolated clusters immersed in
a uniform neutron vapor. This situation is reminiscent of the
distillation effect [24]. Further, we note that the size of the
clusters increases both with density and proton fraction. A
larger proton fraction binds more neutrons into the cluster due
to the nuclear attraction between neutrons and protons.

(ii) yp = 0.2 for ρ �0.03 fm−3. Under moderate density
and a significant proton fraction, elongated and nonsymmetric
clusters form due to the long-range Coulomb interaction. If

025806-3



SHAFIEEPOUR, MOSHFEGH, AND PIEKAREWICZ PHYSICAL REVIEW C 109, 025806 (2024)

(a)
0.005 fm-3

Ve
M

05.0

(b)

Ve
M

05.0
Ve

M
05.1

Ve
M

05.1

(c)

Ve
M

05.0
Ve

M
05.1

0.008 fm-3 0.01 fm-3 0.03 fm-3 0.05 fm-3 0.08 fm-3

FIG. 2. Snapshots of thermalized nucleon configurations for a variety of baryon densities, at proton fractions of (a) 0.1, (b) 0.2, and (c) 0.4,
and a temperature of T = 0.5 and 1.5 MeV. Red and green solid circles depict protons and neutrons, respectively. For space limitations, we do
not show nucleon configurations at the intermediate temperature range of T = 0.75–1.25.

many such clusters coexist, then exotic shapes with different
topologies start to emerge. One can also see that at this density
some of the large clusters remain well separated, suggesting
that under these conditions the system contains a mixture of
isolated deformed, pasta phases, and a neutron vapor.

(iii) yp = 0.4 for ρ �0.01 fm−3. For such a dilute system,
the clusters are well separated. Moreover, due to the large pro-
ton fraction, the neutron vapor largely disappears and nearly
all neutrons are absorbed into clusters. In turn, since at large
separations only the Coulomb interaction between clusters

remains effective, the system organizes itself into a Coulomb
crystal in agreement with our previous work [22].

(iv) yp = 0.4 for ρ �0.03 fm−3. These conditions are
optimal for the development of the pasta phases, as the
large proton fraction induces the deformation of the clusters
whereas the high density forces them to overlap and merge
well matched with our previous report [22].

As the temperature increases to T = 1.5 MeV, the loosely
bound neutrons separate from the clusters, resulting in tightly
bound nuclei immersed in a uniform neutron vapor at all
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FIG. 3. ρT κT versus (a)–(c) T and (d)–(f) ρ for different proton fractions of 0.1, 0.2, and 0.4, respectively. The various lines are added to
guide the eye.

proton fractions. We observe the incomplete liquefaction (or
melting) of the clusters and pasta phases, suggesting that only
a portion of the nuclear material has turned into a vapor, while
the rest remains in its original state. Therefore, one can still
see the presence of nuclear clusters and pasta phases even at
this increased temperature. Given the drastic change in the
structure of the system with increasing temperature, we an-
ticipate a dramatic change in the physical and thermodynamic
properties of the system, indicating the onset of a phase tran-
sition. In the following sections, we will explore the impact
of the temperature on both the isothermal compressibility and
the fluctuations in the number of particles.

B. Isothermal compressibility

The main observable discussed in this section is the isother-
mal compressibility:

κT = − 1

V

(
∂V

∂P

)
T

= 1

ρ

(
∂ρ

∂P

)
T

, (7)

where P is the pressure and V is the volume. In particular, we
study the isothermal compressibility given by the Kirkwood-
Buff formula displayed in Eq. (2). In Fig. 3 we show results for
the product ρT κT as a function of T and ρ for proton fractions
of yp = 0.1, 0.2, and 0.4. Note that for a classical ideal gas,
the product ρT κT is equal to one, so by plotting it in this

manner one isolates the nontrivial thermodynamic behavior of
the pair correlation function; see Eq. (2). Motivated by some
of the trends observed above, we classify this data into two
categories: yp�0.2 and yp = 0.4.

(i) yp�0.2. The results indicate that, while significantly
deviating from the ideal gas limit, ρT κT displays a mild
dependence on both T and ρ. At these densities, all pro-
tons are contained in relatively small clusters that, according
to the liquid drop formula, are largely incompressible. In
addition, neutrons in the vapor remain separated because
of the strong repulsion at short distances. Qualitatively, the
neutrons in the vapor resemble a van der Waals (vdW) gas
interacting via an excluded-volume (repulsive) term and an
attractive dipole-dipole interaction that falls as a power law
at large distances. However, there are important differences
in the nuclear case, as neutrons repel at short distances but
the attraction at intermediate distances falls exponentially.
Nevertheless, the observed behavior demonstrates that the
isothermal compressibility is an inverse function of baryon
density and temperature. Such a reduction in the isothermal
compressibility with increasing temperature has been previ-
ously documented in various systems, including a hot and
dense hadron gas and supercooled water [25,26].

(ii) yp = 0.4. The isothermal compressibility of such a
nearly isospin-symmetric system displays different behavior.
First, we indicate how ρT κT displays a similar trend as that
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FIG. 4. (a) An example for the number of nucleons inside the central sphere as a function of s for ρ = 0.03 fm−3 and yp = 0.1 at T = 1
MeV. (b) Variance in the neutron (σ 2

n , filled symbols) and proton (σ 2
p , empty symbols) number versus temperature for different proton fractions

of 0.1 (left panel), 0.2 (middle panel), and 0.4 (right panel). The various lines are added to guide the eye.

observed at low proton fraction for ρ = 0.08 fm−3 and T =
1.5 MeV; see Figs. 3(c)–3(f). The low isothermal compress-
ibility of these two curves suggests that the Coulomb-driven
pasta phases at ρ = 0.08 fm−3 and the pressure support of
the neutron vapor at T = 1.5 MeV keep the system relatively
incompressible (see Fig. 2). However, at the lowest density
of ρ = 0.005 fm−3, Fig. 3(c) displays large fluctuations with
temperature. With such a large proton fraction, many neutrons
in the vapor migrate to the clusters, leading to a reduction in
pressure support from the free neutrons and resulting in higher
compressibility. Indeed, in the density interval 0.008 fm−3�
ρ�0.05 fm−3, Fig. 3(c) indicates the presence of a maximum
value at T = 0.75 MeV that may be reminiscent of a critical
point where the phase boundary between free neutrons and
clusters/pasta structures vanishes. It is worth noting that the
limited data points on temperature and the limited box sizes
are the main reasons why we do not approach the exact critical
temperature Tc, where κT would diverge in the thermodynamic
limit. Nevertheless, we suggest that the isothermal compress-
ibility diverges at Tc according to

κT =
∣∣∣∣ T

Tc
− 1

∣∣∣∣
−γ

, (8)

where the “critical” exponent γ is a positive constant, as
reported for terrestrial materials [27,28].

In closing this section, it is essential to highlight the
profound interplay between different topological structures
and thermodynamic parameters. Our forthcoming research
endeavors to simulate and analyze these intricate relation-
ships, employing a substantially larger number of particles
to explore and generate diverse pasta phases such as waf-
fles, spaghetti, gnocchi, and lasagna [9,29]. Following this,
we intend to apply the same methodology to investigate the
temperature-dependent two-component isothermal compress-
ibility, aiming to gain deeper insights into the inner crust.

C. Nucleon fluctuations

So far, insights into isothermal compressibility have been
developed through its connection to the pair correlation func-
tion, relatively easy to obtain from MC simulations. However,

density fluctuations, which are also encoded in the isothermal
compressibility, are much more challenging to simulate in the
canonical ensemble used here. To mitigate this problem, we
have divided the simulation volume into a “small” central
sphere of volume Vs = 4πR3/3 and a particle reservoir with
a “large” volume V − Vs. In this manner, nucleon fluctuations
may be quantified by monitoring the number of nucleons
contained within the central sphere versus of MC step s. It is
important to acknowledge that while the framework proposed
here holds promise for much larger systems, the simulations
conducted here using a modest number of A = 5000 particles,
may not adequately capture the fluctuations in the number of
particles.

The Monte Carlo history of Np(s), Nn(s), and Nt (s) in-
side the central sphere is displayed in Fig. 4(a) for the
following thermodynamic conditions: ρ = 0.03 fm−3, yp =
0.1, and T = 1 MeV. The observed nucleon fluctuations are
attributed to free neutrons entering and leaving the sphere,
bound neutrons/protons jiggling inside the clusters/pasta
structures, free neutron absorption, bound neutron desorption,
and clusters/pasta structures displacements. Notably, the con-
tribution from the latter is small given that the recorded pair
correlation functions remain largely constant—especially at
longer distances—indicating that the long-range order does
not change appreciably once the system is well thermalized. It
is worth mentioning that the observed trends highlighted here
are consistent with other configurations investigated under
different thermodynamic conditions.

Displayed in Fig. 4(b) as a function of temperature for
different proton fractions are the fluctuations in the number
of particles σ 2

μ (with μ = n, p) inside the spherical simulation
volume. For a density of ρ = 0.03 fm−3, these fluctuations are
encoded in the behavior displayed in Fig. 4(a). The results
illustrate some general trends as well as some specific behav-
ior depending on the proton fraction. Some of the observed
general trends are the enhancement of σ 2

μ as a function of T
as well as a systematic enhancement of σ 2

n relative to σ 2
p . Such

an enhancement is due to the limited proton mobility, as most
of the protons are confined within clusters whereas neutrons
can also be found in the surrounding vapor. To further elu-
cidate the behavior of the particle fluctuations, we divide the
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forthcoming discussion into two regions: (i) yp�0.2 and (ii)
yp = 0.4.

(i) yp�0.2. The collected data points in this region ex-
hibit a jump in σ 2

n for densities above ρ = 0.03 fm−3. Given
the moderate densities and low proton fractions, such be-
havior can be associated with the jiggling of the bound
neutrons within the clusters or the continuous absorption
into or desorption from the clusters. Notably, as seen in
Fig. 4(b), the free neutrons do not contribute significantly
to the jump as the proton fraction increases from ρ = 0.01
to ρ = 0.02 fm−3, the fraction of neutrons bound to clusters
also increases. Given that neutrons under these conditions are
weakly bound, neutron absorption and desorption are strongly
enhanced.

(ii) yp = 0.4. The data points in this region significantly
decline in σ 2

n and a moderate increase in σ 2
p due to neu-

tron localization and proton delocalization, respectively. In
a proton-rich environment, proton delocalization may arise
from the clear emergence of Coulomb frustration that favors
the formation of exotic pasta phases where the Coulomb
repulsion plays a predominant role that results in a weak
binding of the protons to the clusters. These quantita-
tive results encapsulate the qualitative picture displayed in
Fig. 2.

D. Correlating density fluctuations to the
isothermal compressibility

In this section, we aim to investigate how the particle
fluctuations discussed in the previous section correlate to the
behavior displayed by the isothermal compressibility com-
puted from the Kirkwood-Buff theory. In Sec. II we indicated
how the isothermal compressibility defined in Eq. (7) in terms
of thermodynamic variables may be determined by comput-
ing either the pair correlation function as in Eq. (2) or the
mean square density fluctuations as in Eq. (6) [30]. While
the computation of pair correlation functions using MC or
MD simulations has become routine, we have outlined here a
procedure by which one may compute density fluctuations—
even within the canonical ensemble. This procedure involves
monitoring the fluctuations in the number of particles enter-
ing and exiting the confined spherical volume depicted in
Fig. 1, which constitutes a small fraction of the total volume
of the system. The fluctuations in the number of neutrons
σ 2

n and protons σ 2
p were the primary focus of the preceding

section.
We now proceed to correlate the behavior of the isother-

mal compressibility κT computed within the Kirkwood-Buff
framework with the fluctuations in the total particle number
σ 2

t . It is important to mention that such a correlation ex-
ists at each temperature, baryon density, and proton fraction.
Figure 5(a) represents the variation of the total number of nu-
cleons as a function of isothermal compressibility for different
proton fractions at various temperatures. We notice a correla-
tion between these two observables, indicating the presence
of a linear relationship (a line with the assumed y intercept
of zero) between them. It is important to note that the plotted
data exhibits a significant amount of scattering and that the
correlation coefficients are relatively low, likely attributable

FIG. 5. (a) Mean-square nucleon fluctuations versus isothermal
compressibility for various temperatures at a proton fraction of
0.1, 0.2, and 0.4, respectively; solid lines are to guide the eye.
(b) L3V −1

sph 〈N〉−1σ 2
t versus ρsphT κT for all studied conditions. The

gray dashed line stands for a slope of unity.

to the limited number of nucleons used in the simulation.
Nevertheless, one can infer a general trend between these two
quantities,

κT ∝ σ 2
t , (9)

implying that the total particle fluctuation in the confined vol-
ume is correlated with the isothermal compressibility obtained
by applying the Kirkwood-Buff theory encoded in Eq. (6). It is
important to emphasize that the determination of the precise
relationship between these two quantities, potentially in the
form of κT = σ 2

t × F (ρ, yp, T ), where F (ρ, yp, T ) represents
a function that predicts their exact correlation at each tem-
perature, baryon density, and proton fraction requires at least
an order of magnitude increase in the number of particles.
Only then one can investigate, not only the approach to the
thermodynamic limit but also record the fluctuations in the
number of particles within several restricted volumes, thereby
enhancing the robustness and reliability of the statistical anal-
ysis. Nevertheless, one should also consider that the simple
relation between the thermal compressibility and the fluctu-
ations in the number of particles may need to be revised for
two-component systems without uniform spatial symmetry, as
in the case of the neutron star crust. Regardless, we tried to
explore the relation between these two physical observables
indicated in Eq. (6), by plotting the fractional fluctuations
〈N〉−1σ 2

t versus ρT κT . Note that in an attempt to mimic the
grand canonical ensemble, all quantities in the above expres-
sion have been properly scaled to the small central sphere.
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Before discussing the results, we should note that Eq. (6)
does work for an isotropic homogeneous thermodynamic
system [31–33]. The inner crust of the neutron star crust,
as discussed above, contains anisotropic and inhomoge-
neous matter. Therefore, it is expected that the slope of
L3V −1

sph 〈N〉−1σ 2
t versus ρsphT κT in this prominent response

function should not be unity. Our results indicate a consistent
trend between them, yet the slope remains less than unity
[Fig. 5(b)]. We generally observed that the slope increases
with T (see dark to light colors in this figure standing for low
to high temperature, respectively). The reason can be assigned
to the desorption of neutrons from the isolated nonsymmetric
clusters/pasta phases forming a relatively isotropic homoge-
neous system (see Fig. 2).

IV. CONCLUSIONS

Motivated by the importance of understanding transport
properties in neutron stars, such as the neutrino mean-free
path which controls the neutron star cooling rate, we have
investigated the rich and complex pasta structures in the
inner crust by performing semiclassical MC simulation at
different temperatures, densities, and proton fractions. Once
the system has been thermalized, we computed the various
pair-correlation functions, which were subsequently utilized
as input to compute the isothermal compressibility of the
system by invoking the Kirkwood-Buff theory. Our results
have unveiled that in proton-poor environments, the prod-
uct ρT κT remained almost constant over the region of
temperatures and densities explored in this study. In con-
trast, in a proton-rich environment with yp = 0.4—where the
long-range Coulomb interaction plays a preeminent role—
the isothermal compressibility develops a large peak at a
critical temperature Tc. This behavior was ascribed to the
existence of a critical point, indicating the onset of a phase
transition.

Inspired by the possible existence of a phase transition,
we proposed a method to monitor particle fluctuations in the
canonical ensemble by isolating a small volume at the center
of the larger simulation volume. Nucleon fluctuations in the
smaller volume illustrated how the thermalized configurations
evolve as a function of the MC sweep. In particular and as
expected, we observed strong proton localization within clus-
ters as compared to neutrons that can exist both in clusters as
well as in a dilute neutron vapor. Moreover, we noticed how
the various pasta structures dissolve as the temperature of the
system becomes comparable with the nuclear binding energy.
We identified various processes that encapsulate the evolution
of the various structures, including free neutron motion, the
jiggling of bound neutrons and protons within the clusters,
free neutron absorption, and bound neutron desorption. In ad-
dition, we have observed that the variance in both proton and
neutron numbers approach each other as the system becomes
nearly symmetric, namely, when yp = 0.4. The importance of
the fluctuations in the particle number is its direct impact on
the static structure factor and consequently, on the neutrino

mean-free path; see Eq. (6). Indeed, the larger the variance
in the particle number the larger the neutrino-pasta scatter-
ing cross section. This may dramatically affect the neutrino
mean-free path [8], allowing for a significant energy trans-
fer to the nuclear medium and impacting the stellar cooling
rate.

Finally, we explored the correlation between the mean-
square fluctuations in the particle number and isothermal
compressibility for different proton fractions. Such a study
revealed that the mean-square fluctuation is proportional to
the isothermal compressibility, that is, κT ∝ σ 2

t . However, the
failure to observe such a perfect correlation was attributed
to the relatively small system size. For instance, introducing
another sphere at the corner of the current simulation box with
a similar radius results in approximately ≈52% overlapping
volume with the central sphere. This indicates that selecting
another sphere within the simulation box would encompass
at least about ≈52% of the particles of the central sphere,
rendering their results non-independent. In the future, we plan
to work on systems containing a much larger number of par-
ticles to better monitor particle fluctuations over a wide set of
thermodynamic conditions relevant to the inner crustal region
of the neutron star. In particular, we aim to quantify the precise
relationship between these two quantities in the form of κT =
σ 2

t × F (ρ, yp, T ), where F (ρ, yp, T ) is a function of tem-
perature, baryon density, and proton fraction. Exploring the
connection between nucleon fluctuations and the isothermal
compressibility under β equilibrium could offer a better pic-
ture of the underlying dynamics in the inner crust of neutron
stars. This aspect, however, is reserved for our forthcoming
investigations. In our concluding remarks, based on the plot of
dimensionless nucleon fluctuation variance against isothermal
compressibility as the response function, we observe that the
slope of this relationship is not unity. This implies that the
inner crust of neutron stars is characterized by inhomogeneous
and anisotropic properties.

In summary, the present work clarifies the existence of
phase transition in the inner crust of neutron stars where
the emergence of pasta structures has been diagnosed by ex-
amining the behavior of the isothermal compressibility and
the mean-square fluctuations in the particle number. The in-
sights attained in this study lead to a deeper understanding
of the nuclear composition in the inner crust of neutron
stars.
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