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Direct mapping of tidal deformability to the isoscalar and isovector nuclear matter parameters
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Background: The equations of state (EoSs) which determine the properties of neutron stars (NSs) are often
characterized by the isoscalar and isovector nuclear matter parameters (NMPs). Recent attempts to relate the
radius and tidal deformability of a NS to the individual NMPs have been inconclusive. These properties display
strong correlations with the pressure of NS matter which depends on several NMPs. It may be necessary to map
the NS properties to the NMPs.
Purpose: To identify the important NMPs required to describe the tidal deformability of neutron star for
astrophysically relevant range of their gravitational masses (1.2–1.8 M�) as encountered in the binary neutron
star merger events.
Method: We construct a large set of EoSs using four isoscalar and five isovector NMPs. These EoSs are em-
ployed to perform a systematic analysis to isolate the NMPs that predominantly determine the tidal deformability
parameter obtained by solving the Tolman-Oppenheimer-Volkoff (TOV) equations. The tidal deformability for
the EoSs consistent with the chiral effective field theory (χEFT) at the lower density and satisfying maximum
gravitational mass of stable NS � 2 M� are directly mapped to these NMPs.
Results: We provide empirical relations between tidal deformability parameter and a minimal set of essential
NMPs through lower order polynomial functions. The tidal deformability of the NS with mass 1.2–1.8 M� can
be determined within 10–30 % directly in terms of linear function of four nuclear matter parameters, namely, the
incompressibility coefficient K0 and skewness Q0 of symmetric nuclear matter, and the slope L0 and curvature
parameter Ksym0 of symmetry energy. The inclusion of the remaining NMPs improves the predictability of tidal
deformability to 5–10 %.
Conclusion: Empirical relations are developed for quick estimation of reliable values of tidal deformability, in
terms of the NMPs, across a wide range of NS mass for a given EoS model. Our method can also be extended to
other NS observables.
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I. INTRODUCTION

The stringent constraints on the equation of state (EoS)
of the dense matter promised by gravitational wave astron-
omy through the detailed analysis of Bayesian parameter
estimation has triggered many theoretical investigations of
the neutron star (NS) properties [1–12]. The tidal deforma-
bility parameter (�) of NS, which encodes the information
for the EoS has been inferred from a gravitational wave
event GW170817 observed with the Advanced-LIGO [13]
and Advanced-Virgo detectors [14] from a binary neutron star
(BNS) merger with component masses in the range 1.17–
1.6 M� [15,16]. Subsequently, another event GW190425,
likely originating from the coalescence of BNSs was observed
[10]. The GW signals from coalescing BNS events are likely
to be observed more frequently in the upcoming runs of
LIGO-Virgo-KAGRA and the future detectors, e.g., Einstein
Telescope [17] and Cosmic Explorer [18]. Complementary
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information on the NS properties is also provided by the Neu-
tron star Interior Composition Explorer (NICER). It relies on
pulse profile modeling, a powerful technique to monitor elec-
tromagnetic emission from the hot spots located on the surface
of the neutron star [19,20]. Recently, two different groups of
NICER have reported neutron star’s mass and radius simulta-
neously for PSR J0030+0451 with radius R = 13.02+1.24

−1.06 km
for mass M = 1.44+0.15

−0.14 M� [21] and R = 12.71+1.14
−1.19 km for

M = 1.34+0.15
−0.16 M� [22], and for another (heavier) pulsar PSR

J0740+6620, R = 13.7+2.6
−1.5 km with M = 2.08 ± 0.07 M�

[23] and R = 12.39+1.30
−0.98 km with M = 2.072+0.067

−0.066 M� [24].
The NS matter up to 2–3 times the saturation density

(ρ0 = 0.16 fm−3) is expected predominantly to be composed
of nucleons in β equilibrium. The EoSs for such matter can
be expressed using isoscalar and isovector nuclear matter
parameters which characterize the symmetric nuclear matter
(SNM) and density-dependent symmetry energy, respectively.
Several investigations have been carried out to narrow down
the bounds on these NMPs from the information on the radius
and tidal deformability of a canonical neutron star [3,25–
36]. The behavior of EoSs around ρ0 may be important in
determining the properties of such NSs. Several studies have
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TABLE I. Priors for the nuclear matter parameters used in our analysis. All the parameters are uniformly distributed within the minimum
(‘min’) and maximum (‘max’) bounds. The median (‘med’) values are also listed [40]. All values are in the units of MeV.

NMP e0 K0 Q0 Z0 J0 L0 Ksym0 Qsym0 Zsym0

min −16.3 200 −800 1400 27 20 −250 300 −2000
max −15.7 300 800 2500 37 120 250 900 −1000
med −16.0 231.96 −418.89 1638.14 31.87 52.26 −67.44 726.49 −1622.35

been performed to study the correlation between NS prop-
erties and nuclear matter parameters [12,31,37]. However,
the correlation between neutron star properties and individual
nuclear matter parameters is found to be at variance [38]. But
the correlations of NS radii with the pressure at the densi-
ties ≈2ρ0 for the β-equilibrated matter is found to be robust
[39]. Similar trends are observed for the correlations of the
tidal deformability with pressure at ≈2ρ0 [28,31,40]. These
correlations are found to be nearly model-independent and
persist over a wide range of NS mass 1.2–2 M� [31,40]. This
information has been widely used to obtain empirical relation
between the NS properties and pressure for β-equilibrated
matter at density ≈1.5–2ρ0 [39,41–43]. Nevertheless, these
relations cannot constrain the underlying isoscalar and isovec-
tor NMPs components separately [44–46]. It is therefore
important to map the NS properties directly in terms of the
NMPs, which describe the EoS.

In the present work, we perform systematic analysis and
multi-parameter correlation studies to identify the minimal set
of essential isoscalar and isovector nuclear matter parameters
that predominantly determine tidal deformability of neutron
stars obtained from solutions of TOV equations with masses
1.2–1.8 M� [47]. Here we show that the tidal deformability
can be mapped, predominantly to the two isoscalar parameters
incompressibility (K0), skewness (Q0), and the two isovector
parameters slope (L0), curvature (Ksym0). The inclusion of a
few higher order parameters improves the predictability of
the mapped functions, in particular, for the heavier neutron
stars. Estimating the NMPs using Bayesian inference from
the observational information of NS properties required to
construct large number of EoSs from NS matter and corre-
sponding numerical solution of the TOV equations, and to test
their astrophysical validity (see second paragraph of Sec. II)
which is often computationally expensive [48–50]. However,
our established empirical relation can be directly employed
to facilitate the Bayesian analysis of diverse astrophysical
observations.

II. MAPPING TIDAL DEFORMABILITY TO THE
NUCLEAR MATTER PARAMETERS

We aim to identify the subset of the NMPs on which the
tidal deformability predominantly depends over a range of NS
mass relevant for astrophysical observations of BNS events
detectable in the near future. In this context, we study the
dependencies of � on the NMPs in the form of simple polyno-
mial series of those predominant parameters. Such mapping
would enable us to evaluate � without recourse to the com-
putationally expensive solutions of the TOV equations which

will pave the way for the Bayesian parameter estimation of
the NMPs from the GW events in a computationally efficient
method.

The isoscalar and isovector nuclear matter parameters gov-
ern the EoS of β-equilibrated matter. The isoscalar NMPs
usually considered to describe the EoS for the SNM are
binding energy per nucleon (e0), incompressibility coefficient
(K0), skewness (Q0), and kurtosis (Z0). The density dependent
symmetry energy that accounts for the deviation from the
SNM is governed by the isovector NMPs such as symme-
try energy coefficient (J0), its slope (L0), curvature (Ksym0),
skewness (Qsym0), kurtosis (Zsym0) evaluated at ρ0. In order
to demonstrate our approach, we use the n

3 expansion of the
EoS with expansion coefficients depending on the linear com-
bination of the NMPs considered [40]. Only those EoSs are
considered which satisfy the condition of (i) thermodynamic
stability, (ii) positive semidefiniteness of symmetry energy,
(iii) causality of speed of sound, and (iv) maximum mass of
the stable non-rotating neutron stars exceeding 2M�. A large
number of EoSs (≈104) are constructed by drawing all the
nine NMPs randomly from their uniform probability distribu-
tions (see Table I) to compute tidal deformability [�TOV(M)]
from the solutions of the TOV equations at a given NS
mass M.

In the upper panel of Fig. 1, we display the correlations
between �TOV(M) and the pressure of β-equilibrated matter
across various densities spanning from 0.5–4ρ0. The density
at which maximal correlations emerge exhibits a consistent
monotonous increase with the NS mass. Specifically, for a NS
with a mass of 1.2 M�, the maximum correlation surfaces
around 1.25ρ0, while for a NS of 1.8 M�, the correlation
peak shifts to approximately 2ρ0. This investigation extends
to assessing the correlations between the NMPs and the pres-
sure of β-equilibrated matter at a specific density, depicted
in the lower panel of the figure. The correlations of L0 and
Ksym0 with pressure attain their maximal values at ρ0 and
1.65ρ0, respectively. The correlation between Q0 and pres-
sure increases monotonously beyond ρ0, eventually reaching
a saturation point beyond 3ρ0. As for K0, it exhibits its peak
correlation with pressure around 2ρ0, albeit significantly less
than the values achieved for L0, Ksym0, and Q0. The remaining
NMPs exhibit negligible correlations with pressure, indicated
by coefficients r � 0.1.

To validate our findings, we vary only K0, Q0, L0, and
Ksym0, while keeping rest of the NMPs fixed to their median
values as listed in Table I. The outcomes are then displayed
in Fig. 2. Remarkably, these outcomes closely resemble those
of Fig. 1, achieved through variations of all the nine NMPs.
This suggests that parameters such as e0, Z0, J0, Qsym0, and
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FIG. 1. Plots for the correlations of the β-equilibrium pressure at
a given density ]PBEM(ρ )] with the nuclear matter parameters (lower
panel) and with tidal deformability at a given mass �TOV(M ) (upper
panel). The results are obtained by varying all the nuclear matter
parameters considered (see text for detail). Here, it is clear that K0,
Q0, L0, and Ksym0 are the most important parameters to model tidal
deformability for the NS mass considered.

Zsym0 likely exert minimal influence over the values of tidal
deformability. These figures play a pivotal role in facilitat-
ing the identification of the most pertinent density range for
neutron stars of specific masses, intricately tied to the as-
sociated nuclear matter parameters. Furthermore, it becomes
evident that the values of K0, Q0, L0, and Ksym0 hold par-
ticular significance in shaping the pressure of β-equilibrated
matter within the density range of ρ = 1–3ρ0, as depicted
in the lower panel of the Figs. 1 and 2. This observation is

FIG. 2. Same as Fig. 1. But, the results are obtained by only
varying K0, Q0, L0, and Ksym0 parameters while keeping rest of NMPs
fixed at their respective median values.

particularly pronounced in the strong correlations between
these parameters and tidal deformability within the NS mass
range of 1.2–1.8 M�. Hence, it becomes crucial to parametrize
�TOV(M) in terms of these four NMPs, at the very least, rather
than considering any subset thereof.

We express the tidal deformability for a given NS mass
using linear (�ln ) and quadratic (�qn ) functions of n number
of NMPs as

�ln = c0 +
n∑

i=1

ci(xi − x̂i ), (1)

�qn = �ln +
n∑

i=1

n∑

j=i

ci j (xi − x̂i )(x j − x̂ j ), (2)

where x ∈ {e0, K0, Q0, Z0, J0, L0, Ksym0, Qsym0, Zsym0} for
n = 9; and x̂ corresponds to the median value of parameter x.
The coefficients ci and ci j are obtained by fitting the values
of �TOV(M) to Eqs. (1) and (2). We consider �ln , �qn with
n = 2 and n = 4 which correspond to x ∈ {L0, Ksym0} and
x ∈ {K0, Q0, L0, Ksym0}, respectively. We also consider �l9
which includes all the nine NMPs considered and �q4+l5 with
q4 denotes contribution up to quadratic order for x ∈ {K0,
Q0, L0, Ksym0} and l5 denotes the linear contributions from
the remaining 5 NMPs [see Eq. (A1)]. We refer these fitted
functions as �func.

Our general strategy is to first obtain an n-dimensional
distribution of the NMPs, keeping all other parameters fixed to
their median values [40] to compute the NS EoSs. The values
of �TOV(M) corresponding to 60% of these EoSs are used to
determine the coefficients ci or ci j in Eqs. (1), (2), and the
remaining EoSs are used to assess the merit of the functions.
We validate �func against �TOV with the latter one obtained by
varying all the NMPs considered uniformly within the ranges
as listed in Table I. For convenience, we use the label θn

throughout the paper which refers to the variation of a specific
set of n number of NMPs. The label θ2 corresponds to the case
where L0 and Ksym0 are varied, θ4 represents the variations of
K0, Q0, L0, Ksym0, and θall corresponds to the variations of all
nine NMPs and θ2 + [‘P’] corresponds to the variation of L0,
Ksym0 (i.e., θ2) together with the variation of the parameter
‘P’, where ‘P’ corresponds to a NMP other than L0 and Ksym0.
θall − [‘P’] denotes the variation of all the parameters except
the parameters ‘P’s.

Various �func are constructed by employing different com-
binations of NMPs. In Fig. 3, the logarithmic scale is utilized
to exhibit the values representing the loss of correlations,
quantified as, (1 − r[�TOV,�func]), as a function of NS mass.
The values of r[�TOV,�func] can be read in the linear scale
from the ordinate on the right-hand side (major ticks only).
Both �l2 , �q2 functions give the correlation coefficient close
to unity with �TOV for the case of θ2 (blue symbols) but a
substantial loss of correlation is witnessed in the θall case (ma-
genta symbols), especially for higher NS masses, r ≈ 0.68 for
M = 1.8 M�. Hence, we opt to exclude �l2 , and �q2 functions
from the subsequent analysis. In the case of �l4 and �q4 the
correlation coefficient with �TOV is always close to unity for
both θ4 and θall, almost independent of NS mass. We have
also shown the results for �l9 and �q4+l5 functions. These
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FIG. 3. Variations of the correlation coefficients r[�TOV, �func]
as a function of neutron star mass is shown. The �TOV and �func

are the tidal deformabilities obtained from the solution of TOV
equations and those from direct mapping to the different functions of
the nuclear matter parameters, respectively. The blue color denotes
the the case when only the NMPs involved in the �func are varied
(e.g., θ2 for �l2 or �q2 ; and θ4 for �l4 or �q4 ) and the dark magenta
color denotes the case θall where all the nine NMPs are varied (with
an extra label ‘all’) within their respective ranges.

functions exhibit the most robust correlations with �TOV(M ),
r � 0.95 for �l9 and r > 0.98 for �q4+l5 .

A detailed systematic analysis has been carried out to find
out the most important NMPs. The values of Pearson’s cor-
relation coefficient (r) between �TOV(M ) and �l2 (M ) with
M = 1.2–1.8 M� are presented in Table III (See Appendix).
Each column represents the variations of the NMPs consid-
ered to compute the �TOV(M ). The result indicates �l2 , which
includes the contributions from L0 and Ksym0 only, may not be
sufficient to reliably represent �TOV(M ) over a wide range of
NS mass, the contributions of K0 and Q0 need to be considered
(see the discussion of Table III in the Appendix section for
details).

We evaluate the ratio, RM = �TOV(M )
�func(M ) for the NS masses

1.2 M�–1.8 M� for three different sets of NMP: (i) with no
constraint, (ii) with pure neutron matter (PNM) constraint,
(iii) associated with the EoSs for which central baryon density
for 1.8 M� [ρc(1.8)] below 3.5ρ0 together with the PNM
constraint. In the case of PNM constraint we select those EoSs
which satisfy the energy per particle for PNM within 90%
confidence interval up to 2ρ0 derived from χEFT [51]. The
�func represents �l4 , �l9 , and �q4+l5 for a given NS mass,
while �TOV values are obtained by varying all the NMPs. The
results are plotted in Figs. 4 and 5 for NS masses 1.2 M� and
1.8 M�, respectively, for 1000 randomly selected EoSs from
our extensive data set corresponding to cases (ii) and (iii). The
results for �q4 are quantitatively very close to those for �l4
and are not shown. Observations from the figures indicate that
deviations of the ratio R from unity are most pronounced for
�l4 and least significant for �q4+l5 . In the upper panels, ap-
proximately 9% (34%) EoSs for which ratio R falling outside
the range 0.9 to 1.1 for 1.2 (1.8) M� NS for the �l4 function

FIG. 4. The ratio R = �TOV
�func

for the neutron star mass 1.2 M�.
The �TOV is obtained by varying all the nuclear matter parameters.
The results are for 1000 EoSs randomly drawn from a large sample
of EoSs. The upper panel corresponds to the NMP set consistent with
energy per particle of PNM within 90% confidence interval up to 2ρ0

derived from χEFT. The lower panel has an additional constraint on
the central density of 1.8 M� NS [ρc(1.8)] which is below 3.5ρ0. The
dashed and solid horizontal lines represent 5% and 10% deviations
of �func from �TOV, respectively.

(see Table IV in the Appendix section for details). The corre-
sponding deviation for �q4+l5 reduces to 0.5%(3.8%) for 1.2
(1.8) M� NS. For the NS with 1.8 M�, the EoSs exhibiting
a ratio outside the range of 0.9 to 1.1 for �q4+l5 function
lead to central baryon density, ρc(1.8) > 3.5ρ0, requiring the
inclusion of higher-order terms in �func. In addition, our moti-
vation to restrict the central density of the star always � 3.5ρ0

comes from the fact that beyond this density it is very likely
to have phase transition to non-nucleonic degrees of freedom,
e.g., hyperons, quarks, hybrid matter, Bose condensate, etc., in
which cases a direct comparison between properties of finite
nuclei with NS observable becoming inappropriate. Therefore
we repeat our calculation by excluding these EoSs and the
results are presented in the lower panels. It is clear that now
the deviations for �q4+l5 from �TOV for all the EoSs are within
10%.
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FIG. 5. Same as Fig. 4, but for the neutron star mass 1.8 M�.

In Table II, the mean and the standard deviation are pre-
sented for the ratio RM = �TOV(M )

�func(M ) for the NS mass in the
range of 1.2–1.8M� for the functions �l4 , �q4 , �l9 , as defined

TABLE II. Mean (μ) and standard deviation (σ ) of the ratio
(RM = �TOV(M )

�func (M ) ) for the functions �l4 , �q4 ,�l9 , and �q4+l5 consid-
ered. The values are listed for the NS mass M = 1.2–1.8 M� for the
three different NMP sets considered.

�l4 �q4 �l9 �q4+l5

Constraints Ratio μ σ μ σ μ σ μ σ

R1.2 1.01 0.12 1.01 0.07 1.01 0.12 1.00 0.06
Without PNM R1.4 1.01 0.09 1.01 0.07 1.00 0.08 1.00 0.04

R1.6 1.01 0.08 1.01 0.07 1.00 0.07 1.00 0.04
R1.8 1.02 0.10 1.02 0.09 1.00 0.07 1.00 0.04

R1.2 1.01 0.06 1.01 0.07 1.00 0.03 1.00 0.02
With PNM R1.4 1.01 0.07 1.02 0.09 1.00 0.04 1.00 0.02

R1.6 1.02 0.09 1.03 0.12 1.00 0.05 1.00 0.03
R1.8 1.03 0.12 1.06 0.22 1.00 0.06 1.00 0.04

R1.2 1.01 0.04 1.01 0.05 1.00 0.01 1.00 0.01
With PNM R1.4 1.01 0.05 1.01 0.06 1.00 0.02 1.00 0.01
+ R1.6 1.02 0.06 1.02 0.07 1.00 0.02 1.00 0.01
ρc(1.8) � 3.5ρ0 R1.8 1.02 0.08 1.03 0.09 1.00 0.03 1.00 0.02

FIG. 6. Predictions of �l4 function, fitted with the PNM con-
straint from χEFT, for 24 nonelativistic models (triangles) and 18
relativistic models (asterisks). The horizontal lines shows 25% devi-
ation from the TOV value.

by Eqs. (1) and (2) for the three different NMP sets consid-
ered. The results are also presented for the mixed function
�q4+l5 which is expressed as in Eq. (A1). It is clear that
the inclusion of the constraint from low density PNM EoS
have significantly improved the agreement between the values
of �func with �TOV. The mean values of the ratio with the
inclusion of the constraint are close to unity for all the NS
masses for �l4 and �q4 functions. The inclusions of more
number of parameters further improves the values of standard
deviation. For example, in the case of �q4+l5 (�l9 ) function,
the standard deviation of the ratio between �func and �TOV

for 1.2 M� NS is reduced to 0.02 (0.03) which is 0.06 for
�l4 function. The results improved significantly if the softest
EoSs having central density 3.5ρ0 correspond to 1.8 M� NS
are removed.

We also compare our �func against �TOV obtained us-
ing the EoSs from nonrelativistic and relativistic mean-field
models. With the existing NMPs available in the literature,
we can only compute �l4 for these mean-field models. The
results for the ratio R are presented in Fig. 6. Most of the
values fall within 25% in comparison to their actual �TOV

values. The number of points having larger deviations in-
crease with the NS mass. Such deviations may not be very
surprising, since, the function �l4 is fitted to the EoSs for the
n
3 model which might have different behavior for the EoSs
compared to the considered MFMs. It is worth mentioning
that the utilization �q4+l5 may improve the accuracy of these
predictions.

Finally, in Tables V–VII of the Appendix the fitted coeffi-
cients of �l4 , �l9 , and �q4+l5 functions are listed, respectively,
for the NS masses considered. They may be employed to
estimate quickly the values of tidal deformability without
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TABLE III. The Pearson’s correlation coefficient, ‘r’ between tidal deformabilities �l2 (M ) and �TOV(M ) for a given neutron star mass
M(M�). The values of �TOV employed to obtain the results presented in the fourth to tenth columns involve variations of the specified nuclear
matter parameter in addition to θ2 which represents the variations of L0 and Ksym0 only. The last column corresponds to the variation of all the
nuclear matter parameters except K0 and Q0 which is denoted as θall − [K0, Q0].

M(M�) θ2 θall θ2 + [e0] θ2 + [K0] θ2 + [Q0] θ2 + [Z0] θ2 + [J0] θ2 + [Qsym0] θ2 + [Zsym0] θall − [K0, Q0]

1.2 0.97 0.90 0.99 0.97 0.90 0.97 0.96 0.97 0.97 0.95
1.4 0.99 0.88 1.00 0.96 0.88 0.99 0.97 0.98 0.99 0.96
1.6 0.99 0.78 1.00 0.94 0.83 0.99 0.98 0.97 0.99 0.95
1.8 0.99 0.68 1.00 0.86 0.73 0.98 0.97 0.95 0.99 0.93

recourse to the solution of TOV equations. Our proposed func-
tions for the tidal deformability would facilitate the Bayesian
analysis, which often entail the calculation of tidal deforma-
bility across a broad spectrum of NS masses for a substantial
number of EoSs (≈106).

III. SUMMARY

We performed an extensive analysis aimed at identifying
the key nuclear matter parameters that primarily influence
the tidal deformability values of neutron stars. Among these
parameters, both the isoscalar parameters K0 and Q0, as well
as the isovector parameters L0 and Ksym0, emerged as the most
significant contributors. We fit the values of tidal deforma-
bilities obtained by solving the TOV equations to the linear
and quadratic functions of these nuclear matter parameters.
To validate these functions, we compared them with the tidal
deformability values obtained from TOV equations applied
to equations of state constructed with varying all the nuclear
matter parameters. Our analysis showed that the predictions
for �q4+l5 deviate within 10% from the �TOV for EoSs con-
strained by the N3LO χEFT. We established a direct mapping
between tidal deformability values and nuclear matter pa-
rameters, enabling quick estimations without recourse to the
solution of TOV equations. Importantly, this approach can
be extended to various other EoS models and neutron star
observables. Consequently, it will facilitate efficient Bayesian
statistical inference of relevant nuclear matter parameters di-
rectly from astrophysical observations. The efforts to further
improve the relation of tidal deformability with the nuclear
matter parameters are underway.
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APPENDIX

In Table III we present the values of correlation between
�l2 and �TOV. The correlations are close to unity for the
case of θ2 irrespective of NS mass considered. The correla-
tion decreases with an increase in NS mass for the case of
θall which includes the variations of additional parameters,
not considered in the fit of the function �l2 indicating that
n = 2 in Eq. (1) may not adequately determine the values of
tidal deformability for higher NS masses. So there are some
other parameters which need to be included in Eq. (1) to
improve the representation of �TOV. To identify the additional
NMPs which need to be included we consider now the case
of θ2 + [‘P’]. The θall − [K0, Q0] in the last column denotes
the result obtained by varying all the NMPs except the K0

and Q0. It may be inferred from the third and last column of
the table that the K0 and Q0 are also important to determine
the values of tidal deformability. This is also evident from the
fifth and sixth columns. The remaining five parameters e0, Z0,
J0, Qsym0, Zsym0 do not seem to contribute significantly to the
values of tidal deformability. These trends reinsure K0, Q0, L0,
and Ksym0 have a greater impact on the tidal deformability. The
trends are similar for correlations of �TOV(M ) with �q2 (M )

TABLE IV. Percentage of outliers for different models depending on the criteria given in ‘criteria’ column for the three different NMP sets
considered. Here, NRM (in %) are the percentage of outliers for the ratio RM = �TOV

�func
for a given mass M for a given function �func.

�l4 �q4 �l9 �q4+l5

Constraints criteria NR1.2 NR1.8 NR1.2 NR1.8 NR1.2 NR1.8 NR1.2 NR1.8

0.9 � R � 1.1 32 24.8 11.9 16.5 26.9 12.5 7.6 3.3
Without PNM 0.7 � R � 1.3 2.8 1.1 0.1 1.4 2.9 0.5 0.2 0.2

0.9 � R � 1.1 9.1 34.5 11.2 33.2 2.7 6.9 0.5 3.8
With PNM 0.7 � R � 1.3 0 3.5 0.3 6.6 0 1 0 0.1

0.95 � R � 1.05 24.4 50.4 25.5 51.9 0.3 7.2 0 1.9
With PNM +ρc(1.8) � 3.5ρ0 0.9 � R � 1.1 1.1 21.5 3.5 20.2 0 0.5 0 0
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TABLE V. The fitted values of coefficients ‘Coef’ appearing in Eq. (1) for the �l4 function for the NS mass 1.2–1.8 M� for two different
NMP sets : first, utilizing low density PNM data from N3LO χEFT and second, incorporating an additional constraint on central baryon density
of 1.8 M� NS (see text for detail).

With PNM With PNM +ρc(1.8) � 3.5ρ0

Mass (M�) Mass (M�)

Coef 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8
c0 1092.89 445.99 190.59 81.84 1118.76 459.55 198.01 86.11
c1 2.84 1.37 0.70 0.37 2.67 1.30 0.66 0.35
c2 0.44 0.23 0.13 0.07 0.39 0.21 0.12 0.07
c3 10.47 3.79 1.45 0.56 10.63 3.90 1.53 0.62
c4 2.16 1.02 0.50 0.25 1.94 0.93 0.46 0.23

TABLE VI. Same as Table V but for �l9 function.

With PNM With PNM +ρc(1.8) � 3.5ρ0

Mass (M�) Mass (M�)

Coef 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8
c0 1092.02 444.79 190.08 81.88 1118.08 459.32 198.45 86.90
c1 −1.74 −1.04 −0.64 −0.41 −2.50 −1.34 −0.74 −0.43
c2 2.95 1.41 0.71 0.37 2.66 1.28 0.65 0.34
c3 0.44 0.23 0.13 0.07 0.39 0.21 0.12 0.08
c4 0.02 0.01 0.008 0.005 0.02 0.01 0.01 0.005
c5 −3.52 −1.57 −0.83 −0.51 −5.75 −2.58 −1.29 −0.70
c6 10.96 3.98 1.55 0.62 11.05 4.07 1.61 0.66
c7 2.14 1.01 0.49 0.24 1.89 0.90 0.45 0.22
c8 0.33 0.17 0.09 0.05 0.28 0.14 0.08 0.04
c9 0.02 0.009 0.006 0.003 0.012 0.007 0.004 0.003

TABLE VII. Same as Table V but for �q4+l5 function.

With PNM With PNM + ρc(1.8) � 3.5ρ0

Mass, M (M�) Mass, M (M�)

Coef 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8
c0 1093.83 442.79 186.85 78.36 1109.04 451.63 192.17 81.75
c1 3.44 1.70 0.87 0.46 3.20 1.57 0.80 0.42
c2 0.52 0.28 0.16 0.01 0.46 0.25 0.15 0.09
c3 9.98 3.35 1.15 0.38 9.79 3.30 1.15 0.40
c4 2.15 1.0 0.47 0.21 2.03 0.93 0.43 0.20
c11 −5.44 × 10−3 −1.88 × 10−3 −5.94 × 10−4 −1.13 × 10−4 −3.69 × 10−3 −1.30 × 10−3 −4.33 × 10−4 −1.15 × 10−4

c12 −1.70 × 10−3 −7.88 × 10−4 −3.74 × 10−4 −1.76 × 10−4 −1.17 × 10−3 −5.40 × 10−4 −2.55 × 10−4 −1.19 × 10−4

c13 0.04 0.02 9.29 × 10−3 4.26 × 10−3 0.03 0.01 6.94 × 10−3 3.27 × 10−3

c14 −7.99 × 10−3 −2.78 × 10−3 −8.98 × 10−4 −2.07 × 10−4 −5.25 × 10−3 −1.86 × 10−3 −6.43 × 10−4 −2.09 × 10−4

c22 −1.16 × 10−4 −6.5 × 10−5 −3.8 × 10−5 −2.4 × 10−5 −7.5 × 10−5 −4.3 × 10−5 −2.6 × 10−5 −1.7 × 10−5

c23 4.27 × 10−3 2.43 × 10−3 1.40 × 10−3 7.89 × 10−4 3.37 × 10−3 1.90 × 10−3 1.09 × 10−3 6.15 × 10−4

c24 −1.18 × 10−3 −4.87 × 10−4 −1.87 × 10−4 −5 × 10−5 −7.71 × 10−4 −3.05 × 10−4 −1.07 × 10−4 −1.9 × 10−5

c33 0.05 0.02 5.55 × 10−3 2.69 × 10−3 0.05 0.01 5.59 × 10−3 2.77 × 10−3

c34 0.01 7.12 × 10−3 3.59 × 10−3 1.82 × 10−3 0.01 4.06 × 10−3 2.05 × 10−3 1.10 × 10−3

c44 −4.55 × 10−3 −2.05 × 10−3 −1.0 × 10−3 −5.33 × 10−4 −3.18 × 10−3 −1.51 × 10−3 −7.91 × 10−4 −4.63 × 10−4

c1L −5.04 −2.10 −0.90 −0.39 −4.39 −1.83 −0.80 −0.36
c2L 0.02 0.01 9.24 × 10−3 5.89 × 10−3 0.02 0.01 7.71 × 10−3 4.94 × 10−3

c3L −6.98 −2.66 −1.09 −0.48 −7.48 −2.98 −1.29 −0.60
c4L 0.34 0.17 0.09 0.05 0.30 0.15 0.08 0.05
c5L 0.02 9.67 × 10−3 5.89 × 10−3 3.60 × 10−3 0.01 7.95 × 10−3 4.88 × 10−3 3.02 × 10−3
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and are not presented here:

�q4+l5 = c0 + c1(K0 − K̄0) + c2(Q0 − Q̄0) + c3(L0 − L̄0)

+ c4(Ksym0 − K̄sym0) + c11(K0 − K̄0)2

+ c12(K0−K̄0)(Q0−Q̄0) + c13(K0−K̄0)(L0− L̄0)

+ c14(K0 − K̄0)(Ksym0 − K̄sym0)

+ c22(Q0 − Q̄0)2 + c23(Q0 − Q̄0)(L0 − L̄0)

+ c24(Q0 − Q̄0)(Ksym0 − K̄sym0) + c33(L0 − L̄0)2

+ c34(L0−L̄0)(Ksym0−K̄sym0)+c44(Ksym0 − K̄sym0)2

+ c1L (e0 − ē0) + c2L(Z0 − Z̄0)

+ c3L (J0 − J̄0) + c4L(Qsym0 − Q̄sym0)

+ c5L (Zsym0 − Z̄sym0). (A1)

It may be noted that the nuclear matter parameters
K0, Q0, L0, Ksym,0 are considered up to the quadratic order,
whereas, for the remaining parameters e0, Z0, J0, Qsym,0, and
Zsym,0 only the contributions up to the linear order are in-
cluded. The mean values of the ratio with the inclusion of the
constraints are close to unity for all the NS masses for �l4 and
�q4 functions. The results improved significantly in the case
of �q4+l5 and �l9 functions. For example, in the case of �q4+l5
(�l9 ) function, the standard deviation of the ratio between
�func and �TOV for 1.2 M� NS is reduced to 0.02 (0.04) which
is 0.06 for �l4 function in the case of PNM constraint.

In Table IV we have shown the percentage of outliers
(NRM ) (in %) for the NS of mass M (M�), which are deviating
from the respective �TOV values by 5%, 10%, and 30% for
the three different NMP sets considered. We found �q4+l5 to
be the best-fit function. In Tables V–VII the coefficients of the
�l4, �l9 and �q4+l5 functions are provided.
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