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3“Horia Hulubei” National Institute of Physics and Nuclear Engineering, 30 Reactorului,
POB MG-6, RO-077125 Bucharest-Măgurele, Romania
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In this paper, we re-examine one of the most promising candidates for determining the neutrino mass scale—
the unique first forbidden β transition from 187Re(5/2+) to 187Os(1/2−). With the lowest-known ground-state
to ground-state Q value for a β transition at 2.4709 keV, rhenium’s β decay can offer insights into the neutrino
mass scale puzzle. However, understanding its electron spectrum is a complex task. Besides involving a mixture
of s1/2-state and p3/2-state electrons, the rhenium β spectrum could be strongly influenced by various atomic
corrections. In addition to our previous paper [R. Dvornický, K. Muto, F. Šimkovic, and A. Faessler, Phys.
Rev. C 83, 045502 (2011)], we have incorporated finite nuclear size, diffuse nuclear surface, screening, and
exchange corrections into the rhenium β decay model. We have accounted for the last two effects within the
framework of the Dirac-Hartree-Fock-Slater self-consistent method. We have discovered that both screening and
exchange effects significantly alter the partial decay rates for the s1/2- and p3/2-state emission channels, while still
maintaining the experimentally confirmed dominance of the p3/2-state emission. The ratio between the respective
decay rates has been found to be approximately 104. When compared to the other corrections, the exchange effect
stands out due to the modification it induces in the spectrum shape. We demonstrate that calculations with and
without the exchange effect lead to entirely different shape factors for the decay spectrum. Finally, we illustrate
that to preserve the linearity of the Kurie plot, it is essential to include the exchange correction in its definition.
We conclude that atomic effects, especially the exchange effect, should be taken into account in current and
future investigations of the neutrino mass scale from β decays.
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I. INTRODUCTION

An open question in particle physics is related to the ab-
solute values of the light neutrinos masses. The information
gathered from solar neutrinos, atmospheric neutrinos, nuclear
power reactors, and experiments at accelerators has estab-
lished that at least two of the three neutrinos have a nonzero
mass. However, the result is based on neutrino oscillations,
which depends on neutrino masses differences, not on their
absolute values, so the absolute neutrino mass scale is un-
certain. Besides the cosmological observations, which are
sensitive only to the sum of neutrino masses [1,2], other puz-
zle pieces can be obtained from the effective neutrino masses
of nuclear β decay and neutrinoless double-beta (0νββ) decay
[3–5].

The distortion in the endpoint measurements of the spec-
trum of electrons emitted in a β decay offers a direct means
of determining the values of neutrino masses, denoted as mk

(k = 1, 2, 3). However, the number of events emitted near the

*ovidiu.nitescu@nipne.ro
†dvornicky@fmph.uniba.sk
‡fedor.simkovic@fmph.uniba.sk

endpoint, within an interval �Te, is proportional to (�Te/Q)3

[6,7]. Therefore, a low Q-value β transition is desirable to en-
hance sensitivity. Consequently, some experiments are based
on the ground-state to ground-state β decays of tritium (3H)
and rhenium (187Re) with Q values of 18 592.01(7) eV [8]
and 2470.9(13) eV [9], respectively. Other experiments, such
as HOLMES [10], NuMECs [11], and ECHo [12], aim to
utilize the lowest energy electron capture of 163Ho, which has
a ground-state to ground-state Q value of 2.833 keV [13].
Recently, there has also been a growing interest in ultralow
Q value (under 1 keV) ground-state to excited-state β transi-
tions [14–16], which represent potential candidates for future
neutrino mass scale determination experiments.

The current best upper limit on effective neutrino mass,

mβ =
√√√√ 3∑

k=1

|Uek|2m2
k , (1)

was recently fixed from the tritium β decay, measured by
the KATRIN experiment [17], mβ � 0.8 eV. This limit far
exceeds the previous investigations by Troitsk experiment,
mβ � 2.2 eV [18], and Mainz experiment, mβ � 2.3 eV [19],
also based on tritium β decay. Even more recently, Project
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8 has demonstrated that cyclotron radiation emission spec-
troscopy (CRES) can constrain mβ � 155 eV from the tritium
β spectrum using only a cm3-scale physical detection medium
[20]. This suggests that CRES is an attractive technique for
next-generation direct neutrino mass experiments and for
measuring the β spectra in general.

Although the most direct method for assessing neutrino
mass involves the kinematics of single β transitions and elec-
tron capture processes, valuable insights can also be derived
from cosmological observations and 0νββ decay. Recent cos-
mological studies have provided an upper limit for the sum
of neutrino masses, which is approximately 0.12 eV, i.e.,∑

k mk < 0.12 eV [21,22]. However, it is important to note
that these limits rely on the specific cosmological assump-
tions employed [23,24]. The lower limit of the half-life for
0νββ can be used to establish an upper limit for the effective
neutrino mass in neutrinoless double-β decay,

mββ =
∣∣∣∣∣

3∑
k=1

U 2
ekmk

∣∣∣∣∣. (2)

The most stringent current limits, derived from measurements
of various isotopes, are mββ < 79–180 meV [25] (76Ge),
mββ < 90–305 meV [26] (130Te), and mββ < 36–156 meV
[27] (136Xe). The provided intervals are associated with the
ranges of model-dependent nuclear matrix element calcula-
tions. It is important to mention that these limits are applicable
under the assumptions that neutrinos are Majorana particles
(meaning they are their own antiparticles) and that the light
neutrino mechanism is responsible for driving 0νββ decay.

While the number of events near the endpoint is favored
by the Q value of rhenium decay, which is nearly one order of
magnitude smaller than that of tritium decay, understanding its
spectrum shape is a complex task. First, the emission of low-
energy electrons suggests that various atomic and molecular
effects could have a significant impact on the spectrum shape
of the rhenium ground-state to ground-state β transition. An
example of this is the oscillations observed in the rhenium
β spectrum due to environmental fine structure from the tar-
get crystal [28]. Second, in contrast to the decay of tritium,
which is an allowed transition, the transition 187Re(5/2+) →
187Os(1/2−) is classified as a unique first forbidden transition.
Consequently, its spectrum is a mixture of s1/2-state and p3/2-
state electrons. The exceptionally low Q value of rhenium
decay results in a clear dominance of the p3/2-state electron
emission channel over the s1/2-state electron emission chan-
nel. This dominance has been experimentally confirmed [29],
and our previous investigation calculated the ratio between the
channels to be around 104 [7].

The experimental efforts to achieve sub-eV sensitivity to
the neutrino mass from the rhenium β spectrum culminated
with the combination of the MANU and MIBETA groups
into the Microcalorimeter Arrays for a Rhenium Experiment
(MARE) [30]. The MARE project eventually transitioned to
the holmium efforts of ECHo and HOLMES [31]. One pos-
sible reason for closing the project is the lack of theoretical
knowledge about the rhenium β spectrum. In contrast, the
theoretical description of tritium β decay involves many more
corrections, including screening, exchange with atomic elec-

trons, finite nuclear size effects, radiative corrections, recoil
effects, etc. [32,33].

In this paper, we investigate the β decay of 187Re, incorpo-
rating all relevant corrections to its spectrum. We begin with
the same relativistic wave functions for the emitted electrons
as used in our previous study [7]. Next, we enhance the pre-
cision of the theoretical rhenium decay spectrum by including
finite nuclear size, diffuse nuclear surface, and screening
corrections. The latter is calculated using the self-consistent
Dirac-Hartree-Fock-Slater description of the atomic bound
electrons surrounding the electron emitted during rhenium
decay. We have observed significant differences in the decay
rates for both emission channels compared to our previous pa-
per, but negligible modifications to the spectral shape resulting
from the aforementioned corrections.

The primary focus of this paper lies in the inclusion of the
so-called exchange correction, which considers the possible
interchange between emitted electrons and the atomic bound
electrons. It turns out that the exchange correction not only
alters the decay rates for the p3/2- and s1/2-state channels but
also affects the shapes of the spectra for these channels. While
the most significant shape modification occurs in the low-
energy region of the total spectrum, the exchange correction
remains substantial near the endpoint, potentially impacting
the analysis for neutrino mass scale determination from rhe-
nium β decay. When studying the deviation of the rhenium
spectrum from an allowed one, we discover that the exchange
correction strongly transforms the shape factor, shifting it
from an increasing linear behavior to a decreasing quadratic
one. We present the best-fit parameters in both cases. To
preserve the linearity of the Kurie plot in the scenario of zero
effective neutrino mass, it is necessary to revise its definition
to incorporate the exchange correction. We illustrate how
varying effective neutrino masses impact the Kurie plots near
the endpoint of the β decay of 187Re. While this paper is
primarily aimed on the rhenium β decay, we emphasize that
the corrections introduced here could potentially have a sig-
nificant effect on any low and ultralow Q-value β transition.

We mention that, while the final nucleus, 187Os, is expected
to have an axially symmetric deformation with β2 = 0.209
[34], we have not considered deformation effects on the elec-
tron spectrum shape or the β decay rate of 187Re in this
paper. It has been shown that for allowed β transitions [35],
the deformation correction has very weak energy dependence
for electrons with small momentum. Additionally, the overall
effect of deformation on the decay rate is quite insignificant,
at the level of 10−4. An additional correction that we have
not addressed in this paper is the radiative correction, which
arises from the exchange of virtual photons and the emission
of real photons during the β decay. Using the leading-order
radiative correction [36,37], we estimate this correction to be
at the level of 10−5 for the low-energy electrons emitted in the
β decay of 187Re.

II. ELECTRON WAVE FUNCTIONS

A. Continuum states

The relativistic wave function for an electron emitted from
a β decay in a continuum state can be expanded in spherical
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waves,

ψ (Ee, r) = ψ (s1/2 )(Ee, r) + ψ (p1/2 )(Ee, r)

+ ψ (p3/2 )(Ee, r) + . . . , (3)

where Ee is the total electron energy. The superscript in
the spherical waves represents the orbital and total angular
momentum (� j = 01/2, 11/2, 13/2, . . .) written in the spec-
troscopic notation (� j = s1/2, p1/2, p3/2, . . .). The relevant
spherical waves for the first-unique forbidden β transition of
187Re are as follows [7]:

ψ (s1/2 )(Ee, r) =
(

g−1(Ee, r)χμ

f+1(Ee, r)(σ · p̂)χμ

)
,

ψ (p3/2 )(Ee, r) = i

(
g−2(Ee, r)[3(r̂ · p̂) − (σ · r̂)(σ · p̂)]χμ

f+2(Ee, r)[(r̂ · p̂)(σ · p̂) − (σ · r̂)]χμ

)
,

(4)

where p̂ = pe/pe is defined by the momentum of the electron,
pe = √

E2
e − m2

e . Here, r stands for the position vector of the
electron, r = |r| and r̂ = r/r. Throughout the paper, we are
using the units h̄ = c = 1.

The functions gκ (Ee, r) and fκ (Ee, r) are the large-
and small-component radial wave functions, respectively,
which satisfy the following system of coupled differential
equations [38](

d

dr
+ κ + 1

r

)
gκ − (Ee − V (r) + me) fκ = 0,

(
d

dr
− κ − 1

r

)
fκ + (Ee − V (r) − me)gκ = 0, (5)

where V (r) is the atomic potential of the final system.
The relativistic quantum number, κ , takes positive and

negative integer values, and specifies both the total angular
momentum, j, and the orbital angular momentum, �, by

j = |κ| − 1/2, � =
{
κ if κ > 0,

|κ| − 1 if κ < 0.
(6)

The large- and small-component radial functions satisfy,
for large values of per, the following asymptotic conditions:{

gκ (Ee, r)
fκ (Ee, r)

}

∼ 1

per

⎧⎨
⎩

√
Ee+me

2Ee
sin(per − l π

2 + δκ − η ln(2per))√
Ee−me

2Ee
cos(per − l π

2 + δκ − η ln(2per))

⎫⎬
⎭, (7)

where δκ is the phase shift and η = αZEe/pe is the Som-
merfeld parameter. Here, Z is the atomic number of the final
nucleus and α is the fine-structure constant. The energy-
dependent normalization ensures the correct behavior of the
Fermi functions (see Sec. III) when the electrostatic interac-
tion is switched off, i.e., V (r) = 0.

To obtain the electron continuum states in the potential of
the final positive ion, 187Os+, we employ the RADIAL sub-
routine package [39]. A comprehensive manual of the package
can be found in the Supplementary Material of [39]. In what
follows, we briefly present different approximation schemes
for the calculation of gκ (Ee, r) and fκ (Ee, r).

1. The approximation scheme A

We assume the final nucleus as a uniformly charged sphere,
generating the following potential:

V (r) =
{

−αZ
r for r � R,

−αZ
2R

[
3 − (

r
R

)2]
for r < R.

(8)

Here, R is the radius of the final nucleus, R = r0A1/3 with r0 =
1.2 fm. By keeping the lowest power of the expansion of r, the
radial wave functions for the s1/2 wave and p3/2 wave states
are given by [40] (

g−1(Ee, r)
f+1(Ee, r)

)
=

(
A−1

A+1

)
(9)

and (
g−2(Ee, r)
f+2(Ee, r)

)
= per

3

(
A−2

A+2

)
, (10)

respectively.
The normalization constant can be expressed in a good

approximation as

A±k �
√

Fk−1(Z, Ee)

√
Ee ∓ me

2Ee
, (11)

where k = |κ| and the Fermi function Fk−1(Z, Ee) is given by

Fk−1(Z, Ee) =
[


(2k + 1)


(k)
(2γk + 1)

]2

(2pR)2(γk−k)eπη

×|
(γk + iη)|2. (12)

The remaining quantity is given by

γk =
√

k2 − (αZ )2, (13)

and 
(z) is the Gamma function. We mention that this approx-
imation scheme, was also used in our previous investigation
[7].

2. The approximation scheme B

In this approximation scheme, we consider the case where
the final nucleus generates a point-like potential, V (r) =
−αZ/r. The radial wave functions can be expressed analyt-
ically as [41]

gκ (Ee, r) = κ

k

1

pr

√
Ee + me

2Ee

|
(1 + γk + iη)|

(1 + 2γk )

(2pr)γk eπη/2

×�{
ei(pr+ζ )

1F1(γk − iη, 1 + 2γk,−2ipr)
}
,

fκ (Ee, r) = κ

k

1

pr

√
Ee − me

2Ee

|
(1 + γk + iη)|

(1 + 2γk )

(2pr)γk eπη/2

×�{
ei(pr+ζ )

1F1(γk − iη, 1 + 2γk,−2ipr)
}

(14)

with

eiζ =
√

κ − iηme/Ee

γk − iη
. (15)
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Here, 1F1(a, b, z) is the confluent hypergeometric function.
We mention that the numerical solutions from the RADIAL
package, with the input rV (r) = −αZ , are equivalent to the
analytical solutions presented in Eq. (14), if we fix r on the
nuclear surface.

3. The approximation scheme C

We consider the final nucleus as a sphere filled with protons
following a Fermi distribution [42]:

ρp(r) = ρ0

1 + e(r−crms )/a
, (16)

where we chose for the half-way radius crms = 1.07A1/3 =
6.118 fm and for the surface thickness a = 0.546 fm. ρ0 is
determined from the normalization to Z .

Thus, the electrostatic interaction of an electron at r with
the final nucleus is described by

Vnuc(r) = −α

∫
ρp(r′)
|r − r′|dr′. (17)

4. The approximation scheme D

In our final approximation scheme, we consider for
the final positive ion, 187Os+, the following electrostatic
potential:

V (r) = Vnuc(r) + Vel(r) + V Slater
ex (r), (18)

which is a sum of the nuclear, electronic and exchange po-
tentials. The nuclear potential, Vnuc(r), is presented in the
approximation scheme C, i.e., Eq. (17). The electronic poten-
tial, Vel(r), describes the interaction energy of an electron at
r with the atomic cloud, and it is found from integrating over
the volume of the atomic electron density, ρ(r),

Vel(r) = α

∫
ρ(r′)

|r − r′|dr′. (19)

Considering Slater’s approximation [43], we can write the
exchange potential in terms of the atomic electron density,

V Slater
ex (r) = −3

2
α

(
3

π

)1/3

[ρ(r)]1/3. (20)

The atomic electronic density, ρ(r), is discussed in the follow-
ing section, where we present the calculation for the electron
bound states.

Our choice to include a local exchange component in the
potential for the continuum states can be arguable, but, as
motivated later, it ensures the orthogonality between the con-
tinuum states of the emitted electron and the bound states of
the atomic electrons of 187Os+. Orthogonal continuum and
bound electron wave functions for the final nucleus are crucial
ingredients for correctly calculating the exchange correction
[44–46].

In Fig. 1, we plot all quantities rV (r) as functions of
r, for each approximation scheme considered above. In the
simplest case of a point-like nucleus (scheme B), we can see
that rV (r) = −76α is a straight line. In the most complex
case (scheme D), where we include the finite nuclear size,
diffuse nuclear surface, and the atomic screening corrections,

FIG. 1. The electrostatic potential for 187Os+ as function of r,
where the emitted electron is located, in four different approximation
schemes: (A) The final nucleus as an uniform charged sphere. (B) A
point-like final nucleus. (C) The final nucleus as a charged sphere
filled with protons following a Fermi distribution. (D) The same as
the preceding case but the atomic electron screening is taken into
account.

for large values of r, V (r) = −α/r. It is an expected asymp-
totic result because the potential describes the interaction of
the emitted electron with a positive ion of charge +1. We
can see that when moving from a uniformly charged sphere
(scheme A) to one filled with protons following a Fermi
distribution (scheme C), the difference between potentials is
slightly visible. Still, the electron wave functions A are ap-
proximated by keeping the lowest power in the expansion in
r. By solving the radial Dirac equation numerically for the
potentials A and C, we confirm that there are no differences
between the wave functions due to the diffuse nuclear surface
correction. Thus, any differences between the electron wave
functions A and C are associated with missing terms in the
expansion.

In Fig. 2, we depict the radial wave functions of an electron
in the s1/2 wave state, g−1(Ee, r) and f+1(Ee, r) [panels (a)
and (b)], and in the p3/2 wave state, g−2(Ee, r) and f+2(Ee, r)
[panels (c) and (d)], evaluated on the nuclear surface of the
final nucleus, r = R, and as functions of the electron kinetic
energy, Ee − me. We present the results for the β emitter 187Re
using all the approximation schemes. In the case of the large
component radial wave functions, g−1(Ee, r) and g−2(Ee, r),
there are no shape deviations between different approxima-
tion schemes. Their amplitudes progressively decrease from
scheme A to D. The missing terms in the expansion in r from
scheme A strongly influence the small component radial wave
functions, f+1(Ee, r) and f+2(Ee, r). Instead of overlying the
wave functions C, they are almost zero and constants for any
electron kinetic energy. As a final remark, the effect of the
atomic screening for an electron emitted in the p3/2 wave state
is substantial, as can be seen in the wave functions D. The
emission of electrons in the p3/2 wave state is dominant for
the β decay of 187Re, so we expect a considerable deviation
when the screening correction is switched on.
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(c) (d)

(a) (b)

FIG. 2. The radial wave functions for an electron emitted from the β decay of 187Re, evaluated on the nuclear surface of the final
nucleus R, as functions of the electron kinetic energy Ee − me. In the top panels, (a) and (b), the components of on electron emitted in
s1/2 state, g−1(Ee, r) and f+1(Ee, r), and in the bottom panels, (c) and (d), the components associated with the emission in the p3/2 state,
g−2(Ee, r) and f+2(Ee, r). We consider four different approximation schemes in the evaluation of the radial wave functions (see text for
details).

B. Bound states

For atomic bound states (Ee < me), each discrete energy
level is characterized by its quantum number κ , its principle
quantum number n, its binding energy εnκ

e , and its total energy
Enκ

e = me − |εnκ
e |. The relativistic wave function for a bound

electron in a spherically symmetric atomic potential, V (r), can
be written as [38]

ψnκm(r) =
(

gn,κ (r)�κ,m(r̂)

i fn,κ (r)�−κ,m(r̂)

)
. (21)

Here, the spherical spinors, �κ,m(r̂), are defined by [47,48]

�κ,m(r̂) =
∑

μ=±1/2

〈
�,

1

2
, m − μ,μ

∣∣ j, m

〉
Y�,m−μ(r̂)χμ, (22)

where 〈 j1, j2, m1, m2| j, m〉 are Clebsch-Gordan coefficient,
Y�,m(r̂) are the spherical harmonics, and χμ are the usual Pauli
spinors.

The large- and small-component radial functions for bound
orbitals are referred as gn,κ (r) and fn,κ (r), respectively, and

are obeying

(
d

dr
+ κ + 1

r

)
gn,κ − (

Enκ
e − V (r) + me

)
fn,κ = 0,

(
d

dr
− κ − 1

r

)
fn,κ + (

Enκ
e − V (r) − me

)
gn,κ = 0. (23)

For the calculation of the bound orbitals, we employed
the program DHFS.f, included in the RADIAL subroutine
package [39]. It solves the Dirac-Hartree-Fock-Slater (DHFS)
equations for the ground-state electron configuration of neu-
tral atoms or positive ions with Ne bound electrons and Z
protons in the nucleus. The procedure uses almost the same
potential as described in Eq. (18), but with the difference that
the Latter’s tail correction [49] is imposed for the exchange
potential. The electron density, ρ(r), entering the electronic
and exchange potentials, is obtained self-consistently [50,51].
The procedure starts with an approximate electron density
obtained from the Molière parametrization of the Thomas-
Fermi potential [52]. Then, the electron density is renewed
iteratively from the obtained bound orbitals until neither the
DHFS potential nor the binding energies change. We call
the procedure from the program DHFS.f a true DFHS self-
consistent method.
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TABLE I. Binding energies for neutral atom 187Re in eV. In the
first column, we indicate all occupied shells using the spectroscopic
notation [39,53]. In the second and third columns, we present the true
DHFS self-consistent method binding energies and the results ob-
tained with the modified DHFS self-consistent method, respectively.
In the last column, we present the experimental values taken from
[54].

Orbital (n� j ) εnκ
e (true) εnκ

e (modified) εnκ
e (exp) [54]

1s1/2 −71857.5 −71857.5 −71681 ± 2
2s1/2 −12508.4 −12508.4 −12532 ± 2
2p1/2 −11993.7 −11993.7 −11963 ± 2
2p3/2 −10537.7 −10537.7 −10540 ± 2
3s1/2 −2911.9 −2911.9 −2937 ± 2
3p1/2 −2677.7 −2677.7 −2686 ± 2
3p3/2 −2360.0 −2360.0 −2371 ± 2
3d3/2 −1961.4 −1961.4 −1953 ± 2
3d5/2 −1891.9 −1891.9 −1887 ± 2
4s1/2 −615.7 −615.7 −629 ± 2
4p1/2 −516.7 −516.7 −522 ± 2
4p3/2 −442.2 −442.2 −450 ± 2
4d3/2 −277.8 −277.8 −278 ± 2
4d5/2 −263.9 −263.9 −264 ± 2
5s1/2 −91.2 −91.2 −86 ± 2
5p1/2 −60.6 −60.6 −56 ± 2
4 f5/2 −55.0 −55.0 −47 ± 2
4 f7/2 −52.3 −52.3 −45 ± 2
5p3/2 −49.0 −49.0 −45 ± 2
5d3/2 −9.28 −9.24 −9.6 ± 1
5d5/2 −8.24 −8.20 −9.6 ± 1
6s1/2 −7.98 −7.67 −7.9 ± 1

Because we want to ensure orthogonality between contin-
uum and bound states, we take the last iterated atomic electron
density, ρ(r), obtained from the program DHFS.f, and con-
struct the potential from the approximation scheme D, i.e.,
Eq. (18). When solving for bound states in this potential, we
call the procedure a modified DHFS self-consistent method.
More about the differences between the true and modified
DHFS self-consistent frameworks can be found in our previ-
ous paper about the exchange correction for allowed β decay
[46].

In Table I, we compare the binding energies obtained with
the true and modified DHFS methods with the experimen-
tal values for the neutral atom 187Re. We can see that the
deviation from the conventional (true) DHFS method subtly
influences the binding energies of the last three occupied
orbitals.

III. FIRST UNIQUE FORBIDDEN β DECAY OF 187Re

The β transition from the ground-state 5/2+ of 187Re to
the ground-state 1/2− of 187Os is classified as a first unique
forbidden β transition. Due to the difference in the angular
momentum and parity, �Jπ = 2−, the electron and neutrino
are emitted, respectively, in p3/2 and s1/2 states or vice versa.
An interesting feature of first unique forbidden β decay of
187Re is that due to its low transition energy, Q = 2.4709 keV

[9], the emission of p3/2 state electrons is favored with four
orders of magnitude then the emission of s1/2 state electrons
[7]. The theoretical differential decay rate is a sum of two
contributions associated with emission of the s1/2 and the p3/2

state electrons,

d


dEe
= d
p3/2

dEe
+ d
s1/2

dEe

=
3∑

k=1

|Uek|2 G2
FV 2

ud

2π3
peEe(E0 − Ee)

×
√

(E0 − Ee)2 − m2
k θ (E0 − Ee − mk )

× [Bp3/2 (Ee, pν ) + Bs1/2 (Ee, pν ) ], (24)

where

Bs1/2 = 1

2
g2

A

(
|〈f‖

∑
n

τ+
n g−1(Ee, r) j1(pνr) {σn ⊗ r̂n}2‖i〉|2

+ |〈f‖
∑

n

τ+
n f+1(Ee, r) j1(pνr) {σn ⊗ r̂n}2‖i〉|2.

)
,

(25)

and

Bp3/2 = 1

2
g2

A

(
|〈f‖

∑
n

τ+
n g−2(Ee, r) j0(pνr) {σn ⊗ r̂n}2‖i〉|2

+ |〈f‖
∑

n

τ+
n f+2(Ee, r) j0(pνr) {σn ⊗ r̂n}2‖i〉|2

)
.

(26)

Here, GF is the Fermi constant and Vud is the element of the
Cabbibo-Kobayashi-Maskawa (CKM) matrix. E0 is maximal
endpoint energy (in the case of zero neutrino mass) of the

electron. pν =
√

(E0 − Ee)2 − m2
k is the neutrino momentum

and θ (x) is a theta (step) function. gA denotes an axial-vector
coupling constant. |i〉 (| f 〉) is the initial (final) state of 187Re
(187Os) with Jπ = 5/2+ (Jπ = 1/2−). rn (r = |r| and r̂ =
r/r) is a coordinate of the nth nucleon.

The differential decay rate in Eq. (24) depends on four
different squared matrix elements incorporated in the Bs1/2 and
Bp1/2 terms. For the purpose of factorization of calculation
of squared nuclear matrix element and phase-space factor,
the large- and small-component electron radial functions are
approximated as follows [7]:

g−1(Ee, r) � g−1(Ee, R)

j0(peR)
j0(per) � g−1(Ee, R),

f+1(Ee, r) � f+1(Ee, R)

j0(peR)
j0(per) � f+1(Ee, R),

g−2(Ee, r) � g−2(Ee, R)

j1(peR)
j1(per) � r

R
g−2(Ee, R),

f+2(Ee, r) � f+2(Ee, R)

j1(peR)
j1(per) � r

R
f+2(Ee, R), (27)
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where R is a nuclear radius. For bound states, required
in the atomic exchange correction (see Sec. IV), the
same approximation holds leading to gn,−1(r) � gn,−1(R),
fn,1(r) � fn,1(R), gn,−2(r) � (r/R)gn,−2(R), and fn,2(r) �
(r/R) fn,2(R). For continuum states, only the leading terms
in the expansion of spherical Bessel functions j0(per) and
j1(per) were considered. In this way one ends up with the
energy distribution, which depends only on a single squared
matrix element [7]:

d


dEe
= d
p3/2

dEe
+ d
s1/2

dEe

=
3∑

k=1

|Uek|2 G2
FV 2

ud

2π3
B R2 pe Ee (E0 − Ee)

× 1

3

[
F1(Z, Ee)p2

e + F0(Z, Ee)
(
(E0 − Ee)2 − m2

k

)]
×

√
(E0 − Ee)2 − m2

k θ (E0 − Ee − mk ) (28)

with

B = g2
A

6R2
|〈f‖

∑
n

τ+
n {σn ⊗ rn}2‖i〉|2 (29)

and

F0(Z, Ee) = g−1(Ee)g−1(Ee) + f1(Ee) f1(Ee)

j0(peR) j0(peR)
,

F1(Z, Ee) = g−2(Ee)g−2(Ee) + f2(Ee) f2(Ee)

j1(peR) j1(peR)
. (30)

Here, gκ (Ee) ≡ gκ (Ee, R) and fκ (Ee) ≡ fκ (Ee, R). In the limit
the Coulomb interaction is switched-off F0(Z, Ee) = 1 and
F1(Z, Ee) = 1. Different approximation schemes, for the elec-
tron wave functions, are indicated in the Fermi functions as
F I

k−1(Z, Ee), where I =A, B, C, or D.

IV. EXCHANGE CORRECTION

Besides the screening correction, another prominent
atomic correction, significant for low Q-value β transitions,
is the exchange effect. It arises from creating a β electron in a
bound orbital of the final atom corresponding to one occupied
in the initial atom. An atomic electron from the bound orbital
simultaneously makes a transition to a continuum state of the
final atom [44,45].

We have extended the exchange effect formalism for al-
lowed β transitions, presented in [44,45], for the unique first
forbidden β transitions. We found that two components of
the exchange correction independently modify the spectra
associated with the emission of electrons in the s1/2 and p3/2

states,

dΓ s1/2

dEe
⇒ dΓ s1/2

dEe
× (

1 + ηT
1 (Ee)

)
,

dΓ p3/2

dEe
⇒ dΓ p3/2

dEe
× (

1 + ηT
2 (Ee)

)
. (31)

The result is consistent with the one obtained in [55], for
the unique first forbidden β decay of 85Kr. The total exchange
correction for each partial spectrum is given by

ηT
k (Ee) = fk

(
2T−k + T 2

−k

) + (1 − fk )
(
2T+k + T 2

+k

)
= η−k (Ee) + η+k (Ee), (32)

where k = |κ| can take the values 1 or 2. Here,

fk = g′2
−k (Ee, R)

g′2
−k (Ee, R) + f ′2

+k (Ee, R)
, (33)

and the dimensionless quantities Tκ depend on the overlaps
between the bound states of the initial atom and the continuum
states of the final atom with energy Ee,

Tκ =
∑
(nκ )′

Tnκ = −
∑
(nκ )′

〈ψ ′
Eeκ

∣∣ψnκ〉
〈ψ ′

nκ |ψnκ〉
g′

n,κ (R)

g′
κ (Ee, R)

, (34)

for electrons in s1/2 (κ = −1) and p3/2 (κ = −2) states, and

Tκ =
∑
(nκ )′

Tnκ = −
∑
(nκ )′

〈ψ ′
Eeκ

|ψnκ〉
〈ψ ′

nκ |ψnκ〉
f ′
n,κ (R)

f ′
κ (Ee, R)

, (35)

for electrons in p1/2 (κ = +1) and d3/2 (κ = +2) states. All
primed continuum and bound states refer to the final atom.
The sums are running over all occupied orbitals of the final
atom, which, in the sudden approximation, correspond to the
parent electronic configuration.

Taking into account the sums inside the Tκ quantities, we
can write

ηκ (Ee) =
∑

n

ηnκ + f|κ|
∑
n,m
n �=m

TnκTmκ (36)

for negative values of κ , and

ηκ (Ee) =
∑

n

ηnκ + (1 − fκ )
∑
n,m
n �=m

TnκTmκ (37)

for positive values of κ . In this way, we can define the partial
exchange correction contributions, ηnκ , given by

ηnκ = f|κ|
(
2Tnκ + T 2

nκ

)
(38)

for negative values of κ , and

ηnκ = (1 − fκ )
(
2Tnκ + T 2

nκ

)
(39)

for positive values of κ . The essential quantities in computing
the exchange correction are the overlaps between the contin-
uum state electron wave function, with energy Ee, in the final
atom and the bound orbitals electron wave functions in the
initial atom, i.e., 〈ψ ′

Ees|ψns〉. This overlap is given explicitly
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FIG. 3. All partial exchange corrections for the decay of 187Re, i.e., Eqs. (38) and (39). The results are presented for atomic electrons in
s1/2 (κ = −1), p3/2 (κ = −2), p1/2 (κ = +1), and d3/2 (κ = +2) states.

by

〈ψ ′
Eeκ

|ψnκ〉 =
∫ ∞

0
r2g′

κ (Ee, r)gn,κ (r)dr

+
∫ ∞

0
r2 f ′

κ (Ee, r) fn,κ (r)dr (40)

and its numerical calculation requires good knowledge of the
continuum wave function over a wide region of space, from
the nuclear center to where the bound wave function for the
initial atom ends.

In the calculation of the exchange correction, the most
important condition is to ensure that the final-state electron
continuum wave function is orthogonal to the wave functions
of the final-state bound orbitals, i.e., 〈ψ ′

Eeκ
|ψ ′

nκ〉 = 0. They
are eigenfunctions of the same Hamiltonian, so they must
be orthogonal. A nonzero value of 〈ψ ′

Eeκ
|ψ ′

nκ〉 may lead to
significant error in 〈ψ ′

Eeκ
|ψnκ〉 [44]. The implications in the

exchange correction of non-orthogonal continuum and bound
final-states wave functions were discussed in detail in [46].
Our chose of a modified DHFS self-consistent method for
bound states and of the potential presented in Eq. (18) for
continuum states, imposes automatically the orthogonality
condition, 〈ψ ′

Eeκ
|ψ ′

nκ〉 = 0, without any further numerically
expensive orthogonalization procedures.

In the case of 187Re, there is an abundance of possible
switches between the β emitted electrons and the bound elec-
trons from the atomic cloud. For the emission of s1/2-state
electrons, ten orbitals contribute to ηT

1 , and for the dominant
emission in p3/2-state, seven orbitals contribute to ηT

2 . In
Fig. 3, we present all partial exchange corrections for the β

decay of 187Re, i.e., Eqs. (38) and (39), as functions of the
kinetic energy of the emitted electrons, i.e., Ee − me. We note
that the contributions from p1/2 (top right panel) and d3/2

(bottom right panel) states are much smaller than the ones
from s1/2 (top left panel) and p3/2 (bottom left panel) states
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FIG. 4. The total exchange correction for electrons emitted in
s1/2 wave state, ηT

1 (Ee) (solid black line), and for electrons emitted
in p3/2 wave state, ηT

2 (Ee) (dashed blue line).

because they are associated with the small components of the
Fermi functions f1(Ee) and f2(Ee), respectively [see Eq. (30)].
They cannot be neglected for a precise calculation.

The total exchange correction for s1/2 (p3/2) electron spec-
trum of rhenium β decay is depicted with a solid (dashed)
line in Fig. 4 as a function of the kinetic energy of the emitted
electron. We can see that the exchange corrections decrease
with the increasing energy of the emitted electron, starting
from around 73% for s1/2 electrons and 37% for p3/2 elec-
trons, at 2 eV kinetic energy. The exchange correction remains
significant even in the Q-value region, around 12% for s1/2

electrons and 5.5% for p3/2 electrons. Considering the large
amplitude and the shape of the exchange correction, we expect
that it will induce considerable modifications in both the decay
rate and spectrum shape of the β decay of rhenium. Those
modifications are discussed in what follows.

V. RESULTS AND DISCUSSIONS

In Table II, we present the partial decay rates, 
s1/2 (second
column) and 
p3/2 (fourth column), from which we excluded
the square matrix element, B. The partial decay rates, pre-
sented in MeV, have been obtained from the integration over
the full energy range of Eq. (28). In each integration, we have
used different approximation schemes (indicated in the first
column) displayed in Sec. II A. The last line corresponds to
the approximation scheme D, where we also included the
atomic exchange correction, presented in Sec. IV. In what
follows, this combination is indicated as D + ex. We consider
the approximation scheme A, used in our previous investi-
gation, as a reference for a percent deviation with the other
approximation schemes. The deviations are presented in the
third (fifth) column for the partial decay rate 
s1/2 (
p3/2 ).
Using the experimental half-lives, 4.33 × 1010 y [56], we also
present our prediction for the squared matrix elements in the
last column of Table II.

As a general result, in all the approximation schemes, the
ratios between p3/2-state electron emission channel and the
s1/2-state electron emission one are always around 104, so

TABLE II. The partial decay rates for 187Re, excluding the
squared matrix element, associated with the emission of electrons
in s1/2 wave state (second column) and p3/2 wave state (fourth col-
umn). The approximation scheme for the electron wave functions
is indicated in the first column. In the last line, the addition of
the exchange correction over the scheme D is indicated as D + ex.
In the third and fifth columns, we present the decay rate percent
deviation between the scheme A and the other schemes, δs1/2 =
100(


s1/2
A − 


s1/2
X )/


s1/2
X , and δp3/2 = 100(


p3/2
A − 


p3/2
X )/


p3/2
X , re-

spectively, where X can be B, C, D, or D + ex. The last column
presents the experimental squared matrix elements.

1041

B × 
s1/2 δs1/2 1037

B × 
p3/2 δp3/2

w.f. [MeV] % [MeV] % B × 104

A 9.30 – 9.19 – 3.63
B 8.33 −10.41 8.92 −2.95 3.74
C 7.88 −15.23 8.88 −3.35 3.76
D 7.58 −18.48 6.98 −24.02 4.78
D+ex 9.46 1.75 7.92 −13.84 4.22

different corrections do not change this particular feature of
the rhenium decay. Still, in comparison with scheme A, there
are considerable differences in the decay rates due to the
screening and exchange corrections. There is a 24% (18.5%)
decrease in the partial decay rate 
p3/2 (
s1/2 ) due to screening
correction alone (scheme D). If we also include the exchange
correction (scheme D + ex), the decay rate 
s1/2 returns close
to the one from scheme A (just a 1.7% increase). It is not the
case of 
p3/2 , which in scheme D + ex, is 13.8% lower than
the value from scheme A.

The most striking modification due to the exchange correc-
tion is the change in the spectrum shape of the rhenium decay.
In Fig. 5, we plot the normalized single electron spectrum for
both s1/2- and p3/2-state emissions, using the approximation
schemes D and D + ex. We mention that there are no con-
siderable shape differences between approximation schemes
A, B, C, and D. In the lower portion of Fig. 5, we also
present the residuals between spectra. Although the dominant
p3/2 spectrum is not as strongly influenced by the exchange
correction as the s1/2 spectrum, the modification is big enough
to change the shape of the total spectrum of the decay.

We present the total spectrum of rhenium β decay in Fig. 6
with the same convention as in Fig. 5, but now the electron
kinetic energy takes values from 700 keV up to the Q value,
and the residuals are in percentages. Note that the spectra are
normalized to unity over the full range of the kinetic energy.
One can see a different shape of the total electron spectrum of
the rhenium decay when the exchange correction is switched
on. The considerable spectrum shape modification induced by
the exchange correction indicates that this correction should
be included in the neutrino mass investigations from rhenium
decay, particularly, and other low Q-value β transitions, in
general.

To evaluate the deviation from an allowed spectrum, we
write the β spectrum of 187Re as

d


dEe
= G2

FV 2
ud

2π3
BpeEeF I

0 (Z, Ee)(E0 − Ee)2AI
F , (41)
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FIG. 5. The single electron differential decay rate normalized to
the particular decay rate (
s1/2 and 
p3/2 ) for the emission of s1/2 and
p3/2 electrons as functions of the electron kinetic energy Ee − me for
β decay of 187Re. We indicate with D the approximation scheme D
and with ex the atomic exchange correction. The lower portion of the
figure gives the difference between the spectra with and without the
exchange correction for s1/2 wave state electrons with a dashed line
and p3/2 wave state electrons with a solid line. Spectra are normalized
over the full energy range.

FIG. 6. The differential decay rate normalized to the total decay
rate (
) as function of the electron kinetic energy Ee − me for β

decay of 187Re. We indicate with D the approximation scheme D
and with ex the atomic exchange correction. The lower portion of the
figure gives the percentage residuals between the spectrum with and
without the exchange correction. Spectra are normalized over the full
energy range.

FIG. 7. The shape factor AI
F , i.e., Eq. (42), for different approxi-

mation schemes, I =A, B, C, and D, and the shape factor AD+ex
F , i.e.,

Eq. (43).

where, for the moment, the neutrino masses are neglected and
I =A, B, C, or D. The shape factor AI

F = 1 for the allowed
transitions, but for unique first forbidden

AI
F = R2

3

[
pe

F I
1 (Z, Ee)

F I
0 (Z, Ee)

+ (E0 − Ee)2

]
, (42)

where we did not include the exchange with bound electrons.
If we want to take into account this effect, the shape factor
becomes

AD+ex
F = R2

3

{
pe

F D
1 (Z, Ee)

F D
0 (Z, Ee)

(
1 + ηT

2 (Ee)
)

+(E0 − Ee)2
(
1 + ηT

1 (Ee)
)}

. (43)

We can see from Fig. 7, that all AI
F are linear increase with

energy in the experimentally available range, from 700 eV
to Q value. We reproduce perfectly AI

F if we consider the
following model fit:

AI
F = aI

(
1 + b1Te + b2T 2

e

)
(44)

with Te = Ee − me in eV. The best fit parameters are b1 =
1.50 × 10−5 eV−1 and b2 = 4.82 × 10−11 eV−2 The parame-
ters aI simply scale through different approximations of the
Fermi functions (for example, aA = 1.44 × 10−5), but they do
not change the linear increasing behavior of AI

F . In contrast,
AD+ex

F decreases with energy, and its shape is more complex
due to the exchange correction. The best fit in the range
from 700 eV to the Q value is obtained with the following
assumption:

AD+ex
F = aD+ex

(
b−1

Te
+ 1 + b1Te + b2T 2

e

)
, (45)

where we found the best fit parameters b−1 = 19.95 eV,
b1 = −6.80 × 10−6 eV−1, and b2 = 3.05 × 10−9 eV−2 with
aD+ex = 1.46 × 10−5. Important to notice is the sign change
of b1 when the exchange correction is included. The choice
of a fit model with terms proportional to T −1

e is based on the
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FIG. 8. The Kurie plots in arbitrary units (a.u.) for the β decay of
187Re with different values of the effective neutrino mass: mβ = 0.0,
0.2, 0.4, 0.6, and 0.8 eV. The Q value considered is 2470.9 eV [9].

experimental shape factors that can also involve such terms
[57].

The best upper limit on effective neutrino mass, mβ �
0.8 eV, recently reported by the KATRIN experiment [17],
holds in the degenerate neutrino mass region, i.e., m1 � m2 �
m3 � mβ = ∑3

k=1 |Uek|2mk . So, we replace all the neutrino
masses mk (k = 1, 2, 3) with the effective neutrino mass mβ .
For the following discussion we consider just the approxima-
tion scheme D for the electron wave functions and we also
include the atomic exchange correction.

The Kurie functions for the unique first forbidden transi-
tions is given by

K (Ee, mβ ) =
√

d
/dEe

peEe(peR)2F1(Z, Ee)
(
1 + ηT

2 (Ee)
)

= GFVud

√
B

6π3
(E0 − Ee)

4

√
1 − m2

β

(E0 − Ee)2

×
[

1 + pν

pe

F0(Z, Ee)

F1(Z, Ee)

(
1 + ηT

1 (Ee)
)

(
1 + ηT

2 (Ee)
)
]1/2

. (46)

The Kurie functions for the β decay of 187Re are displayed in
Fig. 8 for various values of the effective neutrino mass. In the
case of mβ = 0, the Kurie plot, which is a plot of K (Ee, mβ )
versus Ee, is ensured to be linear by keeping the exchange
correction for p3/2 wave state electrons in the denominator of
its definition. The term that can change the linear behavior is
the last term in squared brackets, but its deviation from unity
is very small. This deviation is below 6 × 10−5 after 1000 eV
kinetic energy, and in the region of interest from 2300 eV to
the Q value, the deviation is even lower under 10−6.

VI. CONCLUSIONS

The distortion in the endpoint measurements of low Q-
value β decay spectra is a direct tool to measure the values
of neutrino masses. Current experiments are based on the
ground-state to ground-state β transitions, and for next-

generation investigations, some suitable candidates could be
the ultra-low Q value (under 1 keV) ground-state to excited-
state β transitions. With the increasing interest in measuring
neutrino masses from β decays, accurate theoretical spectra
predictions should be provided. However, their description
can be challenging considering the β transition classification
and the plurality of atomic effects in the low-energy region.

We investigate the ground-state to ground-state unique first
forbidden β transition from 187Re(5/2+) to 187Os(1/2−), con-
sidering all relevant corrections to its spectrum and decay
rate. In addition to our previous paper, we incorporate correc-
tions for finite nuclear size, diffuse nuclear surface, screening,
and exchange in the rhenium β decay model. The last two
effects are calculated using the self-consistent Dirac-Hartree-
Fock-Slater description for the atomic bound electrons of the
final atom. As the rhenium β emission involves a mixture
of s1/2-state and p3/2-state electrons, our exchange correc-
tion calculation accounts for all possible contributions from
exchanges with s1/2, p3/2, p1/2, and d3/2 bound orbitals. Our
findings reveal significant alterations in the partial decay rates
for both s1/2- and p3/2-state emission channels due to the
screening and exchange effects while maintaining the experi-
mentally confirmed dominance of p3/2-state emission.

The key feature of this paper is that, in addition to changing
the partial decay rates, the exchange correction modifies the
shape of the total electron spectrum for rhenium β decay.
By studying the deviations from an allowed spectrum, we
demonstrate that calculations with and without the exchange
effect lead to entirely different shape factors, transitioning
from an increasing linear behavior to a decreasing quadratic
one. We present the best-fit parameters for both cases. The
extent of this shape modification is so pronounced that we
need to include the exchange correction in the definition of the
Kurie plot to maintain its linearity in the case of zero effective
neutrino mass. We also demonstrate how different effective
neutrino masses affect the Kurie plots near the endpoint of the
β decay of 187Re. Our conclusion underscores the importance
of considering atomic effects, especially the exchange effect,
in current and future neutrino mass scale investigations from
β decays.

The figures for this article have been created using the
SciDraw scientific figure preparation system [58].
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