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New approach to the 3-momentum regularization of the in-medium one- and two-fermion line
integrals with applications to cross sections in the Nambu-Jona-Lasinio model
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We propose the 3-momentum sphere intersection regularization applied to the one- and two-fermion line

integrals at finite temperature and chemical potential. The quark-antiquark polarization function in this new
regularization approach is equivalent to the usual 3-momentum regularization, when the absolute value of the
external 3-momentum of the polarization is zero. Additionally, it respects the particle-antiparticle symmetry of
meson states in the Nambu—Jona-Lasinio (NJL) model for all values of temperature and chemical potential.
Without this symmetry, in-medium cross sections calculated in the 3-momentum regularized NJL model are not
consistent. To demonstrate the difference between the usual 3-momentum regularization with the one proposed
in this work, we study the quark-quark and quark-antiquark cross sections in both regularization schemes. To this
end we use the standard SU(3) NJL model, with four- and six-quark interactions. We observe major quantitative
and qualitative differences when comparing quark-quark cross sections in both schemes. The quark-antiquark
cross sections, on the other hand, are very similar in both regularizations, owning to the equivalence between the
regularizations when the absolute value of the external 3-momentum is zero.
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I. INTRODUCTION

The calculation of one loop integrals at finite temperature
and chemical potential is an essential part of the study of in-
medium quantum field theory. These integrals arise naturally
in calculations performed under the framework of effective
theories of quantum chromodynamics (QCD), like Nambu—
Jona-Lasinio (NJL) type models [1-10]. In the NJL model,
the one- and two-fermion line integrals occupy a central
role in the calculation of meson propagators, meson masses,
cross sections, or thermodynamic quantities, like pressure, en-
ergy density, and entropy density. Moreover, quark-quark and
quark-antiquark cross sections, derived from the NJL model,
can be used to estimate the quark relaxation times, a vital part
of several theoretical predictions about the in-medium behav-
ior of transport coefficients like the shear and bulk viscosities,
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as well as the electrical and thermal conductivities of strongly
interacting matter [11-16].

Due to the nonperturbative characteristics of QCD at low
energies, phenomenological models like the NJL model are
an essential tool to make qualitative predictions about QCD at
finite temperature and density, especially when the goal is to
study the behavior of the quark gluon plasma at temperatures
and chemical potentials for which the ab initio approaches of
QCD, like lattice gauge theory, or perturbative based calcu-
lations are not applicable [17-20]. Hence, making sure that
the calculation of one loop integrals, within the scope of
NIJL-type models, is made in a symmetry-preserving manner,
is extremely important in order to make better qualitative
and quantitative predictions while also assuring that one is
not introducing nonphysical features in the phenomenological
calculation.

In this work we follow the terminology given in Ref. [11],
and denote the one-fermion line integral by A and the
two-fermion line integral by By. Here, we will not study
the practical implementation of integrals with a fermion
line counting higher then two. As is well known, both of
these integrals are divergent and some regularization tech-
nique must be employed, becoming an essential part of the
calculations [11,21]. When studying finite-temperature and
chemical-potential systems, the 3-momentum regularization
is widely applied [11]. In this framework the integration over
the internal 3-momentum of quarks, p, is carried out up to a
maximum value of its absolute value, |p| < A, with A being
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the 3-momentum cutoff of the model [21]. The usual way in
which the 3-momentum regularization is performed breaks
a symmetry of the system: the quark-antiquark polarization
loop, which mixes light and strange quarks, is not symmetric
with respect to the interchange of quarks [12]. This originates
from a shift of variables used in order to simplify the evalua-
tion of the By integral [11,12].

One of the main issues with this feature is that physical
scattering processes which ought to be identical for all
values of temperature and chemical potential, become
different. A clear example is the cross sections of the
quark-quark processes, us — us and su — su (the same
occurs for ds — ds and sd — sd). Considering the us — us
scattering in the u channel, the exchanged mesons are
the pseudoscalar Kt and the scalar «* while, in the t
channel, the exchanged mesons are the flavorless, neutral
mesons 1, 0, Ty, o, fy, and ag. For the su — su process
the corresponding antimesons are involved in each channel.
Using a theoretical setup in which the quark-quark processes
us — us and su — su yield different results is an indication
that the set of meson propagators used in the calculations
do not display the expected particle-antiparticle symmetry
of meson states. One way to solve this problem is to
follow the recipe introduced in Ref. [12] and, when
appropriate, replace the two fermion line integral present
in the quark-antiquark polarization loop function, By =
BoM,,, M, T, 1y, s, ko, |k|], with an average By = %(Bo
(M, My, T, oy, g, ko, [k|] + Bo[Mg, My, T, pis, iy, ko, [k|]).
Here My and (1 are the effective mass and effective chemical
potential of the quark of flavor f, T is the temperature
and ko, |k| refer to the temporal-like and spatial-like parts
of the external momentum, respectively. In the physical
scenario where isospin symmetry does not occur (up and
down quarks have different bare quark masses) or if there is
an asymmetry caused by nondegenerate up and down quark
chemical potentials (for example, when considering matter in
beta equilibrium), several other scattering processes are also
affected, such as the ud — ud and du — du processes.

In this work we propose a novel approach to the 3-
momentum regularization, namely, the 3-momentum sphere
intersection regularization scheme. In this new regularization
scheme, we regularize the one loop integrals based on the
number of quark propagators present in the integrand. Each
quark propagator has a 3-momentum which must be smaller
than the 3-momentum cutoff, |p| < A. In the 3-momentum
sphere intersection regularization, the individual momentum
of each quark propagators must be smaller than the cutoff,
even when external momenta are considered. As we discuss
in this paper, this can be achieved by considering that the
integration over the momentum in the N-fermion line integrals
must be evaluated inside the region defined by the intersection
of N spheres. Furthermore, in the case in which there are no
external momenta applied to the N-fermion line integrals, the
spheres completely intersect and the regularization is equiv-
alent to the usual 3-momentum regularization. Interestingly,
if the spheres do not intersect, the integral is automatically
zero. As we discuss, this happens for the meson propaga-
tors: if the momentum of the meson is larger than 2A, the
spheres corresponding to each quark propagator, inside the

quark-antiquark polarization function, no longer intersect and
the polarization function is automatically zero. With this ap-
proach to the 3-momentum regularization, all the symmetries
of the system are maintained and the previously discussed
problems with the scattering processes do not occur.

This paper is organized as follows: In Sec. II, we derive the
one- and two-fermion line integrals from the NJL model for
any number of scalar and pseudoscalar quark-quark interac-
tions. This is accomplished in the mean-field approximation
by writing the linear and quadratic expansions of the NJL
Lagrangian. We also show how the expansion used to de-
rive the meson propagators from the quadratic NJL model
yields the same meson propagators as those obtained via the
commonly employed Bethe-Salpeter equation in the random-
phase approximation. Additionally, the 3-momentum sphere
intersection is introduced and discussed. The formalism devel-
oped here can be used to incorporate multiquark interactions,
such as the eight quark proposed in Refs. [22,23], or explic-
itly chiral symmetry breaking interactions, such as those in
Refs. [24,25]. In Secs. Il and IV, we evaluate the two-fermion
line integral By and the one-fermion line integral A within
the new regularization scheme. In Sec. V the formalism to
evaluate quark-quark and quark-antiquark cross sections is
laid out and a specific version of the SU(3) NJL model,
with four- and six-quark interactions is introduced in order to
study the effect of using both regularizations on the different
scattering processes. The numerical results regarding quark-
quark and quark-antiquark scattering processes for different
scenarios of temperature and chemical potential are presented
and discussed. Finally, in Sec. VI, conclusions are formulated
and additional research is suggested.

II. THE ONE- AND TWO-FERMION LINE
INTEGRALS FROM NJL-TYPE MODELS

The one-fermion line integral A and the two-fermion line
integral By at one loop level arise when studying NJL-type
models. In this section we show one way to derive the def-
initions of these integrals from the NJL model and discuss
regularization strategies, namely, a new way to regularize the
quark-antiquark polarization function.

Consider a general model describing Ny flavors of fermions
including different types of scalar and pseudoscalar interac-
tions and the standard free Dirac Lagrangian. This can be
written as

LIV, Y] = ¥id —my + LinlSa, pal. (1

Here, m = diag{mg, my, ..., me,l} is the quark current mass
matrix, the term L;, contains several types of quark-quark
interactions and is written as a function of quark bilinear
operators, s, = YA\ and p, = iy A, ¥, where A, are the
NJ% matrices that span the U(Ny) algebra. The usual four-quark
scalar-pseudoscalar interaction, for example, can be written as
L1y < (Yra)? + Fiyshay)? = s2 + p? (the Einstein sum-
mation convention is used).

Using this Lagrangian density, one can obtain the generat-
ing functional of the theory and derive all quantities of interest
like the quark propagator, the thermodynamic potential and
(anti)quark-(anti)quark cross sections (here and henceforth we
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are referring to quark-quark, quark-antiquark and antiquark-
antiquark processes). However, the presence of more than two
quark-quark interactions at the Lagrangian level renders im-
possible the exact integration over the quark fields [26]. This is
a natural difficulty when dealing with interacting field theories
and some approximation must be employed in order to deal
with the functional integrations and calculate the previously
mentioned quantities.

In this work, we use the linear and quadratic expansions of
the Lagrangian allied with the mean-field approximation. The
one-fermion line integral A arises in the linear expansion of
the NJL Lagrangian, namely, in the calculation of the quark
propagator and thermodynamic quantities. The two-fermion
line integral By emerges in the quadratic expansion and is
essential in the calculation of the quark-antiquark polarization
function, which is a fundamental step in the calculation of me-
son mass behavior and the cross sections. In the following we
show how these integrals arise from the linear and quadratic
expansions of the Lagrangian defined in Eq. (1).

A. The linear Lagrangian

As already discussed, in order to obtain the quark propa-
gator and thermodynamics of the model defined in Eq. (1),
one can consider the linear expansion of the Lagrangian allied
with the mean-field approximation. In this approximation one
transforms all quark-quark interactions into quadratic quark
interactions (linear in bilinear quark operators) by the intro-
duction of auxiliary fields. Terms which have a larger than
linear dependency in the quantum fluctuations are neglected.
Using this technique, one can write a generating functional
integrand that is quadratic in the quark fields.

Consider a quark bilinear operator @ = ¥y, where " is
an operator that acts on some internal quark index, like color

J

or flavor. Without loss of generality, the bilinear can be written
as a sum between its mean-field value and a small fluctuation,
O = (0) 4 80. To obtain the linear expansion of the product
between N bilinear operators, one only keeps terms that are
linear in the fluctuations 80, i.e., terms equal or superior to
(80)? are neglected. As a matter of fact, one can prove that
the linear product between N = n 4+ 1 commuting operators
can be written using the following formula (see Appendix A
for the proof) [27,28]:

n+1 n+1 @ n+1 A
O; 0j). (2)
|:l_[ :| (z—l ey >H< /

Using this approximation, one can obtain a Lagrangian
density £y, which is linear in the quark bilinear operators,

ﬁL[Ev ws <S>, <P>]
=V (id — Mm, (s), (p)D¥ —ULGs), (p)]. (3)

Here, {s)={(s0), ..., (sy2-1)} and (p)={(po), ..., (Pnz-1)}
are the sets of scalar and pseudoscalar mean fields obtained
after performing the linearization procedure. These fields
correspond to the expectation values of the N2 scalar and

pseudoscalar quark bilinear operators va =Y, w and p, =
Wiy A, respectively (a =0, . f — 1). The effective-
mass matrix M and the mean- ﬁeld potentlal U are functions
of these sets. Using this quantity, one can find the generating
functional of the model, within this approximation, to be given
by

ZL1(s), (), 7, n] o / DYDY exp [i / A (LT, (5), ()] + +w>}

o exp [~iU V] f DYDY exp [i / d“x( [ d*yUI) G, T y] vl + Pl +W[x]>], @)

where 1 and 7 are the quark and antiquark sources, V is the
four-dimensional volume, and the inverse quark propagator
G, was defined as

G, e, yl = (i — M)§*(x — y). (5)

For simplicity, we omitted the mean-field dependencies
present on the quark effective mass M = M[m, (s), (p)].

The quark fields can then be integrated out, and one
can define the effective action of the model from the gen-
erating functional (with vanishing sources) I'[(s), (p)] =
—iIn[ZL[(s), (p)]], which only depends on the sets of
mean fields, (s) and (p). Such dependence must be re-
moved by requiring the effective action to be an extreme
with respect to these mean fields i.e., ST'[(s), (p)]/§(s.) =
ST[(s), (p)]1/8(ps) = 0. At this point one has access to the
thermodynamic potential from which several thermodynamic

(

variables of interest, such as pressure, energy density, entropy,
and speed of sound, can be evaluated.

Finally, the one fermion, one loop integral A can be defined
by considering the quark condensate of flavor i [18]:

(Vi) = —itrG)[x, x]

4LNM/ —
Q) p* — M;

N,
= 2MA[M] (6)

The one fermion, one loop integral in Minkowski space-time,
A[M ], is given by

dp 1
AIM;] = —16n2if LN )
Reg (277) P2 - Mi
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Here, M; is the i-quark effective mass. The inclusion of tem-
perature and chemical potential will be done in Sec. IV. Since
this integral is divergent and some regularization scheme must
be applied, we explicitly wrote the label Reg.

B. The quadratic Lagrangian

The two-fermion line integral By can be found when con-
sidering the quadratic expansion of the Lagrangian given in
Eq. (1). Such expansion allows one to calculate several inter-
esting properties, namely: meson propagators, meson masses,
decay rates and (anti)quark-(anti)quark cross sections.

The approach to write a Lagrangian that is quadratic in the
quark bilinear operators (fourth order in the quark fields) is
similar to the one used in the previous section to obtain the
linear Lagrangian. First, as before, the operator is written as
the sum, © = (O) + 5O. However, to get the quadratic ex-
pansion of the product between N bilinear operators, only up
to quadratic terms in the fluctuations are kept and higher-order
terms are neglected. As before, instead of doing such expan-
sion by hand, there is a formula from which one can readily
obtain the quadratic product between N = n + 2 commuting
operators, with n > 1 (see Appendix B for the proof). It is
given by [27,28]

n+2 R 1 n+2 n+2 @i @
Q[EQ} = 522 ) (@]_>(1 —8))

n+2 @ n n+2
- LR 1 0. 8
”;wi)*z(”* ))L[l( . (8)

Using the quadratic expansion above and neglecting
second-order terms which mix scalar and pseudoscalar quark
bilinear operators (s,pp and p,sp),' the quadratic Lagrangian
density Lq (fourth order in the quark fields) can be written as

EQ[W! wv (S), <P>] = W(la - m)lﬁ + saSabsb + paPabpb
+ $aSa + paPu + R. 9

Here, Sup = Sapl(s), (p>] and Py, = Pupl(s), <P>] gather the
coefficients that arise after the quadratic expansion of
the operators, which are quadratic in the variables s, =
Uiy and p, = Yiy A,y respectively. They are the so-
called meson projectors for the scalar modes (S,;) and the
pseudoscalar modes (P,;). The first- and zeroth-order con-
tributions are gathered in the coefficients S, = S,[(s), (p)],
P, = P,[(s), (p)], and R = R[(s), (p)], respectively.

The generating functional for the system can be written as

Zall5). ) .71 o [DFDY exp | a*s(Lali. . ). )
+ +W)}. (10)
I'This follows from the consideration that only the scalar conden-

sates get a nonvanishing ground state and pseudoscalar condensates
are zero.

To integrate out the quark fields, one can bosonize the
model by introducing auxiliary meson fields, o, and m,,
through Hubbard-Stratonovich transformations [29-31]. For
the s, contributions, consider the following Gaussian integral:

exp{i/d4x(saSabsb)}
o [UDJCeXp{i/d“x(—%oa(Sl)a;,a;,—saaa)}.

an
Considering a change of variables on the functional integral
as o, > o, + (S, + A,) where A, =M, —m, ie., A,A, =
M — m, and multiplying both sides by exp{i [ d*x(s4S,)}, we
can write”

exp {i/d4x(saSubsb + saSa)}
a[l_[Da exp i/d4x —la (S_l)bab
. C 4 a a

1
- Eaa(s—'»b(&, + Ap) — sq(04 + Aa)) } (12)

With this particular change of variables we are considering
the possibility of scalar condensation in the vacuum. In this
work we do not consider the possibility of pseudoscalar con-
densation. In this case, for the p, contributions, the approach
is similar except that the change of variables is simply 7, —
7, + P,. Using these identities, the action becomes quadratic
in the fermion fields and one can integrate out the quark fields
to yield:

Zol(5). (1 o [ [] DouDr,exp (iSolo. . ). (w11

13)

Here, Sglo, m, (s), {p)] is the action of the system and
o = {oy, ..., UN}.—l} and & = {my, ... ,anz__l} are the sets of
scalar and pseudoscalar auxiliary fields (respectively) intro-
duced with the Hubbard—Stratonovich transformation. The
action of the system is explicitly given by

Sqlo, m, (s), (p)]
= —iTrin[id — M — A0, — iYs5haT4]

4 _1 -1 _ l —1
+ d’x 4Ga(S )abob 47Ta(P )ahnb

1 1
- 5%(5*1»1)(5;) + Ap) — Ena(P*)abe +R). (14)

In the above expressions, Tr is the usual notation for
the total trace over continuous space-time indexes and dis-
crete internal indexes such as color, flavor, and spinor, Tr =
tr tr.trtry and the functional trace of an operator O is defined

*Here we used the fact that the matrix S is symmetric.
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by tr,0 = f ddx(x|0|x) [18,32]. Here, we use the functional
formalism introduced in Refs. [33-35], where O is considered
an operator acting directly on a fictitious Hilbert space, {|x)},
with the position (%) and momentum operators (p,,) obeying
the usual commutation relation [£,, p,] = i8,, [32-35].

The gap equations of the model can be obtained by eval-
uating the path integral over the auxiliary meson fields, o,
and m, in the stationary phase (or saddle point) approxima-
tion [17,19,21,31,36], which is equivalent to the mean-field
or Hartree approximation. It amounts to requiring the action
of the model to be stationary with respect to the auxiliary
meson fields, §S8q/804l (o5 73} = 8Sq/87al (o xzy = 0. Here,
we note that we already allowed for a nonvanishing expec-
tation value of the field o, in the change of variables, o, —
0, + (Sg+ A,), and thus are requiring that the stationary
field configurations must vanish: o' = 7' = 0. Using these
requirements, one can derive the self-consistent gap equa-
tions of the model which relates the quark’s effective mass
M and the expectation values of the quark bilinear operators
(s) and (p). This approach leads exactly to the same gap
equations as those obtained using the linear Lagrangian in the
mean-field approximation presented in the previous section.
Indeed, for a specific NJL Lagrangian, one can check this
equivalence explicitly. This correspondence might be related
the exact Hubbard—Stratonovich transformation used to trans-
form the quadratic action (in terms of quark bilinear operators)
into a linear action. A proper demonstration between the
equivalence of the gap equations derived in the linear and
quadratic Lagrangians (alongside the saddle point approxima-
tion for the auxiliary meson fields) for any interactions terms
is left as future work.

The quark-antiquark polarization function, at finite chem-
ical potential, can be derived from this formalism by
considering the expansion of the fermionic determinant to
second order in the mesonic auxiliary fields o, and =,. Fi-
nite chemical potential can be included in the calculation by
making the substitution d, — Dy = 0y — it840, With u the
quark chemical potential matrix in flavor space [18]. This
matrix can be considered to be diagonal with components,
u = diag(uo, p1, - - -, un,—1)- Next, we consider the Taylor-
series expansion of the logarithm of a matrix in Eq. (14). We
write [2,18,37-41]

Trin[il) — M — L,0, — iysigm,]
=Trin[il) — M]+ Trin[l + [il) — M]"
X (_)\aUa - iVS)Vaﬂu)]

= Trin[il) — M] - Y _Tr[T;]. (15)

n=1

In the above, the logarithm of a matrix was written using
its defining Taylor-series expansion (assuming that the series

converges) [41]:

oo (_1)11+l .
In[X]= Z T(x - D" (16)

n=1

A convergence criterion can be written as |X — I| < 1, with
|Y| a proper way to evaluate the norm of the matrix ¥ [41].
Additionally, the operator T, is defined as

1 1 .
T, = ;([ZD — M] ()\aaa + lVS)‘ana))n- (17)

We are interested in evaluating the second-order term in
the expansion, T, which is an essential part in the defi-
nition of the inverse meson propagators. To this end, we
define the operators G = [ilp — MY, o = A0, and 7T =
AaT,. We highlight that G is a matrix in flavor space due
to the structure of the effective quark mass and effective
chemical-potential matrices, M = diag(Mo, My, ..., Mn,—1),
and pu = diag(uo, U1, - - -, un,—1). With this notation, we can
write

T, = 3G(o + iysm)G(o + iysm)
— 20(7_+_T207r_+_T27TG+T27TJT. (18)

Only the traces of the first and fourth operators are nonzero,
Ty and T7*". The trace over spinor indexes of the “mixed”
contributions involving the identity matrix I, and the y° ma-
trix vanish. Without loss of generality, we can deal with the
quantity, T2¢¢[F1, ] = %gr@grzqs, with ¢ standing in for
o or x. It yields T;7° when I') =T', =1 (I4 is the four-
dimensional unity matrix) and 7;"" in the case in which I'1 =
I'; = iys. The operator I" only has discrete Dirac indexes. The
fields ¢ and the quantity G both have discrete flavor indexes
as well as continuous space-time indexes but are structureless
in color space. Additionally, the operator G also carries Dirac
indexes. As a result of this internal structure, the evaluation
of the traces over these different vector spaces has to be
done taking into account the noncommutative nature of these
operators, i.e., one has to take into account that [G, '] # 0
in spinor space, [G, ¢] # 0 both for flavor and continuous
space-time indexes, while the remaining commutation rela-
tions are zero (for instance, [I", ] = 0 in flavor and spinor
spaces). The way in which one evaluates the traces can lead
to different mathematical expansions. As we explain more
thoroughly later, we are interested in obtaining an expansion
of the fermionic determinant which yields the same result for
the meson propagators as those obtained via Bethe-Salpeter
equation in the random-phase approximation (or, equivalently,
the ring approximation [19]). We make further comments
about deriving the meson propagators from the fermionic
determinant in Sec. II B 2.

Lets start by evaluating the trace over flavor degrees of
freedom, tr¢[GI"1¢GI">¢]. To this end we introduce the matri-
ces é4p, with indexes in the range A, B ={0,1, ..., Ny — 1}
and matrix elements given by (&4p);; = 84:85,. Explicitly, they
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are given by

10 0 0 1
) 0 0 ol 0 0
€00 = . - €y = .

0 0 0 0 0

Any Ny x Ny complex matrix, C, can be written as a lin-
ear combination of the &4 matrices alongside NJ% complex
coefficients cqp as C = cypésp. These matrices are linearly
independent since the zero matrix can only be obtained if all
coefficients vanish. Additionally, one can check that the trace
between two é4p matrices is, tr[éapécp] = Sapdpc. The N/%
generators of the U(Ny) group, A,, can be written in terms of
this new basis. Using the completeness relation we can write
Aq = Rigéap. Multiplying both sides by écp and taking the
trace, one can get the expression for the R}, coefficients:

Rip = tr[Aqepal. (20)
Using this new set of matrices, the trace over flavor space is
tr/[GT16G 2] = RERE(G)iT19a(G);; Tads.  (21)

Here, a,b,i, j ={0,1,..., Ny — 1} and the coefficients R},
are given by Eq. (20). Also, we used the fact that the operator

J

0 0 0 0

0 . 0 0 ...

N E v eNg—INg—1 = NE (19)
0 0 0 1

G is diagonal in flavor space, G = diag(Go, 1, - -, Gn,—1)-
For the Ny = 3 case, which will be studied later in this work,
the nine generators of the U(3) group are constituted by the
scaled unit matrix plus the eight Gell-Mann matrices and one
can identify the (G);; elements with the up, down, and strange
quark propagators, i.e.,i = 0 = u (up),i = 1 = d (down), and
i =2 = s (strange) and G = diag(G,, Ga, Gs).

Due to the lack of structure in color space, the trace over
such degrees of freedom yields a simple N, factor. The full
trace over space-time and discrete indexes is given by

Tr[ T[T, T2]]

N,
= R St [ d @) 8.0) Tl (2)

Evaluating it, yields the following result:

T[791T), Tal] = RERE S / LK K-k / AL P S S
V2 Jreg @) Regtt1 Q) 7| pi =M (p, —K) — M

j d*k
_ lpew / oy KO KITT, T2, K)

2 LV

i d*k
_ i f Gy el Tl T, kL] @3)
R

eg (21

Here, we defined Pr=v po+ 1 ) — ¥ - p, with u ¢ being the chemical potential of the quark with flavor f [18]. Furthermore,
we applied regularlzatlon to both momentum integrations, with a small caveat: we allowed the regularization of the innermost
momentum integration (p) to be a function of the outermost momentum (k). The reason for this will be discussed later. The
quark-antiquark polarization function with flavor indexes, IT;;[I'{, I'2, k], and its analog IT,[I"1, I'2, k], with indexes coming
from the generators of the U(Ny) group, were defined in this expression as

d*p wal(p; + M) ((p; — k) + M;)I'2]

II;,[T;, Ty, k] = iN, , 24)
Y ¢ Reg[k] (27'[)4 (p12 - Mlz)[(pl - k)2 - MJ2]
,,[Ty, Ty, k] = R;;Rf,n,,[rl, Iy, k]. (25)

The only trace left to calculate is over Dirac indexes. This can be achieved by choosing I'; and I',. As previously stated, only
the cases ' = I', = I, and I'; = I', = iy> are nonzero. Thus, we define the scalar quark-antiquark polarization function as
1'[ [Ml, M ; j, Wi j, k1 = I1;;[14, I4, k] and the pseudoscalar quark-antiquark polarization function by HZ[M M;, wi, pj, k] =
Hl | [iy>, iy?, k]. Evaluating the trace over spinor space yields

HiS}P[Mi,Mj, Wiy j, k] = —

(M, i, k) + AIM;, i, k14 [(M; = M) — (i — 115 + ko)* + k*1Bo[Mi, M, i, 12, k1.

(26)

In the right-hand side of this equation, the positive sign (+) is used for the scalar function l'[ while the negative sign (—) is
used for the pseudoscalar quark-antiquark polarization function Hf] Here, we also defined the two-fermion line integral B, in
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FIG. 1. Bethe-Salpeter equation in the random-phase approximation (RPA) [17,18,20,36]. In the first line the transfer matrix 7 is written
as an infinite sum over quark-antiquark polarization loops, I1. In the second line, the equation is expressed in a self-consistent way. The double
lines represents the meson propagator and the solid lines the quark propagators. The wiggly line between two black dots is used to signal the
tensor nature of the NJL scattering kernel, /C, due to its structure in flavor, color, and Dirac spaces.

PHYSICAL REVIEW C 109, 025206 (2024)

Minkowski space-time:

d*p 1
BO[MivM" M,,M,k]:_167[21/ . (27)
! ! regtk 270)" [(po + )* = p? = MZ][(po + 1t — ko> — (0 — k)* — sz]
The function A is defined by
d* 1
AlM;, i, k] = —167121'/ p4 2 2 (28)
Reglk] (27)* (po + i)™ — p* — M;

The integrand is exactly the same as the one present in the definition of the one-fermion line integral A [see Eq. (7)]. However,
the function A carries the same momentum-dependent regularization as the integral By. In the special case where the same
regularization is applied to both A and A, then A = A. Hence, the integral A defined in Eq. (7) and the integral .A defined above
are exactly the same quantity but within different regularizations.

Finally, we can define the meson propagators of the model. Using the series expansion of Eq. (15) alongside the trace

calculation of Eq. (23). The second-order term, proportional to 0,0}, and 7,7, of the quadratic action Sq is given by

@ ! d*k Lo s
830, {5), (] =~ 5 f S b1 5657 = K )l
Reg
1 d*k 1
-3 / mna[k](z(rl)ab - nﬁ,’b[k]>nb[—k]. 29)
Reg

Using this result we can define the inverse scalar and pseu-
doscalar meson propagators D§1 and D;l, respectively. They
are defined by

(D5") 1k = 35y — TIS, [K1, (30)
(Dp") k1 = 1 (P™")p — TIE [k, 31)

As we see later, the meson propagators are essential in the cal-
culation of quark-quark and quark-antiquark cross sections.

1. Equivalence with the Bethe-Salpeter equation
in the random-phase approximation

Another commonly employed method to obtain the meson
propagators involves the Bethe-Salpeter equation, which de-
scribes the bound states of two-body quantum systems. In the
so-called random-phase approximation, this equation is given
by (see Fig. 1 for its diagrammatic representation) [17,18]

iTTk] = iK + ikC(—iTI[k])iK
+ iIK(—i T kDI (=i TT[K])ikC + - - -
= iK + iK(—iTI[k])i T [k]. (32)

(

Here, T is the so-called quark-antiquark scattering matrix,
KC is the scattering kernel, and TI[k] is the quark-antiquark
polarization loop (see Fig. 2). These quantities contain several
indexes including color, flavor, and spinor.

The Bethe-Salpeter equation in the random-phase approx-
imation, applied to NJL-type models in the mean-field ap-
proximation (or Hartree approximation [17-20,36]), has been
extensively applied in the literature to study in-medium meson
behavior, and to evaluate quark-quark and quark-antiquark

b
ey ra Ty
_ZHab [k] =
—_—> e
k k

N

p—k

FIG. 2. Diagram representing the scalar or pseudoscalar quark-
antiquark polarization function [18]. The solid lines represent quark
propagators and the wiggly line with a black dot represents I'Y, with
'S = A,, for scalar modes and I'? = iy, for pseudoscalar modes.
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cross sections [1,11-13,17-20,36,42,43]. Such standard ap-
proach [36], is known to be a symmetry-preserving one, being
compatible with chiral symmetry and respecting the Gold-
stone theorem and the Gell-Mann—Oakes—Renner relation
[17-20,36,37]. In this section we highlight the equivalence
between this method and the functional expansion derived
previously. To this end, one can use Eq. (32), to derive a
self-consistent expression for the scalar and pseudoscalar me-
son propagator, Di,‘f . Consider the transfer matrix written in
terms of the meson propagator: 7 = DX/ (I'¥ @ I'Y), with
I'X carrying the tensor structure of the vertex, I'S = A,, and
Fg =iyA, [17,18,36]. In a theory with only four-Fermi
interactions [like the one considered in this work, see the
quadratic Lagrangian in Eq. (9)], the scattering kernel is given
by K =27 (¥ @ I'Y), with ¢/ = ¢ 8xy and &5, = Su
and g&, = P, for scalar and pseudoscalar degrees of freedom,
respectively [17,18,36]. The factor of two comes from the
Feynman rules and is due to the application of Wick’s theorem
[17,18]. The polarization loop ITY! is the quark-antiquark
polarization loop defined by [17,18,20,36]

[ d*p p+M p-b+M

XY 1 — X Y

Iy, [k] —’/ (2n)4tr|:p2_Mzra (p_k)z_MzFb:|-
(33)

Here, the trace is made over flavor, color, and Dirac dis-
crete indexes, i.e., tr = trytr.try. After evaluating the trace,
this expression agrees with the polarization loop obtained via
functional methods, defined in Eqgs. (24) and (25). A dia-
grammatic representation of the quark-antiquark polarization
function is shown in Fig. 2. Using these definitions, one can
write an equation for the meson propagator as

Dy (TX ®Ty)
=2¢ (TX@TIy) +28 X0k DY (T ®T)).  (34)

Since the matrix structure is completely contained in the T'¥
quantities, we can write an equation for the scalar function

Dgy':
Dy =24 + 285 Teg Dy (35)

Considering foby as matrix elements, we can write the
above equation in matrix form [17,18,43], D = 2g + 2gI1D,
which can be solved for the meson propagator D to yield
[17,18,20,43]

D =[1—2gI '2g. (36)

Writing the flavor indexes explicitly, we can write the scalar

s|p
and pseudoscalar meson propagators, D~ as

DIP = [L(SIP"),, — T3] 37)
Hence, the meson propagators obtained using the Bethe-
Salpeter equation, in the random-phase approximation, ap-
plied to the four-fermion Lagrangian density of Eq. (9), are
identical to those obtained from the functional expansion pre-
sented earlier in this work, see Eqgs. (30) and (31).

2. Comments on the expansion of the fermionic determinant

In the aforementioned calculations, the meson propagators
were acquired through a specific expansion method applied
to the fermionic determinant. Our approach involved utilizing
the series representation of the logarithm of a matrix to derive
the expansion. However, the expansion obtained is not unique
and our particular choice is rooted on the fact that we wanted
to derive the same expression for the meson propagators as the
one obtained using the Bethe-Salpeter equation in the random-
phase approximation [11,12,17-19,36,44].

In a different expansion, one could have introduced in the
calculation kinetic terms for the meson fields. Such step could
have been made when evaluating the functional trace over the
continuous space-time indexes. Since the operator (G);; and
the fields ¢, do not commute, instead of directly evaluating
the trace in Eq. (22), one could evaluate the trace over these
degrees of freedom independently, by moving all the functions
of momentum operators to the left and all functions of the
position operator to the right, as introduced in Refs. [32-35].
This can be accomplished by using the following identity
[34,35]:

#G=Gp+ GG P+ GGG o +---. (38)

As a side note, the first term in this identity diverges, requiring
regularization, while the following terms are not divergent
[21]. By substituting G = (G);; and ¢ = ¢, one can under-
stand that the tower of iterated commutators are proportional
to field derivatives like 0, ¢4, p - 9¢,, ¢, etc. Following the
use of this identity, one can write Eq. (22) as

Tr[7,[Ty, T21]

N,
= RYR, S, / d*x(x](G)iT1(9) ;T2 1))y (x)

+ ¢ derivative terms. 39)

Hence, in such expansion, the action of the model would
contain kinetic terms for the meson fields, o, and 7m,, not
present in the our previous calculation. Additionally, only one-
fermion line quark loops would contribute to the calculation
without any contribution coming from the two-fermion line
integral By.

We would also like to highlight the fact that such result
is only obtained if one starts the evaluation of the total trace
with the trace over flavor space. Starting the trace evaluation
by applying directly the identity of Eq. (38), as a first step
in the trace calculation leads to an infinite tower of terms
proportional to iterated commutators between the mass matrix
M and the fields [M, ¢], [M, [M, ¢]], .... Of course, in the
case in which the mass matrix is diagonal and degenerate in
flavor space, M = M,diag(1, 1, ..., 1), all these contribution
vanish (with M, the effective quark mass). However in the
case in which this matrix is not diagonal and degenerate, this
cancellation does not occur. This is the case when consid-
ering the physical scenario of Ny = 3 in which the strange
quark mass is considerably higher than the up and down
quark masses. Furthermore, when considering finite chemical
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potential, there is an extra matrix contribution to the g1
operator, in the form of an effective quark chemical-potential
matrix, u = diag(po, L1, - - -, /LNJ.,l). Just like the mass case,
in physical scenarios in which this quantity is not diagonal
and degenerate an infinite sequence of iterated commutators
between u and the fields appears, [, ¢1, [1, [1, @11, .. .. Fi-
nally, if one wishes to allow for the possibility of pseudoscalar
condensation in the medium, the operator G~ will certainly
contain contributions which are not diagonal and degenerate.

To end this section we would like to point out another
technique that can be used to extract the meson propagators
from the fermionic determinant, the so-called heat kernel ex-
pansion [32,45-54]. Such a method has been widely studied
and developed in the context of two- and three-flavor NJL-
type models, including different types of quark interactions
at the Lagrangian level [48,49,52,55,56]. When applying this
expansion to such types of models, one considers a Wick
rotation of the operator inside the fermionic determinant in
order to make it possible to obtain its Schwinger proper-time
representation. In general, one can write [52]

1 [*dt 2T [a—tDLD
In | det [D]| = —5/ plt, AT P (40)
0

Here, p[t, A?] is a function, often called regulator or kernel,
which incorporates the necessary regularization [48], Tr[- - -]
stands for the total trace, and the operator Dg, is the Wick-
rotated Dirac operator in the presence of background fields
0 =04 and 7 = 7,A,. Additionally, DiDg = M? — 9 +
Y, with M = M,A, being the effective quark mass matrix and
Y contains only contributions coming from the background
fields [49,52]. In the case in which the quark mass matrix is
not diagonal and degenerate, it does not commute with the rest
of the operator and a resummation technique was developed
in order to solve this difficulty [48,49,55].

Applying the heat kernel expansion to Eq. (13), would lead
to a different model, with different meson propagators when
compared with our approach, which are equivalent to those
obtained via the Bethe-Salpeter equation in the random-phase
approximation. Thus, it could be insightful to evaluate the
NJL quark-quark and quark-antiquark cross sections from
meson propagators derived from a heat kernel expansion. The
results of such study could then be directly compared with
those obtained in this work. This could be used to assess
the impact of considering different approximations to extract
meson propagators from a purely fermionic theory as is the
case of the NJL model.

C. The three-momentum sphere intersection regularization

As previously established, in a four-dimensional space-
time, the one and the two-fermion lines integrals (A and By)
are divergent quantities. Other integrals with higher fermion
line count, like the three-fermion line integral (Cy) are, on the
other hand, convergent. When faced with divergent integrals,
some regularization procedure must be applied. Then, the
regularization procedure becomes part of the model in ques-
tion [21] and should be carried out in a symmetry-preserving
manner. The primary objective is to maintain the expected

physical properties of the model unchanged after applying the
regularization.

To attain such goal, a plethora of techniques was de-
veloped over the years: the 4-momentum regularization,
the 3-momentum regularization, dimensional regularization,
Pauli-Villars regularization, implicit regularizations, and the
proper time regularization [21,37,57-62]. The choice of regu-
larization is of extreme importance since it introduces a scale,
which informs about the range of applicability of a particular
model [21]. Such choice must also take into account the physi-
cal scenario under study. For instance, in quantum field theory
at finite temperature and density, a compatible regularization
scheme must be chosen, e.g., if a full sum over Matsubara
frequencies is performed, one is implicitly considering the full
range of the integration over the temporal component of the
momentum.

The fact that the A and By are divergent poses the following
question: in a model calculation, does one simply regularize
the diverging integrals, or is the regularization scheme applied
to all integrals? For instance, in the NJL model, thermody-
namic quantities like pressure and energy density contain both
the well-known divergent zero energy mode term (which cor-
responds to the vacuum contribution), as well as convergent
contributions (which are temperature- and chemical-potential-
dependent and can be regarded as in-medium contributions).
The entropy density, in the same model, is defined by con-
vergent contributions. In cases like this, one must choose
where to apply the regularization (see, for instance, Ref. [63]).
Indeed, in some works which only deal with the one-fermion
line integral, only the vacuum contribution of the A integral
is regularized [64]. One can also find studies where the con-
vergent contribution of the A integral is not regularized, but
the convergent contribution of the By integral is, effectively
mixing regularization strategies [16,63,65,66]. In this work, as
performed in Ref. [11], we use the Matsubara frequency sum-
mation to introduce temperature and apply the 3-momentum
regularization to the remaining integrals. Furthermore, we
choose to consider the regularization as part of the model,
affecting all contributions, divergent and convergent alike.

At this point we introduce and discuss the 3-momentum
sphere intersection regularization which will be applied to
the quark-antiquark polarization function Hf!P. In the 3-
momentum regularization, the quark propagator is defined up
to the maximum allowed momentum, the cutoff, A. In such
scheme, a quark can have any 3-momentum inside a sphere
of radius A. In the definition of the scalar and pseudoscalar
polarization functions written in Eqs. (24) and (25), there
are two-quark propagators which must be integrated over a
loop, one with momenta p and another with p — k, which
carries an insertion from an external momentum k. To truly
restrict the 3-momentum of the quarks, both momenta must
be smaller than the cutoff A. This means that the absolute
value of the quark loop 3-momentum, |p|, present in the inte-
gral of the polarization loop functions, must obey 0 < |p| <
A N0 |p—k| < A. Such a restriction can be visualized
as the intersection between two spheres. Let S{' and S\QI be
spheres of radius A, where the first is centered at the origin
(0) and the second at a point distanced |k| from the origin. We
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FIG. 3. Region of integration in the 3-momentum sphere intersection regularization scheme, used to regularize the quark-antiquark
polarization function l'lisj‘P . In the left panel is a particular three-dimensional view of the intersection of two spheres. The red sphere is
centered at the origin (defined by the equation p> < A?) and the green sphere is distanced |k| from it, in the p, direction [defined by the
equation (p — k)> < A?]. The blue region corresponds to the intersection between these two spheres and is designated by ]Ilﬁ‘. In the right
panel, we show the p,-p. cross section of the same integration region.

denote the intersection of these spheres’ by T =S¢t N Sj.

Hence, the integrals present in the quark-antiquark polariza-
tion functions will be regularized by the intersection of these
two spheres of radii A, distanced by |k|. An interesting prop-
erty of the 3-momentum sphere intersection regularization is
that it becomes the usual 3-momentum regularization for zero
external momentum: in such case both spheres completely
intersect each other. This means that the one-fermion line
integral present in the quark-antiquark polarization function
A[M;, |k|], regularized with the sphere intersection scheme,
degenerates to the usual one-fermion line integral A[M;] in the
|k] — 0 limit, i.e., A[M;] = A[M;, 0]. In Fig. 3, we show the
region of integration which regularizes the quark-antiquark
polarization function HiS.‘P. In the left panel of this figure, we
show a particular three-dimensional view of this integration
region which corresponds to a “convex lens shaped” volume,
defined as ]I(,‘d. In the right panel of the same figure, we show
the two-dimensional cross section of the region in the py-p,
plane.

Another interesting property of this regularization scheme
is its behavior for |k| — co. As a matter of fact, for |k| >
2A, the spheres no longer intersect, the integration region
disappears, the integrals A and By are automatically zero
and the quark-antiquark polarization functions vanish. So, the

3The volume of the intersection between two spheres of radius A,
distanced k between each other, can be calculated to yield, le =

%n(ZA — k)*(4A + k). In the k — O limit one trivially recovers the
volume of a sphere of radius A, VH(;\ = %nA3.

asymptotic behavior of the meson propagators are given by

DV =[3SIP) =] = Dy =2SIP)y. (4D)

|k|—o00

Thus, for large momentum, the meson propagators converge
to twice the meson projectors (2S,, and 2P,,), which are
temperature- and chemical-potential-dependent quantities.

This novel approach to the 3-momentum regularization,
can also be extended to integrals with three or more quark
propagators present in the integrand: in such cases the region
of integration is the intersection between the appropriate num-
ber of spheres. For example, for the three-fermion line integral
Co, three quark propagators would be present, meaning that
the integral would be calculated over the intersection between
three spheres of radii A. One sphere located at the origin,
other distanced |k| from the origin, and another at distance
|g| from the origin, with an angle &3, between the 3-vectors
k and g. In Fig. 4, we show the p,-p. cross section of the
integration region for the three-fermion line integral, within
the sphere intersection regularization scheme. We leave the
details of the explicit calculation of the Cy integral within this
new regularization to future work.

III. THE IN-MEDIUM, TWO-FERMION,
ONE LOOP INTEGRAL

To introduce finite temperature, one first considers a Wick
rotation to Euclidean space-time, and then applies the Mat-
subara formalism (see, for instance, Ref. [67]). Through this
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FIG. 4. Cross section in the py-p, plane of the region of inte-
gration for the three-fermion line integral, Cy, in the 3-momentum
sphere intersection regularization scheme.

process Eq. (27) yields
Bo[Mi, M;, T, i, thj, iv, k]

+00
= 167T

n=—0o0

/ d’p 1
Reglkl] (270)* (iw, + pi)* — E[M;, p)?
1
X b
(iwg 4+ pj — ivy)*> — E[M;, p — k]?

42)

with w, = (2n + 1) T denoting the Matsubara frequency for
fermions and v,, the Matsubara frequency for the external
particle. Here, there are two distinct chemical potentials u;
and u;, each corresponding to different fermion masses M;
and M, and E[M, p] is the usual dispersion relation:

E[M, pl = Vp* + M>. (43)

Applying a Wick rotation to the external momentum, one can
perform an analytical continuation as iv,, — ko.

One very important symmetry of this function arises when
considering a shift in the Matsubara frequency as w, —
—w, + v, which is allowed in the case of this infinite sum.
Applying this substitution and performing the aforementioned
Wick rotation, one can write:

Bo[Mi, M;, T, i, 1, ko, |kl]
=Bo[Mj,M;, T, —1j, — i, ko, |kl]. (44)

Hence, the two-fermion, one loop integral By is invariant with
respect to the interchange of the masses, M; <> M}, and chem-
ical potentials, albeit with an extra minus sign, p; — —u;
and p; — —p;. Such symmetry can also be understood as
exchanging the fermion in the upper line with the antifermion
in the lower line in the loop diagram shown in Fig. 2, where
time flows from left to right.

When dealing with the integration over the 3-momentum
P, it will become necessary to introduce an infinitesimal shift
in the complex plane, +ie with € > 0, in order to deform
the contour around singularities. As discussed in Ref. [11],
one can regard the masses as having an infinitesimal complex
contribution, M2 — M? — ie, or consider other recipes, such
as a shift in the zero component of the external momentum,
ko — ko = ie [68]. The way in which the +ie term is intro-
duced in the calculation has an impact in a very important
symmetry property of the By function. In practice, choosing
different recipes amounts to different time orderings of the
single-particle Green’s function. However, for the purposes of
calculating meson masses in the NJL model and (differential)
cross sections, the chosen %ie recipe will not change the re-
sults. The reason for this “recipe invariance” will be discussed
later (see Appendix F).

Considering the usual shift in the masses, M? > M? — e
(see Ref. [11]), the By function takes the form

By[M;, Mj» T, wi, M, ko, |k|]

= d3 1
sier Yy [
wr Regtkn (27)7 (iwp+upi)”—E[M;, pl°+ie
1

X . 45
(in + 11 — ko — EM;, p— kP + ie 4)

Applying the simple change of variable, w, — —w,, in the
Matsubara sum, one can establish the following connection:
BO[MH M]a T’ Mis K, k07 |k|]
=Bo[M;,M;, T, —u;, —j, —ko, |kl|]. (46)
Hence, for this choice of shift, the By function is symmetric
with respect to the zero component of the external momentum
ko. As discussed above, another way to introduce the shift is to

consider it in the external momentum, ky — ko = i€. In such
a case one can write

Bo[M;, M;, T, i, i1, ko, |k|]
+00 3
d 1
=167°T ) / P _ 5 >
Reglk) (27)° (iw, + i)™ — E[M;, p]

1
X .
(iwy + pj — ko — i€)> — E[M;, p — k]?

n=—00

(47)

In this case, a different symmetry relation is obtained, involv-
ing the complex conjugate of the By function:

BO[Mis Mjs T? Mis MJ? kO! |k|]
= Bo[M;,M;, T, — i, —u;, —ko, |k|T*. (48)

We highlight that, differently from the previous symmetry,
the masses and chemical potentials do not switch positions,
one simply makes the changes u; — —u;, uj — —pj, and
ko — —ko. In this work we use the previously introduced
mass shift however, to simplify the notation, we only write
the contribution —ie explicitly when it is necessary. In later
sections we discuss why this symmetry is essential in order to
maintain the symmetry between meson and antimeson pairs
and, consequently, provide a proper framework to evaluate
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FIG. 5. Pair creation and annihilation processes [68].

the (differential) cross sections of different quark-quark and
quark-antiquark processes.

The infinite sum over the Matsubara frequencies can be
performed analytically, for example, by converting it into a
contour integration on the complex plane. In such approach,
the Matsubara sum is written as a sum of residues which, in
turn, can be written as a sum of contour integrations where
each contour surrounds a simple pole located at a particular
Matsubara frequency. The contours can be deformed and the
Cauchy residue theorem applied in order to obtain a result for
the original Matsubara sum [69]. One gets

Bo[M;, M;, T, ju;, ju;, ko, k|]
:16n2f dp [_Ll—sz[El—m,T]
Reglikl] Q) | 4E1 (Ey — A)* — E}
U I2f[Es + s T) 1 1= 2fp[Ey — 1, T

C4E, (E\+AY—E} 4E, (Ey+A)} —E?
1 1=2f[E+u;, T

- Srl 22+/1«/ 1 ’ (49)
4E; (E, —\)* —E}

where fr is the Fermi-Dirac distribution function given by

JPIE. T = . (50)

and, for simplicity, we have defined
El :E[Mivp]v (51)
A =ko+ i — ;. (53)

As introduced in Refs. [68,71], it is quite useful to write this
function using the so-called pair creation and annihilation,
By, and scattering contributions, Bos. In Figs. 5 and 6, we
show schematic diagrams representing the pair creation and
annihilation and scattering contributions, respectively. For a
deeper explanation about all these different processes see

FIG. 6. Scattering processes: absorption and emission [68,70].

Ref. [70]. Using this separation, we can write
Bo[M;, M, T, i, |1, ko, |k|]
= Bop[M;, M;, T, ju;, 11, ko, 1kl]
+ Bos[M;, M;, T, i, i), ko, kl], (54
where each component is given explicitly by
Bop[Mi, M;, T, i, i, ko, |kl]

= 167 / d&p 1
2 reqti) (2m) 4ELE,

« I — felEy +nui, T — felEs —nuj, T
E,+E 4+ ni—ie
BosIM;, M;, T, (i, i, ko, k|1
a? 1
= —167> Z / pg
o) JReatik (27)7 4E1E>

y SelEr — i, T1 — felE2 — nuj, T
E2 — E] =+ T])\. — Sg[l[Ez — E]]iG

. (55)

(56)

Here, we introduced the mass shift, M2 — M? — je [11],
which will be necessary in order to use the Sokhotski—Plemelj
theorem.* The function sgn[x] returns the sign of the quantity
X, i.e., sgn[x] = +1ifx > O and sgn[x] = —1ifx < O.

In the vacuum, the scattering contribution By ¢ vanishes and
only By, will contribute: in the vacuum there is no medium
for scattering to occur, only the creation and annihilation
processes contribute. This vacuum contribution is the only one
which diverges. For cases with nonzero temperature and/or
density the scattering term will contribute. In the later case, for
T = 0 and finite chemical potential, one can introduce a Fermi
momentum and easily perform two of the three integrations.

The practical implementation of the By integral [see
Eq. (54)], which can be used in numerical calculations, is
given in Appendix C.

IV. THE IN-MEDIUM, ONE-FERMION,
ONE LOOP INTEGRAL

As discussed in earlier sections, different versions of the
one-fermion line integral arise when making calculations in
the context of the NJL model. On the one hand, it appears
in the calculation of the quark condensate [integral A defined
in Eq. (7)] while, on the other hand, it contributes to the
quark-antiquark polarization function [integral 4 defined in
Eq. (28)]. In this work, we use the 3-momentum sphere in-
tersection regularization, implying that the integrals A and A

*Introducing the mass shift and expanding the difference E,[€] —
E,[€] around zero yields

Exlel — Ele] = (B, — Ey) — ie 21
2 1 "y . iE

Since Ey, E; > 0, the sign of the first-order term will depend on the
difference of these energies and the denominator is absorbed by the
infinitesimal €.

+ O[€?].
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are different. The first A within this regularization is integrated
over the region of the intersection of one sphere centered in the
origin and radius A, with itself, making it identical to the usual
3-momentum regularization. The second A is a contribution
to the quark-antiquark polarization function l'Ifj!P , and its in-
tegral is calculated inside the region of intersection between
two spheres, distanced |k| from each other, just like the By
integral from the previous section.

Finite temperature can be introduced in the one-fermion
line integral, A (and .A), in the same manner as for the two
fermion, one loop integral, By, see Sec. III. Applying these

steps to Eq. (58) yields

A[M;, T, ;]
+00
= 167°T

n=—0o0

/ d’p 1

Reg (27)° (iwy + pi)* — E[M;, pI*’
(57)

Here, w; is the chemical potential associated with the fermion

of mass M;. Performing the infinite sum over the allowed
Matsubara frequencies yields the well-known result

J

d? 1
LM, T, i) = —16712/ iy S —
reg (27)° 2E[M;, p]

A d
= _4/0 — p| 2(1 —fp[m— wi, T —fp[\/m+m, T]). (58)
+M

p i

(I = felEIM;, p] — i, T] — felEIM;, pl + (i, T1)

Since the integrand only depends on |p|, the angular integrations are trivial, leaving only one integration to be performed
numerically. From the above results, the divergence of the vacuum contribution to the integral is evident and the necessity
to regularize the integral is explicit. In the vacuum, one gets the well-known result

A - Jar a2y

Now we consider the one-fermion line loop integral which arises in the second-order contribution, A [see Eq. (28)]. In the
3-momentum sphere intersection regularization scheme, we can write it as

d? 1
AM;, T, w;, k|l = —16;12/ P

S (1 - fIEIM:, pl — i, T — frlEIM; L T).
]I@‘ (277,’)32E[M,,p]( fF[ [ z,I’] Mi, ] fF[ [ z»P]‘f‘Mn ]) (60)

As already mentioned, the region of integration ]1‘2‘ is formed by the intersection of two spheres, dislocated on the p, axis (see
Fig. 3). To simplify the calculation, one can shift the region of integration in order to have the center of the intersection coinciding
with the origin. This can be done by performing the following change of variables: p — p + k/2. Using this transformation, the
integral becomes

3

d’p 1 k k
AIM;, T, i, k|l = —16 2/ <1— [E[M,-, -} - ,-,T] — |:E|:M,», —] i TD
[ Wi, kl] b4 " ) 2E[Mp+ 5] iz P+2 2 bis P+2 +u
(61)

Here, ]I/f,\(l is the new integration region constituted by the intersection of two spheres, one centered at (py, py, p;) = (0, 0, |k|/2)
and other centered at (py, py, p;) = (0, 0, —|k|/2), with the respective centers distanced by |k|. Interestingly, after performing
the change of variables to center the region of integration and integrating over the azimuthal angle, we are left with an extra
dependence on the polar angle 6, making this integral slightly more complicated to calculate when compared with its analog
with only one sphere A given in Eq. (58). Using the steps shown in Appendix D 3 [see Eqs. (D47)—(D56)], we can write this
integral in the vacuum limit as

P
A T e =2 [ diplp? [ : w2 [U Tt [ :
0 ! \/pz—i-’%—i-plkla—}-MiZ A-% i \/p2+’57‘+p|k|a+Ml.2
_ 1 2 2 2 2 2 2 2 2 2
= —m[k (/A — KDY + M ~3,/A + M) + k1A (A — 1K) + M +3y/A2 +12)

F 2N M) (A2 M7 = A = k)P + 7)

+ 3[k|M? In [A%(A — A2+ M2) (A — k| — /(A — k])? —i—Mf)]}. (62)
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In the |k| — O case, the two spheres in the regularization
completely intersect and one gets the expected result given
in Eq. (59), i.e., A[M;, 0,0, 0] = A[M;, 0, 0]. Of course, this
equivalence also holds at finite temperature and chemical po-
tential as long as |k| = 0.

At finite temperature and chemical potential it is not pos-
sible to write this quantity as an one-dimensional integral
using the approach discussed above. However, a change of
variables can be performed in order to achieve this goal. Such
a calculation can be found in Appendix C 3.

V. CROSS SECTIONS FOR QUARK-QUARK AND
QUARK-ANTIQUARK PROCESSES IN THE NJL MODEL

The goal of this section is to evaluate the cross sections of
the NJL model and show the influence of the regularization
scheme proposed in this work versus the 3-momentum regu-
larization used in other works. We chose the cross sections to
show the differences between regularization schemes because
they constitute a physical quantity which is dependent on
the absolute value of external momentum, |k|, present in the
quark-antiquark polarization function H;qj.‘P. As already dis-
cussed, the 3-momentum sphere intersection regularization
scheme is dependent on the value of |k| and, for |k| =0,
one gets the usual 3-momentum regularization. Evaluating
thermodynamic quantities (at mean-field level, there are no
external momenta), or meson masses (usually calculated at
rest with |k| = 0) would not yield any differences when com-
pared with the usual 3-momentum regularization with a cutoff
in all integrals.

A. The model

To calculate the cross sections for quark-quark and quark-
antiquark scatterings, we use the following SU(3) NJL
Lagrangian:

_ G — _
L=yid —my + waavf)z + Wiy’ ra¥)*]
+ 8k (det[ Pryr] + det[W Py ]). (63)

Here, ¥ = (W, ¥4, V) and m = diag{m,,, my, m,} is the
quark current mass matrix. This popular model includes, be-
sides the free Dirac Lagrangian, a chirally symmetric set
of interactions with a spontaneous chiral-symmetry-broken
ground state in the vacuum. The choice of model is rooted
in the goal to compare our results with other results found in
the literature, where the regularization of the one fermion and
two-fermion line integrals are performed in a different way
than the one proposed here [11]. Hence, we only include in
the Lagrangian the necessary four-quark scalar-pseudoscalar
interaction and the ’t Hooft interaction [1,11]. However, the
formalism developed earlier allows for a straightforward ex-
tension to include, at the Lagrangian level, multiscalar and
multipseudoscalar quark interactions, such as eight quark in-
teractions or explicit chiral-symmetry-breaking interactions
[25,27,56,72]. Indeed, in the future, we will consider an ex-
tended version of the NJL model which includes eight-quark
interactions in order to study the influence of considering

these higher quark interactions in the transport properties of
the NJL model.

The central motivation behind the NJL model is the incor-
poration of a mechanism which induces spontaneous chiral
symmetry breaking. In its original form this is achieved
through the inclusion of a local four-fermion contact-
interaction term. One of the drawbacks of the model in this
formulation is the fact that it exhibits a axial U4 (1) symmetry
which is not observed in Nature (there are no degenerate
mirror hadrons with opposite parity). The fact that no cor-
responding Nambu—Goldstone boson is observed led to the
so-called “Uy4 (1) problem” which can be solved by the anoma-
lous breaking of this symmetry through instanton effects
[73,74]. This mechanism can be incorporated in the model
with the inclusion of the ’t Hooft determinant 2Ny —fermion
interaction term [26,42,75]. It should be noted that in the three
flavor version of the model this has been shown to lead to
vacuum stability problems which, in turn, can be solved with
the inclusion of eight quark interactions [22,23]. In the present
work, however, we will not consider these in order to enable a
straightforward comparison of our results with those found in
the literature.

Using the linear expansion of the Lagrangian, written in
Eq. (63), as explained in previous sections, one can readily
obtain the gap equations for this model:

M =m; =2G(Y i) — 2k (Y ) (). (64)

Here, i # j # k € {u, d, s}. The value of the quark effective
masses, at finite temperature and chemical potential, can be
obtained by solving these equations self-consistently and the
quark condensates (Eil//,-) can be calculated from Eq. (6).
These gap equations can be obtained by calculating the ther-
modynamic potential of the model, €2, and requiring it to be
thermodynamically consistent. This amounts to requiring the
potential to be stationary with respect to the mean fields, (s,),
ie., §Q/8(s,) = 0.

As pointed out earlier, and as it will become clear
in following sections, to calculate the cross sections for
different processes, one will also need to evaluate differ-
ent meson propagators at finite temperature and density.
The scalar and pseudoscalar meson propagators Dg and
Dp were defined in Egs. (30) and (31), respectively. The
meson propagators are written in terms of the interaction-
independent quark-antiquark polarization function Hf}P and
of the interaction-dependent meson projectors Sy, and Pgp.
As discussed in previous sections, the polarization function
is independent of the type of interactions included at the
Lagrangian level. As a matter of fact we derived it in Sec. II B,
without making any choice regarding the quark interaction
Lagrangian. The meson projectors, on the other hand, are
completely dependent on the type of interactions considered
at the Lagrangian (as explained in Sec. II B) and are defined
as the coefficients in front of the quadratic products, sus, =
W2 py) and papy = iy o) Giy dp). As dis-
cussed, these coefficients arise when one makes the quadratic
expansion of the product between quark bilinear operators
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[see Eq. (9)]. The interaction-dependent meson projectors S,
and P, for the Lagrangian defined in Eq. (63) are given by

Sup = ~((Goup + X Aunese) (65)
ab = ) ab ) abe\Sc) |»

1 3k
Pab = E (G(Sab - 7Aabc (Sc)>- (66)

Here, A is given by

2 2
Aabc = gdabc + \/;(Suoab()aco - (SaO(Sbc - 61)08011 - 3008ab)'
(67)

The quantities d ;. are the symmetric structure constants of
the unitary group U(3). As previously introduced, the expec-
tation value (s,) = (J)L Y¥) and we consider that there is no
pseudoscalar condensation, i.e., (p,) = (Iﬂl)/S)\. Y) =0.

The nonzero scalar projectors S, are explicitly given by

Soo =

1 2 — —
5<G =+ §K(<¢l,¢u> + (’ﬁ(ﬂﬁd) + (%%))),

1 _
Si=S8S2=583= E(G — k(Y ¥s)),
1 _
Sas = Ss55 = Se6 = S77 = E(G — k(Y a¥a)),
1 — _ _
Sgg = §|:G - 2(2(1/&4%) + 2(Y 4 Va) — (leﬂ.s>):|,

So3 =830 = —%qu%) — (Y a¥a),

f;c

Sos = Ss0 = —~—— (W, ¥u) + (Wa¥a) — 200 ¥5)).  (68)

The nonzero pseudoscalar coefficients P, are

Py = %[G — ST+ Tt + @w)},
P =P = Py = 3G+ (T,

Py = Pss = Psg = Py = %(G + K (U g¥a)s

Py = %[G + Q) + 20 0) @sw)},
Pz = P35y =

(Vu¥u) — (Y a¥a)),

26
fx

Pog = Py = (vfm) + (Y aWa) — 2000, (69)

These are exactly the same as the one obtained in Ref. [12]
with a small caveat: in the NJL Lagrangian density defined
in Eq. (63), the four-quark scalar pseudoscalar interaction is
proportional to G/2 while, in Ref. [12], it is proportional
to G.

At this point, one can explicitly write down the expressions
for the meson propagators, defined in Egs. (30) and (31).
The indexes of the inverse meson propagators, (Ds’l)ab and
(D;1 )ab, Tun from O to 8, the number of generators of the U(3)
group. Thus, these objects can be considered as two matrices
of dimension 9 x 9. It is quite useful to write the scalar, IT5,
and pseudoscalar, Hfb, polarization functions in the quark
flavor basis, i.e., switch from a, b = {0, ..., 8} to l'[fj!P, with
i, j ={u,d,s}. Using Eq. (25), we can write the scalar and
pseudoscalar polarization functions in the quark flavor basis.
Explicitly, all nonzero elements are given by (for the sake of
simplicity, we omit the scalar and pseudoscalar labels, S|P)

2
Mg = g(nuu + Mg + Hss)a

2
g3 = 30 = \/;(Huu — ga),

s = g = Tz(nuu + Maq — 21),
Iy = My = Mg + May,
[Ty = =My = i(Tlug — Maw),
33 = Tl + aa,
[ = g3 = L(Huu — Haa),
V3
Mg = 55 = s + T,

H45 = _H54 = i(nus - Hsu)v
Mg = 77 = Ty + Ty,

g7 = —T76 = i(T1ys — Tyy),

[gg = %(nuu + Mag + 4T05). (70)
All the other elements are zero. The polarization functions
written in terms of the flavor indexes are not invariant under
index exchange, i.e., I1,, and I1g,, I, and Iy,, or I1;; and
I1,, are not necessarily equal at finite temperature and chem-
ical potential. Indeed, it is this difference which breaks the
particle and antiparticle symmetry in the in-medium meson
behavior [10]. For instance the charged kaons behave differ-
ently at finite chemical potential due to the mass difference
between the quark and antiquark particles which constitute the
kaons: at finite chemical potential, the bath is more populated
by particles than antiparticles.

Additionally, in this model, the inverse meson propagators
are block matrices. Thus, we can write the second-order term
of the quadratic expansion of the effective action in Eq. (29) in
different contributions. There will be a sector related to the in-
dexesa,b=1,2,a,b=4,5,a,b=6,7,and a,b =0, 3, 8.
In other models, with different physical considerations (like
considering pion and kaon condensation) or interaction terms
at the Lagrangian level, this may not be possible. The sector
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with indexes a, b = 1, 2 are related to the charged-pion propagators Dy +|,-. Consider the matrices A4 = \/LE(AI + iA,) with A4

creating a quark bilinear with the quantum numbers of the n ¥, ie., 7% = E)L;l//. Using these identities one can write the 71}
fields in terms of . Thus, one can write the a, b = 1, 2 sector of the quadratic effective action of the model [defined in Eq. (29)]

as

1 d*k (Dp")
S® _ __/ 1k P )11
o 2 e 2 :rr [ ]( > +

2 2 2

i(0;"),, ~ i(DpY),, N (DP1)22>71_[—/€]

+

N n[k]((DPl)n O PRI C N (Dp‘)22>n+[_k] +}

2 2 2 2
1 d4k + 1 _ — —1 +
:—5/ W{n [K)(D )~ [—k] + =~ [k1(D 1) [—k] + - -+ }. (71)
Reg

Here, we have defined the inverse propagators of the charged
pions as
(Op)y (P2, i(Dp1)y , (Dp)
Dyipp ) ' = 220 P )12 4 \ZP ) P Jn
(Dr+1x-) 5 T >t
(72)

In this model, the inverse model propagator with indexes
a,b =1, 2 is given, in matrix form, by

o I/PnONT' [(mE4mk  ink, —imd,

(DP ) b~y P P P P
ab 2\ 0 Py i, —irt,, I, + 11,

(73)

We can then find that the charged-pion propagators Dy + ;- are
given by;

2P11

Dy = —— 11
1— 4Py 112, ,,

(74)

Following these steps, one can find the remaining charged
pseudoscalar meson propagators including, K*, K°, and K.
They correspond to the a, b = 4,5 and a, b = 6, 7 sectors of
the pseudoscalar meson propagators matrix. They are given
by

Dy = ——4 (75)
T —apyn?
Dyogs = 5 P (76)

1- 4P66H55|5d ’

Likewise, the charged scalar particles can be obtained in the
same manner. Their expressions are akin to those written
above with the substitution of pseudoscalar quantities to scalar
ones. The sector a, b =0, 3, 8, corresponds to the diagonal
Gell-Mann matrices plus the scaled identity matrix, meaning
they correspond to mesons constituted by linear combinations
of tu, dd, and 5s, i.e., the pseudoscalars 70, n, and " and the
scalars ag, fo, and o [18]. Due to this mixture, one must use
a diagonalization procedure in order to obtain the expressions
for the propagators of these particles [18]. For the purposes

(

of calculating the cross sections of the NJL model, one does
not have to calculate the propagators of these states. Indeed, as
we will see, in the calculation of the differential cross sections,
different mixtures of the elements of D, (with a, b = 0, 3, 8)
will be used, depending on the particular quark-quark or
quark-antiquark scattering process considered [12].

B. Importance of the regularization on the cross sections

In this section we would like to highlight the importance
of considering the regularization proposed in this work, in
order to maintain symmetries of the system, specially the one
related with changing the sign of the momentum’s zero com-
ponent, ko, and of the chemical potentials of the two-fermion
line integral, By [see Eqs. (46) and (48)]. This is of particular
importance in the evaluation of cross sections (details on how
to preform this calculation can be found in Appendix F).

Consider the quark-quark processes, us — us and su —
su. According to the discussion of Appendix F, in the u chan-
nel of the us — us scattering, the exchanged mesons are the
pseudoscalar K™ and the scalar « ™ while, for su — su the ex-
changed mesons are their electrical negative versions, K~ and
k~. Of course, these particles constitute particle-antiparticle
pairs, K* /K~ and «* /k~. For the t channel, the exchanged
mesons, in both processes, is some neutrally charged com-
bination of the components DaP,‘JS, with a, b = 0, 3, 8. In this
case, this chargeless meson is its own particle and antiparti-
cle. Following the connection between these mesons, at finite
temperature and zero chemical potential, one should be able to
transform the propagators of each meson-antimeson pairs into
each other by changing, in the meson propagators, the sign
of the zero component of the momentum. At finite chemical
potential this change must be accompanied by a change of
the sign of the quarks chemical potential. Naturally, the two
processes mentioned above, us — us and su — su, should
have exactly the same differential cross sections, since the
incoming and outgoing pairs of particles are equal. This is
only possible if the ability to transform a meson in its cor-
responding antimeson, and vice versa, is valid in the model
calculation. This can be understood by explicitly writing the
transition matrix elements squared for these two processes.
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For us — us scattering, we write

1 ‘—)uS
N2 Z M = |D3 | thtd + |D,

| ti3thys

1 S—>US
vz L

2 2 - -
= |2D,~+]| uaug + 12Dg+ [ up uss3,

(77)

(78)

1 US—>Us Us—>us R — — —
Nz ;Mz M= = m(Dis)(ZDW) (1305 — 51353 + uiyidy 4N, (D) @Dk ) (151 — 7583 + i3u3;3)
N (DP)(ZDK+)*(I1_3I2_4 — spS3 + ufudy) + — N, — (D} 2D+ ) (113855 — S125%; + U3133).
(79)
Here, DS = 2D¢° + /273D — Dgés - TDP ’ — 2Dy and the propagators Dg+ and D+ and the propagators for the

propagators for Dg+ and D,+ are evaluated with the momenta, .k((]“)

— M?)//s and .|k|™| -5 [see Eqs. (F6) and

|us~>u5 = (

(F7)]. Likewise, one can write the same quantities for the su — su scattering process:

| thid + |D, | fi3ts

1
o Xt = o
4N2 Z |Msu%su

ZMW_)SMMW_”M = S (2DK*)*(tl-gt;‘_¥

4N2 4_1\76 (Dus)

TM(Dfs)(QDK*)*(@zZ -

In this case, the propagators Dg- and D,- are eval-
uated with the momenta, ko lsussu = (M? —M?)//s and

11 g su- Since kg |y su = —kG"” lus—us (and the three mo-
menta are identical, |k|™|usus = 1k]® | su) We can write
DK’[|k|(u)|su—>su] = Dg- [_|k|(u>|us—>us]' From the Feynman-
diagrammatic point of view, a propagating particle, with
a negative zero-momentum component, is indistinguishable
from its antiparticle, propagating with the same positive zero-
momentum component. Thus, we can substitute in the above
expression Dg-[[k|™ |5 ] = Dg+[1k]"|ys—us]. The same
can be performed for the D,- propagator. Hence, the set of
matrix elements squared for the us — us and su — su pro-
cesses are identical, as they should be. However, such is true,
if and only if the particle and antiparticle symmetry is re-
spected in the model calculation. In the model in question, this
can only happen if the By function is symmetric with respect
to changing the sign of the zero component of the momentum
alongside switching the masses and chemical potentials of the
particles. As we discussed in Sec. III, these are symmetries
of the two fermion, one loop integral By [see Eqgs. (44)—(48)]
however, they may be broken in the practical implementa-
tion of this function. In the usual 3-momentum regularization
approach (see Ref. [11]), this symmetry is broken due to a
shift in a variable applied to the integral which introduces a
symmetry-breaking term which is proportional to 1/A [12].
As discussed in Ref. [11], this is a well-known shortcoming of

2 2
= 2Dy~ Pufud; + 12Dk~ Pujjus;,

(80)

1)

1 - _
- SBS;Q + ”th”?s) - 4N. ( )(ZDK ) (t13t24 12834 T Uy4lty3)
_ 1 . _ o
S12834 + Uyitss) + TN(Dﬁs)(ZDK*) (ti3tyy — $1559 + Upgus)-

(82)

(

using the usual 3-momentum cutoff regularization in order to
evaluate the two-fermion one loop integral By with different
quark masses, specially affecting the meson propagators in
the kaonic sector. At zero chemical potential, this unwanted
feature does not affect the pionic sector or the isosinglet
mesons 7 and 1’ since their meson propagators are calculated
in the isotopic limit with quark-antiquark polarizations with
the degenerate masses, [121S, TIV5, 1125, m1Pl¥ and 1171%.
It also does not affect the evaluatlon of quantities at zero
external 3-momentum, |k| = 0, such as meson masses. In the
evaluation of cross sections, however, this is not the case as the
dependency at finite values of |k| is extremely relevant.

At finite chemical potential, the pionic sector can also be
affected by the breaking of this symmetry. This is the case
if one considers systems with isospin asymmetry, such as
neutron star matter, or systems with charge fractions Yy =
po/pp different than 0.5 (here, pp and py are the baryon
and electrical charge densities, respectively). For instance, the
case of Yp = 0.4 is extremely important to study heavy-ion
collisions and core-collapse supernova matter [66] or the case
of Yy = 0.0, used to study neutron-star matter [76,77]. Us-
ing the regularization proposed in this work however, fixes
the problem and the particle and antiparticle symmetry is
respected.

A different approach to evaluate the polarization func-
tion, without using the 3-momentum sphere intersection
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TABLE 1. Parameter set: current masses of the
light (m; = m, = m,), and strange quarks (my), 3-
momentum cutoff (A) and dimensionless couplings
for the NJL model including the four-quark interac-
tions, (GA?) and the ’t Hooft determinant interaction

(k AS).

Parameter Value
m; [MeV] 5.500
mg [MeV] 140.700
A [MeV] 602.300
GA? 3.670
kA3 —12.360
G [GeV2] 10.117
k [GeV7] —155.939

regularization introduced in this work, is to use the Pauli-
Villars regularization. We leave the implementation of such
regularization scheme, its implications on the calculation
of cross sections in the NJL model and its comparison to
the 3-momentum sphere intersection regularization as future
work.

C. Numerical results

In this section we show the results of calculating the cross
sections of some quark-quark and quark-antiquark scattering
processes, considering the 3-momentum sphere intersection
regularization procedure introduced in this work versus the
usual 3-momentum regularization. The parameters set for the
Lagrangian density defined in Eq. (63) are the same as in
Ref. [1] so as to reproduce the results from Ref. [12] when
using the usual 3-momentum regularization.

The set of parameters used in this work can be found in
Table I, including the light and strange quark current masses,
m; = m, = my and my, the 3-momentum cutoff, A and the
interaction couplings G and «. Solving the gap equations of
the NJL model in the vacuum, for this parameter set, yields
a light and strange effective masses, M; = M,, = M, My, and
light and strange quark condensates, (y/,v;)"/3 and () '/3.
These results can be found in Table II. The pseudoscalar and
scalar-meson masses, in the vacuum, can also be calculated
for the chosen parameter set. To evaluate the mass for a given
meson, we search for the ky value for which the respective
inverse meson propagator is zero, at the center of mass of

TABLE II. Vacuum observables for the param-
eter set defined in Table I: effective quark masses
M;, M and quark condensates {,y;)'/* (light) and
(W ¥rs)!/3 (strange) in the vacuum.

Quantity Value [MeV]
M, 367.648
M, 549.479
()7 —241.946
(Y —257.688

TABLE III. Meson masses M), and meson widths ', in
the vacuum for the parameter set defined in Table I. For the
mesons which display a width numerically compatible with
0, we write ~0.00.

Meson, M My [MeV] 'y [MeV]
7=, 70 134.97 ~0.00
K=, K° KO 497.67 ~0.00
n 514.76 ~0.00
n 957.74 268.52
azg, a 880.08 251.89
K=, k0, k0 1050.37 240.57
o 728.77 ~0.00
fo 1198.25 192.08

the meson, i.e., D;,,l [ko, k| = 0] = 0. To allow for unbound
meson states with a finite width, I, we search for solutions
of complex ky. As usual this complex pole solution is decom-
posed as ky = My, — iL, with real values of My, and T". Thus,
for the charged pions, for example, one has to find the pair
of values (M), I'j,) for which the real and imaginary parts of
the denominator of Eq. (74) are zero. The pseudoscalar and
scalar-meson masses, and respective widths, can be found in
Table III. The leptonic decays of the pion and kaon, f;+ and
fx+, can be estimated in the model following the procedure
outlined, for instance, in Ref. [18], yielding f,+ = 92.39 MeV
and fx= = 95.23 MeV.

The masses of the pion and kaon mesons are well repro-
duced in this parametrization of the model (see Table III).
This should come as unsurprising since the parameter choice
is determined by the imposition of the values for the masses
of the pion and kaon along with the mass of the " and the
pion leptonic decay, while keeping the light quarks current
mass fixed at 5.5 MeV [1]. The inability of the model to
provide an estimation closer to the empirical value of the
ratio between the two leptonic decays [which is found to be
Sfrt/fx= = 1.1928(26) [78]] may be improved upon by intro-
ducing explicit chiral symmetry breaking interactions [56].

From these results we can also observe that the pions,
kaons, n and ¢ mesons are bound states in the vacuum (I
is numerically compatible with zero, I' ~ 0.00) while, the
remaining ones are unbounded, i.e., they display a finite width
I'y;. Of course the in-medium behavior of the meson states at
finite temperature and chemical potential can be very intricate
and bound states can become unbounded and vice versa. For
phenomenological studies of the in-medium meson behavior,
see Refs. [1-10].

As a matter of fact, a bound state can effectively melt at
finite temperature. In the literature, the temperature at which
this occurs, for a given meson, is termed the meson Mott
temperature, Ty [9,10]. In the NJL model this temperature
can be used as an effective description of a deconfined state
[12]: if all meson states are unbounded the system should be in
a regime where quark-quark and quark-antiquark scatterings
can occur [1,12]. In this work, following other works [12],
we take the Mott temperature of the charged pions, 7MY, as

ﬂi
an indications that it is safe to use the NJL model to evaluate
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TABLE IV. Mott temperatures for the meson
states with zero width at zero chemical potential.
Mesons that are resonant states at zero chemical po-
tential are marked with —.

Meson, M Yo" [MeV]
a*, 7 211.57
K*, K% KO 210.02
n 179.19
r]/ —
ay . g -
k*®, k0, k0 _
o 184.72
Jo -

the cross sections. We use use the Mott temperature of the
pion because it corresponds to the lightest particle in the
spectrum, representing the most stable state. In an improved
model, one could use the Polyakov loop as an order param-
eter for the deconfining phase transition instead of using the
Mott temperatures. The Polyakov loop can be incorporated
in the NJL model by coupling the quark fields to a gluonic
background in the temporal direction. Such extended model
is called the Polyakov—Nambu—Jona-Lasinio model and it has
been extensively used in the literature to explore the QCD
phase diagram. Indeed, in Ref. [16], the Polyakov loop was
partially used to study the quark-quark and quark-antiquark
scattering at finite temperature and chemical potential. In such
work, the Polyakov loop was only considered in the evalua-
tion of the quark effective masses but its contribution to the
quark-antiquark polarization functions was not considered.
For instance in Ref. [10], the meson behavior considering the
effect of the Polyakov loop in the quark-antiquark polarization
function was studied.

Since the quark-quark and quark-antiquark cross sec-
tions are highly dependent on the meson propagators, the
incorporation of the Polyakov loop dynamics, at this level,
can be very important to get better qualitative predictions from
the calculation. The formalism developed here to evaluate the
two-fermion line integral (By), including the 3-momentum
sphere intersection regularization, can readily be used to
include the effect of a static background of gluons at the
Lagrangian level. This will be done in future works.

The reason behind the choice of those two values of tem-
perature (T =215 MeV and T =250 MeV) is, first and
foremost, for comparison purposes: this exact calculation was
performed in Ref. [11], allowing us to directly compare our
calculation with results found in the literature. These values
of temperature are slightly above the Mott temperature of the
pions and kaons, the lightest meson states in this model. This
ensures the validity of the calculation in a region expected to
correspond to a deconfined state of matter. The Mott temper-
ature, at zero chemical potential, of all meson states can be
found in Table IV.

In all figures concerning cross section for different pro-
cesses, the minimum center-of-mass energy will be signaled
by colored dots. Naturally, for a given process 12 — 34,

such energy is given by the smallest of the two quan-
tities, Smin = min[(m; + my)?, (m3 + m4)?]. The maximum
center-of-mass energy, on the other hand, is imposed by
considering the maximum possible energy for the pro-
cess involving the lightest quarks in the system, with
the highest possible 3-momentum, sy = (A% + Mlz)l/ L
(A* + M})'/?)2 = 4(A* + M}) [12]. In our model calcula-
tions, with isospin symmetry and equal chemical potentials,
this mass corresponds to the effective up and down quark
masses, M; =M, = M,.

1. Comparing regularizations procedures at finite temperature
and zero chemical potential

In Fig. 7, we show the cross section for the uu — uu,
ud — ud, us — us, and ss — ss quark-quark scattering pro-
cesses, as a function of the center-of-mass energy (./s), for
the two temperatures mentioned before, 7 = 215 MeV and
T =250 MeV. In the Figs. 7(a) and 7(c), we calculated the
cross sections using the usual 3-momentum regularization
proposed in Ref. [11], while, in Figs. 7(b) and 7(d), we used
the approach proposed in this work with the 3-momentum
sphere intersection regularization. From this result we can
clearly observe that using the two different regularization
procedures result in very different cross sections for both
uu — uu and ud — ud processes. The reason behind this
huge difference can be traced back to the values of the
mesons 3-momenta that are exchanged in each channel, for
each scattering process. Since we are considering the limit
of equal up and down quark masses, M, = M; = M;, (and
also equal chemical potentials, u, = wqg = us = 0), for both
scatterings, the zero component of the mesons momentum
in the ¢+ and u channels is kg = 0 while, the absolute value
of the exchanged 3-momentum is |k| = (—4M} + s +1)'/?
[see Egs. (F4)—(F7)]. Thus, this calculation is dominated by
evaluations of quark-antiquark polarization functions which
have a finite absolute value of external 3-momentum |k|.
As discussed in previous sections (and in Appendix E), the
different regularization procedures lead to equal results if
|k] = 0 but differ when considering |k| > 0. First, this is
caused because the quark-antiquark polarization function in
the 3-momentum sphere intersection regularization has con-
tributions coming from the one-fermion one loop integral A
regularized differently from the integral A used in the usual
3-momentum regularization. Second, as explained before, in
the usual 3-momentum regularization the two-fermion one
loop integral, By is evaluated with a change of variables which
breaks certain symmetries of the integral when |k| > 0. In the
regularization proposed here, that is not the case, resulting
in a different By function for finite |k|. The union between
these features explains the different behavior observed in this
figure and others that will be analyzed later. Focusing on
the results with the 3-momentum sphere intersection regu-
larization [Fig. 7(b)], we can observe a minimum for both
processes, right after the reaction threshold energy. After this
minimum, the cross sections increase, almost linearly with the
center-of-mass energy, with the cross section for the ud — ud
process being slightly larger, for the same temperature, when
compared with the uu — uu process due to the flavor factors
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FIG. 7. Cross sections ([0] = mb), as a function of the center-of-mass energy ([/s] = GeV), for the uu — uu, ud — ud, us — us, and
ss — ss processes for T = 215 MeV and T = 250 MeV. In the left-hand panels (a) and (c), we use the usual 3-momentum regularization
proposed in Ref. [11] whereas, in the right-hand panels (b) and (d), we use the 3-momentum sphere intersection regularization, proposed in
this work. The large dots mark the minimum center-of-mass energy requirements.

that multiply the different meson contributions, as noted in
Ref. [12]. Furthermore, the effect of temperature is to overall
decrease the cross sections for a given value of center-of-mass
energy. We note that the minimum center-of-mass energy
for each process (large dots) also decrease with increasing
temperature due to the larger restoration of chiral symmetry.
The effect of increasing temperature is known to restore chiral
symmetry and decrease the quark effective masses towards
their bare values and the threshold energies for the reaction to
occur, on the center of mass frame, depends only on the out-
going particles masses. Additionally, in the us — us process

considering the simple 3-momentum regularization, Fig. 7(c),
there is a peak like structure not visible in the case of the new
3-momentum sphere intersection regularization, Fig. 7(d). In
Ref. [12], this structure was also observed and the authors
claimed that its origin is a cutoff artifact. Our calculation
seems to more or less agree with such a statement: since we
do not observe such peak, we can root the origin of such
structure to regularization artifacts but not specifically to the
presence of a cutoff since the new regularization procedure
proposed in this work also employs the use of a 3-momentum
cutoff.
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FIG. 8. Cross sections ([0] = mb), as a function of the center-of-mass energy ([\/s] = GeV), for the ud — ud, uti — uii, uii — dd,
and uu — ss processes, for 7 = 215 MeV in the top and T = 250 MeV in the bottom panels. In the left-hand panels (a) and (c), the usual
3-momentum regularization proposed in Ref. [11] is used whereas, in the right-hand panels (b) and (d), the 3-momentum sphere intersection
regularization, proposed in this work, is used. The large dots mark the minimum center-of-mass energy requirements.

Next, we turn or attention to Fig. 8 where we present
the results for the cross section of quark-antiquark processes
with only light quarks in the initial state. This requirement
includes the following quark-antiquark processes: ud — ud,
ull — ull, ui — dd, and uli — s5. Again, we show results for
T = 215 MeV in the top panels, 7 = 250 MeV in the bottom
panels while comparing the results of using both the usual 3-
momentum regularization, given in the left panels [Figs. 8(a)
and 8(c)], with the results of using the regularization pro-
posed in this work, shown in the right panels [Figs. 8(b) and
8(d)]. The most striking feature of these results is that both

regularization give almost exactly the same results, with very
tiny differences observed at larger center-of-mass energies,
for both temperatures. This can be traced back to the fact
the quark-antiquark processes depend on both the s and ¢
channels. In the case of meson propagators in the s channel,
they are always evaluated with zero external 3-momentum,
k| = 0 and k{" = /5. Since both regularization yield the
same results at zero external 3-momentum, it implies that all
contributions to the differential cross section coming from the
s channel are identical in both regularization schemes. In the
case of meson propagators in the ¢ channel, such is not the case
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FIG. 9. Cross sections ([0] = mb), as a function of the center-of-mass energy ([+/s] = GeV) for the us — us, s5 — ui, and s5 — 5
processes, for 7 = 215 MeV in the top panels and 7" = 250 MeV in the bottom panels. In the left-hand panels (a) and (c), the usual 3-
momentum regularization proposed in Ref. [11] is used whereas, in the right-hand panels (b) and (d), the 3-momentum sphere intersection
regularization proposed in this work is used. The large dots mark the minimum center-of-mass energy requirements.

since they are evaluated for k{ = 0 and [k|*) = /—. How-
ever, the integration range over ¢ for processes with m; = m;
and m3 = my, are zero exactly at s = sy, and increase with in-
creasing values of center-of-mass energy +/s. Thus, for small
values of /s only small values of external 3-momentum are
considered and only in the ¢ channel, with the contributions
from the s channel being all for zero external 3-momentum.
So, this behavior explains why, for these processes, the
cross sections are almost identical in both regularization
schemes, becoming slightly different only with increasing
center-of-mass energies. The large peaks observed in this

figures is due the fact that these cross sections are being
evaluated near the Mott temperatures of the pions and kaons,
meaning their behavior will be dominated by the existence of
these resonances at certain values of center-of-mass energy
[12].

Finally, in Fig. 9, we present a comparison of cross
sections for quark-antiquark processes involving a strange
antiquark in the initial state. The processes shown in
this figure are us — us, ss — uu, and ss — ss. The first
observation, present in both regularization schemes is the
diverging nature of the s5 — uu cross section at the energy
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FIG. 10. Cross sections ([0] = mb) as a function of the center-of-mass energy ([+/s] = GeV) for the uu — uu, uu — uu, ud — ud,
ud — ud processes, for T = 250 MeV and increasing chemical potentials. The large dots mark the minimum center-of-mass energy
requirements for a given process to occur. Here, the 3-momentum sphere intersection regularization is used.

threshold. As pointed out in Ref. [12], this is a kinematic
singularity caused by the exothermic nature of this particular
quark-antiquark process. Here, the cross section for process
ss — ss is quite different for different regularizations but is
extremely similar for the other two processes. Again, the
resonant structure observed is due to the proximity to the Mott
temperatures of the kaon resonances.

2. Results at finite temperature and chemical potential in the
3-momentum sphere intersection regularization scheme

In this section we show the results of evaluating quark-
quark, quark-antiquark, and antiquark-antiquark processes

at finite (fixed) temperature and (increasing) quark chem-
ical potential, as a function of the center-of-mass energy
/s, allowing the study of the influence of finite den-
sity effects on the cross sections. For the temperature
we used the previous value of T =250 MeV while, for
the chemical potential, we used six different values, u =
{0, 100, 200, 300, 400, 500, 600} MeV. Additionally, we con-
sider equal quark chemical potentials, u = u, = g = ts. In
this case we have 16 different processes instead of the 11
different processes at u = 0. The extra processes that have to
be calculated are wt — uu, ud — ud, us — us, 55 — 55,
and su — su. These processes are degenerate to their particle
analogs at zero chemical potential (when switching quarks to
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FIG. 11. Cross sections ([0] = mb) as a function of the center-of-mass energy ([+/s] = GeV) for the us — us, us — us,ss — $5,55 —> 55
processes, for T = 250 MeV and increasing chemical potentials. The large dots mark the minimum center-of-mass energy requirements for a
given process to occur. Here, the 3-momentum sphere intersection regularization is used.

antiquarks and antiquark to quarks), however, when consider-
ing finite chemical potential, they will be different.

We start by presenting all the quark-quark and antiquark-
antiquark cross sections in Figs. 10 and 11. When considering
finite chemical potential and, consequently, finite baryon den-
sity, the medium is characterized by an asymmetry between
the number of particles and antiparticles. Such asymmetry
is responsible, for instance, for the difference observed in
the meson behavior of certain meson states at finite chemi-
cal potential and the masses of the charged kaons and their
scalar particles are different in the presence of nonzero baryon

density [10]. Since the cross sections are highly dependent
on the meson propagators and, taking into account that fi-
nite chemical potential already breaks the symmetry between
some charged mesons, it is natural to expect it to also break
the symmetry between processes which, at zero chemical po-
tential, are identical. Hence, in these figures, one can observe
the effect of breaking the symmetry between charged mesons
at finite density. Of course, the observed differences between
quark-quark and antiquark-antiquark at finite chemical poten-
tial is also connected to the Pauli blocking factor considered
to evaluate the cross section, see Eq. (F21).
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FIG. 12. Cross sections ([c] = mb) as a function of the center-of-mass energy ([+/s] = GeV) for the uii — uii, ud — ud, un — dd,
uu — ss, ss — uu, and ss — ss processes, for T = 250 MeV and increasing chemical potentials. The large dots mark the minimum center-
of-mass energy requirements for a given process to occur. Here, the 3-momentum sphere intersection regularization is used.

In Figs. 10(a) and 10(b) we show the results for the pro-
cesses uu — uu and uu — uu. As expected, at zero chemical
potential, these processes yield the same result; however, at
finite chemical potential, they have different behaviors. As
the chemical potential increases, the cross section for the
uu — uu process consistently decreases across all values of
the center-of-mass energy. Conversely, for the uu — uu pro-
cess, the cross section demonstrates an increase with chemical
potential for large center-of-mass energy values. However,
for small energies, the behavior of the cross section becomes
more complex and does not follow a straightforward trend.
The ud — ud cross section and #d — ud cross sections, as
well as the for the us — us and u's — u's processes, shown
in Figs. 10(c), 10(d), 11(a), and 11(b), respectively, share
the same overall behavior that was previously described for
processes involving only the u quark.

The minimum center-of-mass energies for these processes
to occur, represented by the colored dots in Fig. 10, are inde-
pendent of the considered process and are equal for a specific
chemical potential. This is a consequence of the isospin sym-
metry considered in this study, which yields equal effective

025

quark masses for the up and down quarks. Naturally, processes
involving the strange quark have a higher threshold energy
due to the higher strange quark effective mass. As expected
from the restoration of chiral symmetry in the medium, the
threshold energies for all processes gets smaller with increas-
ing chemical potential since the quarks effective masses tend
to their respective bare values. This feature is common to all
results at finite chemical potential.

We highlight that, in our calculation, the quark-quark
process us — us and the equivalent process su — su are iden-
tical. From the physics point of view this is obvious; however,
from the practical point of view this is only possible because
the 3-momentum sphere intersection regularization does not
ruin this feature, as explained before. If one uses the usual
3-momentum regularization, at finite chemical potential, the
cross sections for the processes us — us and su — su will be
different.

We now turn our attention to the quark-antiquark cross
sections. In Fig. 12 we have the processes with zero net
strangeness,which include: uu — uu, ud — ud, uii — dd,
uu — ss, ss — uu, and ss — ss. The cross sections of
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FIG. 13. Cross sections ([o] = mb) as a function of the center-of-mass energy ([+/s] = GeV) for the us — us and s — su processes, for
T =250 MeV and increasing chemical potentials. The large dots mark the minimum center-of-mass energy requirements for a given process
to occur. Here, the 3-momentum sphere intersection regularization is used.

quark-antiquark processes with strangeness are presented in
Fig. 13 and include the us — us and su — su processes. As
in the case of zero chemical potential, several of these quan-
tities display a resonance structure due to the proximity of
the values of temperature and chemical potential to the Mott
temperature of the pions and kaons. Of course, when consid-
ering finite density, for every chemical potential one can find
the respective Mott temperature. Thus, when considering in-
medium systems, the melting point of the meson bound states
is defined by a point in the space of possible thermodynamic
variables, in this case, there will be a Mott temperature and a
Mott chemical potential. The study of meson behavior in the
medium, within the context of the model used here, is beyond
the scope of this work and is left as future work. However,
in the range of chemical potentials considered here, the Mott
temperature of pions and kaons decreases with increasing
temperature. Such effect can be clearly seen in some of the
cross sections of Figs. 12 and 13. The peak caused by the close
proximity to the Mott temperatures of the pion and kaons
gets smaller with increasing chemical potential. This can be
observed in the cross sections of the following processes:
uli — ull, ud — ud, uii — dd, us — us, and s — SIL.

The kinematic divergence present in the exothermic cross
section of the process ss — uu is present for all considered
chemical potentials however, it moves to smaller values of
/5. The reduction of the strange quark mass, driven by the
mechanism of restoration of chiral symmetry, is responsible
for this behavior since the threshold energy for this process to
occur gets smaller with increasing chemical potential.

The cross section for the us — us and su — su are very
similar. As mentioned, they also display a peak structure
related to the proximity to meson melting points. However,
the peaks are not located at the same points. These processes,

in the s channel, are mediated by the charged kaons, as dis-
cussed in Appendix F. While us — us involves the positively
charged K*, the process su — su exchanges a negatively
charged K~. Again, at finite density these meson are not
degenerate, displaying different propagators, masses, widths,
and, consequently, different melting points (labeled by a Mott
chemical potential and temperature). Thus, in each process,
the peak structure is located near its respective charged kaon
melting point and their difference in essence, amounts to the
charged kaons possessing slightly different melting points as
the chemical potential increases.

It is expected that analyzing the effective meson-quark
couplings at finite temperature and chemical potential [5]
could provide additional information regarding the fact that
cross sections for quark-quark processes gets smaller with
chemical potential while, in general, the antiquark-antiquark
cross sections gets larger. However, such study goes beyond
the scope of the present work.

VI. CONCLUSIONS

In this work we derived the one- and two-fermion line
integrals from a general NJL model. We considered that the
NJL Lagrangian contained the usual Dirac contribution for
fermions fields and different scalar-pseudoscalar quark-quark
interactions, contained in L;y. The formalism developed here
is applicable to any number of scalar-pseudoscalar multiquark
interactions. For instance, one could consider the usual four-
quark scalar-pseudoscalar interaction, the 't Hooft interaction,
eight-quark interactions, or explicit chiral symmetry-breaking
interactions. To derive the one- and two-fermion line inte-
grals, we performed the linear and quadratic expansions of
the product between quark bilinear operators in the mean-
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field approximation. From these expansions one can extract
thermodynamics quantities and meson propagators. The latter
were then used to evaluate quark-quark and quark-antiquark
cross sections at finite temperature and chemical potential.
Furthermore, the meson propagators obtained in this work
are equivalent to those used in other works where they are
derived from the Bethe-Salpeter equation in the random-phase
approximation.

To perform these tasks, we introduced a new approach
to control the diverging nature of the model, the so-called
3-momentum sphere intersection regularization. This new
procedure is essential in order to maintain the symmetries of
the model. For instance, it ensures that the cross sections for
the processes us — us and su — su are the same for all values
of temperature and chemical potential, which does not happen
in the usual 3-momentum regularization.

As a practical implementation of the developed for-
malism, and to demonstrate the differences between the
3-momentum sphere intersection regularization and the usual
3-momentum regularization, we considered the standard
SU(3) NJL model, with four and six quark interactions [1],
to evaluate quark-quark and quark-antiquark cross sections.
We observed quantitative and qualitative differences when
comparing quark-quark cross sections in both schemes. For
quark-antiquark cross sections, however, the results are simi-
lar. This is expected since, from the kinematic point of view,
the differential cross sections for quark-antiquark processes
do not have major dependencies on the absolute value of the
external 3-momentum, |k|, meaning that both regularization
schemes will give very similar results. This is a feature of the
3-momentum sphere intersection regularization: it depends on
the absolute value of the external 3-momentum |k|. Since we
are regularizing the integral by evaluating it in the region of
integration corresponding to the intersection of two spheres
with centers distanced |k| and radii A, when |k| = 0, both
spheres completely intersect and we end up with the usual
3-momentum regularization.

Thus, not only this new approach to the 3-momentum regu-
larization scheme yields different quantitative and qualitative
results for the quark-quark cross sections, it also provides a
way to correctly account for the symmetries of the system.
These points are very important when using the cross sec-
tions evaluated from this model to obtain the quark relaxation
time and use it to predict the in-medium transport properties
of the quark plasma. The impact of the regularization scheme
proposed in this work on the evaluation of transport coeffi-
cients like shear or bulk viscosities and thermal or electric
conductivities is currently being analyzed and being prepared
for future presentations.

As future work, we would like to use the Pauli-Villars reg-
ularization in order to regularize the model. We are specially
interested on studying the differences to the cross sections,
between using the 3-momentum sphere intersection regular-
ization, used in this work, and applying the Pauli-Villars
regularization. As discussed, it is extremely important to
use a regularization procedure which, like the one presented
here, is able to preserve the symmetries between meson and
antimesons.

Another extension of this work is to include the effect of
magnetic fields in the calculation of the one- and two-fermion
line integrals. Such extension can be very important to study
systems under the presence of intense magnetic fields such
as the case of heavy-ion collision experiments or to study
the matter inside magnetars. In such case, the Pauli-Villars
regularization may be an extremely useful approach in order
to study the effects of an external magnetic field. When con-
sidering a finite magnetic field, the 3-momentum integration
is broken down in to an integration over the momenta aligned
with the magnetic field, usually p,, and the two-dimensional
integration over the transverse momenta, p, — p,, which is
replaced by a sum over discrete values, the Landau levels. If
considering a 3-momentum cutoff, the transverse component
of the momentum should also be restricted, i.e., cutting off the
sum. However, when dealing with an integration from zero
to infinity, as is the case in the Pauli-Villars regularization,
this sum can be performed analytically, greatly simplifying
the calculations.

We also wish to include in the model a coupling of the
quark fields to an external static background of gluons. In
such an extended model, one is able to also study the de-
confinement transition by studying the Polyakov loop order
parameter at finite temperature and chemical potential. Such
improved models are named Polyakov—Nambu—Jona-Lasinio
(PNJL) models. In this work we used the pion Mott temper-
ature as an indication for the system to be in the regime of
deconfined matter. However, using the PNJL model would
allow for a better description of the deconfinement transition
and a better qualitative and quantitative indication of the pres-
ence of deconfined matter. Not only that, the PNJL is known
to yield better qualitative results when compared with lat-
tice QCD calculations, yielding a better qualitative prediction
of the quark-quark and quark-antiquark cross sections. One
can even use the so-called entangled-PNJL model where the
coupling constants of the model are also dependent on the
Polyakov loop order parameter.

Finally, the formalism developed here can also be extended
to allow for the inclusion of pseudoscalar condensation at
finite temperature and chemical potential, e.g., pion and kaon
condensation [79,80]. In asymmetric matter, such as the one
created in heavy-ion collisions experiments or present inside
neutron stars, the isospin chemical potential can be suffi-
ciently large for meson condensation to occur [§0-84].
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APPENDIX A: LINEAR EXPANSION OF THE PRODUCT BETWEEN N COMMUTING OPERATORS
An operator O; can be written as its own expectation value plus a small perturbation 8O; around it [28]:
01 = (0) + (01 = (O) = (Oi) + 80 (AD)
The perturbation is defined as
80, = 0; — (0y). (A2)
Using these expressions, we can write the product between two commuting operators O; and O, as
010, = ((01) +801)((0s) + 505)
= (0)(D2) + (01)80, + 80,(0,) + 80,80,. (A3)
The so-called linear product between these two operators, L[O,0,], is defined by neglecting the quadratic term 0,580, and
then rewriting the perturbation §O; using its definition [see Eq. (A2)]. Thus, one can write
LIO102] = 01(02) + 02(01) — (O1)(On). (A4)

The process to define the linear expansion of the product between three commuting operators is exactly the same. Using
Eq. (A1), we can write the product between three operators as

010,05 = ((01) + 801)(0s) + 502)((O3) + 803)
= (01)(02)(03) + (02)(D3)80, + (01)(03)80, + (01)(02)805
+(03)80180, + (0,)801805 + (01)80,80; + §0,50,80;. (AS)
In this case, one neglects the terms proportional to both (80)? and (80)*. Then, using Eq. (A2), one gets
L[010:05] = =2(01)(02)(03) + 01(02)(03) + (01)02(03) + (01){O2) Os. (A6)

This procedure can be performed to products with any number of operators. Thus, the linear product between N operators can
be obtained, by the three following operations: first, writing each operator as in Eq. (A1), second, neglecting terms proportional
to (8O)" with n > 2, third, writing the perturbations using the definition stated in Eq. (A2).

Interestingly, one can obtain the linear product between N operators iteratively, by elevating the linear product between two
operators, L[@1@2] [explicitly given in Eq. (A4)], to a definition. For completeness, one must also consider that the linear
expansion of an operator or a constant (products of mean fields) is the operator or constant itself, L[@] = O and L[cte] = cte.
Using these definitions, one can build the linear expansion of any number of operators by iteratively using the following defining
property:

L[O10; - - Oy] = LILIO10; - - - Oy-1]10Op]. (A7)

Here, the particular set of N — 1 operators chosen to be inside the nested linear operation does not matter. Recursively, one
can continue breaking down the innermost linear product, creating an iterative set of operations until the defining case of two
operators is reached: L[O; O,]. Explicitly, one can write

L[0,0;--- Oyl = LILILL - - - L[O,10,]0510s - - - Oy 1101 (A8)
For instance, following these definitions, the linear expansion of the product between three commuting operators is given by
L[010,05] = LIL[010,]05] = LILIO,0310,] = LILIO,O31011. (A9)

Here, it is highlighted the fact that the particular combination of two operators chosen in the inner linear operation does not
matter. By substituting the definition of L[(O;O;] in the above [see Eq. (A4)], one recovers the linear product between three
operators obtained in Eq. (A6). For instance, for four operators, one can write

L[010,0;0,4] = LILIO,0,05104] = LILIL[O,0,10;1041. (A10)

Here, we only wrote one particular choice for the nested linearization operations. There are several other possible permutations
among the operators that give the same result.

Due to its recursive nature, applying the definition given in Eq. (A7) to get the linear product between N operators can be quite
cumbersome. Fortunately, the linear product between N = n + 1 operators, with n > 1, can also be obtained via the following
formula:

n+1 R n+1 @ n+1 R
L[l_ll O[] = (Z @;) —n) []©0n. (A11)

i=1 j=1
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This formula can be proved by mathematical induction. First, one considers the base case and shows that the proposition is valid
for n = 1. Substituting n = 1 in Eq. (A11) yields the linear two-operator product given in Eq. (A4). This establishes the validity
of the formula for the n = 1 case. The next step is to assume the validity of the formula written in Eq. (A11) for a given n = m,
and then show that it also holds for the case n = m + 1. Thus, one has to show that the following equality holds:

m—+2 R m+2 @ m+2 .
L O = - 1 0. Al2
[11 ] ( oy >H< ) (A12)

-1 j=1

The right-hand side (RHS) of this equation can be written as

m+1 @ @ m+2
RHS = L+ =2+ D 100, (A13)
(,.:1 (01 (Ons2) E !

Now, consider the left-hand side of Eq. (A12). Writing the m + 2 contribution in the product explicitly and using the defining
property of the linear product between N operators given in Eq. (A7), we can write the left-hand side (LHS) as

m+1 m+1 m+1 m+1
A | A 1 A A A A
LHS = [(1‘[ o) ,M} = LH]‘[ a} 0m+z} = <§ By O 0m) - m0m+z) [T©0n. @A
i=1 i=1 i j=1

Here, we assumed that Eq. (A11) is valid for some m and used the fact that L[Om+2] = m+2 The first term can be expanded
using the base case, i.e., the result for the linear product of two operators given in Eq. (A4). We write

"y O O jax
LHS = _ L " 1 )0 (Opgn) — mO,, O,
[,.;(o»((o» B >< HOmi2) —m +2]j]:[1< )
m+1 @i @m+2 m+2
= ——+ = —(m+1) (Oj) = RHS. (A15)
(; (0 (Onsa) E

Since both sides of Eq. (A12) are equal, the formula also holds for n = m + 1, completing the inductive step. Hence, by
mathematical induction, Eq. (A11) is valid forn > 1.

APPENDIX B: QUADRATIC EXPANSION OF THE PRODUCT BETWEEN N COMMUTING OPERATORS

Similarly to the linear product between N commuting operators, the quadratic product between N commuting operators can
be be obtained by writing each operator as in Eq. (A1), neglecting terms proportional to cubic perturbations or higher, (§0)" for
n 2 3, and then rewriting the perturbations using Eq. (A2).

Consider the product between three operators O, O,, and O;. It was explicitly written out in Eq. (A5). Neglecting the term
80,860,803 and rewriting the perturbations yields its quadratic expansion:

Q[010,051 = 0,0,(05) + 0:01(01) + 0,05(01) — 01(0,)(03) — 03(01)(D,) — 02(03)(O1) + (01)(D2)(05). (BI)

Following the same steps, the quadratic product between four operators can be written as

Q101005041 = — 2(02){03)(04) 01 = 2(01){03)(04) Oz — 2(01)(02)(O4) O3 — 2(01)(02)(03) O
+(02)(04)0105 + (01)(04) 0205 + (02)(03) 0104 + (O ><@ 1020,

+(01)(02)0304 + (03)(04)010; + 3(01)(02)(03)(Os). (B2)

To write this expression, the terms proportional to both § @1 1) @28 @3 and § @1 ) @28 @38@4 were neglected, after each operator in
the product @1@2@3@4 was written using Eq. (A1).

In a similar way to the linear expansion of the product between N operators described in the previous section, one can obtain
the quadratic product between N operators iteratively, by taking the quadratic product between three operators, Q[(0,0,05],
as a definition. Additionally, one must consider the following statements: Q[@I@Z] = @1@2, Q[@] = @, and Qlcte] = cte.
Using these constraints, the quadratic expansion of the product of any number of operators can be obtained recursively using the
following defining property:

QI0,0; --- Oy = QIQIO,0; - - - Oy _11041. (B3)

The particular set of N — 1 operators, chosen to be inside the nested quadratic operation, does not matter. Recursively, one can
continue breaking down the innermost quadratic product, creating an iterative set of operations until the defining case is reached:
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Q[@l @2 @3]. Explicitly, one can write

Q[010; - Ox1 = QIQIQL- - Q[O10:0510410s - - - Oy-110x1. (B4)
As an example, the quadratic product between four operators can be obtained by writing
Q[010,0;04] = QIQ[010,051041. (B5)

Substituting Q[@1@2@3] by its definition given in Eq. (B1), one recovers the expression given in Eq. (B2).
Instead of using the recursive approach laid out above, the quadratic product between N = n 4 2 operators, with n > 1, can
be conveniently obtained using the following formula:

n+2 ) n+2 n+2 A n+2 @ n n+2 R
Q{]_[ O,} = ZZ —&i)—ny. @ S+ [0, (B6)
i=1 i

i=1 j=1 ’ J i=1 k=1

As for the linear product expansion, this formula can be proved by mathematical induction. First we consider the base case
and show that the expression is valid for n = 1, i.e., for the quadratic expansion of the product between three operators. Using
this formula one can readily obtain the result presented in Eq. (B1), validating the formula for the base case with n = 1. Next,
assuming that the formula holds for n = m, one must demonstrate that it is also valid for » = m + 1. Hence, we have to show
that the following relation holds (n = m + 1 case):

m+3 R m+3 m+3 A m+3 A (m+ 1) m+3 .
Q[]_[ a] = ZZ — 8ij) — (m+ ——m+2) | []On)- (B7)
i=1 i=1 j=1 k=1

Let us focus on the right-hand side of Eq. (B7). Separating the m + 3 contribution in the sums, we can write

m+2m+2 A A A m+2 A
O O Om+3 Oi
RHS = — —~ -8+ — —
ZI,ZI 0:) (0)) 7 (Os) ; (O)
w2, (m+1) 3
—(m +1)Z—)—< m+ D73 ’"”> (m +2)>1‘[<Ok (BS)
Wl+3 k=1

Consider the left-hand side of Eq. (B7). One can separate the i = m 4 3 contribution to the product and, using the defining
property of Eq. (B3), write

m+2 ) R m+2 R R
LHS = Q[(]_[ oi) 0,,4 = Q{Q[]_[ a]omﬁ}
i=1 i=1

1 m+2 m+2 Q[@i@j@m+3] m+2 A m+3 "m+3 m+3 )
=(= ST (1 —8;)—m ( +1)— (Ox). (B9)
(2 ; ; (Oi)( j><0m+3> Z Oi) (Omy3) (Oms3) ,1:[1
Here, we applied the base case [see Eq. (B6)]. Defining the first term inside the brackets by 7, we can write it as
1 m+2 m+2 @l@ @m
t=—ZZM(I—8U). (B10)
2 = S (00, (Onis)

Using Eq. (B1), we can write ¢ as

m+2m+2
1 A A A A R
— (1 = 5;)(0,0;(0n13) + 04:30,(0)) + 0;0,,:3(0;)
;JZ[ O O (Oin+3) ! * ! ! *
— 0/(01)(Ony3) = Ony3(0(0)) = O01(Oni3)(O) + (01)(O;) (D)) (BI11)
After some straightforward algebra, we can write ¢ as
m+2 m+2 A A m+2 A m+2 A
O' Oer'% Oi Oz
A — &) + (m+1) ~— —(m+1) A
ZI; Oi) 7 (O ; (O ; (0

- —(m +2)(m + l)

A + +2)(m+ 1). B12
<0m+3> (m o (B12)
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Where we have used Zf";rzl 8ij) =(m+2)(m+ 1) and Z:"fz] j (1-=8;)=(m+1) Zm” % Finally, the left-hand
side of Eq. (B7) can be written as
1 m+2 m+2 @l @ @m m+2 @l
LHS=| = — / (1 —=6;;) + = +3 ~
i o1 (O (0)) (Omys) = (O0)
m+2 A A m+3
O; Om+3 (m+1)
—(m+1) — —(m+1)— + (m+2) (On)
; <01> Om+3> 2 ) /!:[1
= RHS. (B13)

Hence, the left-hand side is equal to the right-hand side given in Eq. (B8), so the formula also holds for n = m + 1, completing
the inductive step. Hence, by mathematical induction, Eq. (B6) is valid forn > 1.

APPENDIX C: PRACTICAL IMPLEMENTATION OF THE ONE- AND TWO-FERMION LINE INTEGRALS A
AND By IN THE 3-MOMENTUM SPHERE INTERSECTION REGULARIZATION SCHEME

1. The B, integral for the |k| > 0 case

Let us discuss the implementation of the By integral for the case where |k| > 0. Since the integrand does not depend on the
azimuthal angle, the integration over such variables is trivial, yielding a factor of 27r. The remaining two-dimensional integration
is more complicated. One way to simplify the calculations and perform such integration is to consider a change of variables.
Here, we extend the approach made for the degenerate mass case (M; = M) that was introduced in Ref. [71] and also applied in
Ref. [85] by taking into account different masses. Consider the following change of variables:

E = J(E, + Ey), (C1)
& = E2 - El. (C2)

From these definitions one has the following relations: E; = E — ¢/2 and E, = E + ¢/2. Looking at Eq. (C2), the quantity &
can be both positive or negative while, checking Eq. (C1), E is always a positive quantity. We also point out that the quantities
E| and E, are always positive since they are energies.

The integration measure will be changed as dEde = | det[J]|d|p|d8, where J = J[|p|, 0] = O(E, €)/9(|p|, 0), is the Jacobian
matrix. Performing the derivatives, one can write:

p?sin[6]
det [J] = |k| EiE, (C3)

From the above one can realize that this change of variables is only valid for the |k| > 0. We treat the case |[k| = 0 as a special
case since it is simpler and a different change of variables must be used.

Considering the 3-momentum sphere intersection regularization, Reg[|k|] — ]I‘%‘ and performing the proposed change of
variables, one can write the integrals as

1 — felE —¢/2+nu;, T1— frlE +¢/2 —nu;, T]
BO, [Mia M‘, T, Miv“/‘sk(% |k|] / - B (C4)
P / / 2|k| ﬂzﬂ 1 2 E +nAj2 —
felE —e/2 —nui, T] — felE +¢/2 —nu;, T]
Bos[Mi, M, T, i, s, ko, k|1 = P dEde _ . 5
0slM:. Mj. T uis i ko el = =2 Z/HA g (C5)

n=+1" ik

The integration over the azimuthal angle yields 27 and the integration over the remaining variables corresponds to evaluating
the integral over the two-dimensional cross section of the intersection between two spheres (see Fig. 3). We have written the
two-dimensional integration without referring the specific order of integration. In fact it is extremely useful to consider both
orders of integrations. For the pair creation and annihilation contribution By ,, we use the order,

En(ixfdg) Sl(TIAIiEds)
de,
while for the scattering contribution By s, the order
(dedE) E(dde)

Emax max
de dE
(dedE) (dedE)
Emin Ernin
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will be used. In principle, if the integrand is a well behaved function, switching the order of integration yields the same
results [86]. The reason for using the two possible integration orders is twofold. First, it allows us to perform one of the
integrations analytically, resulting in only one numerical integration in order to evaluate the By function. Second, it allows

for a straightforward isolation of the simple poles present at E = —nA/2 and ¢ = —nA, allowing the use of the appropriate
numerical methods to evaluate such type of integrals. For convenience, we define the functions g, and g; as
gp[T’ Mis Hj, 1], Ee 8] =1- fF[E - 8/2 + Nki, T] - fF[E + 8/2 —NKj, T]v (C6)
glT. pis iuj. 0, E, €] = felE — /2 —nui, T1 — felE +&/2 —nu;, T1. (€7
For the pair creation and annihilation contribution, we write
E(dEdEl 1 sﬁﬁiﬁ‘m
By o[M;, M;, T, i, i, ko, |k _ dego[T, ni, i, n, E
O,p[ i My, Ly Ui, [j, Oal |] 2|k| Z [(dhd“ E+7])x/2—l€ gr(::;‘df) Egp[ s Miy Hj, 17, ,8]
(dEde)
Ernax Gp[Mi,Mj,T, Wi, iy, 1, k|, E]
Z : ) (C8)
2|k| EEd) E +nA/2 —
For the scattering contribution, one gets
e 1 EG®
Bos[M;,M;, T, i, L, ko, k|l = — dEgT, wi, i, n, E
0,s[M;, jods Mis Uj, 0, k] |k| Z /(d;dL) 8+nk—sgn[e]ie ) &l s Mis Hjs 1, , €]
(dedE)
_ 1 Fmax dEGS[MiijvTv Mis j, 1, |k|7‘9] (C9)
k| oo Jetdea &+ ni — sgn[elie '

(dEde) 1(dEde) .(dEde) dEd) (dedE) 1r(dedE) (dedE) _(dedE)
E ,E € 8( OVE T BN e T el

Both integration regions and all the functions that define them, E .- e SN o)

are explicitly derived in Appendix D. We point out that the integration endpoints will be functlons of several Varlables such as
M;, M;, |k|, and A. However, here, such dependencies are omitted for simplicity. The functions G, and G, have been defined as
the innermost integration for each contribution, separately, i.e.:

E(d\Ed;)

GpM;, M, T, ui, juj, m, lkl, E] = f(, - degplT, i, pj, n, E, €], (C10)

Emin

™
GS[Mi’Mj3 T7 Mi, //l/]r 777|k|:<9] = edEt) dEgS[T7 Mi, M]» U,Ew‘:]o (Cll)
Eyy
The reason for this separations is that these integrals can be computed analytically, simplifying the calculation of the By function.

For the pair creation and annihilation contribution G,, one gets’
(dl'ds)

GolMi, My, T, i, iy 1, K|, E] = 4549 — gW@E®) o i [1 4 oE 3o’ =)/ T] o In [1 4 e ~E—sema’ +1m)/T ]

max

1 (dEde)

— 2T In[1 + eCE+3ema™ —md/T] L 2T In[1 4 e F- Fema I ) (C12)
For the scattering contribution, one gets

Go[Mi, M. T, i,y . Kl €] = =T In[1 4 ema =3eme)/T] 4 i [1 4 B 3e4ma)/T]

E(zlsdE) E(dedE)

_ Tln[l + o ~Ema +1£+77Mi)/T] +Tln [1 + e(—Em ‘Hnw)/T]' (C13)

In the case where a singularity resides within the integration bounds, the integration is made using the Sokhotski—Plemelj
theorem and the By function presents both real and imaginary components. The real part of the pair creation and annihilation
contribution, By p,, and the real part of the scattering contribution, By s, are given by

E(dE(IE)

G [Mi,M;, T, i, uj, 1, k|, E]
Re[Bo o [Mi, M;, T, i, i, ko, |k|1] = P J J ; Cl4
e[Bop[Mi, Mj. T, i, 14 ko. [K|T] = 2|k| Z /E Eioif (C14)
e GJM;, M, T, i, ., Ikl €]
B ngM,T . ,k k i Jj» i j7 ) ) ) 1
Re[Bos[Mi, Mj, T, i, ). ko k1] |k|Z fw) P (C15)

n==1

5Numerically, for low temperatures, it can be useful to make use of the Puiseux series expansion of In[1 + x] at x — oo: In[1 4+ x] =
In[x] 4+ 1/x — 1/(2x%) + 1/(3x>) — 1/(4x*) + O[1/x°].
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The symbol & stands for Cauchy principal value. The respective imaginary contributions are

Im[By ,[M;, M;, T, wi, i1, ko, k|]]

o {GP[M,-,Mj, T, wis g s kI, —ma /2] if =nh/2 € [ESE), EGE)] 16)
2kl = (o, otherwise,
Im[Bos[M;, M;, T, wi, 4}, ko, k1]
T :Sgn[_WGS[M"’ My, T iy s, Vel =nal i = € [eni®™, efii®] (C17)
k| =10 otherwise.

If one considers the external momentum shift, ky — ko & i€, the real part of both contributions, Re[By ] and Re[By ], remains
unchanged, however, the overall sign in front of the imaginary contributions is altered. The imaginary contributions are changed
as

Gp[Mi’ij T’ Mis Lj, 1, |k|7 _U)L/z] - :FnGp[Mi’ Mja T7 Mis Ljs 1, |k|a _77)\/2]7 (C18)
Sgn[_n)"]Gs[Mia Mj, Ts Mis Wj, 1, |k|1 _7))\] - :FnGS[Miv ij Ts Miy Mj, 17, |k|7 _77)\] (Clg)

Finally, the B, function can be written using the real and imaginary parts of the pair creation and annihilation and scattering
contributions as [see Eq. (54)]

Bo[M;, M;, T, u;, ij, ko, lk|1 = Re[Bo p[M;, M;, T, w;, i, ko, |k|1+ Bos[M;, M;, T, i, i, ko, k|11
+ ilm[Bo p[M;, M;, T, i, 4, ko, |k1] + Bos[M;, M, T, i, 11, ko, 1k|]]. (C20)

2. The B, integral for the |k| = 0 case

The |k| = 0 limiting case cannot be calculated from the case |k| > 0. As explained earlier (see Sec. C 1), the Jacobian
determinant used when making the change of variables is zero for |k| = 0 [see Eq. (C3)]. Hence, the case |k| = 0 must be
treated separately. Differently from the previous case, our calculation for the case |[k| = 0 completely agrees with the one found
in Ref. [11]. In this case there is no separation between the spheres and the region of integration is simply the one inside a
sphere of radius |p| < A, the usual 3-momentum regularization. Nonetheless, for completeness, we briefly show the explicit
calculation.

It is easier to consider a particular change of variables for the integral By , and a different one for the integral By ;. Furthermore,
in this special case the integrand does not have angular dependencies, meaning that the integral over the azimuthal angle ¢ and
polar angle 6 yield an overall factor of 47 and an integration over the norm of the 3-momentum |p|.

Let us start by discussing the |k| = O case of the pair creation and annihilation contribution By , by considering the |k| =0
limit of Eq. (55). Solving the equation E = (E; + E1)/2 = (E[M,, p] + E[M;, p])/2 for the variable |p|, one can consider a
change of variables from |p| — E. Using the positive solution, one gets

1 [QRQE —M; + M;)QE — M; — Mj)QQE + M; — M;)2E + M; + M)
4 E?

lpl = = P[M;, M;, E]. (C21)

— dEP[Mi.éWj.E]

. . 2 . . .
The integration measure d|p| changes as d|p| ﬁ and the integral is written as

Sl Mo et o D1 = 77=2ﬂ::1 ~/:A dEP[Mi’ZI?VIj’ 2 +Em:i’777;»]/; sz[eE_Z — T]' (€22)

Here, Ej and E, are the endpoints obtained after the change of variables and are given by
Ey = 3(E[M;, 0]+ E[M;, 0]) = 5(M; + M), (C23)
En = Y(EIM;, Al +EM;, A) = 3(,/A2 + M2 + /82 +0), (©24)
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For simplicity, we introduced the functions E; and E,, which are the functions defined in Egs. (51) and (52), written in terms of
E instead of p. They are explicitly given by

2
1\/(4E2 — M} + M?)

Ey = E[[M;, M, E]1=2E — 7 7 , (C25)
_ 1 [(4E2 + M2 — M2)’
= ElM;. M E] = 2E — ¢ = . (C26)

As for the case |k| > 0, one can use the Sokhotski—Plemelj theorem to write the real and imaginary parts, of the |k| = O limit
of the By function. We write
Ea o PIMi, My, E11 — felEy + i, T1 = frlE2 — nu; gl
Re[Bop[M;, M;, T, wi, i, ko, 011 = 2| dE———- = =
[Bo.p[Mi, M. T, i 11, ko, O1] n; A = E+W2

(Cc27)

m(Bop[M;, M, T, i, i ko, Ol = 7t )

n==x1

PR (| B+ m, T) = ol —ng TY).if —nd/2 € [Eo. Exl
otherwise.

(C28)

Again, by considering the external momentum shift ky — ko & i€ instead of the mass shift, only the imaginary part is changed
with the following substitution: P[M;, M;, —nA/2] — —nP[M;, M;, —nki/2].

Finally, we deal with the scattering contribution By s applying the |k| = 0 limit to Eq. (56). For this case we consider a change
of variables based on solving the equation ¢ = E, — E; = E[M;, p] — E[M;, p] for the absolute value of the momentum, |p|,
and get

|p|:l\/(8 M;+M;j)e—M; —M;)e+M;, —M;)(e+M;+M,) _ PIM,, M, €], (29)

2
€
In this case, the integration measure after the change of variables is
diplp* _ deP[M;, M, €]
E\E, €

and the integral can then be written as

P[M;, M;, €] felEy — nui, T1 — felEs — npy, T
£ + ni — sgn[elie '

Bos[Mi, M. T, i, i, ko, 0] = 2 Z/ (C30)

n==x1

As before, the functions, E; and E, are the functions defined in Egs. (51) and (52), written in terms of ¢ instead of p and are
given by

R . 1 [(2—M? -{-Mz.)2
= Ei[M M), ] = | —— 55— —, (C31)
2 &2
. 1 [(e2+ M7 = m2)’
Ez:Ez[Mi,Mj,S]Z - ———— +¢€. (C32)
2 g2
The integration endpoints are defined as
go = E[M;,0] — E[M;,0] = M; — M,, (C33)
en = E[Mj, A] — E[M;, A] =\/A2 +M}—\/A2 + M?. (C34)

Following the previous steps, the real and imaginary parts can be written as

PM,-,M~, E,—nui, T By —nu;, T
N N S B e G
n==1 €o € e+
Im[Bys[M;, M;, T, i, itj, ko, 0]]
. sgn[ ML (e[ By — e, T = felEy — npj T1),if — nA € [eo, €4l ©36)
f—— otherwise.
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In the momentum-shift case, the imaginary part is modified as sgn[—nA]P[M;, M;, —nA] — —nP[M;, M;, —nA]. The complete
function, By, for the case with |k| = 0, can then be obtained as before, using Eq. (C20) by using the real and imaginary parts
calculated above.

In the Appendix E, we show and discuss some numerical results from evaluating the two-fermion line integral, By for different
values of temperature, chemical potential, and external momentum by fixing a cutoff A and the effective masses M; and M.

3. The A integral for finite temperature and chemical potential

From the two-fermion line integral By, we know that it is possible to further simplify this quantity, making an appropriate
change of variables. For simplicity, we use exactly the same change of variables performed in the case of the By integral, with
|k| > 0 (see Sec. C 1). Thus, considering the original form of the A integral [see Eq. (60)], we multiply the integrand by one
written as 1 = E[M;, p — k]/E[M;, p — k]l = E,/E, [see Eq. (52)] and employ the change of variables used in Sec. C1 [see
Egs. (C1)—(C3)] in order to write

2 d¢ £ 1 3
A T s ) = = n;} /m EdEda(E 4 5) (5 +fF[E -5+ T]) (C37)

We highlight that this integral does not depend on the value of M;, introduced when one multiplies the integrand by E,/E,.
Indeed, any value for M; can be used in the calculation and this apparent extra parameter only arises in the calculation to allow
us to use the formalism developed earlier in order to simplify the calculations. By analogy with the B, integral, we separate this
integral into two contributions:

AM;, T, i, |kl = Ap[M;, T, i, [k|] 4+ A(M;, T, w, k|, (C38)
where each contribution is given by
2 Ef®
At T ) = = 3 [, AEE el T 1, K1 1, (€39)
o) n e
AM;, T, i, k|l = T - /g@f”) dee G¢[M;, T, i, n, |k|, €]. (C40)
= min

Here, we defined

(dEde)

et 1 c
GE[Mi’ Ta Mi, 1, |k|7E] = /(dl:'tls) d8<5 +fF|:E_ §+UMI’T])’ (C41)
Emin
Egied® 1 e
GS[Miv Tv Mi, 17, |k|78]:/ dE(_+fF|:E__+nMI’ T:I) (C42)
Egi® 2 2
In the above equations, the functions Eéif de), E(dEde) el(l‘fiﬁdg), gldEde) EéﬁidE), EdedE) 8;‘1112‘”5), and £'9¢9E) define the integration

region after the change of variables used in Appendix C 1. These functions are derived in Appendix D. As a result of making the
appropriate change of variables, these integrals can be evaluated analytically to yield:

1 (dEds 1 (dEde)

GelM;, T, i, n, [k, E] = L (4549 — EAO) _ o p[elein ~E-ma)/T 1] 4o In[eom —E-m/T L], (C43)

2 \®max min
GoIM;, T, i, n, k|, 6] = L(EQedE) — EUeAEY) o n[e(aeEaa™ —m)/T 1] — T in[eGe—Em’ -7 4 1], (C4d)

In this way, the one-fermion line integral, in the 3-momentum sphere intersection regularization, can be written as a sum of
one-dimensional integrals. Taking the vacuum limit, one can also perform the remaining integrations in order to obtain Eq. (62).

APPENDIX D: DEFINING THE REGION OF INTEGRATION FOR THE B,
AND A FUNCTIONS AFTER CHANGING VARIABLES

To complete the change of variables performed in the two-fermion one loop integral (in the |k| > O case) defined in Eqs. (C1)—
(C5), one must find the limits of integration. The case of equal masses was performed in Ref. [71]. By construction, the following
equality holds, E[M;, p — k> — E[M;, p]* = kK — 2|pllk| cos[6] — Mi2 + M]Z = 2E ¢, with E[M, p] defined in Eq. (43) while E
and ¢ are the new integration variables, defined in Egs. (C1) and (C2), respectively. Solving this equation with respect to cos[6]
and squaring both sides yields

(k> — M2 + M? — 2E¢)’

cos [9]2 = 4p2k2

(D1)
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To have a right-hand side which depends only on the new integration variables and the external 3-momentum, |k|, we can solve
E[M;, pl= (p* + Miz)l/ 2=(E - 5) for p* [see Egs. (C1) and (C2)] and substitute in the above equation. Since, in the original
integration bounds, the angle 6 € [0, 7], it implies that cos*[#] < 1. This allows us to define the following inequality:

2
Ple, E,M;, M;, |k|] = (K> — M} + M} — 2E5)2 - 4k2|:(E - %) - M}} <0. (D2)
In the above, for simplicity, we have defined the function P[e, E, M;, M;, |k|]. It is easier to obtain the integration region if we

write the function Ple, E, M;, M;, |k|] as a polynomial in & with coefficients which depend on the remaining variables E, M;,
M;, and k*. The resulting inequality is quadratic in &:

Ple, E, M;, Mj, |k|] = ColE, M;, M;, |k|] + Ci[E, M;, M}, |k|le + G[E, M;, M, |k|]e* < 0, (D3)
where
GolE, My, Mj, [kl = K* + 2K (M? + M? — 2E%) + (M? — M?)’, (D4)
ClE. M;, M;, |k|] = 4E(M} — M), (D5)
GIE, M;, M, |k|] = 4E* — k°. (D6)

The concavity of the inequality can be found by checking the sign of the coefficient in front of the term proportional to &,
G)|E, M;, M, |k|]. One can show that this coefficient is always bigger than zero due to the so-called triangle inequality: in a
normed vector space V, one can write the triangle inequality |x + y| < |x| + |y| for all x, y that belongs to V. Trivially, we can
write [k| = |(k — p) + p| and, making use of the triangle inequality, it follows that

k| < |k —p|+pl, =Kk < (k—p))* + (p))* + 2k — plIpl. (D7)

One can always write |p| < (p* + M?)!/? = E[M;, p] and |k — p| < [(k — p)* + M71'* = E[M;, p — k], since M; and M, are
real and M;, M; > 0. The above inequality then becomes

K* < (E[Mj,p — k]l + E[M;, p])* = 4E*, =0 <4E> -k (D8)

Thus, the coefficient of the quadratic term, G,[E, M;, M, |k|] = 4E 2 kz, is always positive, meaning that it corresponds to a
parabola with the concavity turned upwards. Hence, for every fixed value of E, the region of integration is an upwards parabola.
Since we are interested in the region delimited by the values of ¢ and E for which Ple, E, M;, M}, |k|] < 0, this implies that the
region of integration corresponds to the interior of the parabola (the region between the two zeros).

To finish determining the integration region, we need to apply the restriction coming from the 3-momentum cutoff in the 3-
momentum sphere intersection regularization (see Sec. II C). These restrictions can readily be found by demanding that |p| < A
and |p — k| < A. For the first constraint, we get

e\2 £
PI<A=(E-2) A4 MP = - /A4 M <E-2 <[+ M (DY)

For the second constraint, one gets

£\2 2 2 5 £ 5
|p—k|<A=><E+§> <A +Mj:>—,/A2+Mj<E+§<,/A2+Mj. (D10)

At this point, one specific choice of integration order must be chosen in order to evaluate the integral. As previously discussed
it is quite useful to utilize both integration orders since, in certain terms, one can analytically perform the innermost integration
when using the order [ de [ dE while, for other terms, this analytical integration can only be performed for the other integration
order, [ dE [ de.
It will also be quite useful to evaluate the integral R;; defined by
k| d*p

Rij[Mi, M;, |k|] = S— : (D11)
! ! 27 Juy EIM;, pIEIM;, p — k]

Where the integration is to be made considering the 3-momentum sphere intersection regularization. Changing to the £ and ¢
variables [see Egs. (C1)-(C3)], one obtains

d
Rij[A, M;, M;, k|] =f —¢dEds. (D12)
1y, 27
Hence, one immediately finds that 27 R;; corresponds to the volume of the integration region delimited by the 3-momentum
sphere intersection regularization in the new variables E and ¢. Evaluating this quantity will be quite useful in order to (1) check

that the change of variables is valid; (2) verify that both integration orders, [de [ dE and [ dE [ de, yield the same results.
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In a later section we also show how to evaluate this integral R;; without making a change of variables, allowing for a multiple
numerical cross-check for the validity of the proposed integration procedure.

1. Integration order dedE

In this section we consider the dedE integration order, hence we integrate first over the E variable. In other words, we write
the integration of a function f(E, ¢) as
(edE) [EdedE)

Emax
/ 99 Je edEf(E, ) = f dsf dEf(E, ), (D13)
HA (dedE) E;L{edE)

1 ® min

and define the different functions E\4*®) E@edE) ¢ @dE) "y ¢(dedE) | which encompass the integration region and are functions

of the masses (M; and M), the absolute value of the external 3-momentum (|k|), and the 3-momentum cutoff, A. In the special
case in which f(E, ¢) = 1 one obviously gets the integral R;;, see Eq. (D12).

To achieve this, we start by solving Eq. (D2) with respect to E. This yields two solutions ( mm)'
M} —M? e(M2+M? .

_( - i) ZEMZ Mz; ife = +k|

En:’::m[ j’ |k|7 5] = (Mz M’)i\/k [k2 (M M )_ 2][k2 (M M )2 ] (D14)
& =M - + i—M;) —e + i+M; —g2 .
’ 2(Ik|78);\kl+s) : , otherwise.
In the special case in which M; = M; = M one gets
K2 (K* — e2)(k* + 4M? — &2

EX M, M, |k|, ]—:I:\/ ( Y&+ ). (D15)

e a 2(|k| — )(lk| +¢)

From the restrictions imposed by the cutoff in Eqs. (D9) and (D10), one can further constrain the integration region. One can
define the following functions from solving theses equation with respect to E:

ESIA M 6] = +5 £ /A% + M2, (D16)
Ef[AMy ] = —2 & [A2 40 (D17)

By definition, the variable E is positive [see Egs. (51), (52), and (C1)]. Hence, we are interested only on the functions E;\r and
E} . Furthermore, these functions intersect at a certain point (¢4,, Ex, ). Such a point is the solution to the equation E;, = E
and it is given by

enlA, M;, M;] =\/A2 +M2—\/A2 + M?, (D18)

Ea[A M, M;] \/AZ +M2+\/A2 +M2). (D19)

Also, at this point, the restriction coming from the cutoff demands one to switch from one branch, to another. This can be
more easily understood after a graphical analysis. Thus, we can unify the constraint coming from the 3-momentum cutoff in the
following equation:

EX{A,MJ',S], if & > SAJ[A,M,',MJ']
EA[A M M, e]l=1 "/ ) (D20)
EA,_[A, M;,e], otherwise.
At this point we can define the lower bound of the dE integration, Er(n‘fﬁdE ) 1tis simply given by
ESBA, My, M, (K|, €] = Ef M, Mj, [k|, €. (D21)
The upper bound of the dE integration, E\4¢“E) however, is not so simple. When dealing with equal fermion masses (M; =

M; = M), the constraint coming from the cutoff defined previously, completely fixes the upper bound. However, when dealing
W1th different masses, this is not true and a switch from E, to the function E . , can occur. This is also better understood after a

min”®

visual analysis of the interplay between the functions. To define E(%?E) we need to find other quantities of interest where some

of the previously mentioned quantities intersect. First, consider a possible intersection between the function E; and E}, i.e.,

solutions of the equation, E_; [M;, M;, |k|, &,,] = E]\L,[A, M;, €,,]. This results in four different intersection points, with only

one being meaningful to the integration region (the other ones are outside the region). Its (¢,,, E,, ) values are given by

en LA M, My [kl] = J(K| — A + M3 — A2 4 02, (D22)
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Ey LA, My, My, kil = (/K — A + M2 + /A2 4 7). (D23)
Likewise, the solution of interest to the equation E_; [M;, M;, |k|, &,,] = E;\Lj [A, M, g,]is

el A, My, My, k] =\ JA2 + M3 — [ (k] — A) + M2, (D24)

Ep,[A, M, M, k] = (/A2 + M3 + (k| = A) + M?). (D25)

Second, the equations E;\, = E_. are equal in four different points, with two of them being useful for our purposes, &, and &, .

They can be calculated to yield
£a, [M;, M, |k[] = —\JI® + (M; — M;)* = —¢q,[M;, M}, |K[]. (D26)

To each of these ¢ points there are corresponding E values given by

1 (M; +M;)
Eq, [Mj,M;, |k|] = Emvkz + (M; — M;)? = —E,,[M;, M, |k|). (D27)
i J

From the above, one can observe that, E,,, E,, — oo for the degenerate mass case, meaning that the two equations, E;rin and
E, .., are never equal. However, for different masses, there will exist two switching points, symmetric with respect to & [see

Eq. (D26)]. Thus, as previously alluded to, increasing the difference between the masses, causes E,, and E,, to decrease and the

upper bound E{9¢9E) ceases to be defined by E, switching to E. . In the case where M; > M, one can write
_ ife <e,[A, M;, M;, |k|] and
M;>M; E—. M.’M,’ k , , Y1 ) is j
E 1A My, My k], 6] = { Pt i VL2 g g k) < B, AL M M. kD (D28)
EA[A, M, Mj, €], otherwise.

In the opposite mass case, M; > M;, the upper bound is

_ g if e > €, [A, M;, M;, |k|] and
ESMUPMIIA, My, M, k), 6] = | ErnlMi My IRL el KD < E LA, Mo M, K] (D29)
EA[A, M;, M}, €], otherwise.

As explained before, for the degenerate mass case, the upper bound is trivially given by the cutoff restriction only, i.e., E,.
Gathering all this information, one can write the upper bound of the dE integration, E%9E)  ag

max

(M;>M;)

Emax [AaMian’ |k|’8]’ lfMl>Mj
ESOIN, Mi, Mj, k|, €] = { M MO(A, My, My, kD 6], i My < M, (D30)
EA[A, M;, M, €], otherwise.
Finally, taking into account all the intersections of interest, one can write the lower bound of the de integration, er(fiidE ), as
if M; > M; and
& M's M‘s k ) ' v
eDIN, My, Mj, k] = | Een M My 1K) ExTA, Mi, My, &0, My, M, k|11 > Eq, [M;, Mj, kl] (D31)
ey, [A, M;,M;, |k|], otherwise.
The upper bound, on the other hand, is given by
if M; < M; and
e [M;i, M, K|, i j
SN, M, My k) = | ot M K] EALS, My, My, €, (M, Mj, KI1) > Eqo[Mi, M;, K] D32)
&[N, M, M;, |k|],  otherwise.

One can check that the size of the integration region gets smaller with increasing |k|. This is a consequence of the regularization
used in this work. As explained earlier, increasing the value of |k| is equivalent to increasing the distance between the center of
two 3-momentum spheres of radii A. For |k| = 2A the spheres no longer intersect and the integration region should be zero.
Hence, to improve the numerical implementation of the calculation, one can additionally include a condition to only calculate
the integral if 0 < |k| < 2A.

In Fig. 14 we show the region of integration

(dedE) E(ds:dE)

Emax max
de dE
é,_\(d}“)(IE) E(d.EdE)

“min min
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dE)

(de
/ Fra  dE for fixed values of A, |k| and different values of M;, M;, with M; = M, in the

(dedE)
FIG. 14. Region of the integration fg e, de icae)
left panel, M; > M; in the middle panel,ml;nd M; >m11nl/1,- in the right panel. The full black line is the upper limit of the integration over the
variable E, EC*E)[ A, M;, M, |k|, &] [Eq. (D30)] while the dashed black line is the inferior bound EY*“*’[A, M;, M}, |k|, €] [Eq. (D21)]. The

red dots represent the minimum and maximum values of the integration over ¢, sififldE)[A, M;, M;, |k|], and 8,(;’;{’5 A, M;, M;, |k|], respectively

(Egs. (D31) and (D32)]. In each plot we also give the values for the area of each integration region, which corresponds to evaluating the R;;
integral, defined in Eq. (D11).

for fixed values of A, [k|, M;, and M;. We consider the three possible scenarios of M; = M;, M; > M, and M; < M; in the left,
middle, and right panels of Fig. 14, respectively. For simplicity, we fix the cutoff to A = 1 GeV and consider different values of
|k| and masses. The goal is to provide different scenarios for easier reproduction of these results. We also show the values for the
different areas resulting from integrating the region [see Eq. (D12)]. As discussed before, calculating these areas corresponds to

evaluating the R;; integral first defined in Eq. (D11).

2. Integration order dEde

In this section we consider the d Ede¢ integration order, meaning that one first integrates over the ¢ variable. We write

8(({E¢Is)

de Ef®®
/ —dEdsf(E,s):f dE/ def(E,¢). (D33)
1 27 pgse - Jageen

Again, if f(E, ¢) = 1, one recovers the integral R;;, see Eq. (D12).
For this case, the starting point is finding the solutions to Eq. (D2) with respect to €. This yields two solutions (eiin):

(M}=M?)  2EM?+M?) .
——aE (MZ—M?; ’ itE = £lkl/2
+ s

e [M;,M;, k|, E] = (D34)

minlMi. M 1] —2E (M2 —M2) £\ I 4E> = (M~ M, ) I4E? (MM, )] ,

yTE—E . otherwise.
For equal masses M; = M; = M one gets
K*(4E? — K*)(4E? — K> — 4M?

et M, M, k|, E] = i‘/ ( X ). (D35)

4E? — k?

As before, the cutoff restrictions to the integration region can be obtained by solving Eqgs. (D9) and (D10) with respect to ¢.

It yields
e [A M, E] = 2E £ 2,/ A2 + M?, (D36)

sxf[A,Mj, E]=—2E+2, /A + M} (D37)

The upper and lower bounds of the de integration, £?£4%) and £““£%*) can be defined from these equations. Starting with the

upper bound, it is defined by the functions &, and SX/_ which intersect at the point (E,,, &,,), previously defined in Egs. (D24)
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and (D25). Hence, the upper bound of the de integration, 4249 can be defined as

> ¥max

et [A, M}, E], ifE>E,[AM;,M;, |k|]
eWEA A M;, M, k|, E] = /+\/ J Z Er i»M; O38)
8min[Mi7Mj1 |k|, E], otherwise.

Similarly, the lower bound is defined by the functions & ; and ¢} . These functions intersect at the point (¢, , Ey,), defined in
Egs. (D22) and (D23). Thus, we can write

ex A M, ET, ifE > E,[A,M;, M, |k|]

. (D39)
eninlMi, Mj, k|, E], otherwise.

dEd
e A, Mi, M, [kl E] = {

As with the integration order considered in the previous section, dedE, depending if one is considering equal or different
fermion masses, the lower bound of the dE integration, £'“£%*) may be defined by the intersection of the functions e withel. |
by the intersection of & with 8j(j. When the fermion masses are equal, the lower bound
is given by the first intersection mentioned, i.e., when ¢_; = e;in. This occurs at the point (E,, &) defined by

min

with &, or by the intersection of &

min

1
EalMj, Mj, k|l = S/ + (M; + M; %, (D40)
(M? — M?)\/K* + (M; + M2
salMj, M, 1k|] = — ' - : (D41)
M; +M;)

If M; > M, the lower bound of the dE integration can also be located at the above intersection point E,. However, for certain
values of the parameters AM;, M, and |k|, the lower bound of the dE integration can occur at the intersection between Enj:m and

Ep,- This intersection also occurs at the point (&,,, E,, ), defined in Eqs. (D22) and (D23). Hence, we can write:

i>M; E [AvMivM‘a k]7 if&‘_ [AﬂMiﬂga[Mi’M'9|k|]] >8a[MiaM‘a|k|]
ES " ta, My, My e = AR " ’ (D42)
Ey[M;, M;, |k|], otherwise.

Likewise, for the opposite-mass case in which M; > M;, one can realize that the lower bound of the integration can occur at the
point E, or it may occur at the intersection between ¢_; and 8‘,4(,, defined by the point (E,,, &,,) given in Egs. (D24) and (D25).
; >

Thus, we write

M E,[A, M, Mj, k|1, if eX [A, M;, ea[M;, M}, |k|]] < ea[M;, M, |Kl],
EW M M, M =] : il i j (D43)
Ey[M;, M;, |kl], otherwise.
Collecting these conditions, we can finally define
Emw LA, M, M. KL if M; > M,
Es U, Mo, My, k) = { XM (A Mo ML k|1 i M < M, (D44)
Ey[M;, M;, |k|], otherwise.

The upper bound of the dE integration is much simpler to define. It is defined by the intersection between the cutoff restrictions,
which takes place when & = sj(j, in the formerly defined point (E,_, €4,) given in Eqs. (D18) and (D19). In such a way, the

upper limit is then simply given by

dEd
Erg‘lax 8)[A’Mi’Miv |k|] =EAA[A9M1"M]']- (D45)
[
In Fig. 15 we show the region of integration the other possible integration order whose areas are shown in
Fig. 14.
EGR™ e
de

for fixed values of A, |k|, M;, and M;. Again, we consider the 3. Calculating the integral R;; without changing variables

three possible scenarios of M; = M;, M; > M;,and M; < M, In this section we show how to evaluate the integral R;;,
in the left, middle, and right panels of Fig. 15, respectively. It  defined in Eq. (D11), without changing to the E and ¢ vari-
is now easy to check that one gets exactly the same areas (or, ables. This is useful for numerical cross-checks, as well as

identically, values for the R;; integral) using this integration evaluating the vacuum limit of the one-fermion line integral
order, for the same set of parameters, when comparing with  in the 3-momentum sphere intersection regularization, .A.
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1.0f A=1.0GeV] 1.0f A=1.0GeV] 1.0f A=1.0GeV]
Mi/A = 0.4 MJ/A = 0.6 M/A = 0.4
Mj/A = 0.4 Mj/A = 0.3 Mj/A = 0.7
0.5+ |kl/A=1.2 0.5}¢ |kl/A =0.8 0.5} |k|/A = 0.2
/\ . \
_________ -
S 00 t - S 00 ~ S 00 == z
‘\ /// ///
) - -
-0.5} Vo -0.5F g 1 -0.5}
\-r \ -
e //
_1ob Area_R,J_dedz_02348 cev2 _1ol Area_R,J_jdEds_03583 Gev2 _1ol Area_R,J_deds_O 1476 Gev2
0.5 06 07 08 09 1.0 1.1 1.2 05 06 07 08 09 1.0 1.1 1.2 05 06 07 08 09 1.0 11 1.2
E/A E/A E/A
(a) M; = Mj (b) M; > Mj (C) M; < Mj

FIG. 15. Region of the integration f ((,E(,g) dE f ([,,}’j,g) de for fixed values of A, |k| and different values of M;, M;, with M; = M; in the left

panel, M; > M; in the middle panel, and M; > M, in the right panel. The full black line is the upper limit of the integration over the variable
e, e“EI[A, M;, M;, k|, E] [Eq. (D38)] while the dashed black line is the inferior bound &\“:“'[A, M;, M;, |k|, E] [Eq. (D39)]. The red

dots represent the minimum and maximum values of the integration over E, E

(dEde) (A,

min

M;, M, |k|], and EMEIO[ A M;, M;, |k|], respectively

[Egs. (D44) and (D45)]. In each plot we also give the values for the area of each integration region, which corresponds to evaluating the R;;

integral, defined in Eq. (D11).

As discussed in Sec. IIC, using the 3-momentum sphere
intersection regularization amounts to performing an inte-
gral over the region defined by the intersection between two
spheres, I[(,\d. One of the spheres is centered at the origin
while the other is distanced |k| from the first, in the p,
axis, I = Sg' N Sf;. Such region can be observed in Fig. 3.
The major difficulty of evaluating the integral R;; over this
three-dimensional region lays in the fact that it is not mirror-
symmetric in the p, axis. To make the region symmetrical we
are allowed to consider in Eq. (D11) the following change
of variables: p — p + k/2. With this transformation, we are
allowed to write the R;; integral as

k|

d’p
i E 9 e, 7 5]
(D46)

Ri;[A, M

where the new region of integration is defined by the intersec-
tion of the two spheres distanced |k| from each other, with one
centered at (py, py, p;) = (0,0, |k| /2) and the other centered
at (px, py, pz) = (0,0, —|k|/2),i.e., ]I"k‘ Slﬁ/z N S‘_“,,VZ.This
new integration region is mirror symmetric with respect to all
axes, allowing for a simpler parametrization of the integration
bounds.

In Fig. 16 we show the two-dimensional cross section of
the intersection ]I/f,\d, in the p,-p. plane. Consider the more
general case of an integral / with an integrand F which is
independent of the azimuthal angle ¢:

I= /A d*pF||pl, 0]. (D47)

k|
This integral can be separated into two parts: one corre-
sponding to the upper hemisphere and the other to the lower
hemisphere of the intersection. Consider also the functions
By and By which parametrize the boundary of the upper and

lower hemispheres, respectively (see Fig. 16). Hence, we can
write I = Iy + I, where

PMax /2
_ / diplp’ / 46 sin [01F1p), 0]
0 0

Iy

2

PMax By
- / diplp® / d6sin[01F[|pl. 6], (D48)
PMin 0

IL PMax ) /2 .
I / diplp / 46 sin [91F[|p), 0]
0 0

2
PMax T
—/ d|p|p2/ dé sin [0]F
PMin Br

lpl,0].  (D49)

0.5

0.0

Pz

-0.5

-1.0f

O© Px

5 . -
15 -1.0 -05 0.0 05 1.0 1.5

Py

FIG. 16. Region of integration in the 3-momentum sphere inter-
section regularization scheme used to regularize the A integral.
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In the above, we first consider the integral of a sphere of radius pyax (the distance from the origin to the point where both
boundaries intersect, By = By, which occurs when 6 = 7 /2) and than subtract the extra volume coming from the boundaries,
By and By, up to this maximum sphere. The quantity py, is the distance from the origin to the boundaries when 6 = 0. The
quantities By, By, pmin, and pumax, Will be defined later. For simplicity, we apply the change of variables, « = cos[f] and change
the integration bounds accordingly to get

I PMax 2 -1 PMax 2 By PMax 5 —1
L / diplp / daFlpl.a] / diplp f daFlipl. o] - / diplp / daFllplal.  (DSO)
0 1 PMin 1 p B

27[ 'Min

This expression can be further simplified by breaking the d|p| integral in the first term at the point pyy, and by rearranging the
integral. Finally, we can write the integral as

PMin 5 -1 PMax 5 ;73
I=-2n </ diplp / daF[|p|, o] +/ dlplp / dOlF[|P|7Oé]>- (D51)
0 1 PMin By

At this point we define the functions that define the integration bounds. For the different hemispheres, the equations which define
the boundaries are given by

P’ sin [01? cos [¢] + p? sin [#]? sin [¢]* + (|p|cos (6] £ Ik ') = A?, (D52)

where the plus sign is for the upper hemisphere and the minus sign for the lower hemisphere. Solving these equations with
respect to cos[0] yields

A2 _ k2/4 _p2
cos[f] =+~ "7 F (D53)
k[|pl

Again, the plus sign is for the upper region while the minus sign is for the lower hemisphere. Thus, in the & = cos[f] variable
we can find write By and B; as

A2_k2/4_p2 _

By[A, |k, |pl]l = P

—BL[A, |kl, |pl]. (D54)

The quantities pyp and pyax can be derived by plugging 6 = 0 and 6 = 7 /2 in Eq. (D53) to yield

k
prinl A, K] = A — % (D55)

i
pyax[A, k] =] A2 — R (D56)
We are finally ready to evaluate the integral R;;. Applying the tools developed above, we can write F[|p|, 6] =
1/(E[M;, p+ g]E[M_j, pP— g]). Hence, we can explicitly write

PMin do
Rij[ A, My My k] = =kl | dlplp? 2 2
\/p + % 4 plk| cos [0] +Mi2\/p2 + & — plk| cos [0] + M?
PMax da
— |kl d|plp® / (D57)
P B0+ 5+ plkl cos 191+ M\ [p? + 5 — plkl cos 0] + M?
We can calculate the innermost integrals analytically:
2
kIp? 1 E g —alkip
da = - 2|p| arcsin + cte.
2 MEAM?
\/p2+"z+Ipllklcos[9]+M,-2\/p2+%—|p|Ik|005[9]+M,2» V2 B By 2
(D58)
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Using this primitive, we are finally able to write R;; as

\k\
RyTA, M, My, 1 =2 3 f dIpl|pl arcsin

n==x1

A2 "2

+2) 1 /

p=+1 YA

d|pl|p| arcsin

2
JE + M2+ p? 4 ikl lp)

M?+M?
V2 ’sz—i——;r L+ p?

M A+ (- (P 4 K

ﬁ kTZ M+M/ +p

(D59)

In Table V we give some results from solving the integral which can then be directly compared with the results obtained when

using the variables E and ¢, given in Figs. 14 and 15.

APPENDIX E: NUMERICAL RESULTS FOR
THE TWO-FERMION LINE INTEGRAL B,

In this section we show numerical results for the two-
fermion line integral By by choosing a particular value for the
cutoff, A, and constant values for the fermion masses M; and
M;. This means we are not supposing any model for the un-
derlying fermions dynamics, meaning that the fermion masses
are not temperature and/or chemical-potential dependent. We
chose to perform such study in order to isolate the temper-
ature and chemical-potential dependence of the B, function.
We show several results for this function, in a diverse set of
scenarios, in order to simplify the task of reproducibility. As
already stated, the calculation of this integral is extremely im-
portant to studies involving mesons masses, the phase diagram
of strongly interacting matter and the transport properties of
the quark-gluon plasma in the relaxation-time approximation,
in the context of the NJL model and similar models.

In Fig. 17, we show the result for the real and imaginary
parts of the By function, in the vacuum, as a function of
the zero component of the external momentum, normalized
by the cutoff, ky/A. We fixed the 3-momentum cutoff, A =
1 GeV, the fermion masses are equal and fixed to M; = M; =
0.4A and the magnitude of the external 3-momentum is zero,
k| = 0.0.

In Ref. [11], other values for the above parameters are
chosen, yielding a slightly different result. However, when

TABLE V. Values for the R;; integral, defined in Eq. (D11), for
different values of the cutoff A, effective masses M; and M;, and

absolute value of the 3-momentum, |k|. The R;; integral is iden-
IsdE) E(zlszlE)

tical to the area defined by the integral j (dsdE, de fEde) dE and

E(dEds) .y(dE/
fE;;}gz,S) dE j(;"gge, de [see Eq. (D12) and Figs. 14 and 15 for the

min

evaluation of the R;; using the E and ¢ variables].

A[GeV]  M;[GeV]  M;[GeV]  |k|[GeV] Ry [GeV’]
1.0 0.4 0.4 1.2 0.2348
1.0 0.3 0.6 0.8 0.3583
1.0 0.6 0.3 0.8 0.3583
1.0 0.4 0.7 0.2 0.1476
1.0 0.7 0.4 0.2 0.1476
1.0 12 0.2 0.5 0.2334
1.0 0.2 1.2 0.5 0.2334

(

using the same parameter set, we were able to obtain exactly
the same results presented in Ref. [11]. As already discussed,
our approach only differs from the one proposed in that work
if one is considering the case with |k| > 0, being exactly the
same if |k| = 0.

As discussed previously, one must consider a pole shift
in order to apply the Sokhotski—Plemelj theorem. The way
in which this shift is done, only changes the behavior of the
imaginary parts of the By integral, as shown in Eqgs. (46) and
(48). In each panel of this figure, we show the result for a
specific shift: on the left the mass shift is used, M?> — M? — ie
while, on the right, the external momentum shift is used, kg —
ko + ie. As predicted, using the mass shift yields a Im[By]
function that is symmetric with respect to ko while, using the
external momentum shift, Im[By] is antisymmetric. By con-
sidering the opposite sign in the shifts, M?> — M? + ie and
ko — ko — i€, gives an overall minus factor in the imaginary
parts, yielding a total of four possible different scenarios for
the imaginary part of By. In the following numerical results,
we always use the mass shift M? — M? —

Although the specific choice for the pole shift changes
the properties of the imaginary part, it does not change the
results for the cross sections in the NJL model, for example.
Indeed, in order to study cross sections in the NJL model,
the meson propagators are calculated which are dependent
on the quark-antiquark polarization function, as discussed
in earlier sections of this work. These quantities are calcu-
lated using the By function and display the same symmetry
properties as the By integral. However, in the differential
cross-section calculation, one only needs products of me-
son propagators with the complex conjugate of other meson
propagators, rendering the calculation invariant under a spe-
cific overall sign of the imaginary part. For more details see
Appendix F.

In Fig. 18, the By function is shown as a function of the
external momentum, in the vacuum. In the left panel of Fig. 18
is shown as a function of the zero component of the external
momentum, ky/ A, while, in the right panel of Fig. 18 is shown
as a function of the magnitude of the external 3-momentum
|k|/A. In the left panel, four different values for |k| are con-
sidered and, analogously, in the right panel, six values k are
fixed, making the information in both plots complement each
other. In the calculation of By as a function of ky, we only
show results for positive ko since the function is symmetric
with respect to k.
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4 shift: M?2 - M? - je
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& of-
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T/AN=0.0
/Ji,j//\ =0.0
_al Mij/A = 0.4 ]
[KJ/A = 0.0
-2 -1 0 1 2
ko/A
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2l .
£ 0 | 1
I I
I !
I 1
_2t : ,/ A =1.0 GeV i
: ’,/’ T/IAN=0.0
- /Ji,j//\ =0.0
_al M; /A = 0.4 i
[k|/A = 0.0
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ko/A\

FIG. 17. By integral in the vacuum as a function of the zero component of the external momentum, normalized by the cutoff ky/A. The
cutoff is fixed to A = 1 GeV, the fermion masses are equal and fixed to M; = M; = 0.4A, and the magnitude of the external 3-momentum,
|k| = 0.0. The full and dashed lines correspond to the real and imaginary parts part of the B, integral, respectively. In the left panel is considered
the mass shift M2 — M? — ie while, in the right panel, the external momentum shift is considered, ky — ko + i€.

From the results of the By as a function of |k| (Fig. 18,
right panel) one can see the effect of the 3-momentum sphere
intersection regularization. The absolute value of the external
3-momentum |k| is the distance between two spheres, each
with radius A. At |k| = 2A the spheres no longer intersect
and the By function should be zero. Indeed that is the ob-
served behavior in the right panel of Fig. 18. In fact this is

——— |k|J/A=0.0 [kl/A=1.0
4 == |kyA=0.5 =—==|kI/A=1.5 ]
/’.f"’m\—_—_}
2r ¢ \ ! 1
// // \ \\ :
/ \
,"/ ! \ l\\\\i
o N,
o O \N
-2t 1
A =1.0 GeV
T/IAN=0.0
_al N =0.0 ]
Miy/A = 0.4
0.0 0.5 1.0 1.5 2.0 2.5
ko/A

observed in all the calculations shown in this work, even at
finite temperature and finite chemical potential, as we will
see later. Moreover, we can observe that the presence of an
imaginary part is not constant, certain scenarios do not have a
finite imaginary part.

In the results concerning the dependence on ko (see
Fig. 18, left panel), we have fixed |k| to four specific values:

3 T T T T
________ A=1.0 GeV
~~. TIA = 0.0
2F \\\ l.lu//\ =0.0 ]

M, /A = 0.4

——=ko¢/A=0.0
-1 == ko/A=0.5]
ko/A=1.0
-2F —_— ko//\:].s ]
ko/A =2.0
== ko/AN=2.5
-3 1 L 1 L
0.0 0.5 1.0 1.5 2.0 2.5
Ik|/A

FIG. 18. By integral in the vacuum as a function of the zero component of the external momentum, normalized by the cutoff ko/A (left
panel) and as a function of the magnitude of the external 3-momentum, normalized by the cutoff |k|/A (right panel). The full and dashed lines
correspond to the real and imaginary parts part of the By integral, respectively. The cutoff is fixed to A = 1 GeV, the fermion masses are equal

and fixed to M; = M; = 0.4A.
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FIG. 19. B, integral for zero chemical potential as a function of the zero component of the external momentum, normalized by the cutoff
ko/A. The full and dashed lines correspond to the real and imaginary parts part of the By integral, respectively. The cutoff is fixed to A =
1 GeV, the fermion masses are equal and fixed to M; = M; = 0.4A. In each panel, we fix the magnitude of the external 3-momentum,
lk]/A = {0.0,0.5, 1.0, 1.5}, and the temperature was fixed to different values, corresponding to lines with different colors.

lk|/A = {0.0,0.5, 1.0, 1.5}. We do not consider larger values
because, for |k| > 2A, within our approach, the By function is
automatically zero due to the regularization proposed in this
work. Interestingly, we can also observe from this plot that
the starting ko point for a finite imaginary part Im[By] is |k|
dependent while the ending point is not. Also, differently from
the previous case, at kg = 2A the function remains finite. This
is not surprising since the regularization is made only over
the loop’s 3-momentum while the integration over the zero
component of the momentum inside the loop is made using the
Matsubara formalism, with the sum calculated from negative
to positive infinity [see Eq. (42)].

In Figs. 19 and 20, we show several results at finite tem-
perature and zero chemical potential (u; = p; = 0). In the

first, By is displayed as a function of ky while, in the latter,
as a function of |k|. Following the previous pattern, the cutoff
and masses are still fixed to A =1 GeV and M; =M; =
0.4A, respectively. In Fig. 19, specific values for the ratio
|k|/A are fixed while, in Fig. 20, some values of k¢ are fixed
instead.

For finite |k| (observe Fig. 19), the starting and ending
points for a finite imaginary part, are not temperature depen-
dent. Indeed, in each panel of this figure, the imaginary part
stars and ends at the same values of k. This can be understood
from the equations which define the imaginary parts: they
can be nonzero exclusively inside precisely defined kinematic
regions, which are not temperature or chemical-potential de-
pendent, see Egs. (C16) and (C17).
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FIG. 20. By integral for zero chemical potential as a function of the magnitude of the external 3-momentum, normalized by the cutoff |k|/A.
The full and dashed lines correspond to the real and imaginary parts part of the By integral, respectively. The cutoff is fixed to A = 1 GeV, the
fermion masses are equal and fixed to M; = M; = 0.4A. In each panel, we fix the magnitude of the zero component of the external momentum,
ko/A = {0.0, 0.5, 1.0, 2.0} and the temperature was fixed to different values, corresponding to lines with different colors.

When comparing the zero with the finite-temperature
cases, we can observe that the there is an extra imaginary
contribution, which does not exist at zero temperature, present
at low values of ky, for finite values of |k|. This extra contri-
bution to the imaginary part, not present in the vacuum, is
caused by the presence of a finite contribution coming from
the scattering part of the function, Im[By]. In the vacuum
only Im[By ] is nonzero, since only pair creation and pair
annihilation processes are possible. However, at finite tem-
perature, the scattering channel opens. In these figures we
can also observe the effect of the regularization, indepen-
dent of the temperature, at |k| =2A, the By function is
Zero.

Next, we analyze the complementary physical scenario
from the one discussed above, considering zero temperature
and finite chemical potential. For simplicity, we considered
degenerate chemical potentials, i.e., u; = (;. However, the
formalism presented is perfectly suited to study cases with
different chemical potentials, ; # ;. Such scenario arise
in the study of neutron-star matter and heavy-ion collision
experiments where asymmetric nuclear and quark matter is
present. Following the previous analysis, we show the By
integral as a function of ko/A and |k|/A, in Figs. 21 and
Fig. 22, respectively.

At zero temperature, only for values of chemical potential
higher than the fermions masses one gets results that differ
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FIG. 21. B, integral for zero temperature as a function of the zero component of the external momentum, normalized by the cutoff ky/A.
The full and dashed lines correspond to the real and imaginary parts part of the B, integral, respectively. The cutoff is fixed to A =1 GeV,
the fermion masses are equal and fixed to M; = M; = 0.4A. In each panel, we fix the magnitude of the external 3-momentum, |k|/A =
{0.0, 0.5, 1.0, 1.5} and the chemical potentials are equal and fixed to different values, corresponding to lines with different colors.

from the vacuum result. This characteristic is to be expected
since at zero temperature, 7 = 0, the Fermi-Dirac distribu-
tions present in the By integral act as step functions. Hence,
below a certain energy regime, only the vacuum contributes:
only when the momenta is higher the Fermi’s momenta, for
a fixed chemical potential, does this momentum contribute to
the momenta integration. This feature is sometimes termed the
silver blaze property [87,88].

Previously, when discussing Fig. 19, we argued that the
values of ky, which define the intervals in which the imaginary
part is finite, are neither temperature or chemical-potential
dependent. However, Fig. 21 seems to contradict this state-
ment, since increasing the chemical potential drives the onset
of the imaginary part to larger values of ky. However, this is a

feature of Egs. (C12) and (C13) themselves and not caused by
the restriction imposed by the endpoints of the integration. In
these figures, as expected, we continue to observe the general
effect of the regularization, with By = O for |k| > 2A.

Lastly, in Figs. 23 and 24, we show the completely
in-medium scenario, where finite temperature and finite de-
generate chemical potential are considered. The general
behavior is very similar to that found in the previously dis-
cussed scenarios, presenting only quantitative differences.

In all scenarios considered in this section, a general pat-
tern can be observed in the real part of the integral, Re[By]:
it changes behavior when there is a switch on/off of the
imaginary part, be it as a function of ky or as a function of
|k|. This can be understood taking into account the nature of
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FIG. 22. B, integral for zero temperature as a function of the magnitude of the external 3-momentum, normalized by the cutoff |k|/A. The
full and dashed lines correspond to the real and imaginary parts part of the By integral, respectively. The cutoff is fixed to A = 1 GeV, the
fermion masses are equal and fixed to M; = M; = 0.4A. In each panel, we fix the magnitude of the zero component of the external momentum,
ko/A = {0.0, 0.5, 1.0, 2.0} and the chemical potentials are equal and fixed to different values, corresponding to lines with different colors.

the integration for a specific set of values of {ko, |k|}. For
the imaginary contribution to be nonzero, there must exist
a singularity inside the integration bounds. Whenever one is
dealing with a pair of values for {ko, |k|}, which lies outside
the integration bounds, there should not be any singularity
within the integration. When the opposite happens, there is
a singular point inside the integration region and the now-
improper integral is assigned a value by the application of the
Cauchy principal value.

In the case where there is a model for the fermion masses,
which encodes the temperature and chemical potential de-
pendence of the fermion masses, the interpretation of the
results gets more complicated. For instance, in the case of
the NJL model, one foresees that, as temperature increases, at

zero chemical potential, the quark effective mass decreases.
A similar pattern is expect at finite chemical potential. In
such cases, the behavior of the By function as a function of
temperature and chemical potential is different and outside the
scope of this section. Here our aim was to simply analyze the
thermodynamic structure of the two-fermion line integral By
by itself.

APPENDIX F: CROSS SECTIONS

In this section we lay out the analytical tools to cal-
culate the differential cross section for several quark-quark
and quark-antiquark processes within the context of the NJL
model. Since these quantities depend on the meson propagator
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FIG. 23. B, integral as a function of the zero component of the external momentum, normalized by the cutoff ky/A. The full and dashed
lines correspond to the real and imaginary parts part of the By integral, respectively. The cutoff is fixed to A = 1 GeV, the fermion masses are
equal and fixed to M; = M; = 0.4A. In each panel, we fix the magnitude of the external 3-momentum, |k|/A = {0.0,0.5, 1.0, 1.5}, and the
temperature and chemical potentials are fixed to different values, corresponding to lines with different colors.

and, furthermore, are functions of the external momentum
of the propagator; they can be used to gauge the differ-
ence between using the regularization proposed in this work
versus the usual regularization used in the literature. Hence,
we compare the cross section obtained in this work with the
one provided in Ref. [12]. The different cross sections can
be obtained by integrating over the differential cross sec-
tions [12,13,16].

As usual, in order to represent the different scattering pro-
cesses, we use the Mandelstam variables, s, ¢, and u. These
are defined by

(F1)
(F2)

s = (p1+ p2)*,
t=(p1 —p3),

u= (pi — ps), (F3)

with the four-momenta p;i € {1,2,3,4} (i € {1,2} incom-
ing particles and i € {3, 4} outgoing particles, see Fig. 25).
Momentum conservation implies the identity s+ ¢ +u =
Z?:l ml-z, allowing one to use the relativistic kinematics of
the two-particle scattering to write all quantities of interest
in terms of the s and ¢ channels, eliminating the need to a
direct reference to the u# channel quantities. By definition, the
differential cross section is do,—,34/dt. Thus integrating over
the ¢ channel will yield the cross section of a given process as a
function of the center-of-mass energy s. In the center-of-mass
frame it can be checked that the momentum of the exchanged
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FIG. 25. The three possible Feynman diagrams involved in quark-quark and quark-antiquark scattering processes at leading order in a
1/N, expansion of the transition amplitude [13] (time is considered in the horizontal axis). The # and u channels arise in the scattering between
quarks and the ¢ and s channels arise in the quark-antiquark scattering processes.
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particle in the ¢ channel is given by In the u channel, the momentum components are
m> —m? 4+ m? —m?
k(gu) _ ( 1 2 3 4) ’ (F6)
2Js
2 2 2 2
mi —m; —m3+m ) 5
k(r):( 1 2 3 4’ F4 2 o 2 9
: NG R P S R S S0)
4s
m2—m2—m2+m22 F7
|k|(l‘) — \/( 1 2 4 3 4) —t. (FS) ( )
s

J

Naturally, in the center-of-mass reference frame, k(()s) = /s and |k|®) = 0. The scattering angle, ©®, in the center of mass
reference frame, can be written in terms of the incoming and outgoing masses and the s and ¢ channels. It can be found to be
given by

(12 — 3 5) (2 = 2 +5) — 25(m + 2 —1)

Mo, m) (s, i, m3)

©® = arccos , (F8)

with A(a, b, ¢) = a®> + b* + ¢* — 2ab — 2ac — 2bc, the so-called triangle function. Thus, we can parametrize the differential
cross sections in terms of the Mandelstam variables s and 7.

At leading order in an 1/N, expansion of the transition amplitude matrix M for the quark-quark scattering, only the ¢ and
u channels contribute while, for the quark-antiquark scattering, only the ¢ and s channels are involved [12,13]. The Feynman
diagrams for the quark-quark and quark-antiquark scatterings can be observed in Fig. 25. Taking into account all symmetries,
at finite temperature and chemical potential there are a total of six different quark-quark processes, the corresponding six
antiquark-antiquark processes and 15 different quark-antiquark processes. When dealing with exact isospin symmetry, at zero
chemical potential, there would exist only four different quark-quark processes (uu — uu, ud — ud, us — us, ss — ss) and
seven different quark-antiquark processes (uu — uu, uu — dd, uti — 55, ud — ud, us — us, s5 — ul, 55 — s5).

Starting with the quark-quark scatterings processes, the matrix elements in the ¢ and u channels are formally given
by [12,13]

—iMP7H = 80,80, { (AP TP ulpr]) iD3 115 p1 — p3] (@lps] T ulpa])

+ (alpsliys T, ulp1) iD5,[t; p1 — ps] (@lpalivs T)*" ulpal)}. (F9)
—iMIP7 = 8,0, 8cse, { (Alpa] T ulp1]) iDS,[us p1 — pal (@lps1 T ulpa])

+ (@lpaliys T/ ulp1) iD5,[us pr — pal (@lpslivs T, ulpa1)}. (F10)

Here, u[p,] c¢i, and f; refer to the spinor, color, and flavor of the respective ith particle with momenta p;,. The quantity

Tf' )»aqff, with q;’_ = {0uy,, das;, Osf,}» a vector that represents the flavor component of the Dirac spinor of the particle
w1th momentum pi. Following the calculation performed in Ref. [12], one can arrive at the following matrix elements squared:

4N2 STIMPEHP = | TR DS T P, + | TP DL T s, (F11)
¢ s.c
4N2 Z ’Mlz_}M | Tfm DS [u] Tﬁfz | Uy + | TM[ DP plul Tf3f2 } Up4lty3,s (F12)
4N? Z Mllz_)34Mll£2_>34* = m( Taﬁfl Dib[t] be4f2 )(%f“f‘ ng[”] be}f2 ) (t1%t24 - S12534 + ”14”23)
= . (TP DA T ) (T DL T ) sty = sipsag =+ uguzy)
= . (TP DO T ) (T Dl T )ty = s+ wfafy)
+ o (T DG TP ) (T DG TR ) (i, = sihsty + uiui). - (F13)

025206-51



RENAN CAMARA PEREIRA et al. PHYSICAL REVIEW C 109, 025206 (2024)

TABLE VI. t-channel propagator for each particular quark-quark process.

12 — 34 process (TS DES [ Tf“f2 )

ud — ud, du — du %Dg's + 2fD’)‘S ngls + DPIS

us — us, su — su ZDpls + fDPlS Dopgls fD‘;S'S — ngg‘S

ds — ds, sd — sd D — f Dy —2D5 + %Dy — 3D
—— s + z\f Dy + ” 2D’ + DY + ZD5 + 1D
dd — dd %D(f;&s _ 2\/7D53‘S + 2[DP\S + DI — fox\s T DP\S

2pPIS _ 42 pPIS | 4pPIS
5§ — 88 Dy — H*Dos + 5Dy

Here, the sum is to be made over spin and color degrees of freedom. The quantities s, ¢

i L + and u are given by

X =x—(mi £m;), (F14)

with x the appropriate Mandelstam variable, i.e., x = s, ¢, u. The propagators, in a given channel, are evaluated with the
appropriate momenta using Eqgs. (F6) and (F7): DP‘S[I] = Pls[k(()’), |k|®] and DPlS[u] = DaPILS[k(()“), |k |@1.

For a given quark-quark scattering process, one can use the above equations in order to calculate the squared matrix elements
|M;|?, |M,|* and the interference term M, M?. To this end, for a particular quark-quark process, one must evaluate the
different scalar and pseudoscalar propagators which are involved in such scattering. For the ¢ channel this means calculating
Tdf 3h DS,LS [£] be af2 while, for the u channel, one has to calculate Taf ihi Df;‘f[u] be 2 Asitis evident, these quantities are process
dependent, since one must specify the flavors of the incoming and outgoing particles. In Tables VI and VII we show the explicit
form of these propagators for all quark-quark processes in the ¢ and u channels, respectively.

Moving to the quark-antiquark scatterings processes, the matrix elements in the s and # channels are formally given by [12,13]:

—iMP7 = 800,800, Y (OIPA TP ulpi1)iDS,[s: p1 + pal (@lps] T vipa))

a,b
+ (Vlpaliys TL ulpy1) iDhys; py + pa) (@lpsliys T vipal) ), (F15)
—iMPT =80, 080e, Y @I TSP ulpi1) D31t p1 — ps] (Vps] T vipa])
a,b
+ (alpaliys TS ulpil) iD5ylt; py — p3) (Blpsliys TP vipal) ). (F16)

Here, the notations are the same as for the quark-quark scatterings with the addition that v is the antiquark spinor. Again,
following Ref. [12], one can arrive at

1 3412 . 2 2
4N? Z M3 = | T Dy ls] %faﬂ “sipsiy + | T Dy ls] %ﬁﬂ |s12551 (F17)
c

TABLE VII. u-channel propagator for each particular particular quark-quark process.

12 — 34 process (T S+ DZI’S [u] bezfz )
ud — ud Dy —iD} +iD5P + D5 = 2D, 4 s
0
du — du D}y’ +iD}}’ — D5 + D5’ = 2D,
us — us Dl — zDﬂS + zDP‘S + DP‘S 2D+ e+
su — su D4 +iDh? — iDL + DL = 2Dk -
ds — ds Dy — iDEF + D + DI = 2DK0‘,{0
sd — sd Dy +iDgy — D4 + DY = 2D
—— D5 + 2[ Dy + 22D + D”‘S + 205 + D
dd — dd 2D — 2,205 + 22058 + DY — 205 + ADgS
5§ — 88 %Dg(l)s ‘[Dgés + 4DP‘S
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TABLE VIII. z-channel propagator for each particular quark-antiquark process.

12 — 34 process

(Tf4/l DPlS[I] Tf3f2 )

ud — ud,du — du
us — us, su — su

ds — ds, sd — sd

%DPIS + 2J§DP\S

DP|S + DP\S

P|S PlS P|S PIS LIS
%Do +fD Dos - TDas - ’Dss
P|S PIS P|S P|S P|S
%Do fD Dos + fD38 - ’Dss

gDP|S+2\/>DP\S+ szP\S+D53\S+ ID;‘;S"' DP\S

uu — uu

uit — dd DI} =Dy +iD5 + D3 = 2D,

Uil — 5 DY} —iDfF + D} + DEF = 2D+ o+

dd — ui DiF + lDP S ,D;’{S +Dy =2D, -

dd — dd 2D — 2, /2D + 2200 4+ DY — 2058 + 1Dk
dd — s5 D —iDf + D4 + DL = 2Dyo 0

s5 — ull DY} + Dt —iDE® + DEF = 2Dy -

55— dd Dy + D”S iD3g’ + D77’ = 2D

5§ — 55 %DPlS - %D&‘f + %Dgf

1 1234 S S3f> P faf:
I oM = | T/0 DS, IN T Prive, + | T/ DEIN T Priyts, (F18)
¢ s
4N2 Z M;2—>34Mt12—>34* — W(T;th] ng[s] be3f4 )( 7:1ﬁ‘f1 Dib[t] be3f2 )*(SES:—;‘ _ Mﬂu% + tl_gtz_z)
¢ s ¢
— — (T DS ISV T ) (THA DN T2 ) (sthsth — upguzs +153650)
4Nc a ab b a ab b 12734 1423 1324
4N, (Tfol DP pl5] szﬂ )( Tafm Dib[t] TbM2 )*(S1_253_4 — ity +150))
s P T TR (LS P 1 T YE o o -
4N, (TP7 DG Is1 T ) (T DG I T ) (s — uifyud + 1502). (F19)
C

As before, the quantities Tf“c1 Pls[s] B and

Tf“f ' pf ‘S[t] Tﬁf 2 have to be calculated for each quark-
anthuark process and DP‘S[ 1= Pls[f 0], DP‘S[I] =

Dt ‘S[k(’) |k|®]. The results of such calculations are shown in
Tables VIII and IX for all processes in the ¢ and s channels,
respectively.

In the case of the quark-quark (or antiquark-antiquark)
scatterings in the ¢ channel (see Table VI for quark-quark
processes), since the incoming and outgoing particles are the
same (1 <> 3 and 2 <> 4), from conservation of electric and
flavor charges at the vertexes we can deduce that a flavorless
quark-antiquark combination of the same flavor is being ex-
changed. This means that only mesons without electric charge
and strangeness can be involved. Hence, one expects that only
some combinations of the flavorless, neutral, pseudoscalar (n,
n’, and 7y) and scalar (o, fy, and ag) mesons will contribute
to the quark-quark (antiquark-antiquark) scattering in the ¢
channel.

The same reasoning holds for the r—channel in quark-
antiquark processes (see Table VIII) when the incoming and
outgoing flavors remain unchanged. As there is direct corre-

(

spondence (1 <> 3 and 2 < 4), with conservation of electric
and flavor charges between incoming and outgoing particles,
the exchanged combination corresponds to a quark-antiquark
pair of the same flavor and the exchanged meson must be
flavorless. When the flavor of incoming and outgoing parti-
cles changes, which can only happen if the flavor of the two
incoming is the same and different from that of the outgoing
particles ff — ff/, then the exchanged meson is given by
f?/ or f f’, depending on the ordering.

In quark-quark (or antiquark-antiquark) processes in the u
channel (see Table VII quark-quark processes) the exchanged
meson, in the case of different flavors (ff" — ff’), has a
determined composition ( f?/ or f'f depending on the time
ordering). In the case of equal flavors (ff — ff) the same
reasoning leads to a flavorless combination which corresponds
to a mixture of the flavorless mesons.

For quark-antiquark processes in the s channel (Table IX)
we have the case of equal flavors and an intermediate undeter-
mined flavorless state (which implies a contribution coming
from the exchange of all flavorless mesons). The outgoing
particles can also be any flavorless combination (i.e., ff —
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TABLE IX. s-channel propagator for each particular quark-antiquark process.

12 — 34 process

(Th DP‘S[Y] Thf3f4 )

ud — ud DP‘S

us — us

ds — ds DF —

du — du DP‘S + DP'S
Su — Su DP‘S + Dm
sd — sd DP‘S + szls

uu — uu

ut — dd, dd — uu
uu — s, 8§ — uu
dd — dd

dd — 55,55 — dd

- - P|s
S5 — 5§ %D ‘

iD!F + D! + DS = 2D

b +2,/2D

n*lag

Dy —iDP +iD%} + DI = 2Dg+ )+
sz;“ + zD"‘S + D§’7'5 = 2DK0‘K0
i} + D =2D__ -

iD%) + DL = 2DK7‘,(7
DP\S +DP|S ZDKTJ‘

PIS PIS PIS PIS PIS
03‘1 2fDOgt+D33t+\/’D32|§,t+%D8§,t
zDg(\)s n szP|s DP\S n DP'S

zDg(\)s n fDP|s
2Dg(\)s _2fDP|S n szP\s +DP|S

PIS Pis
RN,

4ngg\S + 4DP\S

PIS PIS PIS
A )

PIS P|S
D + 3Dy

PIS PIS PIS
Dos + szg — 3Dy

). In the case of different flavors the intermediate state is
determined.

Finally, after evaluating the different matrix elements, one
is able to calculate the differential cross sections for quark-
quark and quark-antiquark processes. It is given by [12,13,16]

doir 34 1 1 12—34
_ - M2
dt  16ws],sT, 4N2 ;| Sl

_ Mt12»34|2_
(F20)

Here, st can be calculated from Eq. (F14). The total cross
section in the medium is then given by [12,13,16]

012—>34[Ta Mus Has Hss S]

doir_s
=/ ar =R B F as, T
A

(1 — felEs F 4, TD. (F21)

Here, the quantities inside curved brackets represent the so-
called Pauli blocking factor. This quantity is essential since
it accounts for the occupation of particles in the outgoing
state [13]. In this quantity, fg[E, T], is the Fermi-Dirac dis-
tribution, defined in Eq. (50). The F signs in the Fermi
distributions of the integrand refer to the particle and an-
tiparticle nature of each outgoing particle (respectively). The
integration limits can be calculated by finding the ¢ values
corresponding to the maximum and minimum scattering an-
gles. Hence, by considering cos[®] = =1 in Eq. (F8) and
considering the physical cases in which s > (m; + m,)> and
s > (m3 + m4)?, one can solve for ¥, to give

= 4 m - (s +mi —m3) (s + m3 — mj)

2s
(s +m} —m3)’ (s +m3 — m3)”
4o, STTMT) L (ST s
4s 4s
(F22)

For cross sections corresponding to processes with identical
incoming and outgoing particles (uu — uu, dd — ddss —
ss, Ui — U, dd — dd, and 55 — 55), this formula is not
valid and one should use instead 1~ = —%(s —4m?)andtt =
0[13].

At this point we comment on the previously mentioned
“recipe invariance” with respect to evaluating differential
cross sections in the NJL model. To evaluate the B func-
tion, necessary to calculate the meson propagators, we had
to perform an infinitesimal shift in the complex plane, +ie
with € > 0, deforming the contour of integration around sin-
gularities. As demonstrated in Appendix C, taking the mass
shift M? — M? —ie or the external momentum temporal
component shift k) — ko = ie amounts to different signs of
the imaginary part of the By function, see Egs. (C16)—(C19).
Furthermore, it amounts to implying different symmetry prop-
erties, see Egs. (46) and (48). One can understand the “recipe
invariance” of the differential cross sections by observing the
expressions to calculate the different matrix elements squared,
Ml IM 2, M ME, and MM In these equations,
only the absolute value of meson propagators contribute.
Even when dealing with the product between two different
meson propagators, only the absolute value of the resulting
complex number matters to the calculation. Since the me-
son propagators only acquire an imaginary part due to the
imaginary part of the By function, the sign or symmetry
properties of the imaginary part of this function does not
change the values of the matrix elements squared. To illus-
trate this point, for simplicity, lets consider the propagator of
the positively charged pion D,+. Using Eq. (74), it can be
written as

2P]1 — 8P121 (RC[Hfd] + i%AudIm[BO,ud])
(1 —4P,I12,) (1 — 4Py 1IE)"

+ =

. (F23)

025206-54



NEW APPROACH TO THE 3-MOMENTUM ...

PHYSICAL REVIEW C 109, 025206 (2024)

Here, we have written the polarization function
NP in terms of real and imaginary parts, I/, =
Re[12,] + iIm[I1%,] = Re[I1%,] — igT—gAudIm[Bo,ud], with
Apa = [(M, — Md)2 — (ko + Mu — /’Ld)z +k2] and Boua =
BolM,,, My, T, ty, ia, ko, |k|], see Eq. (26). The imaginary
part of the propagator is

Im[Bo, 4]
(1 —4PyI12) (1 - 4Py1E)"

N.PEA,
Im[D,,+]:—< i d)

T 2
(F24)

Thus, the propagator only acquires a finite imaginary part due
to the imaginary part of the By function, as argued above. In
the squared matrix elements, terms as |D,+|* arise. This is a

real quantity which can be written as

NP2 A\’
IDx+|” = (Re[D+1)” + (1—‘2d>
b g

y (Im[By ua1)*
[(1— 4P T2 (1 — 4Py TIE,)"T?

The effect of choosing different shifting pole recipes amounts
to a different overall sign of Im[By ,4]. Since |D,+ |2 only de-
pends on the square of Im[By 4], the overall sign of Im[By 4]
does not change the value of |D,+ |2. Hence, as argued before,
taking different recipes to shift the poles does not change the
values of the squared matrix elements and consequently of
the (differential) cross sections. For other cases, not involving
only charged meson propagators, the same reasoning and con-
clusions can be obtained, although leading to more extensive
calculations.
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