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Composite octet baryons in a relativistic mean field description of nuclear and neutron star matter
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We examine the properties of composite octet baryons in the nuclear medium and neutron-star matter. The
internal quark-diquark structure of the octet baryons and the equations of state of nuclear matter and neutron-star
matter in the mean field approximation are described by using the three-flavor Nambu–Jona-Lasinio (NJL) model
as an effective quark theory of quantum chromodynamics. After introducing our model, we first discuss the
properties of single baryons and their effective meson exchange interactions in symmetric nuclear matter by using
concepts of Fermi-liquid theory. Several model-independent implications of this description are derived and
illustrated by numerical results obtained in our model. Second, we extend the model description to high baryon
densities and investigate the equation of state of neutron-star matter and the resulting star masses. We find that the
so-called hyperon puzzle persists also for the case of composite hadrons. To get more information on this point,
we also investigate the role of 6-Fermi and 8-Fermi interactions, in addition to the standard 4-Fermi interactions.
The strengths of those higher-order Fermi interactions is determined so as not to spoil the saturation properties
of nuclear matter. Among them, an interaction characterized by a product of four-quark current operators plays
a special role to stabilize the stars over a large region of central baryon densities, although it has little effect on
the maximum star masses.

DOI: 10.1103/PhysRevC.109.025205

I. INTRODUCTION

Systems of strongly interacting baryons are fascinating
objects of current research, because their properties reflect the
basic interaction between baryons which is intimately related
to their quark substructure, and they connect microscopic
nuclear systems to macroscopic astrophysical objects such as
supernovae and neutron stars. Besides the familiar building
blocks of nuclear systems—protons and neutrons made of up
(u) and down (d) quarks—baryons, which carry strangeness,
are receiving much attention now because experimental and
theoretical tools have become available to study their interac-
tions and their role in nuclear and neutron-star matter.

On the theoretical side, the baryon-baryon interactions
have been extensively studied by using the meson exchange
picture [1,2], effective field theories [3,4], and quantum Monte
Carlo calculations [5]. The parameters characterizing the two-
body and possible three-body interactions are usually adjusted
to scattering data, quark model predictions, or experimental
data on nuclei and hypernuclei. Another line of approach,
based on nonrelativistic constituent quark models, has been
pursued vigorously [6–8], mainly to understand the origin of
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the short-range repulsion on the basis of the Pauli principle
on the quark level [9]. More recent investigations are based
on first principles derived from quantum chromodynamics
(QCD) [10,11]. These approaches, together, provide vital in-
formation to understand the properties of baryonic systems, in
particular hypernuclei [12–15], and are useful tools to analyze
new data on hyperon-nucleon scattering [16,17].

A test stone for theoretical models was provided by the ob-
servation of heavy neutron stars with about two solar masses
[18–21]. Because the presence of hyperons usually leads to
a softening of the equation of state of neutron-star matter
[22], many models were and are still unable to reproduce
such heavy stars, and this problem is commonly called the
“hyperon puzzle” [23]. For extensive reviews on this subject
and possible solutions, see for example Refs. [24,25]. Most of
the proposed solutions require additional repulsion between
the baryons in the system, either via the exchange of vector
mesons with particular forms of their couplings to baryons
[26,27], pomeron exchange [28], or new kinds of three-body
interactions [29–32]. Another possible solution [33] is based
on the idea of a phase transition from nuclear matter to color
superconducting quark matter [34,35] at densities below or
near the hyperon threshold.

As we mentioned at the beginning of this section, the
properties of baryons and their interactions reflect their quark
substructure, which changes in the nuclear medium. To study
this aspect of the problem over a wide range of densities,
relativistic quark models based on QCD are very useful tools.
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Two models of this kind, which have been used to describe nu-
clear phenomena in terms of quark degrees of freedom, are the
quark-meson-coupling (QMC) model [36], which is based on
the MIT bag model [37] and the Nambu–Jona-Lasinio (NJL)
model [38–41], for which a full Faddeev approach [42] and a
closely related but much simpler quark-diquark approach [43]
to baryons have been developed. The degrees of freedom in
the QMC model are quarks coupled to elementary mesons via
Yukawa couplings, while the NJL model in its original form
uses 4-Fermi interactions between quarks to generate mesons
as quark-antiquark bound states. Both models have been used
extensively to explore the effects of medium modification on
the quark level to nuclear observables [44–49].

The QMC model has also been applied to a wide range
of hypernuclei [50]. Because meson exchange interactions
usually tend to overbind the � and � baryons in nuclei [4,51],
in these earlier calculations a phenomenological repulsive
interaction was introduced in order to reproduce the data.
In a later version [52], the observation was made that the
effect of spin-spin correlations between quarks, associated
with the hyperfine interaction from gluon exchange, become
enhanced in the nuclear medium if the u and d quark masses
decrease as functions of the density but the strange (s) quark
mass remains constant. (For a simplified argument, see also
Ref. [53].) Because of the different spin-flavor structures of
the � and � baryons, this leads to the expectation that the
� − � mass difference increases with the nuclear density.
This kind of mechanism relies on the assumption of a constant
s quark mass, which is well satisfied in hypernuclei where the
density of s quarks is essentially zero, but may become less
effective in neutron-star matter as soon as a finite density of
strange baryons appears.

In the present work, we use the NJL model to describe
the internal quark-diquark structure of the octet baryons, the
equation of state of nuclear and neutron-star matter in the
mean field approximation, the corresponding in-medium ef-
fective meson exchange interactions between the baryons,
and the resulting neutron-star masses. The purposes of our
work are as follows: First, we wish to explore the role of the
quark-diquark substructure of baryons in the nuclear medium.
For this purpose, we extend our previous work [54] on the
properties of octet baryons in free space. Our model is well
suited to examine the above expectation about the in-medium
� − � mass difference, because the spin-spin correlations
in the scalar (0+) and axial vector (1+) diquark channels
are built in from the outset. Second, in close connection to
this, we wish to introduce ideas of the successful theory of
Fermi liquids due to Landau [55–57] and Migdal [58,59],
and its relativistic extensions [60] to hyperons in the nuclear
medium. Because the power of the Fermi-liquid theory to
respect symmetries, conservation laws, and the renormaliza-
tion group in many-fermion systems is well known [61–63],
we find it desirable and timely to provide such a connection.
Third, we wish to present a consistent formulation of isospin-
asymmetric baryonic systems on the background of the three
independent Lorentz scalar and Lorentz vector mean fields,
which are defined in Eq. (2) of the following section. Finally,
we wish to investigate the status of the hyperon puzzle in
the NJL model and investigate the roles of 6-Fermi [64] and

8-Fermi [65] interactions on the equation of state and star
masses in the mean field approximation. To achieve these
aims as clearly as possible, we make no attempt to reproduce
any empirical data related to octet baryons, their mutual in-
teractions, or properties of neutron stars. Rather than this, we
wish to explain problems which arise from chiral symmetry
restrictions on the form of the interaction Lagrangian, which
were not encountered in our previous work on the flavor SU(2)
case [66].

The outline of the paper is as follows: Section II discusses
our effective quark model for octet baryons and baryonic
matter. Section III discusses the properties of baryons and
their effective meson exchange interactions in symmetric nu-
clear matter using concepts of Fermi liquid theory. Section IV
presents our results for neutron-star matter and the resulting
star masses. Section V discusses the roles of 6-Fermi and
8-Fermi interactions, and Sec. VI gives a summary of our
results.

II. MODEL FOR BARYONS AND BARYONIC MATTER

The three-flavor NJL Lagrangian with 4-Fermi interactions
in the q̄q channels relevant for this study reads [40,41]

L = q̄(i/∂ − m̂)q + Gπ [(q̄λaq)2 − (q̄λaγ5q)2]

− Gv[(q̄λaγ
μq)2 + (q̄λaγ

μγ5q)2], (1)

where q = (q1, q2, q3) with 1 ≡ u, 2 ≡ d , 3 ≡ s being the
quark field and m̂ the current quark mass matrix with di-
agonal elements (mu, md , ms), and λa (a = 0, 1, 2, . . . 8) are
the Gell-Mann flavor matrices plus λ0 = √

2/31. The 4-Fermi
coupling constants in the scalar–pseudoscalar and the vector–
axial vector channels are denoted by Gπ and Gv , respectively.
The Lagrangian (1) has the SU(3)L ⊗ SU(3)R ⊗ U(1)V ⊗
U(1)A symmetry of QCD, which contains the familiar flavor
SU(3) as a subgroup. The explicit breaking of the U(1)A

symmetry, which is known as the axial anomaly in QCD, can
be realized in the NJL model by the 6-Fermi (determinant)
interaction [64], which will be investigated together with pos-
sible 8-Fermi interactions in Sec. V. It is important to note
that in this work we follow the successful path established
by various low-energy theorems and octet mass formulas, that
current quark masses are the only sources of explicit breaking
of the flavor and the chiral symmetries, and all other sym-
metry breakings are dynamical. As we will see, this leads to
very strong, sometimes unwelcome, restrictions on the model
parameters in the mean field approximation.

To construct the octet baryons as quark-diquark bound
states, we also need the interaction Lagrangian in the qq
channels with the same symmetries, which is specified in
Appendix A. Our model description of the octet baryons is a
straightforward extension of the quark-diquark model based
on the Faddeev framework, as described in Refs. [54,67],
to the case where the isospin symmetry is broken, like in
neutron-star matter. In the vacuum isospin symmetry is as-
sumed to be intact, i.e., we use mu = md ≡ m throughout this
work.
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A. Mean field approximation

To construct the equation of state of nuclear matter and
neutron-star matter in the mean field approximation, we take
into account three scalar fields σα and three 4-vector fields ωμ

α ,
where α = u, d, s. We use the following definitions:

σα = 4Gπ 〈q̄αqα〉, ωμ
α = 4Gv〈q̄αγ μqα〉, (2)

where 〈. . . 〉 denotes the expectation value in the ground state
of the medium under consideration (vacuum, nuclear matter,
or neutron-star matter). The presence of the scalar fields leads
to spontaneous breaking of the chiral symmetry and gives rise
to the effective quark masses

Mα = mα − σα, (3)

which must be treated independently if the isospin symmetry
is broken in the medium. The presence of the vector fields
leads to shifts in the four-momenta of the particles in the
system. As a result, the energy of a baryon with flavor b and
three-momentum k is obtained from the pole of the quark-
diquark equation in the variable k0 as1

εb(k) =
√

k2
b + M2

b + nα/bω
0
α ≡ Eb(kb) + nα/bω

0
α, (4)

where nα/b is the number of quarks with flavor α in the baryon
b, and kb = k − nα/bωα . The effective mass of the baryon, Mb,
is a function of the effective quark masses Mu, Md , Ms, as
described in Appendix A.

The mean field approximation is implemented into the La-
grangian (1) in the standard way by decomposing the various
quark bilinears into classical (c number) parts and quantum
(normal ordered) parts. We assume that the only nonvanishing
classical parts are the mean fields given in Eq. (2). The normal
ordered parts, together with the qq interaction parts given
in Appendix A, are used to calculate bound-state masses of
pseudoscalar mesons and octet baryons, as well as the pion
decay constant.

The quantity of central interest in our work is the energy
density E of baryonic matter in the mean field approximation.
The basic physical picture can be visualized by composite
baryons moving in scalar and vector mean fields on the back-
ground of the constituent quark vacuum [43]. Except for the
vacuum contributions, this is similar in spirit to the QMC
model [36,68], although the mesons in our approach are com-
posite objects. The term which describes the Fermi motion of
the baryons is given by (note our summation convention for

1Here and in the following, a summation over multiple flavor in-
dices (α, β, . . . for quarks, b, b′ for octet baryons, τ for the special
case of nucleons, and i for baryons and leptons) in a product, includ-
ing squares like ω2

α , is implied if those indices appear only on one
side of an equation. (As usual, the same convention is used for the
Lorentz indices μ, ν, . . . .) The Fermi momentum of particle i will be
denoted as pi.

multiple flavor indices)

2
∫

d3k

(2π )3 εb(k)nb(k)

= 2
∫

d3k

(2π )3 Eb(k)nb(k) + ραω0
α ≡ EB + ραω0

α, (5)

where nb(k) is the Fermi distribution function of baryon b,
and we defined the quark number densities ρα in terms of the
baryon number densities ρb by ρα = nα/bρb. For the case of
neutron-star matter we also include the contributions from the
Fermi gas of leptons (� = e−, μ−) in chemical equilibrium
with the baryons. The total energy density in the mean field
approximation is then expressed as

E = Evac − ω2
α

8Gv

+ ραω0
α + EB + E�. (6)

Here the unregularized form of the vacuum (Mexican hat
shaped) contribution is

Evac = 6i
∫

d4k

(2π )4 ln
k2 − M2

α

k2 − M2
α0

+ σ 2
α − σ 2

α0

8Gπ

, (7)

where a sum over the quark flavors α is implied, and the
subindex 0 refers to the vacuum with zero baryon density.

The scalar and vector fields are determined for given
baryon density ρB by the conditions

∂E/(∂σα ) = ∂E/
(
∂ωμ

α

) = 0. (8)

For the scalar fields, the minimizations (8) have to be done
numerically. It is, however, easy to confirm that they are
equivalent to the relation

σα = 4Gπ

∂E
∂mα

= 4Gπ

∂E
∂Mα

, (9)

where the first equality is the general Feynman-Hellman the-
orem, while the second equality holds if the energy density is
expressed in such a way that the constituent quark masses Mα

always appear together with the current quark masses mα , i.e.,
in the first term of the vacuum energy (7) and in the term EB

of (5). For the vector fields, Eq. (8) leads to

ωμ
α = 4Gv jμα = 4Gvnα/b jμb , (10)

where jμα = (ρα, jα ) is the contribution to the baryon current
carried by the quark of flavor α, and jμb is the corresponding
quantity for the baryon b. Equation (10) is in accordance with
the definition given in Eq. (2).

For neutron-star matter, the minimization with respect to
the scalar fields—or equivalently the solution to Eq. (9)—has
to be done under the requirements of chemical equilibrium
and charge neutrality [22]

μb − μn + qbμe = μμ − μe = qiρi = 0, (11)

where the chemical potentials for baryons and leptons are
given by μb = εb(k = pb) and μ� = (p2

� + m2
� )1/2. The Fermi

momenta pi of baryons (i = b) and leptons (i = �) are related
to their number densities ρi by ρi = p3

i /3π2. In Eq. (11), qi

are the electric charges of baryons and leptons. In the general
case, for given baryon density, the nine independent relations
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in Eq. (11) determine the densities of 10 particles in the
system (eight baryons and two leptons). The pressure of the
system can then be obtained as a function of baryon density
from the relation P = ρi μi − E .

B. Effective baryon-baryon interaction

For the purpose of discussion, it will be useful to know
the form of the effective baryon-baryon interaction which
underlies the mean field approximation described above. For
this purpose, we follow the ideas of the Fermi-liquid theory
[58,61] and its relativistic extensions [60], and define the
spin averaged effective baryon-baryon interaction Fbb′ (p, p′)
by the variation of the energy of one of the baryons, εb(p),
with respect to the distribution function of the other baryon,
nb′ (p′). We wish to express this interaction as a generalized
meson-exchange potential. Because our baryon energies in
Eq. (4) do no depend explicitly on the distribution functions,
we have

Fbb′ = δεb

δnb′
= ∂εb

∂σα

δσα

δnb′
+ ∂εb

∂ω
μ
α

δωμ
α

δnb′
, (12)

where we omitted the dependence on the momenta p and p′ to
simplify the notations. Because the conditions given in Eq. (8)
hold for any fixed set of distribution functions, we can make
use of the relations

δ

δnb′

(
∂E
∂σα

)
= 0 = ∂εb′

∂σα

+ ∂2E
∂σα∂σβ

δσβ

δnb′
,

δ

δnb′

(
∂E
∂ω

μ
α

)
= 0 = ∂εb′

∂ω
μ
α

+ ∂2E
∂ω

μ
α ∂ων

β

δων
β

δnb′
, (13)

where the second equalities hold in our model when the whole
system is at rest, in which case there are no mixings between
scalar and vector mean fields. Using (13) in (12) we obtain

Fbb′ = − Mb

Eb

∂Mb

∂σα

(S−1)αβ

∂Mb′

∂σβ

Mb′

Eb′
− nα/b(V −1)00

αβnβ/b′

− pi

Eb
nα/b(V −1)i j

αβnβ/b

p′
j

Eb′
. (14)

Here Eb ≡ Eb(p), Eb′ ≡ Eb′ (p′), and we defined the 3 × 3
flavor matrices S and V by

Sαβ ≡ ∂2E
∂σα∂σβ

, V μν
αβ ≡ ∂2E

∂ωαμ∂ωβν

. (15)

We illustrate the effective interaction of Eq. (14) by Fig. 1,
where the solid lines express the baryons, the dashed line ex-
presses the generalized propagators of neutral scalar mesons
(S−1) and vector mesons (V −1) for zero momenta, and the
vertices stand for the factors to the left and the right of the
meson propagators in Eq. (14).

In isospin asymmetric baryonic matter, like neutron-star
matter, the ūu, d̄d , and s̄s components of the exchanged
mesons are mixed by the baryon loop term EB. To disentan-
gle them, one could make an orthogonal transformation to
diagonalize S and V at fixed baryon density, and express the

FIG. 1. Graphical representation of the effective baryon-baryon
interaction (14) as a meson exchange potential. For explanation of
symbols, see the text.

couplings of each exchanged flavor to the baryon by a linear
combination of vertices. In the present work we will not carry
out such an analysis for the case of neutron-star matter. In
the case of isospin symmetric nuclear matter, on the other
hand, the matrices S and V become diagonal automatically by
taking isoscalar and isovector combinations of the interacting
baryons in the particle-hole channel (t channel), and we show
the explicit forms in the next section.

III. BARYONS IN SYMMETRIC NUCLEAR MATTER

In this section we wish to discuss our results for the
properties of baryons and their mutual effective meson ex-
change interactions in isospin-symmetric nuclear matter. In
this case, the mean fields (2) with α = u and α = d are the
same because of the isospin symmetry, and ωμ

s = 0 because
the density of strange quarks is zero. Because the s-quark
mass enters only in the vacuum energy (7), the minimization
condition ∂E/∂σs = 0 gives σs = σs0 and therefore Ms = Ms0.
(Note that this holds only in the present case of 4-Fermi
interactions. The 6-Fermi and 8-Fermi interactions considered
in Sec. V lead to a slight density dependence of Ms even in
symmetric nuclear matter.) The energy density of the system
is given by Eq. (6) without the leptonic term E�.

A. Effective meson exchange interaction

In the case of isospin-symmetric nuclear matter, the fla-
vor matrices of Eq. (15), which characterize the effective
interaction (14), become diagonal automatically by taking
appropriate combinations, e.g., for the case of the baryon-
nucleon interaction we define

fbN ≡ 1
2 (Fbp + Fbn), f ′

bN ≡ 1
2 (Fbp − Fbn). (16)

Within the isospin multiplet to which the baryon b be-
longs, fbN is an isoscalar and the same for all members of
the multiplet, while f ′

bN is an isovector proportional to the
isospin three-component of the baryon b. We find the explicit
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forms

fbN (p, p′) = −Mb

Eb

MN

EN

(
∂Mb

∂M

)(
∂MN

∂M

)[
1

2Gπ

+ 2g(M ) + ρ
(s)
N

∂2MN

∂M2
+ φN

(
∂MN

∂M

)2
]−1

+ 6
(
1 + yb

2

)
1/(2Gv )

− 6
(

1 + yb

2

) p · p′

EbEN

(
1

2Gv

+ 9ρB

EN

)−1

, (17)

f ′
bN (p, p′) = −Mb

Eb

MN

EN

(
∂Mb

∂�M

)(
∂Mp

∂�M

)[
1

2Gπ

+ 2g(M ) + ρ
(s)
N

∂2Mp

∂ (�M )2 + φN

(
∂Mp

∂�M

)2
]−1

+ 2tb
1/(2Gv )

− 2tb
p · p′

EbEN

(
1

2Gv

+ ρB

EN

)−1

. (18)

Here M is the effective mass of u, d quarks, MN the nucleon
mass in symmetric nuclear matter, and the derivatives with
respect to �M ≡ Mu − Md should be evaluated at Mu = Md .
The unregularized form of the function g(M ) is

g(M ) = −12i
∫

d4k

(2π )4

k2 + M2

(k2 − M2)2 , (19)

and the scalar density of the nucleon (ρ (s)
N ) and the function

φN are defined by

ρ
(s)
N = 2

∫
d3k

(2π )3 nN (k)
MN

EN (k)
, (20)

φN = 2
∫

d3k

(2π )3 nN (k)
k2

EN (k)3 . (21)

In Eqs. (17) and (18), Eb ≡ Eb(p), EN ≡ EN (p′), and we used
the relations nu/b + nd/b = 2(1 + yb

2 ) and nu/b − nd/b = 2tb
where yb and tb are the hypercharge and the isospin three-
component of the baryon b.

The interpretation of (17) for the case b = N in terms of
the meson exchange processes of Fig. 1 has been discussed
in detail in Ref. [43], and the generalization is almost self
evident:2 The first two lines (third line) in (17) correspond
to σ (ω) meson exchange, while the first two lines (third
line) in (18) correspond to neutral δ (ρ) meson exchange.
The coupling constants of a baryon b to the σ (δ) meson are
proportional to the derivative of Mb with respect to M (�M),
while the couplings to the vector mesons (ω and ρ) are deter-
mined by the isoscalar and isovector combination of the quark
numbers in the baryon. The function g(M ) in the denomina-
tors of (17) and (18) is the one quark-loop self-energy of the
scalar meson in the vacuum, the terms involving the scalar
density are the Fermi averages over effective σσNN (δδNN)
contact interactions which are induced by the scalar-isoscalar
polarizability ∂2MN/∂M2 [the scalar-isovector polarizability

2To make the connection to the baryon-meson coupling constants
and meson masses, the numerator functions and denominator func-
tions (i.e., those parts which involve 1/2Gπ or 1/2Gv) must be
multiplied by the squares of the relevant quark-meson coupling con-
stants, i.e., by g(q)2

σ = g(q)2
δ for the first two lines of (17) and (18), and

by g(q)2
ω = g(q)2

ρ for the third lines. See Appendix B for details.

∂2Mp/∂ (�M )2] of the nucleon [69–71], and the terms pro-
portional to φN are the Fermi averages over the “Z-graph”
contributions, which also appear in hadronic theories [72,73].
In our numerical calculations, discussed in Sec. III C, we
find that the numerators of the σ and δ exchange parts in
(17) and (18) substantially decrease, while their denomina-
tors slightly increase as the baryon density increases. The
increase of the denominators is partially related to the fact
that the scalar-isoscalar and scalar-isovector polarizabilities
of nucleons—both being positive—increase as the baryon
density increases. The density dependence of the coupling
constants and mesons self-energies in (17) and (18) then
suppresses the attractive effects of scalar meson exchanges,
and at higher densities the vector meson exchanges become
dominant. The terms ∝p · p′ correspond to the contributions
from the exchange of ω and neutral ρ mesons, and their
self-energies arise only from the Fermi averages over the cor-
responding Z-graphs. More details will be given in Sec. III C 3
and Appendix B.

B. Physical implications of the interaction

To explain some physical implications of the effective me-
son exchange interactions fbN and f ′

bN of Eqs. (17) and (18),
we extend a few basic points of Fermi-liquid theory to octet
baryons in the nuclear medium. In the following discussions,
we use the following notation:3

(1) B = N, �,�,� stands for the isospin multiplets (in-
cluding the isospin singlet �), while b continues to
stand for a member of the baryon octet.

(2) fBN denotes the four independent isoscalar baryon-
nucleon interactions defined by Eq. (17) with b a
member of B.

(3) f ′
BN denotes the three independent isovector

baryon-nucleon interactions (B = N, �,�) defined by
Eq. (18) with b a member of B with the largest value
of the isospin three-component tb (i.e., p, �+, and
�0).

3Recall that “isovector” (T = 1) and “isoscalar” (T = 0) refers to
the particle-hole channel (t channel) of the interacting baryons, not
to the isospin of the two incoming baryons.
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We also separate the terms ∝p · p′, which involve the trans-
fer of one unit of orbital angular momentum (� = 1) between
the baryons, from the other terms which involve no angular
momentum transfer (� = 0):

fbN = f0,bN + cos θ f1,bN , f ′
bN = f ′

0,bN + cos θ f ′
1,bN , (22)

and similarly for fBN , f ′
BN , Fbp, and Fbn, where θ is the angle

between p and p′. The parameters f�,NN and f ′
�,NN defined in

this way agree with the familiar Landau-Migdal parameters,
usually denoted by f� and f ′

�.

1. Nucleon density variations

The � = 0 baryon-nucleon interactions f0,bN and f ′
0,bN

express the change of the baryon energies, εb, caused by
variations of the Fermi momenta of the background nucleons.
If we denote the corresponding variations of nucleon densities
by δρτ (τ = p, n), the change of the distribution functions
to first order is given by δnτ (k) = π2

p2
τ

(δρτ )δ(k − pτ ). Then,
according to the general definition given by the first equality
in Eq. (12), the energy of a baryon b in nuclear matter changes
by an amount

δεb(k) = 2
∫

d3 p

(2π )3 Fbτ (k, p)δnτ (p) = F0,bτ δρτ . (23)

Separating the isoscalar from the isovector contributions then
gives the general relations

∂εb(k)

∂ρB
= f0,bN (k, pN ),

∂εb(k)

∂ρ(3)
= f ′

0,bN (k, pN ), (24)

where ρ(3) = ρp − ρn, and the limit of isospin-symmetric nu-
clear matter (ρ(3) → 0) is understood. For the case where b
is a nucleon, the parameters f0,NN and f ′

0,NN for k = pN are
related to the incompressibility K and the symmetry energy as

as follows:

K = 9ρB

(
π2

2pN EN
+ f0,NN

)
, (25)

as = ρB

2

(
π2

2pN EN
+ f ′

0,NN

)
. (26)

In our model the baryon energy is given by Eq. (4), and by
using Eq. (10) in nuclear matter at rest, we have

εb(k) = Eb(k) + 12GvρB

(
1 + yb

2

)
+ 4Gvρ(3)tb. (27)

Using this in Eq. (24), we see that in our model the � = 0
baryon-nucleon interaction reflects the density dependence of
the baryon effective masses:

f0,bN (k, pN ) = Mb

Eb(k)

∂Mb

∂ρB
+ 12Gv

(
1 + yb

2

)
, (28)

f ′
0,bN (k, pN ) = Mb

Eb(k)

∂Mb

∂ρ(3)
+ 4Gvtb. (29)

For the case where b is a nucleon, the two terms in f0,NN ,
when multiplied by 9ρB, give the contributions of σ meson
and ω meson exchange to the incompressibility. Similarly, the
two terms in f ′

0,NN , when multiplied by ρB/2, give the contri-
butions of δ meson and ρ meson exchange to the symmetry
energy.

2. Lorentz invariance

There are two basic requirements from Lorentz invariance
in the present context: First, the distribution function of the
nucleons is Lorentz invariant: n′

τ (k′) = nτ (k), where we use a
prime to denote a system which moves with velocity u relative
to the reference system which we assume to be at rest, and
k′ = �uk, where �u is the Lorentz matrix. A Lorentz transfor-
mation then leads to a variation of the distribution function for
fixed momentum according to [60] δnτ (k) ≡ n′

τ (k) − nτ (k) =
−ετ (k)u · k̂δ(k − pτ ) to first order in u. Second, the change of
the energy of a baryon in symmetric nuclear matter, induced
by this density variation,

δεb(k) = 2
∫

d3 p

(2π )3 Fbτ (k, p)δnτ (p)

= −u · k̂
2p2

NεN

3π2
f1,bN (k, pN ), (30)

must be equivalent to a Lorentz transformation applied di-
rectly to the baryon energy, δεb(k) ≡ ε′

b(k) − εb(k) = −u ·
k + εb(k)u · vb(k) to first order in u, where vb(k) = ∇kεb(k)
is the velocity of the baryon. This requirement leads to the
relation

k

εb(k)
= vb(k) + εN

εb(k)

2p2
N

3π2
f1,bN (k, pN ). (31)

In Eqs. (30) and (31), and in all following relations, εN ≡
εN (pN ) is the Fermi energy of the nucleon in symmetric nu-
clear matter, while the momentum k is arbitrary. For the case
where b is a nucleon, Eq. (31) agrees with the relativistic form
of the Landau effective mass relation for variable momentum
k [60]. The velocity of the baryon is usually expressed in terms
of the Landau effective mass [M∗

b (k)] by vb(k) ≡ k/M∗
b (k).

By taking the limits k → 0 on both sides of Eq. (31), we then
obtain a simple relation of the form

1

εb(0)
= 1

M∗
b (0)

+ εN

εb(0)
ρB f̂1,bN (0, pN ), (32)

where we defined f̂1,bN (p, p′) such that the “full” � = 1 in-
teraction [such as, for example, the last term in Eq. (17)] is
expressed in the form (p · p′) f̂1,bN (p, p′).

It is easy to check that our model satisfies the requirement
(31): The energy of a baryon with momentum k and the
Fermi energy εN of a nucleon in symmetric nuclear matter
are obtained from (27) by setting ρ(3) = 0:

εb(k) = Eb(k) + 12GvρB

(
1 + yb

2

)
,

εN = EN + 18GvρB, (33)

while f1,bN , which corresponds to ω exchange, is given by the
last term in Eq. (17) without the factor cos θ , see Eq. (22). It is
then clear that the general relation (31) is valid in our model.

3. Currents carried by baryons

The Lorentz invariance requirement of Eq. (31) is related
to the isoscalar � = 1 Fermi-liquid parameter f1,bN . To give an
example where also the isovector part enters, let us consider
the currents carried by a baryon b moving with momentum
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k in nuclear matter, for the case where no momentum is
transferred by the external field to the baryon. From gauge
invariance and the integral equations for the vertex functions,
the Fermi-liquid theory leads to the following result [74] [see
also, for example, Eq. (1.33) of Ref. [61] or Eq. (2.16) of
Ref. [58] ]:

j (X )
b (k) = vb(k)Q(X )

b + 2p2
τ Q(X )

τ

∫
d�p

(2π )3 p̂Fbτ (k, p), (34)

where X characterizes the type of current (e.g., X = B for
the baryon current, X = I for the isospin current, and X = E
for the electric current), and Q(X )

b are the corresponding bare
charges of the baryon b, i.e., Q(B)

b = 1, Q(I )
b = tb, and Q(E )

b =
qb. The second term in Eq. (34) is the backflow due to the
nuclear medium.

The magnitude of the baryon current [case X = B in
Eq. (34)] can be expressed in a model-independent way by
using the Lorentz invariance relation (31)

j (B)
b (k) = k

εN
− vb(k)

(
εb(k)

εN
− 1

)
. (35)

For the case of a nucleon at the Fermi surface, Eq. (35) gives
the well-known result j (B)

N (k = pN ) = pN/εN , which reduces
to the free current pN/MN0 in the nonrelativistic limit.

For the electric current [case X = E in Eq. (34)] we obtain
generally

j (E )
b (k) = vb(k)qb + 1

2

(
k

εN
− εb(k)

εN
vb(k)

)

+ p2
N

3π2
f ′
1,bN (k, pN ). (36)

Here we can insert our model result for f ′
1,bN , given by the last

term in Eq. (18) without the factor cos θ [see (22)]. We can
express the result in terms of an effective angular momentum
g factor of the baryon (g�,b), which we define here—in a naive
way—so that it becomes unity for a free proton, i.e., j (E )

b (k →
0) ≡ k

MN0
g�,b. This gives

g�,b = MN0

Mb

[
qb − 3x

1 + 9x

(
1 + yb

2

)
− x

1 + x
tb

]
, (37)

where x = 2GvρB/EN = 1
9 ( εN

EN
− 1) characterizes the strength

of the vector interaction. The quantities which depend on the
baryon density in (37) are the baryon effective mass Mb and x.

C. Numerical results

To illustrate several physics points of our above dis-
cussions, in this section we present numerical results for
symmetric nuclear matter.

1. Model parameters

First we explain the choice of our model parameters. The
Lagrangian of Eq. (1) contains the coupling constants Gπ

and Gv , and the current quark masses m and ms, which are
related to the constituent quark masses in the vacuum, M0 and
Ms0, by the gap equations (3). The other parameters, which
are necessary to define the model, are the infrared (IR) and

TABLE I. Values for the model parameters which are deter-
mined in the vacuum, single hadron, and nuclear matter sectors. The
regularization parameters, constituent quark masses in the vacuum
(subindex 0) and current quark masses are given in units of GeV, and
the coupling constants in units of GeV−2.

�IR �UV Gπ Gv M0 Ms0 m ms

0.240 0.645 19.04 6.03 0.40 0.562 0.016 0.273

ultraviolet (UV) cutoffs �IR and �UV, which are used with the
proper-time regularization scheme [75,76], see Appendix C.
In this scheme, the UV cutoff is necessary to give finite in-
tegrals, while the IR cutoff is necessary to avoid unphysical
decay thresholds of hadrons into quarks, thereby simulating
one important aspect of confinement. These parameters are
determined as follows: The IR cutoff should be similar to
�QCD, and we choose �IR = 0.24 GeV. �UV, m, and Gπ are
determined so as to give a constituent quark mass in vacuum
of M0 = 0.4 GeV, the pion decay constant fπ = 0.93 GeV,
and the pion mass mπ = 0.14 GeV, using the standard meth-
ods based on the Bethe-Salpeter equation in the pionic qq
channel [40,41]. ms is determined so as to give a constituent
s-quark mass in vacuum of Ms0 = 0.562 GeV, which repro-
duces the observed mass of the � baryon M� = 1.67 GeV
by using the quark-diquark bound-state equations explained
in Appendix A. The vector coupling Gv is determined from
the binding energy per nucleon in symmetric nuclear matter
(EB/A = −16 MeV) at the saturation density, which becomes
ρ0 = 0.15 fm−3. In the present flavor SU(3) NJL model, the
vector couplings in the isoscalar and isovector qq channels are
the same because of constraints from chiral symmetry, and we
do not have an independent parameter [like the coupling Gρ

in the flavor SU(2) model used in Ref. [66] ] to fit the sym-
metry energy.4 The resulting values of the cutoffs, coupling
constants in the q̄q channels, and quark masses are shown in
Table I. They are identical to those used in Ref. [66] except
for the s-quark masses which were not needed there. Two
additional model parameters are the coupling constants in the
scalar and axial vector qq channels, GS and GA of Eq. (A1).
As explained in Appendix A, they are fixed to the free nucleon
and delta masses (MN0 = 0.94 GeV, M�0 = 1.23 GeV). The
resulting free masses of octet baryons are then predictions of
the model and are summarized in Table II together with the
observed values.

2. Energies per nucleon and single baryon energies

In the top panel of Fig. 2 we show the binding energies per
nucleon (E/ρB − MN0) in symmetric nuclear matter (SNM) in
comparison to pure neutron matter (PNM). Although we have

4Chiral symmetry would allow different vector couplings in the
flavor singlet and octet terms of Eq. (1), but in the mean field
approximation used here it is easy to check that there remains
only one independent vector coupling in any case. This follows
from the identity

∑
a=0,3,8(qλa�q)2 = 2[(q1�q1)2 + (q2�q2)2 +

(q3�q3)2] for any Dirac matrix �.
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TABLE II. Masses of octet baryons (in units of GeV) calculated
in the vacuum (subindex 0) by using the coupling constants GS =
8.76 GeV−2 and GA = 7.36 GeV−2 in the scalar and axial vector
diquark channels fitted to the vacuum masses of the nucleon and the
� baryon, in comparison with the observed values.a

MN0 M�0 M�0 M�0

Calc. 0.94 1.12 1.17 1.32
Obs. 0.94 1.12 1.19 1.32

aThe fact that our calculated masses agree slightly better with
the Gell-Mann Okubo octet mass relation [77,78] MN0 + M�0 =
1
2 (M�0 + 3M�0 ) than the experimental values (using either neutral
or isospin averaged masses) may be a mere coincidence.

FIG. 2. Binding energy per nucleon in symmetric nuclear matter
and pure neutron matter (top panel), and baryon energies εB of Eq. (4)
in symmetric nuclear matter (bottom panel) as functions of the
baryon density. In the bottom panel, the nucleon Fermi momentum is
used in εN , while the momentum is set to zero for the other baryons.

FIG. 3. The � = 0 part of the isoscalar baryon-nucleon interac-
tion f0,BN (top panel), and the corresponding isovector interaction
f ′
0,BN (bottom panel) in symmetric nuclear matter as functions of the

baryon density.

only one parameter Gv to fit the binding energy at saturation
in SNM, the result for the saturation density agrees with the
empirical value. On the other hand, as we do not have any
further free parameters, our results for the incompressibility
(symmetry energy) in SNM are too large (too small) compared
with the empirical values, as will be discussed in more detail
in connection to Fig. 3 later. Because of the small symmetry
energy, our PNM is slightly bound around densities of ρB =
0.1 fm−3.

To show the effects of isospin breaking in PNM on the
effective quark and nucleon masses, we list in Table III the
masses in SNM and PNM for four values of the baryon den-
sity. Here we can see several points: First, as can be shown
from the gap equation (3), for systems with an excess of d
quarks, the magnitude of the mean scalar field σd decreases
more rapidly with density than the magnitude of σu. Therefore
Mu > Md , and one can expect that, in an isospin multiplet, the
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TABLE III. Effective masses of quarks and nucleons (in units of
GeV) in symmetric nuclear matter (SNM) and pure neutron matter
(PNM) for four values of the baryon density (in units of fm−3).

Case ρB Mu Md Mp Mn

SNM 0 0.4 0.4 0.94 0.94
SNM 0.15 0.325 0.325 0.765 0.756
SNM 0.3 0.284 0.284 0.683 0.683
SNM 0.5 0.257 0.257 0.648 0.648

PNM 0 0.4 0.4 0.94 0.94
PNM 0.15 0.340 0.314 0.768 0.755
PNM 0.3 0.301 0.275 0.695 0.686
PNM 0.5 0.271 0.251 0.656 0.651

baryons with more u quarks will be heavier. Second, as will be
explained in detail later, the isospin splittings for the baryons
are generally smaller than for the quarks, because of the scalar
isovector polarizabilities of the baryons.

In the bottom panel of Fig. 2 we show the Fermi energies
(chemical potentials) of the baryons in symmetric nuclear
matter. (As the Fermi momenta of hyperons immersed in
nuclear matter are zero, the corresponding lines show the ener-
gies of hyperons at rest.) The line εN shows that nuclear matter
is unstable for densities below 0.1 fm−3, and at the saturation
density it takes the value 940 − 16 = 924 MeV. It is seen that
the � is bound stronger than the nucleon around the saturation
density, although its effective mass (not shown here) drops
more slowly than MN with increasing density. The reasons
are, first, that the curve for ε� refers to zero momentum,
corresponding to low-energy orbitals in finite nuclei, while
εN refers to the Fermi surface. Second, as shown by Eq. (4),
the vector repulsion for the � in symmetric nuclear matter
(12GvρB) is smaller than for the nucleon (18GvρB) because
ω0

s vanishes here.
The curves ε� and ε� in Fig. 2 show a quite different

behavior. Because in this case the vector repulsion is the
same, the increase of the difference between the two lines with
increasing baryon density reflects the different dependence of
their effective masses on ρB. As a result, around the saturation
density the � is bound by only half of the amount of the �,
i.e., by about 22 MeV less than the � in our model, which
is consistent with the estimate of about 20 MeV presented
in Ref. [52]. The reason for this lies in the different quark
substructure: The scalar diquark made of (u, d ) quarks, which
is the main source of attraction in the � as well as the nu-
cleon, is absent in the � as well as in the � baryon. This
difference in quark structure, which is well known from the
constituent quark model [53], generates the mass difference
between the free � and � baryons shown in Table II, and
increases with increasing baryon density because the mass
of the scalar diquark decreases more rapidly than the mass
of the axial vector diquark. The strong (u, d ) correlations in
the scalar channel, as compared with the axial vector channel,
play a role similar to the color magnetic spin-spin interaction
from gluon exchange. In our model we adjusted this strength
to reproduce the � − N mass difference in free space.

The flattening of the curves εB with increasing energy,
shown in the lower panel of Fig. 2, continues further to �

because in the present model with 4-Fermi interactions the
s-quark does not participate in the nuclear interactions in
symmetric nuclear matter.

In spite of the increasing � − � mass difference due to
their different quark substructures, the � baryon is still bound
in our mean field model. It is now believed that the � is
unbound in the nuclear medium [13], and recent experiments
support this view [17]. It would be natural as a next step to
include the effects of antisymmetrization (exchange terms),
both on the level of baryons and the level of quarks. It is, in
fact, well known that quark exchange effects appear naturally
in the hadronization of the NJL model in the path integral
formalism [79,80]. The effects of the Pauli exclusion principle
on the level of quarks to produce the �N repulsion have been
emphasized very much recently [9,17]. Since the aim of the
present work is to explore the effects of the quark substructure
of baryons in a mean field approximation for many baryon
systems, we leave this interesting subject for future studies.

3. Baryon-nucleon Fermi-liquid parameters

The top panel of Fig. 3 shows the � = 0 part of the isoscalar
baryon-nucleon interaction, given by Eq. (17) without the last
term ∝p · p′, and the bottom panel shows the corresponding
isovector one, Eq. (18). As in the figure for the baryon en-
ergies, the momentum of the nucleons is set to the Fermi
momentum pN , and for the hyperons it is set to zero. The
behavior of all curves in this figure reflects the change from
attraction due to scalar-meson exchange at low densities to
repulsion from vector-meson exchange at higher densities. We
find that the third and fourth factors in the first lines of (17)
and (18), which reflect the couplings of the scalar mesons
to the baryons, decrease substantially in magnitude as the
density increases, while the denominators given in the second
lines of (17) and (18) become slightly enhanced because of
cancellations between the attractive quark loop and repul-
sive baryon loop contributions. Therefore, the attraction from
scalar-meson exchange decreases much faster with increasing
density than for the case of elementary hadrons. To illustrate
this point more quantitatively, we show in Table IV the various
factors which characterize the meson-baryon couplings and
meson masses in Eqs. (17) and (18). (The full results for
the couplings and meson masses, including the effects of the
quark-meson couplings, are given in Appendix B.)

The curves in the top panel of Fig. 3 are related to the
baryon energies of Fig. 2 by the first of the two general rela-
tions given in Eq. (24).5 It is thus natural that the average val-
ues of f0,BN become smaller in the sequence NN → �N →
�N → �N . In particular, as explained above, M� decreases
faster with density than M� , and therefore the first term in (28)
shows that the �N attraction at low densities is stronger than
the �N attraction. Around the saturation density, the �N and
the isoscalar �N interactions are similar and very small, while

5For the case of the nucleon, however, the momentum k is set to the
Fermi momentum pN after the differentiation in (24).
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TABLE IV. Values of various factors in the effective � = 0 inter-
actions f0,BN and f ′

0,BN of Eq. (17) and (18) which characterize the
meson-baryon couplings and meson masses, for four values of the
baryon density (in units of fm−3). The scalar isoscalar polarizability
(∂2MN/∂M2) and the scalar isovector polarizability [∂2Mp/∂ (�M )2]
of the nucleon are given in units of GeV−1, and the denominators
D given in the second lines of (17) and (18) are expressed in units
of GeV−2.

ρB
∂MN
∂M

∂M�

∂M
∂M�

∂M
∂M�

∂M
∂2MN
∂M2 D

0 2.74 1.83 1.55 0.86 5.90 0.0357
0.15 2.07 1.45 1.15 0.65 12.6 0.0398
0.3 1.49 1.14 0.86 0.49 15.9 0.0532
0.5 1.04 0.89 0.63 0.37 17.2 0.0737

ρB
∂Mp

∂ (�M )
∂M

�+
∂ (�M )

∂M
�0

∂ (�M )
∂2Mp

∂ (�M )2 D

0 0.70 1.55 0.86 9.35 0.0357
0.15 0.49 1.15 0.65 14.7 0.0418
0.3 0.33 0.86 0.49 18.1 0.0572
0.5 0.21 0.63 0.37 19.8 0.0819

the isoscalar NN and �N interactions are both repulsive.6

For the NN case, we can use Eqs. (25) and (28) to split the

incompressibility as K = 3p2
N

EN
+ 9ρB

MN
EN

∂MN
∂ρB

+ 162GvρB =
(0.253 − 1.014 + 1.124) GeV = 0.363 GeV, where the first
term refers to noninteracting quasiparticles with EN =
0.8 GeV, the second term corresponds to σ meson exchange,
and the third term to ω meson exchange. To reproduce the
empirical value K � 0.25 GeV, we would need f0,NN � 0 at
saturation density, instead of the positive value indicated in
Fig. 3.

The three curves in the lower panel of Fig. 3 similarly
result from the attraction due to δ meson exchange at low
densities and the repulsion from ρ meson exchange at higher
densities. The fact that the isovector �N repulsion is stronger
than the others is simply because of the isospin factor tb in
Eq. (29), which indicates that the energy of �± is most sen-
sitive to changes of the isovector nucleon density. The overall
size of the isovector interactions is small compared with the
isoscalar ones. For the NN case, we can use Eqs. (26) and

(29) to split the symmetry energy as as = p2
N

6EN
+ ρB

2
MN
EN

∂Mp

∂ρ(3)
+

GvρB = (14 − 3 + 7) MeV = 18 MeV, where the first term
refers to noninteracting quasiparticles, the second term corre-
sponds to δ meson exchange and the third term to ρ meson
exchange. It is known from the case of elementary nucleons
[81] that the mechanism of δ meson exchange gives a negative
contribution to the symmetry energy, and in our model this
effect is small. Our value of as is considerably smaller than
the empirical value as � 32 MeV, which reflects the fact that
our three-flavor Lagrangian (1) does not allow for an inde-
pendent vector coupling in the isovector channel because of

6We remind again that f0,BN refers to the spin averaged interaction
characterized by � = 0 and T = 0 in the particle-hole channel.

the assumed flavor and chiral symmetry, in contrast with the
two-flavor case [66].

Finally in this section, we add two more comments. The
first concerns the isospin splittings which can be expected
for isospin asymmetric matter. Because our f ′

0,BN is negative
at small densities, the first term in Eq. (29) is negative for
b = p, �+, �0. For systems with neutron excess (ρ(3) < 0)
we can then expect that the in-medium isospin splittings
will be ordered such that the particles with more u quarks
become heavier, which is consistent with our finding that
Mp > Mn and Mu > Md in neutron rich matter, see Table III.
The reason why the mass splittings for baryons are smaller
than for quarks is now clear from Table IV, which shows that
the isovector couplings ∂Mb/∂ (�M ) strongly decrease with
increasing baryon density. Expressed in a different way, the
scalar isovector polarizability of the nucleon [∂2Mp/∂ (�M )2]
strongly increases with the density.

Second, it is well known that any two-body interaction with
nonexplicit density dependence, for example through masses
and couplings, contains effects from an effective three-body
interaction. Taking the � = 0 part of Eq. (17) as an example, in
the case of point nucleons the only density dependence of this
kind resides in the factor MN/EN and in the function φN in the
denominator. The decrease of our couplings and the increase
of meson masses due to the scalar isoscalar polarizability of
the nucleons reflect the presence of additional repulsive three-
body interactions.7 The rapid decrease of the bN attraction
with increasing density, expressed by Fig. 3, shows that our
effective three-particle interaction is strongly repulsive, but—
as Fig. 2 (lower panel) has shown—not sufficient to generate
an overall repulsion between the � baryon and the nucleon.

4. In-medium orbital g factors of baryons

Here we wish to illustrate the renormalization of the orbital
angular momentum g factors, given by Eq. (37), for a few
cases. In Sec. III B 3 we used the concept of the backflow,
which is central to the Fermi-liquid theory, but the same re-
sults can be obtained in relativistic meson-nucleon theories by
using the response of the core (filled Fermi sea of nucleons) to
the addition of one nucleon [83,84] or one hyperon [85,86]. In
such a description, the backflow arises from RPA-type vertex
corrections due to virtual NN excitations of the core,8 and the
importance of these contributions to give reasonable magnetic

7The variation of f0,bN with density can be expressed as an effective
three-body interaction:

δ f0,bN

δρB
= 1

4

∑
τ=p,n

(h0,bpτ + h0,bnτ ),

where the three-particle forward-scattering amplitudes (h0) are de-
fined as averages over the angles between the momenta of the three
interacting particles [82].

8The “antinucleons” which show up in those vertex corrections,
or in the Z-graph contributions to the scalar-meson propagators
mentioned in Sec. III A, are highly virtual objects, mathematically
necessary to form a complete set of spinors, and have little to do
with real observable antinucleons.

025205-10



COMPOSITE OCTET BARYONS IN A RELATIVISTIC … PHYSICAL REVIEW C 109, 025205 (2024)

FIG. 4. The angular momentum g factors [see Eq. (37)] of the
proton in comparison to the �+, and of the neutron in comparison to
the �, in symmetric nuclear matter as functions of the baryon density.

moments in relativistic theories is well known [87,88]. As
examples for baryons with positive charge, we illustrate the
relation (37) for the proton and the �+, and as examples for
neutral baryons we show the cases of the neutron and the
� in Fig. 4. For the isoscalar combination g�,p + g�,n, the
backflow reduces the enhancement (MN0/MN � 1.24 near the
saturation density) by a factor of EN/εN � 0.87, while for the
isovector combination g�,p − g�,n there is almost no reduction,
because the last term in (37) is very small. As a result, the
isovector combination remains enhanced, i.e., g� of the proton
(neutron) is larger (smaller) than its free value. For the �+,
the enhancement due to its reduced mass is only about half of
the case of the proton, and the reduction from the backflow
gives results which change only mildly with density. For the
�, the backflow corrections are similar in magnitude to the
case of the neutron, but its effective mass, and therefore also
g�, decreases more slowly with density. For more expensive
discussions on backflow effects for the magnetic moments of
hypernuclei, we refer to Ref. [86].

5. Comments on sizes of quark cores of in-medium nucleons

Finally, in this section, we wish address the question
whether the size of in-medium nucleons invalidates the basic
physical picture of the mean field approximation. The rele-
vance of this question is underlined by the fact that the NJL
model is known to predict a moderate swelling of nucleons in
the medium at normal densities, a feature which is important
for the EMC effect [48] or the Coulomb sum rule [49]. If
the nucleons swell considerably at higher densities, the Pauli
principle would become inapplicable at the nucleon level.

Rather than the physical size of nucleons including their
meson clouds, the quantity which seems more relevant for
role of the Pauli principle is the size of the quark cores of
the nucleons in the medium. Here we consider the rms radius
of the baryon density distribution of the quark cores, denoted
as rN (ρB), which is an isoscalar quantity and therefore the

FIG. 5. Rms radius of the baryon density distribution of the
quark cores in SNM as function of the baryon density.

same for protons and neutrons. The definitions and further
details are given in Appendix D, and the results are shown in
Fig. 5. Our free nucleon (zero density) value is rN (0) = 0.475
fm, which increases by 7% at saturation density (0.15 fm−3),
and by 13% at ρB = 0.5 fm−3. Even at very large densities
(ρB � 1.0 fm−3) the baryon radius of the quark core increases
only by 16% of its free value. This behavior reflects our phe-
nomenological implementation of confinement effects via the
infrared cutoff (�IR). It is interesting to note that our values
of rN are similar to the radii which have been assumed in
the excluded volume framework in QMC model calculations
[89,90], although we do not go into further details here.

By using the values of rN shown in Fig. 5, we can estimate
the volume fractions occupied by the quark cores in SNM
(see Appendix D). We obtain 9% at saturation density, and
36% at the highest density shown in the previous figures of
this section (ρB = 0.5 fm−3). Although these numbers may
give us some confidence in the overall physical picture of the
mean field approximation, they leave room for corrections and
improvements of the model. We also recall that the Pauli prin-
ciple at the quark level has been predicted to play an important
role in producing the �N repulsion even at normal densities,
as mentioned at the end of Sec. III C 2. Further investigations
on these points are necessary.

IV. NEUTRON-STAR MATTER

In this section we wish to discuss our results for neutron-
star matter and the resulting star masses, based on the
expression (6) for the energy density and the equilibrium
and charge neutrality conditions (11). Our parameters are the
same as used in symmetric nuclear matter, see Sec. III C 1.
As mention at the end of Sec. II B, we will not analyze the
effective baryon-baryon interactions in neutron-star matter as
exhaustively as we have done for nuclear matter in order to
keep the length of the paper within reasonable limits.
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FIG. 6. The effective quark masses in neutron-star matter as
functions of the baryon density.

A. Single-particle in-medium properties

First we show our results for the quark effective masses
in Fig. 6 as functions of the baryon density. Because of the
isospin asymmetry (excess of d quarks) in neutron-star matter,
the u quark becomes heavier than the d quark by 25 MeV
at baryon densities around 0.3 fm−3. As discussed already in
Sec. III C 2, this is expected from |σu| > |σd | in neutron-rich
matter, or equivalently from the effective δ-meson exchange
mechanism [81] in hadronic theories. The s-quark mass, on
the other hand, starts to decrease as soon as hyperons appear
in the system, i.e., as soon as the condition ∂E/∂σs = 0 re-
ceives contributions from hyperons in the baryon loop term
EB of Eq. (6). In this case, the s̄s exchange between hyperons
can proceed without violating the OZI rule [91–93], and, as
anticipated in Sec. I, this gives rise to an appreciable attraction
in neutron-star matter. We explain later how this decrease of
Ms influences the masses of neutron stars.

The upper panel of Fig. 7 shows our results for the chemi-
cal potentials, and the lower panel shows the density fractions
of the particles as functions of the baryon density. The upper
panel is the analog of the lower panel of Fig. 2, discussed
in the previous section for symmetric nuclear matter. The
three solid lines in the upper panel of Fig. 7 (from bottom
to top) show μp = μn − μe, μn, and μn + μe. Because of
the conditions (11), the density where the chemical poten-
tial of a hyperon with electric charge qb touches the solid
line μn − qbμe from above is the threshold density for this
hyperon. Below the threshold densities, the chemical poten-
tials are simply the energies of hyperons at rest (zero Fermi
momentum). Compared with the symmetric nuclear matter
case of Fig. 2, the lines show a considerable isospin splitting,
which mainly comes from the vector potential term in Eq. (4).
For example, the vector potential for �− is 4Gv (2ρd + ρs),
which is larger than the vector potential for �+, which is
4Gv (2ρu + ρs). The mass splittings are in the opposite order,
e.g., �+ is heavier than �−, as can be expected also from

FIG. 7. The chemical potentials of baryons (top panel), and the
density fractions of baryons and leptons (bottom panel) in neutron-
star matter as functions of the baryon density.

Fig. 6. The mass splittings in baryon isospin multiplets are,
however, small compared with the splittings from the vector
potential. For example, at baryon densities around 0.3 fm−3

the mass splitting between �+ and �− is only about 20 MeV,
and the proton-neutron mass difference is only about 10 MeV,
both being smaller than the naive expectation from the quark
mass difference shown in Fig. 6 for the reasons explained in
the previous section. In the low-density region, where ρs = 0
and ρu + ρd = 3ρB, the vector potentials for �0 and � are the
same [4Gv (ρu + ρd )], and we see again the different behav-
iors of their energies with increasing baryon density, which is
caused by their different quark substructures, as discussed in
Sec. III C 2.

As we can see from Fig. 7, the threshold density for �−
is ρB = 0.35 fm−3 in our calculation. Although it has been
conjectured for long on energetic reasons that �− will appear
as the first hyperon in neutron-star matter [94], this point
is controversial nowadays [95–97], mainly because the �N
interaction is believed to be repulsive (see the related discus-
sions at the end of Sec. III C 2). However, we wish to note that
also in our present mean field model the onset of �− depends
on several details: First, we are underestimating the free �

mass by about 20 MeV (see Table II); second, the in-medium
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FIG. 8. The pressure in neutron-star matter as function of the
baryon density (top panel) and the resulting neutron star masses as
functions of the central baryon density (bottom panel). The three
lines in each panel show the cases of nucleons and leptons only, the
case including hyperons but fixing the s-quark mass to its free value,
and the full result obtained with by treating all three quark masses as
independent variational parameters.

mass of �− is shifted down by a similar amount relative
to �+, as explained above; and third, our electron chemical
potential is rather large in this density region. Therefore, apart
from the more fundamental problem on the �N repulsion, the
question whether μ�− touches μn + μe or not, and if it does at
which baryon density, depends on several details of the model.
(We return to this point in a different context in Sec. VI.)

B. Equation of state and neutron star masses

The upper panel of Fig. 8 shows our results for the pressure
in neutron-star matter as function of the baryon density, and
the lower panel shows the neutron-star masses, as obtained
from the solution of the Tolman-Oppenheimer-Volkoff (TOV)
equations [98,99], with the constraints of Eq. (11) imposed,

as functions of the central baron density. We show the cases
of nucleons and leptons only, the case including hyperons but
fixing artificially the effective s-quark mass to its free value
Ms0, and the full result with the s-quark mass determined by
minimization of the energy density. The results for nucleons
and leptons only are very similar to the results obtained in
Ref. [66] for the flavor SU(2) case, although there it was
possible to reproduce the symmetry energy without explicit
breaking of chiral symmetry of the interaction Lagrangian.
(See Appendix A for a more detailed comparison.)

It is well known that the presence of hyperons can lead
to a sizable reduction of the pressure in neutron-star matter
and a decrease of the maximum mass of neutron stars [22,23],
and Fig. 8 shows that the same situation is encountered in a
relativistic mean field calculation which takes into account
the internal quark-diquark structure of the octet baryons. Our
results suggest that most of the reduction of the pressure arises
simply because nucleons and leptons with high Fermi mo-
menta can be converted to hyperons with low Fermi momenta
by weak processes. The reduction of the s-quark mass in the
medium is not so important for the overall size of the pressure
and the maximum star mass, but it works towards destabiliza-
tion of the star as the central baryon density increases. The
values of the maximum central baryon densities which gives
stable stars, the maximum star masses, and the radii of the
stars with maximum mass for the three cases shown in Fig. 8
are as follows:[

ρmax
B (r = 0), Mmax

star , R
] = (0.9fm−3, 2.17M�, 11.5km)

for the case of no hyperons,[
ρmax

B (r = 0), Mmax
star , R

] = (0.85 fm−3, 1.83M�, 11.8 km)

for the case with hyperons but Ms fixed to Ms0, and[
ρmax

B (r = 0), Mmax
star , R

] = (0.72 fm−3, 1.73 M�, 12.3 km)

for the case with hyperons and Ms determined from minimiza-
tion of the energy density.

V. ROLE OF 6-FERMI AND 8-FERMI INTERACTIONS

Because the maximum mass of neutron stars is sensitive to
the high-density behavior of the equation of state, it is natural
to investigate the role of higher-order Fermi interactions, i.e.,
the 6-Fermi [64] and 8-Fermi [65] interactions. While there
is little doubt about the importance of the 6-Fermi (flavor
determinant) interaction to break the UA(1) symmetry of the
4-Fermi Lagrangian of Eq. (1) and to split the masses of the
otherwise degenerate pseudoscalar mesons π and η, the situa-
tion is not so clear for the 8-Fermi interactions, because many
possible flavor structures are allowed by chiral symmetry. In
this work we limit ourselves to three types of chiral-invariant
8-Fermi interactions with the simplest structure, namely, the
square of the scalar-pseudoscalar term in Eq. (1), the product
of this term with the vector-axial vector term, and the square
of the vector-axial vector term. We wish to investigate whether
those higher-order Fermi interactions in the qq channels, with
coupling constants restricted by the basic properties of sym-
metric nuclear matter around the saturation point, can lead to
appreciable changes in high density neutron-star matter or not.
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We will not include higher-order interactions in the qq chan-
nels used to construct the baryons as quark-diquark bound
states, i.e., the Lagrangian of Eq. (A1) is left unchanged.

A. Basic formulas and new parameters

To the basic NJL Lagrangian of Eq. (1), we add the 6-Fermi
(flavor determinant) interaction [34]

L6 = G6 det[q̄α (1 − γ5)qβ + q̄α (1 + γ5)qβ], (38)

and the following 8-Fermi interactions:

L8 = G(ss)
8 (LsLs) − G(sv)

8 (LsLv ) − G(vv)
8 (LvLv )

≡ L(ss)
8 + L(sv)

8 + L(vv)
8 . (39)

Here Ls means the 4-Fermi interaction in the scalar-
pseudoscalar channel of Eq. (1) without the factor Gπ , and
Lv means the one in the vector-axial vector channel of Eq. (1)
without the factor (−Gv ). In this simplest possible form, each
factor Ls or Lv is closed under the summations over Dirac, fla-
vor, and color indices. Altogether four new coupling constants
are involved in (38) and (39).

The mean field approximation is implemented in the same
way as for the 4-Fermi interactions in Sec. II A. The gap
equation (3) is now replaced by the more complicated form

Mα = mα − σα

(
1 + G(ss)

8

4G3
π

σ 2
β − G(sv)

8

8GπG2
v

ω2
β

)
+ G6

8G2
π

σβσγ ,

(40)

where in the 6-Fermi term (α, β, γ ) is any set of three differ-
ent quark flavors, and in the other terms a sum over the quark
flavors β is implied. The baryon energies (4) are replaced by

εb(k) = Eb(kb) + nα/bV
0
α , (41)

where kb = k − nα/bV α , with the vector fields V μ
α defined by

V μ
α = ωμ

α

(
1 + G(sv)

8

8G2
π Gv

σ 2
β + G(vv)

8

4G3
v

ω2
β

)
. (42)

The new contributions from the 6-Fermi and 8-Fermi interac-
tions to the energy density are

E6 = − G6

16G3
π

(σuσdσs − σu0σd0σs0), (43)

E8 = 3G(ss)
8

64G4
π

(
σ 2

ασ 2
β − σ 2

α0σ
2
β0

) − 3G(sv)
8

64G2
π G2

v

σ 2
αω2

β

− 3G(vv)
8

64G4
v

ω2
αω2

β, (44)

which are added to Eq. (6), after replacing ωμ
α in (6) by the

expression given in Eq. (42). It is easy to check that the basic
conditions (8), which determine the three scalar and three
vector mean fields σα and ωμ

α , lead to the same expressions (9)
and (10) as before, because those expressions simply reflect
the definitions given by Eq. (2). If we eliminate the vector
fields by using (10), it becomes clear that G(ss)

8 and G(vv)
8 must

be positive in order that the energy density is bounded from
below, while the sign of G(sv)

8 is not determined generally.

For the case of neutron-star matter, the conditions of chemical
equilibrium and charge neutrality are given by Eq. (11) with
the modified baryon chemical potentials μb = εb(k = pb).

We also note that the 6-Fermi and 8-Fermi interactions
lead to a renormalization of the residual 4-Fermi interactions.
The only physical quantities, for which we use the residual
4-Fermi interactions in the qq channel to fix model parameters
in this work, are the mass of the pion, the pion decay con-
stant, and the η − η′ mass difference, where the pseudoscalar
mesons η and η′ arise from mixing [100,101] between the
η0 and η8. The effective 4-Fermi coupling constants in the
vacuum, relevant for those quantities, are given by (see, for
example, Refs. [101,102] for the 6-Fermi case)

G̃π =
(

Gπ + G(ss)
8

4G2
π

σ 2
α0

)
− G6

8Gπ

σs0 ≡ 19.04 GeV−2, (45)

G̃00 =
(

Gπ + G(ss)
8

4G2
π

σ 2
α0

)
+ G6

12Gπ

(2σ0 + σs0), (46)

G̃08 = −
√

2G6

12Gπ

(σ0 − σs0), (47)

G̃88 =
(

Gπ + G(ss)
8

4G2
π

σ 2
α0

)
− G6

24Gπ

(4σ0 − σs0). (48)

We require that G̃π has the same value as Gπ in the 4-Fermi
calculation in order to reproduce the observed pion mass (see
Table I), and that G6 reproduces the observed mass difference
mη′ − mη = 0.41 GeV. One can use Eq. (45) to express the

quantity (Gπ + G(ss)
8

4G2
π
σ 2

α0) in the form G̃π + G6
8Gπ

σs0. By insert-
ing this into (46) and (48), we see that the three coupling
constants (46), (47), and (48), which are used to calculate
the η − η′ mass difference, can be expressed in terms of
G̃π , G6, and the quark condensates in the vacuum, 〈uu〉0 =
〈dd〉0 = σ0/(4Gπ ) and 〈ss〉0 = σs0/(4Gπ ), which are fixed by
the constituent quark masses in the vacuum and the cutoffs
given in Table I. Therefore G6 can be adjusted to the η − η′
mass difference in the standard way [102], without recourse
to the value assumed for G(ss)

8 . It is also easy to see that the
gap equation (40) for the u, d quarks in the vacuum remains
numerically the same as in the pure 4-Fermi case because
it can be expressed as M0 = m − 4G̃π 〈uu〉0. Therefore, the
value of m given in Table I is unchanged.9 By the standard
calculations, we find that G6 = 1260 GeV−5 reproduces the
observed η − η′ mass difference.

Next we comment on the role of the 8-Fermi coupling
constants. As one can expect from the gap equation (40), G(ss)

8
works into the same direction as the original 4-Fermi coupling
Gπ , i.e., it gives attraction, while a positive coupling G(sv)

8

gives repulsion. The coupling G(vv)
8 , on the other hand, is not

related to the gap equation, but after eliminating the vector

9The value of the current s-quark mass depends slightly on the
values assumed for G6 and G(ss)

8 . Also the original 4-Fermi coupling
constant Gπ changes according to Eq. (45), although this has no
effect on any physical quantity.
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TABLE V. Values of the 6-Fermi coupling constant G6 in units
of GeV−5, and the 8-Fermi coupling constants G(ss)

8 and G(vv)
8 in units

of GeV−8, for the three cases discussed in this section. The coupling
G(sv)

8 is set to zero in all three cases.

Case G6 G(ss)
8 G(vv)

8

1 0 0 0
2 1260 0 0
3 1260 2330 1220

fields according to (10) it is easily seen to give a repulsive con-
tribution of 4G(vv)

8 ρ2
αρ2

β = 81G(vv)
8 ρ4

B to the energy density,

and 12G(vv)
8 ρ2

αρ2
β = 243G(vv)

8 ρ4
B to the pressure in symmetric

nuclear matter. Although the 8-Fermi coupling constants can
be treated as free parameters, their choice is strongly limited
by the requirements that the saturation point of isospin-
symmetric nuclear matter is unchanged, and the discrepancies
of the calculated incompressibility and the symmetry energy
to the empirical values do not increase. In the present calcula-
tion, we achieved this by making use of the balance between
the attractive (ss)-type interaction and the repulsive (vv)-type
interaction. Concerning the (sv)-type interaction, which can
work as an attraction (G(sv)

8 < 0) or a repulsion (G(sv)
8 > 0),

we found that the case of attraction leads to conflicts with
the nuclear matter equation of state, and the case of repulsion
gives a much smaller effect in neutron-star matter than the
repulsive (vv)-type interaction. We therefore consider only
the case G(sv)

8 = 0 in the calculations described below. We also
note that changes in the original 4-Fermi vector coupling con-
stant Gv , under the constraints imposed by symmetric nuclear
matter, do not lead to any noteworthy improvements of the
equation of state of neutron-star matter, so we keep the same
value as given in Table I.

In Table V, we list as case 1 the pure 4-Fermi case, where
the 6-Fermi and 8-Fermi coupling constants are zero, and in
case 2 the 6-Fermi interaction with the value of G6 as deter-
mined above is added. Case 3 gives one possible choice for the
8-Fermi coupling constants, where the balance between the
attractive (ss)-type interaction and the repulsive (vv)-type in-
teraction is used to keep the nuclear matter properties around
the saturation point unchanged, while the (sv)-type interaction
is assumed to vanish.

B. Numerical results including 6-fermi and 8-fermi interactions

The top panel of Fig. 9 shows the results for the pressure
in neutron-star matter for the three cases listed in Table V as
functions of the baryon density, and the bottom panel shows
the resulting neutron-star masses as functions of the central
baryon density. Although the 6-Fermi interaction (case 2)
leads only to a slight decrease of the pressure in the region
of ρB = 0.35–0.8 fm−3, the resulting decrease in neutron-star
masses is quite significant.10 On the other hand, the (vv)-type

10As in other works, for example Ref. [26], we find that small
changes of the pressure in this region of baryon densities can lead
to appreciable changes in the star masses.

FIG. 9. The pressure in neutron-star matter as function of the
baryon density (top panel) and the resulting neutron star masses as
function of the central baryon density (bottom panel) for the three
cases listed in Table V. Case 1 is identical to the “full result” for the
4-Fermi interaction case, shown by the solid lines in Fig. 8.

8-Fermi interaction [last term in Eq. (39)], with a very mod-
erate coupling constant and counterbalanced by the (ss)-type
interaction so as not to change the saturation properties of
symmetric nuclear matter, gives a strongly increasing pressure
for ρB > 0.7 fm−3 and stabilizes the neutron stars against
collapse for central densities larger than 0.7 fm−3.

Taken together, the 6-Fermi and 8-Fermi interactions do
not lead to noticeable changes of the maximum star masses
but rather work towards stabilization of the stars for high
central densities. The resulting star masses for case 3 in the
range of central densities between 0.7 and 1.5 fm−3 are all
around 1.7M�, with radii decreasing from 11.5 km to 9.5 km.
We finally give the values of the maximum central baryon
densities which gives stable stars, the maximum star masses,
and the radii of the stars with maximum mass for the three
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cases shown in Fig. 9:[
ρmax

B (r = 0), Mmax
star , R

] = (0.72 fm−3, 1.73M�, 12.3 km)

for case 1,[
ρmax

B (r = 0), Mmax
star , R

] = (0.8 fm−3, 1.62M�, 11.9 km)

for the case 2, and[
ρmax

B (r = 0), Mmax
star , R

] = (1.4 fm−3, 1.72M�, 9.8 km)

for the case 3.

VI. SUMMARY

In this paper we used the three-flavor NJL model as an
effective quark theory of QCD to describe the octet baryons
as quark-diquark bound states, and the equations of state of
nuclear and neutron-star matter in the relativistic mean field
approximation based on quark degrees of freedom. One of
our basic concepts was to preserve the flavor and chiral sym-
metries of the interaction Lagrangian, i.e., to allow explicit
symmetry breakings only by the current quark masses and not
by ad hoc changes of model parameters. In Sec. I we stated
the four main purposes of our work, so let us now summarize
our results in this order.

First, the internal quark structure of baryons leads to den-
sity dependent meson-baryon coupling constants and meson
masses which strongly reduce the attractive parts of the inter-
actions in nuclear matter. The main reason for this effect is
the nonlinear behavior of the hadron masses as functions of
the constituent quark masses. In particular, we found that the
attraction experienced by the � baryon immersed in nuclear
matter is reduced more strongly than that for the � baryon,
and we could verify that the mass difference between the �

and � baryons immersed in the nuclear medium increases
with increasing density. However, we found that this effect,
which is based on the different quark-diquark structures of
those two baryons, is not sufficient to make the � unbound in
the region of normal nuclear matter density.

Second, we used concepts of the relativistic Fermi-liquid
theory to derive the effective meson exchange interaction be-
tween octet baryons in the nuclear medium, and the analog
of the Landau relation between the energies of the baryons
and the interactions between them. We also used the same
concepts to discuss the renormalization of currents carried by
baryons, as well as the effects of nucleon density variations
on the energies of hyperons immersed in the nuclear medium.
To the best of our knowledge, some of these relations cannot
be found in the literature, and we hope that our results will be
useful for further investigations.

Third, we designed our mean field approximation so that it
reflects the basic symmetries of the model and their dynamical
breakings, regardless of possible disagreements with observa-
tions. To appreciate this point, let us suppose for the moment
that we had explicitly broken the flavor and chiral symmetries,
as specified below Eq. (1), by choosing a different coupling
constant (say Gρ) for the isovector term in the second line
of Eq. (1): Gρ[(qλiγ

μq)2 + (qλiγ
μγ5q)2], where i = 1, 2, 3.

By choosing Gρ � 3Gv � 18 GeV−2, we could reproduce the
empirical symmetry energy as = 32 MeV (see Sec. III C 3),

the shallow bound state of pure neutron matter in Fig. 2 would
disappear, neutron stars made of nucleons and leptons would
become heavier, and the onset of the �− baryon would move
to higher densities or disappear, because its energy gets a pos-
itive shift from the vector isovector potential, twice as large as
for the neutron [see upper panel of Fig. 7 and Eq. (27)]. This
would delay the onset of the decrease of Ms in neutron-star
matter (see Fig. 6) and thereby hinder the succession of further
hyperons (see lower panel of Fig. 7), leading again to larger
star masses. While this ad hoc modification may still have
some phenomenological justification, one may think of more
drastic changes, such as, for example, enhancing the coupling
constant in the vector potential acting on the s quark in Eq. (2),
or introducing a phenomenological repulsive function into the
energy density which grows asymptotically for large densities.
In these or other ways one could “improve” the results, but
only little can be learned from it.

Fourth, we found that the so-called hyperon puzzle persists
in the NJL model for composite octet baryons in the mean
field approximation, and 6-Fermi and 8-Fermi interactions—
with coupling constants chosen so as not to spoil the saturation
properties of normal nuclear matter—do not solve the prob-
lem. On the positive side, we have shown that a special kind
of 8-Fermi interaction, characterized by a product of four-
quark current operators, is able to support stable stars up to
1.7 solar masses over a large region of central densities. In
view of the extremely large baryons densities involved in the
investigation of neutron stars, we believe that any solution to
the hyperon puzzle must involve quark degrees of freedom,
not only quarks in individual hadrons but also quarks which
belong to two or more hadrons, or to the whole system.
An investigation along these lines would naturally lead to
an examination of various patterns of phase transitions to
three-flavor quark matter, including pairing and condensation
phenomena.
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APPENDIX A: BARYONS AS QUARK-DIQUARK
BOUND STATES

The quark-diquark model, based on the static approxi-
mation to the Faddeev equation, for octet baryons in the
limit of isospin symmetry (Mu = Md ) has been described in
Refs. [54,67]. As explained in the main text, in our present
work we still assume isospin symmetry in the vacuum, and
therefore equal current quark masses (mu = md ≡ m) and
equal constituent quark masses in the vacuum (Mu0 = Md0 ≡
M0). However, a consistent description of isospin-asymmetric
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systems, like neutron-star matter, in the framework of an
effective quark theory requires to consider the spontaneous
breaking of isospin symmetry due to the presence of the
medium, i.e., Mu = Md . In this Appendix, we therefore briefly
explain the main points of our model for the octet baryons,
treating the masses Mu, Md , Ms as independent quantities.

The chiral-invariant interaction Lagrangian in the qq chan-
nel is given by [40]

L(qq)
I = GS

[(
q̄γ5Cλaλ

(C)
A q̄T

)(
qT C−1γ5λaλ

(C)
A q

)
− (

q̄Cλaλ
(C)
A q̄T

)(
qT C−1λaλ

(C)
A q

)]
+ GA

[(
q̄γμCλsλ

(C)
A q̄T

)(
qT C−1γμλsλ

(C)
A q

)
+ (

q̄γμγ5Cλaλ
(C)
A q̄T

)(
qT C−1γ μγ5λaλ

(C)
A q

)]
. (A1)

Here λa (a = 2, 5, 7) are the antisymmetric Gell-Mann fla-
vor matrices, λs (s = 0, 1, 3, 4, 6, 8) are the symmetric ones,
and the antisymmetric Gell-Mann color matrices λ

(C)
A (A =

2, 5, 7) project to color 3̄ diquark states. (There are also in-
teraction terms in the color 6 diquark channels, which are not
shown here because they do not contribute to colorless baryon
states.) The charge-conjugation Dirac matrix is C = iγ2γ0.
The first line in (A1) is the interaction in the scalar diquark
(0+) channel, the second line shows the pseudoscalar diquark
(0−) channel, the third line is the axial vector diquark (1+)
channel, and the fourth line is the vector diquark (1−) channel.
Following previous works [54,67], we include only the scalar
and the axial vector diquark channels, which are expected to
be dominant from the nonrelativistic analogy.

By simple manipulations in flavor space, we can identically
rewrite the two terms relevant for our calculation as follows:

L(qq) = GS
(
q̄γ5Ctaλ

(C)
A q̄T

)(
qT C−1γ5t†

a λ
(C)
A q

)
+ GA

(
q̄γμCtsλ

(C)
A q̄T

)(
qT C−1γμt†

s λ
(C)
A q

)
, (A2)

where we introduced the three antisymmetric and anti-
Hermitian 3 × 3 flavor matrices ta ≡ (t[ud], t[us], t[ds] ), and
the six symmetric and Hermitian 3 × 3 flavor matrices ts ≡
(t{ud}, t{us}, t{ds}, t{uu}, t{dd}, t{ss}). For example, t[ud] is given by

t[ud] =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠

and corresponds to the antisymmetric flavor combination ex-
pressed by [ud]. The matrices t[us], t[ds] are defined similarly
and correspond to the antisymmetric flavor combinations [us]
and [ds]. The symmetric matrix t{ud} has the same structure
as t[ud], but with the −1 replaced by +1 in the (2,1) compo-
nent, and corresponds to the symmetric flavor combination
expressed by {ud}. The matrices t{us} and t{ds} are defined
in a similar way for the symmetric flavor combinations {us}
and {ds}. Finally, the matrices t{uu}, t{dd}, and t{ss} have a

√
2

as the (1,1) component, the (2,2) component, and the (3,3)
component, respectively, with all other components equal to
zero.

We express the Faddeev vertex functions for a given baryon
by X a

i , where a denotes the diquark channels explained above
(a = [ud], . . . , {ss}), and i is the flavor of the third quark. For
example, for the proton the diquark-quark channels are la-
beled by [ud]u, {ud}u, and {uu}d . The Faddeev equations for

FIG. 10. Graphical representation of the Faddeev equation (A3).
The black dot represents the vertex function X , the square the
Dirac-flavor vertex functions �t in (A4), the single lines the quark
propagator S, and the double line the diquark propagator τ . External
baryon, diquark, and quark lines are amputated.

the vertex functions X a
i (p, q), describing a baryon of momen-

tum p as a bound state of a quark (momentum q) and a diquark
(momentum p − q), are

X a
i (p, q) =

∫
d4k

(2π )4 Zab
i j S j (k)τ bc

(ki)(p − k)X c
j (p, k), (A3)

which is shown graphically in Fig. 10. Here the quark ex-
change kernel is given by

Zab
i j = −3�b(t bS(k + q − p)t a†)i j�

a, (A4)

where the factor −3 comes from projection to color sin-
glet states, and we used the identity CST (k)C−1 = S(−k)
to process the charge-conjugation matrices. The Dirac
matrices � are given by �a = γ5 for the scalar di-
quark channels (flavor index a = [ud], [us], [ds]) and �a =
γ μγ5 for the axial vector diquark channels (flavor index
a = {ud}, {us}, {ds}, {uu}, {dd}, {ss}). The quantities τ bc

(ki) in
Eq. (A3) are diagonal in the diquark flavor indices, τ bc

(ki) =
δbcτ

b
(ki), where τ b

(ki) is the reduced t matrix in the diquark
channel b with interacting quark flavors k, i. Therefore, τ b

(ki) ≡
τ[ki] in the scalar diquark channels ([ki] = [ud], [us], [ds]),
and τ b

(ki) ≡ τ
μν

{ki} in the axial vector diquark channels ({ki} =
{ud}, {us}, {ds}, {uu}, {dd}, {ss}). The explicit forms of the
reduced diquark t matrices τ[ki] and τ

μν

{ki} are given in
Refs. [54,67]. In the last factor (. . . ) of (A4), the quark prop-
agator is considered as a 3 × 3 diagonal matrix with diagonal
elements Sk = (Su, Sd , Ss).

The formalism described so far is the Faddeev framework
in the NJL model, where the only assumptions are the ladder
approximation for the two-body t-matrices and the restric-
tion to the scalar and axial vector diquark channels. The
quark-diquark model used in the calculations of the main
text is obtained by the replacement S → −1/M in the quark
exchange kernel (A4) for each quark flavor k, i.e., this ap-
proximation neglects the momentum dependence of the quark
exchange kernel and is called the “static approximation” of
the Faddeev kernel [76]. In this approximation, the vertex
functions X a

i of (A3) depend only on the total momentum
p, and the integral in Eq. (A3) extends only over the product
S j (k)τ bc

(ki)(p − k), which we regularize according to the proper
time scheme (see Appendix C), which avoids unphysical
thresholds for the decay into quarks. The Dirac structure of
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the vertex function can also be determined analytically. Let
us again take the proton as an example. Arranging the three
interacting channels mentioned above into a vector, the vertex
function can be expressed in the form11

|p〉 =
⎛
⎝X [ud]

u (p)
X {ud}

u (p)
X {uu}

d (p)

⎞
⎠ ≡

⎛
⎜⎝

α1[ud]u(
α2

pμ

Mp
+ α3γ

μ
)
γ5{ud}u(

α4
pμ

Mp
+ α5γ

μ
)
γ5{uu}d

⎞
⎟⎠up(p),

(A5)

where up(p) is the Dirac spinor with the mass of the proton
(Mp). Inserting (A5) into Eq. (A3) then gives homogeneous
equations for the coefficients αi, and the characteristic equa-
tion gives the proton mass Mp = Mp(Mu, Md ).

The vertex functions of the other members of the octet with
two identical quark flavors are similar to (A5), with obvious
replacements of quark flavors. For the �0, the flavor structure
can be obtained by acting with the isospin-lowering operator
(T−) on |�+〉, which generates

|�0〉 =

⎛
⎜⎜⎜⎜⎝

X [us]
d (p)

X [ds]
u (p)

X {us}
d (p)

X {ds}
u (p)

X {ud}
s (p)

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

α1[us]d
α2[ds]u(

α3
pμ

M
�0

+ α4γ
μ
)
γ5{us}d(

α5
pμ

M
�0

+ α6γ
μ
)
γ5{ds}u(

α7
pμ

M
�0

+ α8γ
μ
)
γ5{ud}s

⎞
⎟⎟⎟⎟⎟⎟⎠

u�0 (p),

(A6)

where u�0 (p) is the Dirac spinor with the mass M�0 . Note that
there is no component with the flavor structure [ud]s in �0,
and, of course, also no components where the two light quarks
form a scalar diquark in �± because those vanish identically
([uu] = [dd] = 0).

For the �, we first construct a state U+|�0〉, where the
raising U -spin operator converts an s quark into a d quark,
and orthogonalize this state to |�0〉. This gives

|�〉 =

⎛
⎜⎜⎜⎜⎝

X [ud]
s (p)

X [us]
d (p)

X [ds]
u (p)

X {us}
d (p)

X {ds}
u (p)

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎜⎝

α1[ud]s
α2[us]d
α3[ds]u(

α4
pμ

M�
+ α5γ

μ
)
γ5{us}d(

α6
pμ

M�
+ α7γ

μ
)
γ5{ds}u

⎞
⎟⎟⎟⎟⎟⎠u�(p),

(A7)

where u�(p) is the Dirac spinor with the mass M�. Note that
there is no component with the flavor structure {ud}s in �.

In the calculations of the main text we only need the
masses of the octet baryons as functions of the constituent
quark masses. In isospin-asymmetric systems like neutron-
star matter, the isospin symmetry is obviously broken, but

11The coupling of the time component of the axial vector diquark
and the quark to the total spin ( 1

2 , SN ) gives rise to the structure
pμ

MN
γ5u(p, SN ), and the coupling of the three-vector components of

the axial vector diquark to the quark gives the structure∑
λ,s

(
1

1

2
, λs|1

2
SN

)
εμ(p, λ)u(p, s) = −1√

3

(
pμ

MN
+ γ μ

)
γ5u(p, SN ),

where εμ(p, λ) is the Lorentz four-vector for spin 1 with mass MN ,
and u(p, SN ) is the Dirac spinor with mass MN .

the charge symmetry is intact if we simultaneously reverse
the signs of the isospin z components of the baryons and
the constituent quarks in the baryon. We therefore have the
following five independent functions of Mu, Md (omitting the
obvious dependence on Ms for the hyperons to simplify the
notations):

Mp = Mp(Mu, Md ), M�+ = M�+ (Mu),

M�+ = M�+ (Mu),

M�0 = M�0 (Mu, Md ) = M�0 (Md , Mu),

M� = M�(Mu, Md ) = M�(Md , Mu).

The masses of the remaining baryons can then be expressed
by

Mn = Mp(Md , Mu), M�− = M�+ (Md ),

M�0 = M�+ (Md ). (A8)

The vertex functions and masses of the decuplet baryons
are calculated in a similar way. The calculation is simplified
by the fact that here only the axial vector diquark channels
(symmetric combinations of quark flavors {q1q2}) contribute,
which leaves only one possible Dirac-Lorentz structure for
all components of the baryon vertex, namely, the Rarita-
Schwinger spinor uμ(p, Sb).

In the present work, we determined the coupling constants
GS , GA of the Lagrangian (A1) so as to reproduce the observed
masses of the nucleon (MN = 0.94 GeV) and the Delta baryon
(M� = 1.232 GeV) in the vacuum (Mu = Md = 0.4 GeV).
We also determined our vacuum value of the strange quark
mass so as to reproduce the observed mass of the � baryon
(M� = 1.67 GeV). In this way we obtain

GS = 8.76 GeV−2, GA = 7.36 GeV−2, Ms = 0.562 GeV.

(A9)

The resulting masses of octet baryons are given in Table II of
the main text. The masses of the decuplet baryons—except for
the � and the � which were fitted—are also well reproduced
in this calculation; we obtain M�∗ = 1.38 GeV, and M�∗ =
1.53 GeV. The mass of the kaon, however, is underestimated
(0.43 GeV for the case of 4-Fermi couplings); in order to
reproduce its observed mass we would need a larger value of
Ms. Because the focus of our present work is on the baryons,
we made no attempt to reproduce the meson masses well.

The masses of the diquarks [poles of the quantities τ in
Eq. (A3)] are M[��′] = 0.768 GeV and M[�s] = 0.902 GeV for
the scalar diquarks with �, �′ = u, d , and M{��′} = 0.929 GeV,
M{�s} = 1.04 GeV, M{ss} = 1.15 GeV for the axial vector
diquarks.

We finally mention that the values of GS and GA given
in (A9) are different from those used in a previous work on
the flavor SU(2) case [66]. There GS and GA were fitted to
the mass of the free nucleon and its axial vector coupling
constant (gA = 1.26). The values of GS (GA) obtained in that
way were larger (smaller) than the values given in (A9), which
indicates that the dominance of the scalar diquark channel,
which increases in-medium because of the decreasing scalar
diquark mass, was more pronounced in Ref. [66] than in the
present work. This stronger attraction in-medium, however,
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FIG. 11. Graphical representation of a meson exchange interac-
tion in the quark-diquark model for the baryons. Only the quark loop
contributions are shown, and the dots indicate the higher orders in the
RPA-type series of qq bubble graphs. The nucleon loop contributions
in the denominators of Eqs. (17) and (18) are not shown here for
simplicity. The small dots represent the 4-Fermi interaction in the
qq channel, and the other symbols are explained in the caption to
Fig. 10.

was eventually canceled by a stronger repulsion in the vector-
isovector qq̄ channel, because in the flavor SU(2) case it was
possible to reproduce the symmetry energy in the mean field
approximation without violating the chiral symmetry of the
interaction Lagrangian. As a result, the pressure in neutron-
star matter and the star masses calculated in Ref. [66] were
almost identical to the results shown by the dashed lines in
Fig. 8 of the main text.

In our present work, we found it more essential to re-
produce the N − � mass difference, because one of our
motivations was to see how the � − � mass difference
evolves with density if the spin dependent diquark correla-
tions are constrained to the vacuum value of the N − � mass
difference from the outset. The value of gA, obtained with our
present coupling constants (A9), is larger than the observed
value by about 10%. In future investigations, we wish to see
whether the inclusion of additional diquark channels allows
one to find a set of coupling constants which reproduces the
nucleon mass, the Delta baryon mass, and gA simultaneously.

APPENDIX B: MESON EXCHANGE IN SYMMETRIC
NUCLEAR MATTER

As mentioned in Sec. III A, in order to express the effective
baryon-nucleon interactions (17) and (18) in terms of meson
exchange processes of the type shown in Fig. 11, one should
multiply the numerator and denominator functions in the first
two lines of those expressions by the quark-meson couplings

g(q)2
σ = g(q)2

δ = −1

�′
s(q

2 = 0)
, (B1)

and similarly in the third lines by

g(q)2
ω = g(q)2

ρ = −1

�′
v (q2 = 0)

. (B2)

Here the qq bubble graphs in the scalar and vector channels
are given by

�s(q
2) = 12i

∫
d4k

(2π )4

×
[

−2

k2 − M2
+ (q2 − 4M2)

×
∫ 1

0
dx

1

[k2 − M2 + q2x(1 − x)]2

]
, (B3)

�v (q2) = 48iq2
∫

d4k

(2π )4

∫ 1

0
dx

x(1 − x)

[k2 − M2 + q2x(1 − x)]2 ,

(B4)

and the primes in (B1) and (B2) mean differentiation with
respect to q2.

For simplicity we consider only the � = 0 terms in (17) and
(18). They can be expressed in the following form:

f0,bN = −Mb

Eb

MN

EN

g(b)
σ g(N )

σ

M2
σ

+ g(b)
ω g(N )

ω

M2
ω

, (B5)

f ′
0,bN = −Mb

Eb

MN

EN

g(b)
δ g(p)

δ

M2
δ

+ g(b)
ρ g(p)

ρ

M2
ρ

. (B6)

Here all meson-baryon coupling constants and meson masses
are defined at zero momentum, and are different from the
values at the meson poles. The resulting values for the ef-
fective coupling constants and masses are summarized for
three values of the baryon density in Table VI. In relation to
our discussions in Sec. III C, we note that g(�)

σ > g(�)
σ , which

reflects the different internal quark-diquark structure of the �

and the � baryons.
We finally add a few comments on the definition of effec-

tive coupling constants and meson masses used here: First,
the multiplication of the density dependent scaling factors
(B1) and (B2) to the numerators and denominators of (17)
and (18) obscures the simplicity of those basic expressions,
and for better orientation the values listed in Table IV of the
main text is more useful. Nevertheless, it is necessary for a
proper definition of coupling constants and meson masses at
zero momentum of the mesons. For the coupling constants,
this is immediately clear from Fig. 11. For the meson masses,
consider for example the case of the σ meson. The reduced t
matrix in the 0+ qq channel is given by

τσ (q2) = −2Gπ

1 + 2Gπ�s(q2) + 2GπδM2
σ

, (B7)

where the nucleon loop contributions, approximated by their
forms at q = 0, are denoted by δM2

σ . Expanding (B7) around
q2 = 0 gives the approximate Yukawa-like form

τσ (q2) = g(q)2
σ

q2 − M2
σ

,

where g(q)
σ is defined by (B1), and

M2
σ = g(q)2

σ

(
1

2Gπ

+ �s(q
2 = 0) + δM2

σ

)
. (B8)
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TABLE VI. Effective coupling constants and masses of σ , ω, δ,
and ρ mesons for four values of the baryon density in symmetric
nuclear matter. Coupling constants are dimensionless, and masses
are given in units of GeV. For definitions, see Eqs. (B5), (B6), and
the text.

Density g(q)
σ g(N )

σ g(�)
σ g(�)

σ g(�)
σ Mσ

0 6.63 18.21 12.13 10.28 5.70 1.25
0.15 4.85 10.06 7.05 5.59 3.15 0.96
0.3 4.20 6.25 4.80 3.59 2.06 0.97
0.5 3.85 4.01 3.45 2.44 1.43 1.05

Density g(q)
ω g(N )

ω g(�)
ω g(�)

ω g(�)
ω Mω

0 5.27 15.80 10.54 10.54 5.27 1.52
0.15 4.51 13.53 9.02 9.02 4.51 1.30
0.3 4.18 12.53 8.35 8.35 4.18 1.20
0.5 3.99 11.96 7.97 7.97 3.99 1.15

Density g(q)
δ g(p)

δ g(�)
δ g(�+ )

δ g(�0 )
δ Mδ

0 6.63 4.64 0 10.28 5.70 1.25
0.15 4.85 2.38 0 5.59 3.15 0.99
0.3 4.20 1.38 0 3.59 2.06 1.00
0.5 3.85 0.81 0 2.44 1.43 1.10

Density g(q)
ρ g(p)

ρ g(�)
ρ g(�+ )

ρ g(�0 )
ρ Mρ

0 5.27 5.27 0 10.54 5.27 1.52
0.15 4.51 4.51 0 9.02 4.51 1.30
0.3 4.18 4.18 0 8.35 4.18 1.20
0.5 3.99 3.99 0 7.97 3.99 1.15

The terms (. . . ) in (B8) agree with the denominator in the
second line of Eq. (17) because of the relation �s(q2 = 0) =
2g(M ), where g(M ) is given by Eq. (19).

APPENDIX C: REGULARIZATION METHOD

To evaluate four-dimensional integrals, we introduce Feyn-
man parameters and perform shifts of the loop momentum so
that the integrand depends only on k2, where k is the loop
momentum, besides other fixed variables. We then perform a
Wick rotation and use four-dimensional spherical polar coor-
dinates to obtain∫

d4k f (k2) = 2π2i
∫ ∞

0
dkE k3

E f
(−k2

E

)
,

where kE = (k2
0 + k2)1/2 is the Euclidean length. Next, we

consider the following identities:

ln
D

D0
= −

∫ ∞

0

dτ

τ
(e−τD − e−τD0 ), (C1)

1

Dn
= 1

(n − 1)!

∫ ∞

0
dττ n−1e−τD (n � 0), (C2)

where D is a function of k2
E and other fixed variables. In

the proper time regularization scheme, the infrared cutoff
(�IR) is introduced by replacing the upper integration limits
in (C1) and (C2) by 1/�2

IR, and the ultraviolet cutoff (�UV)
by replacing the lower integration limits by 1/�2

UV. After
these replacements, one performs the integration over kE . The
ultraviolet cutoff makes the integrals finite, while the infrared
cutoff eliminates unphysical thresholds (imaginary parts) for
the decay of hadrons into quarks, thus simulating the role of
confinement.

APPENDIX D: SIZES OF QUARK CORES IN THE
NUCLEAR MEDIUM

The rms radius of the baryon density distribution of the
quark core of the nucleons in the medium is related to the
isoscalar combination of the corresponding electric charge
radii of protons and neutrons by

rN (ρB) =
√〈

r2
E p

〉
(ρB) + 〈

r2
En

〉
(ρB). (D1)

In the language of Feynman diagrams used in Ref. [103], the
corresponding isoscalar baryon form factor is obtained by the
operator insertion 1

3γ 0 on each quark line. For free nucleons
(zero density) the result of the NJL model calculations of
Ref. [103], using the same parameters as in the present paper,
is rN (0) = 0.475 fm. Note that this is the value for the quark
core without meson cloud corrections, obtained by replacing
the dressed quark form factors in Sec. VI of Ref. [103] by their
bare values (F1U = 2

3 , F1D = − 1
3 , F2U = F2D = 0). The pion

cloud contributions to the isoscalar quantity rN are very small.
A simple estimate of ω meson cloud effects, using our present
value of Gv , gives only a small correction, but a more realistic
treatment, following the lines of the vector meson dominance
model with the observed ω meson pole, increases the isoscalar
baryon radius to 0.78 fm (see Table VI of Ref. [103]), which
is close to the experimental value. As mentioned in the main
text, however, the quantity which seems more relevant for the
role of the Pauli principle is the baryon radius of the quark
core without meson cloud effects. This is simply because the
mesons are bosons, and the overlap of the meson clouds just
corresponds to the meson exchange interactions. Therefore
the results shown in Sec. III C 5 of the main text refer to this
quantity.

Based on naive geometric intuition, the volume fraction
occupied by the quark cores can be defined as

f (ρB) = ρBvN (ρB), (D2)

where vN (ρB) = 4π
3 r3

N (ρB). Estimates based on this expres-
sion are also given in the main text.
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