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In this work, we evaluate the recoil corrections to the correlation coefficients in the neutron β− decay with
polarized neutron and polarized electron, up to order O(m−2

n ), where mn represents the mass of neutron. In our
calculations, we express the mass of proton mp in terms of mn and other small quantities to ensure that only one
larger parameter, mn, remains in the differential cross section. Subsequently, we expand the differential cross
section on m−1

n , and finally integrate the solid angles of the antineutrino to obtain the analytic expressions for the
angular correlation coefficients. Comparing the analytic results to those in a previous study [Ivanov, Hollwieser,
Troitskaya, Wellenzohn, and Berdnikov, Phys. Rev. C 95, 055502 (2017); 104, 069901(E) (2021)], we find that,
at order O(m−1

n ), three of the results are consistent, while two differ slightly. In addition, the contributions at
order O(m−2

n ) are presented when considering a general form of W np interactions. Numerical results show that
contributions from order O(m−2

n ) and additional form factors of W np interactions are required to achieve a
precision of 10−5.

DOI: 10.1103/PhysRevC.109.025204

I. INTRODUCTION

The β− decay of a free neutron n → peν̄e [1] provides a
clean process to determine the elemental parameters in the
standard model (SM). In the SM, a free neutron is unstable
and its β− decay is mainly governed by the weak interaction.
In this process, the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix element Vud and the weak coupling of W np play crucial
roles. Due to its clean background, this process serves as a
powerful laboratory for testing the universality of the quark
mixing CKM matrix [2], validating the conserved-vector-
current (CVC) hypothesis [3], and examining the absence
of second-class currents (SCC) [4], among other things. In
addition, the axial-vector coupling constant gA plays a crucial
role as an essential input in various fields such as nuclear
physics, particle physics, cosmology, and astrophysics [5].

In the case of unpolarized β− decay of the neutron, the
experimental observables are the decay lifetime τn and the
shape of the decay spectrum. However, when studying β−
decay involving a polarized electron and a polarized neu-
tron, additional measurements can be made to determine the
angular correlation coefficients A(Ee), G(Ee), N (Ee), Q(Ee),
and R(Ee) [6], where Ee represents the energy of the elec-
tron in the rest frame of the neutron. Recently, many high
precise measurements have been carried out in the neutron
β− decay, including the nonpolarization case [7], the single
neutron polarization [8], and both the electron and the neutron
polarizations [9].
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To extract the accurate value of Vud and the coupling
constants from the free neutron β− decay, the theoretical esti-
mations for the corresponding correlation coefficients should
reach sufficient accuracy. For instance, in the case of unpo-
larized neutron β− decay, the model-independent radiative
corrections (MIRC) have been evaluated at different orders.
The leading-order corrections O(αe) were calculated in [10],
the next-to-leading-order corrections O(α2

e ) were evaluated in
[11], and the next-to-next-to-leading-order corrections O(α3

e )
were studied in [12], where αe represents the fine structure
constant. Additionally, model-dependent radiative corrections
(MDRC) have been estimated using various methods. These
include a renormalization group analysis method [13] and
its improvement [14], the effective field theory method [15],
and the dispersion relation method [16]. Furthermore, other
contributions from proton recoil, finite proton radius, and
lepton-nucleon convolution [17] are also significant and can-
not be neglected in upcoming high-precision extractions [18].

In Refs. [19,20], the contributions to the correlation coeffi-
cients A(Ee), G(Ee), N (Ee), Q(Ee), and R(Ee) at orders O(αe)
and O(m−1

n ) were calculated, where mn represents the mass of
the neutron. Furthermore, in Refs. [21,22], the contributions
to the differential cross section at the level of 10−5 were esti-
mated. In this study, we focus on calculating the contributions
to the correlation coefficients A(Ee), G(Ee), N (Ee), Q(Ee),
and R(Ee) at order O(m−2

n ), considering a general form of
W np interactions. Since the radiative corrections at orders
O(αe) and O(αem−1

n ) can be combined directly with the recoil
corrections to obtain the full corrections, and most of them
have been extensively studied in previous references, we do
not delve into them in detail. Instead, our main focus is solely
on the recoil contributions at order O(m−2

n ) under the Born
approximation.
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FIG. 1. Diagram for n → peν̄e with one-W exchange.

The paper is structured as follows. In Sec. II, we pro-
vide the basic formula under the Born approximation. In
Sec. III, we present the analytical expressions for the angular
correlation coefficients up to order O(m−2

n ). In Sec. IV, we
present numerical comparisons between our results and those
reported in the literature. Additionally, we discuss the reasons
for any observed differences.

II. BASIC FORMULA FOR n → peν̄e

Under the Born approximation for free neutron β− decay,
only the one-W -exchange diagram shown in Fig. 1 should be
considered. The corresponding amplitude can be expressed as
follows:

M = −i
GF√

2
Vud [ū(pe, me)γμ(geV − geAγ5)u(pν, mν )]

× [ū(pp, mp)�μ
W np(q)u(pn, mn)], (1)

where GF = √
2g2/8m2

W is the Fermi weak constant [g is
the SU (2) gauge coupling constant], Vud is the CKM matrix
element [23], and geV,eA are the coupling constants of eν̄eW −.
ū(pe, me), u(pν, mν ), ū(pp, mp), and u(pn, mn) are the spinors
of the electron, antineutrino, proton, and neutron with the cor-
responding momentum and mass, respectively. The transfer
momentum q = pn − pp. The most general form for the form
factor �W np in V -A theory [24] is given by

�
μ
W np(q) = f1(q2)γ μ−i

f2(q2)

mn + mp
σμρqρ + f3(q2)

mn + mp
qμ

+
[

f4(q2)γ μ−i
f5(q2)

mn + mp
σμρqρ + f6(q2)

mn + mp
qμ

]
γ5,

(2)

where σμρ = i
2 [γ μ, γ ρ], f1(q2), f2(q2), f3(q2), f4(q2),

f5(q2), and f6(q2) in �
μ
W np account for vector, weak mag-

netism, scalar, axial vector, weak electricity, and induced
pseudoscalar contributions, respectively.

Under the Born approximation, the form factors fi(q2) can
be parametrized as functions of the low momentum transfer

q2 and expressed as

f1(q2) = f1 + q2

m2
n

λ f1 ,

f2(q2) = f2,

f3(q2) = f3,

f4(q2) = f4 + q2

m2
n

λ f4 ,

f5(q2) = f5,

f6(q2) = f6, (3)

where f1−6 and λ f1, f4 are the constants. For simplicity, we
denote λ f1 and λ f4 as f7 and f8, respectively. In the literature,
it is common to consider only the vector term f1, the weak
magnetism term f2 and the axial vector term f4 [20,21]. How-
ever, in our discussion, we retain all these terms for the sake
of generality.

The differential cross section for the process involving a
polarized neutron and a polarized electron can be expressed
as

dσn = F (Ee, Z = 1)

2En

∏
i=e,v,p

d3 �pi(2π )4δ4(pe + pν + pp − pn)

(2π )3(2Ei )

×
∑

helicity

MM∗, (4)

where Ei and �pi are the energy and three-momentum of the
corresponding particle i in the rest frame of neutron, respec-
tively. F (Ee, Z = 1) is the relativistic Fermi function [25]
which describes the contribution of the Coulomb interaction
between the final state electron and proton. After integrating
the δ functions, one can obtain the following expression:

d5σn(Ee, �pe, �ξe, �ξn)

dEed�ed�ν

= F (Ee, Z = 1)β
∑

helicity

M M∗, (5)

where �ξn and �ξe are the polarization vectors of the neutron and
electron, respectively, d�e and d�ν are the elements of the
solid angles of the electron and the antineutrino, respectively.
Here, the sums of the neutron’s and electron’s helicities are
expressed by the corresponding polarization vectors. The ex-
pression for the three-body phase space factor, denoted as β,
is given as follows:

β = 1

16mn

1

(2π )5

√
E2

e − m2
eEν

Ep + Eν + �nν · �pe
, (6)

where the unit vector �nν is oriented along the direction of the
antineutrino’s three-momentum �pν .

Experimentally, the direction of the antineutrino’s three-
momentum is not directly measured. Therefore, we need to
integrate over d�ν to account for all possible directions.
After integrating d�ν , the form of the cross section can
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be expressed as [6,20]

d3σn(Ee, �pe, �ξe, �ξn)

dEed�e
= G2

F |Vud |2
8π4

(E0 − Ee)2
√

E2
e − m2

eEeF (Ee, Z = 1)

{
ζ (Ee) + Ā(Ee)

�ξn · �pe

Ee
+ Ḡ(Ee)

�ξe · �pe

Ee

+ N̄ (Ee) �ξn · �ξe + Q̄(Ee)
(�ξn · �pe)(�ξe · �pe)

Ee(Ee + me)
+ R̄(Ee)

�ξn · ( �pe × �ξe)

Ee

}
, (7)

where E0 = (m2
n − m2

p + m2
e )/2mn represents the endpoint

energy of the electron spectrum. In comparison with the
expressions in Ref. [20], we introduce the following defi-
nitions: Ā(Ee) = A(Ee)ζ (Ee), Ḡ(Ee) = G(Ee)ζ (Ee), N̄ (Ee) =
N (Ee)ζ (Ee), Q̄(Ee) = Q(Ee)ζ (Ee), and R̄(Ee) = R(Ee)ζ (Ee),
respectively.

To calculate Ā(Ee), Ḡ(Ee), N̄ (Ee), Q̄(Ee), and R̄(Ee), it is
common to expand the phase space factor and the amplitude
M separately on m−1

n or m−1
N , where mN = (mn + mp)/2.

Various approximations of the phase space factor have
been employed in the literature. For example, in Refs. [19,20],
the phase space factor is approximated as follows:

β → βI = 1

16mn

1

(2π )5

[
1 + 3

(mn + mp)/2
(Ee − �nν · �pe)

]

× (E0 − Ee)2
√

E2
e − m2

e

mnEν

. (8)

For comparison, if one expands the following variable Y1 on
m−1

n up to order O(m−2
n ),

Y1 ≡ (E0 − Ee)2

Ep + Eν + �nν · �pe
= 16mn(2π )5 (E0 − Ee)2√

E2
e − m2

eEν

β, (9)

then we have

β → βII = 1

16mn

1

(2π )5

[
1 + 3

mn
(Ee − �nν · �pe)

]

× (E0 − Ee)2
√

E2
e − m2

e

mnEν

. (10)

This expansion of Y1 to order O(m−2
n ) introduces a factor

difference compared to βI, and the difference is at higher
order.

The authors of Ref. [20] extended βI to higher orders of
m−1

N in Ref. [21] with the following expression:

β → βIII = 1

16mn

1

(2π )5

(E0 − Ee)2
√

E2
e − m2

e

mnEν

�n( �pe, �pν )

(11)

with

�n( �pe, �pν ) = 1 + 3
Ee

mN

(
1 − �pe · �pν

EeEν

)

+ 6
E2

e

m2
N

(
1 − �pe · �pν

EeEν

)(
1 − �pe · �pν

EeEν

− 1

4

E0

Ee

)
.

(12)

In our calculation, we do not expand the phase space factor
and the amplitude independently. Instead, we expand the en-

tire expression of d5σn(Ee, �pe,�ξe,�ξn)
dEed�ed�ν

on m−1
n .

Since the entire expression d5σn(Ee, �pe,�ξe,�ξn)
dEed�ed�ν

involves two
large parameters, mn and mp, in order to perform a consistent
expansion on m−1

n , we apply the following three exact rules to
the entire expression in Mathematica:

Eν → mn(E0 − Ee)

mn − Ee + �nν · �pe
,

mn + mp → xmn, (13)

mp →
√

m2
n + m2

e − 2E0mn.

After applying these replacements, the expression is left with
only one large parameter, mn, which can be safely expanded
on m−1

n . We would like to mention that this step differs
significantly from the approach employed in Refs. [20,21].
Moreover, the resulting expression takes the form of a poly-
nomial in terms of �nν , allowing for straightforward integration
over d�ν .

To facilitate a comparison between the different expan-
sions, we also separately utilize our method to expand the
phase space factor. The result of this expansion is as follows:

β → βIV =
(E0 − Ee)

√(
E2

e − m2
e

)
512π5m4

n

[
m2

n + 2mnEe + 3E2
e

− 2
√

E2
e − m2

e (3Ee + mn)�nν · �ne

+ 3
(
E2

e − m2
e

)
(�nν · �ne)2

]
. (14)

In Eq. (14), the resulting expression involves only one large
parameter, mn, and is a polynomial function of �nν · �ne. On the
other hand, in Eqs. (8), (10), and (11), a small variable Eν ,
which is a function of �nν · �pe, still appears in the denominator.

In Fig. 2, we present the numerical results for 1 − βX /β

at Ee = 1 MeV to compare the different phase space factors.
The results depicted in Fig. 2 clearly demonstrate that the
approximations used in Eqs. (8) and (10) are not small. This
is expected since these two phase space factors are obtained
through a Taylor expansion to a lower order of m−1

n or m−1
N .

On the other hand, the results obtained using Eqs. (11) and
(14) are significantly better and exhibit consistency.
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FIG. 2. Comparison of the phase space factors: (1 − βX /β ) vs. �nν · �ne with Ee = 1 MeV.

III. ANALYTIC EXPRESSIONS

The general recoil corrections to the angular correlation
coefficients can be expressed as follows:

X (Ee) =
6∑

i=1

8∑
j=i

CX
i j L

X
i j fi f j, (15)

where X refers to ζ , Ā, Ḡ, N̄, Q̄, CX
i j refers to the contributions

from the hadronic part, and LX
i j refers to the factor from the

leptonic part which can be either g2
eV + g2

eA or geV geA. In
Eq. (15), we have expressed the contributions in a form where
i � j, and we have ignored the contributions with i = 7, 8 as
they are approximately of the order O(m−4

n ). Consequently,
we have only taken into account the terms satisfying the

TABLE I. Analytical results for Cζ
i j , where Lζ

i j represents the factor from the lepton part. Certain contributions, such as Cζ

16 and Cζ

23, are
zero and have been excluded from the table.

Lζ
i j O(1) O(m−1

n ) O(m−2
n )

Cζ

11 g2
eV + g2

eA
1
2

Ee
mn

(3E2
0 −8E0Ee+32E2

e )+(2E0/Ee−11)m2
e

12m2
n

Cζ

12 g2
eV + g2

eA 0 0
(6E2

0 −16E0Ee+16E2
e )+(7E0/Ee−13)m2

e
6mn (mn+mp )

Cζ

13 g2
eV + g2

eA 0 m2
e /Ee

mn+mp

(−E0/Ee+5)m2
e

2mn (mn+mp )

Cζ

14 geV geA 0 2(E0−2Ee )+2m2
e /Ee

mn

8(4E0Ee−7E2
e )+8(−E0/Ee+4)m2

e
3m2

n

Cζ

15 geV geA 0 0 − 2(E2
0 −2E0Ee )+2E0/Eem2

e
mn (mn+mp )

Cζ

17 g2
eV + g2

eA 0 0 4(E0Ee−E2
e )+(2E0/Ee+1)m2

e
3m2

n

Cζ

22 g2
eV + g2

eA 0 0
(3E2

0 −10E0Ee+10E2
e )+(4E0/Ee−7)m2

e

3(mn+mp )2

Cζ

24 geV geA 0 2(E0−2Ee )+2m2
e /Ee

mn

8(4E0Ee−7E2
e )+8(−E0/Ee+4)m2

e
3m2

n

Cζ

25 geV geA 0 0 − 2(E2
0 −2E0Ee )+2E0/Eem2

e
mn (mn+mp )

Cζ

33 g2
eV + g2

eA 0 0 m2
e

2(mn+mp )2

Cζ

44 g2
eV + g2

eA
3
2 − (E0−5Ee )+m2

e /Ee
mn

− (3E2
0 +56E0Ee−176E2

e )+(−14E0/Ee+77Ee )m2
e

12m2
n

Cζ

45 g2
eV + g2

eA 0 − 2E0+m2
e /Ee

mn+mp

2(E2
0 −8E0Ee )+(5E0/Ee−3)m2

e
2mn (mn+mp )

Cζ

46 g2
eV + g2

eA 0 0 (−E0/Ee+1)m2
e

2mn (mn+mp )

Cζ

48 g2
eV + g2

eA 0 0 20(E0Ee−E2
e )+(−2E0/Ee+11)m2

e
3m2

n

Cζ

55 g2
eV + g2

eA 0 0
(6E2

0 −4E0Ee+4E2
e )+(4E0/Ee−1)m2

e

6(mn+mp )2
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TABLE II. Analytical results for CĀ
i j , where LĀ

i j represents the factor from the lepton part. Certain contributions, such as CĀ
13 and CĀ

26, are
zero and have been excluded from the table.

LĀ
i j O(1) O(m−1

n ) O(m−2
n )

CĀ
11 geV geA 0 −2(E0−Ee )

3mn

−(3E2
0 +8E0Ee−8E2

e )+3m2
e

6m2
n

CĀ
12 geV geA 0 − 4(E0−Ee )

3(mn+mp )
−2(E2

0 +2E0Ee )+6m2
e

3mn (mn+mp )

CĀ
14 g2

eV + g2
eA −1 − E0+2Ee

3mn
− 8(E0Ee−E2

e )
3m2

n

CĀ
15 g2

eV + g2
eA 0 2(E0−Ee )

3(mn+mp )
2(E2

0 +4E0Ee−8E2
e )−3m2

e
6mn (mn+mp )

CĀ
16 g2

eV + g2
eA 0 0 m2

e
2mn (mn+mp )

CĀ
18 g2

eV + g2
eA 0 0 −(4E0Ee−4E2

e +3m2
e )

3m2
n

CĀ
22 geV geA 0 0

−(E2
0 −6E0Ee+8E2

e )+3m2
e

3mn (mn+mp )

CĀ
24 g2

eV + g2
eA 0 −2(2E0−5Ee )

3(mn+mp )
2(E2

0 −28E0Ee+48E2
e )−15m2

e
6mn (mn+mp )

CĀ
25 g2

eV + g2
eA 0 0

2(E2
0 −2E0Ee−2E2

e )

3(mn+mp )2

CĀ
34 g2

eV + g2
eA 0 0 m2

e
2mn (mn+mp )

CĀ
35 g2

eV + g2
eA 0 0 − m2

e
(mn+mp )2

CĀ
44 geV geA −2 4E0−22Ee

3mn

(3E2
0 +40E0Ee−136E2

e )+21m2
e

6m2
n

CĀ
45 geV geA 0 4(2E0+Ee )

3(mn+mp )
−2(E2

0 −14E0Ee−8E2
e )−3m2

e
3mn (mn+mp )

CĀ
47 g2

eV + g2
eA 0 0 − (4E0Ee−4E2

e +3m2
e )

3m2
n

CĀ
48 geV geA 0 0 − 4(8E0Ee−8E2

e +3m2
e )

3m2
n

CĀ
55 geV geA 0 0 − 2E0 (E0+2Ee )

3(mn+mp )2

conditions 1 � i � 6 and i � j � 8. In practical calculations,
the terms CX

i7 and CX
i8 with i = 2, 3, 5, 6 are also neglected as

they are approximately of order O(m−3
n ). Furthermore, when

considering only the one-boson-exchange contribution, it is
found that R̄(Ee) = 0, and our direct calculation also confirms
this property.

All our calculations are performed by the Mathematica
codes and the package FeynCalc [26] is employed to handle
the trace of Dirac matrices in four dimensions. Following
the above consistent expansion of the results on m−1

n and
integration over d�ν , analytic expressions for X (Ee) can be
obtained.

The final expressions are presented in Tables I through
V. The expressions of CX

i j at orders O(1), O(m−1
n ), O(m−2

n )
are presented in the third to the last columns of each table,
respectively. Certain contributions, such as Cζ

16 and CĀ
13, which

are zero, have been omitted from these tables. The analytical
results show a general property that the contributions from
f 2
1 , f1 f4, f 2

4 are dominant.
The coupling constants f1 and f4 correspond to the weak

coupling constants gV and gA, respectively, where f1 ≡ gV

and f4 ≡ gA. The ratio f4/ f1 ≡ λ can be determined from
Ref. [8]. Assuming SU (2) symmetry and utilizing the CVC
hypothesis, we have f1 = 1 and f2 ≡ κ = κp − κn, where κp

and κn are the anomalous magnetic moments of the proton
and neutron, respectively [23]. When there is no SCC [4],
the scalar coupling constant f3 and weak electric coupling

constant f5 are both set to zero. The pseudoscalar coupling f6

is induced by strong interaction effects, and is determined by
the partially conserved axial vector current (PCAC) hypothe-

sis as f6 = 4m2
n f4

m2
π

[27].
At the order O(1), when the conditions f1 = 1, f2 = κ ,

f4 = λ, f3 = f5 = f6 = f7 = f8 = 0, and geV = geA = 1 are
imposed, the expressions in Tables I to V can reproduce the
“bare” correlation coefficients given by Eq. (1) in Ref. [20].
It should be noted that in the “bare” results, a global factor of
1 + 3λ2 has been multiplied to ensure the same definition of
ζ (Ee).

Moreover, at the order O(m−1
n ), when substituting the

factor 1/mn in Tables I–V with the factor 2/(mn + mp),
the corresponding results ζ (Ee), Ā(Ee), and Ḡ(Ee) given by
Eqs. (6), (7) in Ref. [20] can be fully reproduced. Since the
difference between the two factors occurs at a higher order of
m−1

n , it means that they are consistent at the order O(m−1
n ).

However, it should be noted that the results for N̄ (Ee) and
Q̄(Ee) as given by Eqs. (6) and (7) in Ref. [20] cannot be
reproduced. After the above substitution„ the discrepancies
for these two results can be expressed as follows:

N̄r (Ee) − N̄ (Ee) = 2(E0 − 2Ee)meλ

Ee(mn + mp)
,

Q̄r (Ee) − Q̄(Ee) = 2(E0 − 2Ee − me)λ

mn + mp
, (16)
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TABLE III. Analytical results for CḠ
i j , where LḠ

i j represents the factor from the lepton part. Certain contributions, such as CḠ
16 and CḠ

23, are
zero and have been excluded from the table.

LḠ
i j O(1) O(m−1

n ) O(m−2
n )

CḠ
11 geV geA −1 − 2Ee

mn

−(3E2
0 −8E0Ee+32E2

e )+9m2
e

6m2
n

CḠ
12 geV geA 0 0

−2(3E2
0 −8E0Ee+8E2

e )+3m2
e

3mn (mn+mp )

CḠ
13 geV geA 0 0 m2

e
mn (mn+mp )

CḠ
14 g2

eV + g2
eA 0 − E0−2Ee

mn
− 16E0Ee−28E2

e +3m2
e

3m2
n

CḠ
15 g2

eV + g2
eA 0 0

E2
0 −2E0Ee

mn (mn+mp )

CḠ
17 geV geA 0 0 − 2(4E0Ee−4E2

e +3m2
e )

3m2
n

CḠ
22 geV geA 0 0

−2(3E2
0 −10E0Ee+10E2

e )+6m2
e

3(mn+mp )2

CḠ
24 g2

eV + g2
eA 0 − E0−2Ee

mn
− 16E0Ee−28E2

e +3m2
e

3m2
n

CḠ
25 g2

eV + g2
eA 0 0

E2
0 −2E0Ee

mn (mn+mp )

CḠ
33 geV geA 0 0 m2

e
(mn+mp )2

CḠ
44 geV geA −3 2(E0−5Ee )

mn

(3E2
0 +56E0Ee−176E2

e )+27m2
e

6m2
n

CḠ
45 geV geA 0 4E0

mn+mp
− 2E2

0 −16E0Ee+3m2
e

mn (mn+mp )

CḠ
46 geV geA 0 0 m2

e
mn (mn+mp )

CḠ
48 geV geA 0 0 − 2(20E0Ee−20E2

e +9m2
e )

3m2
n

CḠ
55 geV geA 0 0

−2(3E2
0 −2E0Ee+2E2

e )+3m2
e

3(mn+mp )2

where the terms with the subindex r refer to the results
obtained from Tables I–V by replacing the factor 1/mn

with 2/(mn + mp), X̄ (Ee) refer to the expressions given in
Ref. [20], and only the contributions at the order O(m−1

n ) are
considered in both cases.

Our calculation is based on the same amplitude and phase
space factor as those used in Ref. [20]. In principle, these two
calculations should yield identical results and any differences
should only occur at order O(m−2

n ). Therefore, it is an in-
triguing question to investigate the underlying reasons for the
observed discrepancy.

The results presented in Ref. [20] can be traced back to the
original calculations provided in the Appendix of Ref. [19].
In that calculation, two-component Pauli spinors and Pauli
matrix were employed to expand the hadronic part amplitude
at first, and other two approximations are also used to express
the final amplitude, which are shown in their Eqs. (A-7) to
(A-13). In our calculation, we use the Lorentz covariant form
to express the cross-section and expanded the entire result on
m−1

n after absorbing the variable mp. All of our calculations
are performed in Mathematica, and the five correlation func-
tions are evaluated simultaneously.

To determine the cause of the discrepancy, we conducted
practical calculations using Eq. (A-10) and Eq. (A-12) from
Ref. [20] as inputs to calculate the correlation functions. Re-
markably, we obtained consistent results with those obtained
using the covariant form at order O(m−1

n ). As the analytic
expressions for Ḡ(Ee), N̄ (Ee), and Q̄(Ee) at this order are only
reported by one research group, we believe that our results can

serve as an independent verification or double-check of those
expressions.

For convenience, we have included one of our Mathematica
codes as Supplemental Material [28]. This code considers a
simplified scenario where only f1 and f4 are nonzero. These
codes provide a clear and transparent illustration of our calcu-
lations, which can help further clarify the discrepancy.

IV. NUMERICAL COMPARISON AND DISCUSSIONS

In the numerical comparison, we use the values
mn = 939.56542 MeV, mp = 938.27209 MeV, me =
0.51100 MeV [23], and approximate the antineutrino mass as
mν ≈ 0.

In Ref. [20], the phase space factor βI is utilized, and the
expansion of M is employed to derive the relevant correlation
coefficients. To facilitate a direct comparison of the results, we
also adopt βI as an input and expand d5σn(Ee, �pe, �ξe, �ξn) on
m−1

n to obtain the expressions for the correlation coefficients.
We define the difference between these two sets of results as

δ1X ≡ X our
βI,A − X ref

βI,A, (17)

where X ref
βI,A

refers to the results obtained from Eqs. (6), (7)
in Ref. [20], X our

βI,A
refers to the results obtained from our own

calculations using βI as input, and the subindex A refers to the
choice of the parameters as specified in Ref. [20]:

f1 = 1, f2 = 3.7058, f4 = −1.2767,

f3 = f5 = f6 = f7 = f8 = 0, geV = geA = 1. (18)
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TABLE IV. Analytical results for CN̄
i j , where LN̄

i j represents the factor from the lepton part. Certain contributions, such as CN̄
17 and CN̄

26, are
zero and have been excluded from the table.

LN̄
i j O(1) O(m−1

n ) O(m−2
n )

CN̄
11

(g2
eV +g2

eA )me

Ee
0 E0−Ee

3mn

3E2
0 +10E0Ee−16E2

e +3m2
e

12m2
n

CN̄
12

(g2
eV +g2

eA )me

Ee
0 2(E0−Ee )

3(mn+mp )
2E2

0 +10E0Ee−15E2
e +3m2

e
6mn (mn+mp )

CN̄
13

(g2
eV +g2

eA )me

Ee
0 0 2E0Ee−5E2

e +3m2
e

6mn (mn+mp )

CN̄
14

geV geAme
Ee

2 2(E0+5Ee )
3mn

2(4E0Ee+8E2
e −3m2

e )
3m2

n

CN̄
15

geV geAme
Ee

0 − 2(2E0+Ee )
3(mn+mp ) − 2E2

0 +9E0Ee+E2
e

3mn (mn+mp )

CN̄
16

geV geAme
Ee

0 0 −EeE0+E2
e

3mn (mn+mp )

CN̄
18

geV geAme
Ee

0 0 2(2E0Ee−2E2
e +m2

e )
m2

n

CN̄
22

geV geAme
Ee

0 0 (E0−Ee )2

6mn (mn+mp )

CN̄
23

(g2
eV +g2

eA )me

Ee
0 0 2E0Ee−5E2

e +3m2
e

6mn (mn+mp )

CN̄
24

geV geAme
Ee

0 8(E0−Ee )
3(mn+mp ) − 2E2

0 −35E0Ee+39E2
e −6m2

e
3mn (mn+mp )

CN̄
25

geV geAme
Ee

0 0
−2(2E2

0 −5E2
e +3m2

e )

3(mn+mp )2

CN̄
34

geV geAme
Ee

0 2Ee
mn+mp

−5E0Ee+23E2
e −6m2

e
3mn (mn+mp )

CN̄
35

geV geAme
Ee

0 0 − 2(2EeE0+E2
e )

3(mn+mp )2

CN̄
44

(g2
eV +g2

eA )me

Ee
1 −2(E0−4Ee )

3mn
− 3E2

0 +26E0Ee−80E2
e +15m2

e

12m2
n

CN̄
45

(g2
eV +g2

eA )me

Ee
0 − 2(2E0+Ee )

3(mn+mp )
2E2

0 −18E0Ee−17E2
e +9m2

e
6mn (mn+mp )

CN̄
46

(g2
eV +g2

eA )me

Ee
0 0 −2E0Ee+5E2

e −3m2
e

6mn (mn+mp )

CN̄
47

geV geAme
Ee

0 0 2(2E0Ee−2E2
e +m2

e )
m2

n

CN̄
48

(g2
eV +g2

eA )me

Ee
0 0 2(2E0Ee−2E2

e +m2
e )

m2
n

CN̄
55

(g2
eV +g2

eA )me

Ee
0 0

E2
0 +2E0Ee

3(mn+mp )2

The Ee dependencies of δ1X are shown in Fig. 3. In
Fig. 3(a), the (orange) short dotted curve represents the re-
sults for δ1Q̄, and the (green) dash-dotted curve represents
the results for δ1N̄ . In Fig. 3(b), the (black) solid curve, the
(red) dotted curve, and the (blue) dashed curve correspond to
δ1ζ , δ1Ā, and δ1Ḡ, respectively. The results clearly demon-
strate that the differences δ1ζ , δ1Ā, and δ1Ḡ are of the order
10−5, while the difference δ1N̄ is of the order 10−4, and
the difference δ1Q̄ even reaches the order 10−3 for large Ee.
These differences arise from two main factors: (1) At the order
O(m−1

n ), our analytical results for ζ (Ee), Ā(Ee), and Ḡ(Ee) are
consistent with Eqs. (6), (7) in Ref. [20]. However, our expres-
sions for N̄ (Ee) and Q̄(Ee) differ slightly from those presented
in Ref. [20]. (2) Our analytical results are derived to the order
O(m−2

n ), whereas the analytical results from Ref. [20] are
obtained to the order O(m−1

n ).
In our calculation, we prioritize the analytic expressions by

considering the phase space factor β as an input. To illustrate
the differences arising from the choice of the phase space
factor, we define

δ2X ≡ X our
β,A − X our

βII,A. (19)

Here, the index “our” refers to our calculation, “β, βII” refer
to the input phase space factors, and the index “A” refers to
the choice of the parameters fi and geV,eA as given in Eq. (18).

The Ee dependence of δ2X is presented in Fig. 4, where the
definitions of the curves are the same as those in Fig. 3. The re-
sults show that the absolute magnitudes of δ2ζ , δ2Ā, δ2Ḡ, δ2Q̄
increase as Ee increases and are on order 10−5, while δ2N̄ is
not sensitive to Ee and on order 10−6. These differences are
natural since the precision of the phase space factor βII is of
the order O(m−1

n ).
Furthermore, to account for the contributions at order 10−5,

the parameters f6, f7, and f8 may also have significant effects.
To show these contributions, we define the difference as

δ3X = X our
β,B − X our

β,A, (20)

where the subindex “B” refers to the case with nonzero f6,7,8

while keeping the same values of f1,2,3,4,5 as in case “A”. The
values of f6,7,8 are taken from Ref. [27] as

f6 = 228, f7 = 2.5 f1, f8 = 1.92 f4. (21)
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TABLE V. Analytical results for CQ̄
i j , where LQ̄

i j refers to the factor from the lepton part. Certain contributions, such as CQ̄
17 and CQ̄

26, are zero
and have been excluded in the table.

LQ̄
i j O(1) O(m−1

n ) O(m−2
n )

CQ̄
11 g2

eV + g2
eA 0 E0−Ee

3mn

(3E2
0 +8E0Ee−8E2

e )+(−2E0+8Ee+3me )me

12m2
n

CQ̄
12 g2

eV + g2
eA 0 2(E0−Ee )

3(mn+mp )
2(E2

0 +2E0Ee )+(−6E0+15Ee+3me )me

6mn (mn+mp )

CQ̄
13 g2

eV + g2
eA 0 0 − (2E0−5Ee−3me )me

6mn (mn+mp )

CQ̄
14 geV geA 2 2(E0+2Ee−3me )

3mn

16(E0Ee−E2
e )+2(4E0−16Ee−3me )me

3m2
n

CQ̄
15 geV geA 0 2(−2E0+2Ee+3me )

3(mn+mp ) − (2E2
0 +8E0Ee−16E2

e )+(E0+17Ee )me

3mn (mn+mp )

CQ̄
16 geV geA 0 0 (E0−Ee )me

3mn (mn+mp )

CQ̄
18 geV geA 0 0 8(E0Ee−E2

e )+2(−2E0+2Ee+3me )me

3m2
n

CQ̄
22 g2

eV + g2
eA 0 0

(E2
0 −6E0Ee+8E2

e )−(4E0−7Ee )me

6mn (mn+mp )

CQ̄
23 g2

eV + g2
eA 0 0 − (2E0−5Ee−3me )me

6mn (mn+mp )

CQ̄
24 geV geA 0 4(2E0−5Ee−3me )

3(mn+mp )
−2(E2

0 −28E0Ee+48E2
e )+(21E0−57Ee+6me )me

3mn (mn+mp )

CQ̄
25 geV geA 0 0

−4(E2
0 −2E0Ee−2E2

e )+2(4E0−Ee−3me )me

3(mn+mp )2

CQ̄
34 geV geA 0 −2me

mn+mp

(5E0−23Ee−6me )me
3mn (mn+mp )

CQ̄
35 geV geA 0 0 2(2E0+Ee )me

3(mn+mp )2

CQ̄
44 g2

eV + g2
eA 1 −2E0+11Ee+3me

3mn
− (3E2

0 +40E0Ee−136E2
e )+(14E0−56Ee+15me )me

12m2
n

CQ̄
45 g2

eV + g2
eA 0 − 2(2E0+Ee )

3(mn+mp )
2(E2

0 −14E0Ee−8E2
e )+(−10E0+Ee+9me )me

6mn (mn+mp )

CQ̄
46 g2

eV + g2
eA 0 0 (2E0−5Ee−3me )me

6mn (mn+mp )

CQ̄
47 geV geA 0 0 8(E0Ee−E2

e )+2(−2E0+2Ee+3me )me

3m2
n

CQ̄
48 g2

eV + g2
eA 0 0 16(E0Ee−E2

e )+2(2E0−2Ee+3me )me

3m2
n

CQ̄
55 g2

eV + g2
eA 0 0

E2
0 +2E0Ee

3(mn+mp )2

It is worth mentioning that our f6 value is twice that in
Ref. [27] due to different definitions of the form factors in
�W np.

In Fig. 5, we present the Ee dependence of δ3X , where the
definitions of the curves are the same as those in Fig. 3. It can
be observed that the absolute magnitudes of δ3ζ , δ3Ā, δ3Ḡ,

FIG. 3. Numeric results for δ1X vs. Ee, where the left panel displays the result for X = N̄, Q̄ and the right panel displays the result for
X = ζ , Ā, Ḡ.

025204-8



RECOIL CONTRIBUTIONS IN NEUTRON β− DECAY … PHYSICAL REVIEW C 109, 025204 (2024)

FIG. 4. Numeric results for δ2X vs. Ee where the index X refers
to ζ , Ā, Ḡ, N̄, Q̄, respectively.

and δ3N̄ are on the order 10−5, and the magnitude of δ3Q̄
even reaches 10−4 for large Ee. These properties show that
the contributions from f6, f7, and f8 should also be taken into
account when aiming for a precision of 10−5.

In practical calculations, we have also checked our results
to higher orders, such as O(m−4

n ), and have found that the
results remain consistent with negligible differences.

In summary, the recoil corrections to the correlation coef-
ficients are calculated up to order O(m−2

n ) when considering
a general form of W np interactions. Both the analytical and
numeric results indicate that our analytic results for ζ (Ee),
Ā(Ee), and Ḡ(Ee) at the order O(m−1

n ) are consistent with
those presented in Eqs. (6), (7) of Ref. [20], except for differ-
ences at the order O(m−2

n ). However, our analytic results for

FIG. 5. Numeric results for δ3X vs. Ee where the index X refers
to ζ , Ā, Ḡ, N̄, Q̄, respectively.

N̄ (Ee) and Q̄(Ee) are slightly different from their results at the
order O(m−1

n ). Numerical results show that contributions from
order O(m−2

n ) and additional form factors of W np interactions
are required to achieve a precision of 10−5.
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APPENDIX A: KINEMATICS

In this Appendix, we present the explicit expressions for
the momenta used in the calculation. In the rest frame of the
neutron, we take the momenta and corresponding spin vectors
of the polarized neutron and polarized electron as follows:

pn ≡ (mn, �0),

pe ≡ (Ee, �pe),

pν ≡ (Eν, �pν ),

pp = pn − pe − pν = (mn − Ee − Eν,−�pe − �pν ),

Sn = (0, �ξn),

Se =
( �pe · �ξe

me
, �ξe + �pe( �pe · �ξe)

me(Ee + me)

)
. (A1)

Furthermore, by utilizing the on-shell condition p2
p = m2

p,
we can derive the following expression:

Eν = mn(E0 − Ee)

mn − Ee + �pe · �nν

, (A2)

where the unit vector �nν is directed along the antineutrino’s
three-momentum �pν . This is just the first replacement rule in
Eq. (13).

APPENDIX B: THE INTEGRATION OVER THE SOLID
ANGLE OF ANTINEUTRINO

After expanding the differential cross section on m−1
n , the

integration of d�ν can be carried out using the following
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results: ∫
(�nν · �a1)d�ν = 0,

∫
(�nν · �a1)(�nν · �a2)d�ν = 4π

3
�a1 · �a2,

∫
(�nν · �a1)(�nν · �a2)(�nν · �a3)d�ν = 0,

∫
(�nν · �a1)(�nν · �a2)(�nν · �a3)(�nν · �a4)d�ν = 4π

15
[(�a1 · �a2)(�a3 · �a4) + (�a1 · �a3)(�a2 · �a4) + (�a1 · �a4)(�a2 · �a3)],

∫
(�nν · �a1)(�nν · �a2)(�nν · �a3)(�nν · �a4)(�nν · �a5)d�ν = 0, (B1)

and ∫
(�nν · �a1)(�nν · �a2)(�nν · �a3)(�nν · �a4)(�nν · �a5)(�nν · �a6)d�ν

= 4π

105
[(�a1 · �a2)(�a3 · �a4)(�a5 · �a6) + (�a1 · �a3)(�a2 · �a4)(�a5 · �a6) + (�a1 · �a4)(�a2 · �a3)(�a5 · �a6)

+ (�a1 · �a2)(�a3 · �a5)(�a4 · �a6) + (�a1 · �a3)(�a2 · �a5)(�a4 · �a6) + (�a1 · �a5)(�a2 · �a3)(�a4 · �a6)

+ (�a1 · �a2)(�a3 · �a6)(�a4 · �a5) + (�a1 · �a3)(�a2 · �a6)(�a4 · �a5) + (�a1 · �a6)(�a2 · �a3)(�a4 · �a5)

+ (�a1 · �a4)(�a2 · �a5)(�a3 · �a6) + (�a1 · �a5)(�a2 · �a4)(�a3 · �a6) + (�a1 · �a4)(�a2 · �a6)(�a3 · �a5)

+ (�a1 · �a6)(�a2 · �a4)(�a3 · �a5) + (�a1 · �a5)(�a2 · �a6)(�a3 · �a4) + (�a1 · �a6)(�a2 · �a5)(�a3 · �a4)], (B2)

where �ai are vectors that are independent of �ν .
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