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Thermal effect in hot QCD matter in strong magnetic fields
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The quasiparticle model is improved by the free magnetic contribution to investigate the QCD matter in a
strong magnetic field. The temperature-dependent bag function is determined by the thermodynamic consistency
to represent the difference in energy density between physical vacuum and the lowest state of QCD. It is
found that the positive bag function vanishes at high temperature, indicating the deconfinement. The rapid
decrease of the bag function in stronger magnetic fields reveals the so-called inverse magnetic catalysis.
The interaction measure at high temperature remains so large that the usual Stefan-Boltzmann limit cannot
be reached. We suggest a limit |qiBm|T 2/4 for each Landau level pressure. Finally, it is demonstrated that the
positive magnetization modified by the bag function and free magnetic contribution indicates the paramagnetic
characteristic of QCD matter.
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I. INTRODUCTION

It has been observed that the strongly interacting mat-
ter, quark-gluon plasma (QGP), produced in the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) behaves more like a near-perfect fluid. The QCD
theory in the magnetic background may reveal a better un-
derstanding of the QGP that have rich collective effects [1,2].
Many efforts have been made in theoretical work, revealing
interesting properties of strongly interacting matter in the
strong magnetic field [3,4]. With the development of rela-
tivistic heavy ion collisions, study of the medium effect of
quark-gluon plasma has become more active. Quark self-
energy at high temperature receives the contribution of both
the electric scale and magnetic scale, which has a profound
impact on the confinement effects on thermal quark collective
excitation [5,6].

In hot dense quark matter, one of the most important
medium effects is the effective mass generated by the non-
perturbative interaction of the particles with the system. In
literature, the phenomenological models overcome the diffi-
culty of the QCD theory at finite temperature and/or chemical
potentials. A natural mechanism for quark confinement is
given by the MIT bag model [7]. The bag model was proposed
to explain hadrons and quark confinement, which artificially
constrains the quarks inside a finite region in space. However,
the bag model is not able to well exhibit the phase transi-
tion of the deconfinement. The quark quasiparticle model,
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as an extended bag model, has been developed in studying
the bulk properties of the dense quark matter at finite den-
sity and temperature [8–11] and the strangelets in finite size
[12]. The quasiparticle description has been assumed to be
valid also in the case of sufficiently high temperature [13–15].
The advantage of the quasiparticle model is the introduction
of the medium-dependent quark mass scale to reflect the
nonperturbative QCD properties [16] and color confinement
mechanism [17]. The transport properties of the quark-gluon
plasma have been well investigated by the noninteracting and
weakly interacting particles with effective masses [18]. The
hard thermal loop (HTL) approximation can also be used
to calculate the effective quark mass, but these calculations
are valid only in the perturbative regime of QCD [15,19,20].
There are also self-consistent quasiparticle models and single-
parameter quasiparticle models [21–23]. The medium effects
are taken into account by considering quarks and gluons as
quasiparticles. Their temperature-dependent masses are pro-
portional to the plasma frequency. More recent developments
have shown that quasiparticles with effective fugacity have
been successful in describing the lattice QCD results [24,25],
which was initially proposed by Chandra and Ravishankar
[25,26].

It is well known that quarks are bound inside hadrons
through strong interaction, and it has not yet been found that
quarks can exist independently. Based on this fact, the nature
of quark confinement was derived. According to lattice sim-
ulations, the deconfinement phase transition is of first order
[27]. In some phenomenological models, an order parameter
of the deconfinement transition is the Polyakov loop, which
is the trace of a Wilson line along a closed loop in the time
direction [28]. For the SU(3) pure gauge theory, the decon-
fined phase transition at high temperature corresponds to the
spontaneous Z(3) symmetry breaking. However, the study
of symmetry can be complicated in QCD due to the quark
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dynamics. In particular, the quark confinement and vacuum
energy density can be well described by the density-dependent
bag constant [9,16,29]. In the present work, the formula of
QGP has been described as a noninteracting gas of quarks
at zero chemical potential but finite temperature, taking into
account the phenomenological bag constant. As for gluon gas,
the equation of state for gluons has been excellently described
using the ideal gas approximation at high temperatures in
lattice calculations [13,30].

The paper is organized as follows. In Sec. II we present the
thermodynamics of the magnetized QGP in the quasiparticle
model. Section III discusses the numerical results for the
confinement bag function and the thermodynamic quantities
in the strong magnetic field at finite temperatures. The last
section is a short summary.

II. THERMODYNAMICS OF THE QUASIPARTICLE
MODEL IN STRONG MAGNETIC FIELDS

The important feature of the quasiparticle model is the
medium dependence of quark masses in describing QCD
nonperturbative properties. The quasiparticle quark mass is
derived at the zero-momentum limit of the dispersion relations
from an effective quark propagator by resuming one-loop self-
energy diagrams in the hard dense loop (HDL) approximation.
The dynamical information for gluonic degrees of freedom
can also be accessed through the effective gluon mass. In this
paper the effective quark mass mq and gluon mass mg are
adopted as [15,31,32]

mg(T ) =
√

1

6

(
Nc + 1

2
Nf

)
g2T 2, (1)

mq(T ) = 1

2

(
mi0 +

√
m2

i0 + N2
c − 1

2Nc
g2T 2

)
, (2)

where mi0 denotes the quark current mass of the quark flavor
i. The constant g is the strong interaction coupling. In order
to reflect the asymptotic freedom of QCD, one can also use a
running coupling constant g(Q/�) in the equations of state of
strange matter [33]. The parametrization of the coupling as a
function of temperature close to the theory is adopted as [30]

g2(T, Tc) = 48π2

(11Nc − 2Nf ) ln[λ2(T/Tc − Ts/Tc)2]

(
�Tc

T

)η

.

(3)

The current mass can be neglected for up and down quarks,
while the strange quark is taken to be massive. Because the
vanishing current mass is assumed for up and down quarks,
Eq. (2) is reduced to the simple form

mu,d = 1√
3

gT . (4)

As a typical treatment in the quasiparticle model, one
implements confinement by introducing a bag pressure, mea-
suring the level difference between the physical vacuum and
the ground state in the colorful world of QCD [34]. To account
for the essential nonperturbative features, the corresponding

thermodynamics is based on the ideal gas partition function
with additional contributions,

T ln Z = T ln(Z0ZvacZmag), (5)

where the vacuum partition depends on the bag function
T ln Zvac = −B(T )V [34], and the term Zmag stands for
the free magnetic field contribution. The conventional mat-
ter contribution is introduced by Z0. So the total partition
function can produce the thermodynamic quantities from
the self-consistent relation. Within the framework of the
temperature-dependent mass m(T ), the pressure of the system
is expressed as

P(T, Bm) = T

V
ln Z (T, Bm)

= −
∑
i=q,g

[�i(T, Bm) + Bi(T, Bm)]

− B0 − V (T0, Bm). (6)

The first term �i is the conventional matter contribution. The
bag constant B0 stands for the vacuum energy density at zero
temperature. The variant term Bi(T, Bm) resembles the inter-
action term from quasiparticles and can be interpreted as the
thermal vacuum energy density. We assume the Maxwell term
V (T0, Bm) is independent on the quark mass but dependent
on the magnetic field, which represents the free pressure of
magnetic contribution [35–37],

V (T0, Bm) = −
∑
i=q

Nc|eiBm|2
2π2

[
ζ ′(−1, xi ) − ζ ′(−1, 0)

− 1

2
(x2

i − xi ) ln(xi ) + x2
i

4

]
, (7)

where the parameter xi = m2
i /(2|qiBm|) is defined at the

moderate temperature T0 = 150 MeV in the thermal bag.
The constant ζ ′(−1, 0) = −0.165 421... was introduced in
Ref. [37], which is helpful to maintain a positive magnetic
pressure. The presence of V (T0, Bm) would not change the
thermodynamically self-consistent relation ∂P/∂mi = 0 in the
quasiparticle model. So we have the following differential
equation:

dBi

dT

dT

dmi
= −∂�i

∂mi
. (8)

So the temperature-dependent term Bi(T, Bm) is

Bi(T, Bm) = −
∫ T

0

∂�i

∂mi

dmi

dT
dT . (9)

The derivative ∂�i/∂mi is

∂�i

∂mi
= di|eiBm|

π2

∞∑
ν=0

(2 − δν0)
∫ ∞

0
f (εi )

mi

εi
d pz, (10)

where the fermion distribution function is f (εi ) =
1/[1 + exp( εi

T )] and the single-particle energy is εi =√
p2

z + m2
i + 2νeiBm due to the quantization of orbital motion

of charged particles in the presence of a strong magnetic field
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along the z axis [38]. The derivative of the mass m(T ) with
respect to the temperature is

dmi

dT
= N2

c − 1

4Nc

g2T√
m2

0 + (
N2

c − 1
)
g2T 2/(2Nc)

+ ∂mi

∂g2

∂g2

∂T
,

(11)

which will be simplified as dmi
dT = g√

3
for zero current mass

and the constant coupling ∂g
∂T = 0. If one takes into account

the running coupling g(T ), the derivative of the mass mi(T )
with respect to the T should be calculated through the full
differential relation.

The entropy density, as a measure of phase space, is un-
affected by Bi(T, Bm) [9], which is clearly understood from
relation (8). Similar to the number density, the entropy density
is written based on the fundamental thermodynamic relation,

si = −∂�i

∂T
= di|eiBm|

π2

∞∑
ν=0

(2 − δν0)
∫ ∞

0
f (εi )

p2 + ε2
i

T εi
d pz.

(12)

The net effect of the bag function is to cancel the entropy den-
sity contribution, which would arise from the dependence of
the mass m(T ) on the temperature. It is well known to us that
the energy density and pressure should vanish in vacuum. So
the pressure should be normalized by requiring zero pressure
at zero temperature as

Peff (T, Bm) = P(T, Bm) − P(0, Bm). (13)

The magnetization is an important thermodynamic quan-
tity in understanding the QCD matter [39]. The development
of the study on the magnetization in various methods has been
summarized in Ref. [40]. At zero temperature, the magneti-
zation is found to be positive and to be responsible for the
anisotropic pressures [41,42]. We propose the expression of
the magnetization in the quasiparticle model as

M = ∂Peff

∂Bm
= −

∑
i=u,d,s

(
∂�i

∂Bm
+ ∂Bi

∂Bm
+ ∂Vi

∂Bm

)
, (14)

where the first term is the conventional contribution from the
pure quasiparticle [43]. The second term demonstrates that the
effective bag function would have additional contribution to
the magnetization, which reveals the medium effect on the hot
quark matter. It can be written as

∂Bi

∂Bm
= Nc|ei|mi

π2

∞∑
ν=0

(2 − δν0)
∫ ∞

0
f (εi )

×
(

νBm

ε2
+ f (εi )

ν|ei|Bm

εiT
− 1

)
d pz

εi
. (15)

III. NUMERICAL RESULT AND CONCLUSION

In the framework of the preceding quasiparticle model, we
have done the numerical calculations with the quark current
mass values mu = md= 0, and ms = 120 MeV. The constant
term B0 is (145 MeV.)4 The effective bag constant acts as
an energy penalty for the deconfined phase. In Fig. 1 the

FIG. 1. The effective bag function B(T, Bm ) is shown as a func-
tion of temperature denoting the deconfinement transition. The
B(T, Bm ) decreases more rapidly with increasing temperatures at
stronger magnetic fields for both constant coupling and running
coupling constants.

effective bag constant B(T, Bm) is shown as a function of
the temperature at different magnetic fields Bm = 0.2, 0.4, 0.6
GeV2. It falls to zero at high temperature, which means that
the deconfined state has larger pressure and is energetically
preferred. Compared with the fixed coupling constant g = 3,
the running coupling constant g(T ) leads to a decrease of
B(T, Bm) at higher temperature. The increase of the magnetic
field will not change the vacuum energy B(T, Bm) at T = 0.
But the decrease of the bag constant would be more rapidly in
stronger magnetic fields, which indicates a lower value of the
critical temperature for the deconfinement transition.

In the quasiparticle model, the decrease of the effective
bag constant B(T, Bm) denotes the deconfinement transition.
The critical temperature can be determined by the position of
half-height of the bag constant. In Fig. 2 the pseudocritical
temperature is plotted by the red solid curve. For the conve-
nience of comparison, the result from PNJL is marked by the
black dashed curve [44]. It can be clearly seen that the trend
of the decrease of the Tpc with the magnetic field is close to
the lattice QCD (LQCD) result marked by the shadow band
in the panel [45]. Moreover, the pseudocritical temperature
decreases by about 10 percent of its original value at zero
magnetic field. Our result is in agreement with the so-called
inverse magnetic catalysis effect revealed by the LQCD.

Figure 3 illustrates how the pressure and the energy density
(in unit of T 4) depend on the temperature of the medium.
In the region around and just above the critical temperature,
the energy density rises much more rapidly than the pressure,
which gives rise to a observed rapid increase of the interaction
measure. At stronger magnetic fields, the larger pressure and
energy density are obtained at the high temperature. However,
the temperature is not the only scale with the dimension of
the energy. The pressure as well as the energy density can-
not asymptotically converge to their Stefan-Boltzmann value
PSB/T 4 = constant at T → ∞. The deviations from the usual
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FIG. 2. The pseudocritical temperature for the deconfinement
transition in a quasiparticle model (red curve) compared with the
results of the PNJL model (dashed curve) [44] and of LQCD (shadow
band) [45].

Stefan-Boltzmann values are due to the quarks being con-
strained by the Landau level in strong magnetic fields.

Interaction measure is the trace of energy-momentum ten-
sor. For noninteracting massless constituents the “conformal”
limit is zero, so that the temperature is the only scale. In a
strong magnetic field, the interaction measure is defined as
�(T ) ≡ (ε − 3P)/T 4 for quark gluon plasma. In Fig. 4 the
trace anomaly of the energy-momentum tensor is plotted as
a function of temperature. The so-called interaction measure
normalized by T 4 gives the deviation from the free gas rela-
tion between the energy density and the pressure and is also
a measure of the breakdown of conformal symmetry. Even
though the temperature-dependent coupling constant is em-
ployed to realize the asymptotic freedom at high temperature,

FIG. 3. The scaled pressure Peff/T 4 on the left panel and energy
density ε/T 4 on the right panel are always increasing functions of
temperature. It is apparent that the Stefan-Boltzmann (S-B) limit is
absent at high temperatures in strong magnetic fields.

FIG. 4. The interaction measure is shown as a function of tem-
perature in different magnetic fields. It remains so much larger at
high temperatures that the interaction must be still present at eBm =
0.6 GeV2, marked by the solid curve.

the nonzero value indicates that some interactions must still be
present due to the Landau levels in magnetic fields. The �(T )
at high temperature will remain larger at stronger magnetic
fields, which is in agreement with LQCD that the interaction
measure remains large even at very high temperatures where
the Stefan-Boltzmann (S-B) limit is not yet reached.

In fact, the S-B limit for the nth Landau level can be defined
as

P(n)
SB

|qiBm|T 2
= 1

4
. (16)

In Fig. 5 the pressures and entropy of i-flavor quarks in the nth
Landau level are shown as a function of temperature. At suffi-
ciently high temperatures, the scaled pressure P(n)/(|qiBm|T 2)
on the left panel can approach the limit marked by the

FIG. 5. The scaled pressure and entropy of i-flavor quarks lying
in Landau levels n = 0, 1, and 2. At high enough temperatures,
the three lines approach the Stefan-Boltzmann limit marked by the
dash-dotted horizontal line. It is characteristic that the limit is early
approached in the lowest Landau level.
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FIG. 6. Magnetization of the strange quark matter is shown as
a function of temperature at eBm = 0.2, 0.4, 0.6 GeV2. The LQCD
result at eBm = 0.2 and 0.4 GeV2 is marked by scattering triangles
for comparison [47].

dash-dotted horizontal line. In particular, the pressure from the
lowest Landau level (n = 0) marked by the solid line is close
to the S-B limit line. Moreover, a much higher temperature is
required for any excited levels (n = 1, 2) to reach the limit.
It can be accounted for by the fact that the higher level leads
to the larger effective mass and therefore results in a larger
deviation from the S-B limit. Correspondingly, the entropy
S(n)/(|qiBm|T ) in the n level has the S-B limit shown on the
right panel in the strong magnetic field.

In Fig. 6 the magnetization of strange quark matter is
shown as a function of temperature at fixed magnetic fields
eBm = 0.2, 0.4, 0.6 GeV2 marked by the black, red, and blue
solid curves, respectively. The positive value produces the
paramagnetic characteristic for the whole temperature range
[46]. The magnetization increases with increasing tempera-
ture at fixed magnetic fields. It can be understood that the more
Landau levels at high temperature the stronger the magneti-
zation. The effective bag function marked by the red dotted
line enhances the magnetization at finite temperature. The
discrepancy of the magnetization at low temperature is sizable
due to the free magnetic contribution. By comparison with the
lattice result marked by the scattering triangles at eBm = 0.2
and 0.4 GeV2 [47], it can be concluded that the ascending
trend and the magnetic effect are consistent. In particular, the

increase of the magnetic field enhances the magnetization of
the quark matter.

IV. SUMMARY

In this paper we have investigated the hot QCD matter
exposed to sufficiently high magnetic fields, which could be
generated in RHIC experiments. The quasiparticle model is
extended by including the free magnetic contribution and
the effective thermomagnetic bag constant, which is self-
consistently derived to represent the confinement. The running
coupling constant has been employed to reflect the asymp-
totic freedom of QCD. It has been found that the decrease
of the effective bag constant at high temperature indicates
the occurrence of the deconfinement transition. Moreover, the
stronger magnetic field results in a more rapid decrease of
the effective bag constant, which provides a novel method
to account for the so-called inverse magnetic catalysis effect.
Moreover, the paramagnetic characteristic of QCD is obtained
in the quasiparticle model. The effective bag constant would
have an additional contribution in the new definition of the
magnetization due to the medium effect. It is concluded that
the magnetization modified by the function and free magnetic
contributions can only account for the trend revealed by the
lattice result. It would be of some interest to improve the
quasiparticle model to quantitatively interpret the lattice re-
sults in the future.

For the quark-gluon plasma in strong magnetic field, the
interaction measure remains larger even at very high temper-
ature and indicates some interactions are present. Therefore,
the usual S-B limit is not applicable. The deviation from the
S-B limit becomes remarkable with the massive effective mass
led by the stronger magnetic field. Not only the temperature
but also the magnetic field are the scale of energy. We sug-
gested that for single Landau level, the S-B limit of the quark
pressure can be defined as |qiBm|T 2/4. It has been shown that
the lowest Landau level is close to the S-B limit, while higher
temperature is required for the excited levels to approach the
limit.
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