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η and η′ mesons in nuclear matter and nuclei
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We present updated and extended results for the η- and η′-nucleus bound state energies, obtained by solving
the Schrödinger and Klein-Gordon equations with complex optical potentials, for a wide range of nuclei. The η

and η′ nuclear potentials are obtained in the local density approximation from the mass shift of these mesons in
nuclear matter, which is calculated within the quark-meson coupling model. Our results show that the η and η′

mesons are expected to form mesic nuclei with all the nuclei considered. However, the signal for the formation
of the η- and η′-mesic nuclei may be difficult to identify experimentally due to possible large widths.
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I. INTRODUCTION

The investigation of how the properties and structure of
hadrons, such as masses and widths, are modified in a nuclear
medium is one of the most exciting and important problems in
hadron and nuclear physics, since these are connected to, for
example, chiral symmetry restoration and the structure of the
QCD vacuum [1], which in turn are reflected on the properties
of hadrons in medium [2,3].

In particular, research on the η- and η′-meson masses and
widths in nuclear matter and nuclei has received considerable
interest in recent years since it is expected to give insight
on the partial restoration of chiral symmetry at finite density,
on the low-energy dynamics of QCD, which is related to the
U(1)A anomaly, and on the formation of mesic bound states
with nuclei—the so-called mesic nuclei; see Refs. [4–8] for
recent reviews. Seen the other way around, the discovery
of η- and η′-mesic nuclei would allow for a more accurate
determination of the poorly known ηN and η′N interactions,
would open up opportunities to study the structure of these
mesons in a nuclear medium [9], and provide information
on the dynamics of the axial U(1)A anomaly in the nuclear
medium [10].

The concept of mesic nuclei was first introduced by Haider
and Liu in Ref. [11]. Mesic nuclei would represent a novel
form of nuclear system in which a meson is bound with a
nucleus only through the strong interaction, without the in-
fluence of electromagnetic Coulomb effects—such a bound
state system by the Coulomb interaction is often called a
“mesic atom.” The η and η′ mesons are particularly promising
candidates for exploring such meson-nucleus bound states [3].

The experimental searches for this exotic form of nuclear
system involve the production of η and η′ mesons, analyzing
their interaction with nuclei, and detecting η- and η′-mesic
states through their possible decay modes [4–8]. Despite more
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than three decades of intense experimental efforts, unambigu-
ous signals for the η- and η′-nucleus bound states have so
far not been directly observed. However, experimental infor-
mation on the strength of the η and η′ meson interactions
with nuclei has been extracted indirectly from a combina-
tion of measurements (production cross sections, transparency
ratios, excitation functions, and momentum distributions in
hadron- and photo-induced reactions) and Glauber-, transport-
, or collisional-model approaches [4,5]. In this way the real
and imaginary parts of the η-nucleus optical potential at nor-
mal nuclear density ρ0 have been constrained to |V0| � 60
MeV and |W0| � 7 MeV, respectively, using the light nu-
clei 4He [12,13]. Similar analyses have been applied to the
η′-nucleus interaction, giving V0 ≈ −40 MeV [14–16] and
W0 ≈ −13 MeV [3,17,18], using medium and heavy nuclei
(C, Nb, and Pb). A more detailed discussion of the experi-
mental efforts is given in Refs. [4–8]. Even though in both
cases we have an attractive meson-nucleus interaction and a
relatively weak meson absorption, as mentioned above, η- and
η′-nucleus bound states have so far not been directly observed
[19–21], and thus the search for this novel form of nuclear
system continues [4–8].

On the theoretical side, the medium modifications of
the η and η′ mesons and their nuclear bound states have
been studied in a variety of approaches, such as the quark-
meson coupling (QMC) model [9,22], chiral coupled channels
[23], the Nambu–Jona-Lasinio model [24–26], and linear σ

model [27,28], and chiral unitary approach using a micro-
scopic many-body theory [29,30], as well as other approaches
[31,32]. The significant variation of input parameters in differ-
ent calculations results in a wide range of predicted outcomes.
Some of these theoretical analyses predict the existence of
certain η- and η′-mesic nuclei; however, other suggest these
are unlikely. See Refs. [4–8] for a more detailed discussion.

In this work we add to the existing theoretical efforts by
updating and extending previous work [33,34] on the mass
shift of the η and η′ mesons in nuclear matter and their nuclear
bound states using results obtained with the QMC model. The
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approach followed here is an extension of previous work by
us in Refs. [35–39]. Here we use an updated value for the
pseudoscalar mixing angle of θP = −11.3◦ from the Particle
Data Group [40].

This paper is organized as follows. In Sec. II we briefly
describe the QMC model and present results for the mass
shift of the η and η′ mesons in symmetric nuclear matter.
Using the local density approximation, in Sec. III we compute
potentials for the η and η′ mesons in nuclei. In Sec. IV we
present numerical results for the η- and η′-nucleus bound
state energies by solving the Schrödinger and Klein-Gordon
equations with the nuclear potentials calculated in Sec. III. By
adding an imaginary part to the η- and η′-nucleus potentials,
to simulate the absorption of these mesons by nuclei, in Sec. V
we present our results for the single-particle energies and
absorption widths for the η and η′ in nuclei. Finally, in Sec. VI
we conclude this work.

II. QUARK-MESON COUPLING MODEL: MASS SHIFT

In a nuclear medium, hadrons with light quarks, such as the
η and η′ mesons, are expected to change their properties, such
as their masses, and thus affect their interaction with nucleons.
In this section we will compute the mass shift of these mesons
in nuclear matter using the quark-meson coupling model. In
later sections we use these results to compute the η- and η′-
nucleus potentials and single-particle energies.

The QMC model is a quark-based model for nuclear matter
and finite nuclei that describes the internal structure of the nu-
cleons using the Massachusetts Institute of Technology (MIT)
bag model and the binding of nucleons by the self-consistent
couplings of the confined light quarks u and d to the scalar-σ ,
vector-isoscalar-ω, and vector-isovector-ρ meson fields gen-
erated by the confined light quarks in the nucleons [41]. The
QMC model has been successfully applied to investigate the
properties of infinite nuclear matter and finite nuclei. Here
we briefly present the necessary details needed to understand
our results. For a more in-depth discussion of the model, see
Refs. [42,43] and references therein.

We consider nuclear matter in its rest frame, where all the
scalar and vector mean-field potentials, which are responsi-
ble for the nuclear many-body interactions, are constants in
Hartree approximation. Assuming SU(2) symmetry for the
quarks (mq = mu = md and q = u or d below), the Dirac
equations for the quarks and antiquarks in nuclear matter, in a
hadron bag h = η, η′ at the position x = (t, �r) (with |�r| � R∗

h,
R∗

h being the in-medium bag radius), neglecting the Coulomb
force, are given by [41–44]

[
i�∂x − (

mq − V q
σ

) ∓ γ 0V q
+
](ψu(x)

ψu(x)

)
= 0, (1)

[
i�∂x − (

mq − V q
σ

) ∓ γ 0V q
−
](ψd (x)

ψd (x)

)
= 0, (2)

[iγ · ∂x − ms]ψs,s(x) = 0. (3)

Here V q
± = V q

ω ± 1
2V q

ρ ; the (constant) mean-field potentials
for the light quark q in nuclear matter are defined by V q

σ ≡
gq

σ σ , V q
ω ≡ gq

ωω = gq
ω δμ0ωμ, V q

ρ ≡ gq
ρb = gq

ρ δi3δμ0ρ i,μ, with
the gq

σ , gq
ω, and gq

ρ being the corresponding quark-meson

coupling constants. Note that V q
ρ ∝ (ρp − ρn) = 0 in symmet-

ric nuclear matter, although this is not true in a nucleus where
the Coulomb force may induce an asymmetry between the
proton and neutron distributions, even in a nucleus with the
same number of protons and neutrons, resulting in V q

ρ 
= 0
at a given position in a nucleus. The static solution for the
ground state quarks (antiquarks) with a flavor f (= u, d, s) is
written as ψ f (x) = Nf e−iε f t/R∗

h ψ f (r), with the Nf being the
normalization factor, and ψ f (r) the corresponding spin and
spatial part of the wave function. The eigenenergies for the
quarks and antiquarks in the η and η′ mesons, in units of
1/R∗

η,η′ , are given by

(
εu

εu

)
= �∗

q ± R∗
η,η′

(
V q

ω + 1

2
V q

ρ

)
, (4)

(
εd

εd

)
= �∗

q ± R∗
η,η′

(
V q

ω − 1

2
V q

ρ

)
, (5)

εs = εs = �s. (6)

The in-medium mass m∗
h and bag radius R∗

h of hadron h are
determined from

m∗
η = 2

[
a2

P�∗
q + b2

P�s
] − zη

R∗
η

+ 4

3
πR∗3

η B, (7)

(for η′, η → η′, and aP ↔ bP ),

dm∗
h

dRj

∣∣∣∣
Rh=R∗

h

= 0, (h = η, η′), (8)

aP ≡
√

1/3 cos θP −
√

2/3 sin θP, (9)

bP ≡
√

2/3 cos θP +
√

1/3 sin θP, (10)

where �∗
q = �∗

q = [x2
q + (R∗

η,η′m∗
q )2]1/2, and m∗

q = mq − gq
σ σ

and �∗
s = �∗

s = [x2
s + (R∗

η,η′ms)2]1/2, with xq,s being the low-
est mode bag eigenfrequencies. B is the bag constant; nq,s

(nq,s) are the lowest mode valence quark (antiquark) num-
bers for the quark flavors q and s in the corresponding η

and η′ mesons; and zη,η′ parametrize the sum of the center-
of-mass and gluon fluctuation effects and are assumed to
be independent of density [45]. The MIT big parameters zN

(zh) and B are fixed by fitting the nucleon (hadron) mass in
free space.

We choose the values (mq, ms) = (5, 250) MeV for the
current quark masses, and RN = 0.8 fm for the free space
nucleon bag radius. (See Ref. [46] for the (mq, ms) = (5,
93) MeV result.) The quark-meson coupling constants, gq

σ ,
gq

ω and gq
ρ used for the light quarks in the η and η′ mesons

(the same as in the nucleon), were determined by the fit to
the saturation energy (−15.7 MeV) at the saturation density
(ρ0 = 0.15 fm−3) of symmetric nuclear matter for gq

σ and gq
ω,

and by the bulk symmetry energy (35 MeV) for gq
ρ [41,42].

The obtained values for the quark-meson coupling constants
are (gq

σ , gq
ω, gq

ρ)= (5.69, 2.72, 9.33).
Finally, for the mixing angle θP we use the value θP =

−11.3◦, neglecting any possible mass dependence and imagi-
nary parts [40,46]. Furthermore, we also assume that the value
of the mixing angle does not change in the nuclear medium.
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FIG. 1. η and η′ masses (top panel) and mass shift (bottom panel)
in nuclear matter calculated in the quark-meson coupling (QMC)
model as a function of the nuclear matter density ρB.

In Fig. 1 we present the QMC model predictions for the
masses and mass shift �mh(ρB) ≡ m∗

h (ρB) − mh, where m∗
h is

the in-medium meson mass and mh is vacuum mass, for the η

and η′ mesons in symmetric nuclear matter as a function of
the nuclear matter density ρB. Clearly, the masses of these
mesons decrease in the nuclear medium, a clear signature
of the partial restoration of chiral symmetry in the medium.
The extracted values for the mass shift at nuclear matter sat-
uration density is �mη(ρ0) = −63.6 MeV and �mη′ (ρ0) =
−61.3 MeV, respectively. These results are consistent with
the values extracted for these quantities from experimental
data, using transport, collision, or Glauber calculations of
V0 = −60 to 0 MeV for the η meson and −40 ± 6 ± 15 MeV
for the η′ meson [4,5].

Finally, in Fig. 2 we present results, for the first time, for
the U(1)A mass mU (1)A ≡ m2

η′ + m2
η − 2m2

K in nuclear matter,
where mη′ , mη, and mK are the η, η′, and kaon masses in
nuclear matter as a function of the nuclear matter density ρB,
obtained in our approach. The U(1)A mass shift is related
to the topological susceptibility and parametrizes the devia-
tion from the U(1)A symmetric world [47]. Since mU(1)A = 0

FIG. 2. U(1)A mass shift in nuclear matter calculated in the QMC
model as a function of the nuclear matter density ρB.

means a U(1)A symmetric world, this result implies an ef-
fective partial restoration of the U(1)A symmetry in nuclear
matter. However, a more complete study of the U(1)A symme-
try in nuclear matter, in the approach followed in this work,
deserves further investigation. At the moment there is no
experimental information on the possible effective restoration
of the U(1)A symmetry at finite density.

III. η- AND η′-NUCLEUS POTENTIALS

The mass shift for the η and η′ in nuclear matter was
calculated in the previous section as a function the nuclear
matter density ρB using the QMC model, see Fig. 1. These
results show that the nuclear medium provides attraction to
these mesons and opens the possibility to study the binding of
theses mesons to nuclei, which we carry out in this section.
First, we obtain the η and η′ Lorentz scalar potentials in
nuclei, and then we solve the Schrödinger and Klein-Gordon
equations for these mesons using these potentials for various
nuclei to obtain the η and η′ single-particle energies of the
η- and η′-nuclear bound states. We consider the situation in
which these mesons have been produced nearly at rest inside
a nucleus A and study the following nuclei in a wide range of
masses, namely, 4

2He, 12
6 C, 16

8 O, 40
20Ca, 48

20Ca, 90
42Zr, and 208

82 Pb.
The η and η′ Lorentz scalar potentials in nuclei (no Lorentz

vector potentials due to the qq̄ structure) are calculated in the
local density approximation

VhA(r) = �mh
(
ρA

B (r)
)
, (11)

where �mh(ρB) = m∗
h (ρA

B (r)) − mh (h = η, η′) is the mass
shift in nuclear matter as a function of the nuclear matter den-
sity ρB, ρA

B (r) is the baryon density distribution of nucleons for
a nucleus A, r is the distance from the center of the nucleus,
and mh is the mass of the meson in vacuum (mη = 547.862
MeV and mη′ = 957.78 MeV)

The baryon density distributions for the nuclei listed above,
that enter into Eq. (11), are calculated in the QMC model
[48], except for 4He, which was parameterized in Ref. [49].
The calculated potentials for the η and η′ mesons in nuclei
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FIG. 3. η scalar potentials for several nuclei.

are shown in Figs. 3 and 4. These figures show that all po-
tentials for the η and η′ in nuclei are attractive. This is so
because the corresponding mass shift (in nuclear matter) is
negative for both mesons. The differences in the potentials,
for a given meson, reflect the differences in the baryon den-
sity distributions for the nuclei studied. Furthermore, note

that for a given nucleus, the potentials for the η and η′ are
very similar, the reason for this being that → similarity is
because the mass shift for the η and η′ is very similar, as
shown in Fig. 1. To study the interactions of the η and η′
with nuclei in more detail, we now consider the bound states
of these mesons with nuclei when these mesons have been
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FIG. 4. η′ scalar potentials for several nuclei.

produced inside a nucleus A and study the nuclear bound
states, the so-called mesic nuclei, in a wide range of nu-
clear masses, namely, for the nuclei listed in the previous
section.

IV. NUMERICAL RESULTS FOR THE η- AND η′-NUCLEUS
BOUND STATE ENERGIES

In order to obtain the η and η′ single-particle energies in
nuclei and also to have an idea of the relativistic effects, we
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TABLE I. Bound state energies (E ) of the η meson in nucleus
of mass number A obtained by solving the Schrödinger and Klein-
Gordon equations. E is in MeV.

n� E (SE) E (KGE)

4
ηHe 1s −13.24 −10.99
12
η C 1s −27.03 −25.25

1p −1.75 −0.87
16
η O 1s −32.60 −30.78

1p −8.04 −6.47
40
η Ca 1s −48.71 −46.93

1p −29.31 −26.93
1d −8.73 −6.67
2s −7.16 −5.43

48
η Ca 1s −49.34 −47.78

1p −32.22 −29.97
1d −13.31 −11.08
2s −10.34 −8.7

90
η Zr 1s −53.71 −52.56

1p −41.76 −39.85
1d −27.71 −25.32
2s −23.43 −21.04

197
η Au 1s −55.85 −55.12

1p −48.45 −47.13
1d −39.48 −37.60
2s −36.04 −34.01

208
η Pb 1s −57.59 −56.85

1p −50.27 −48.92
1d −41.40 −39.81
2s −38.03 −35.95

solve numerically the Schrödinger and Klein-Gordon equa-
tions for these mesons with the scalar nuclear potential given
in Eq. (11) for various nuclei. We first solve the Schrödinger
equation (SE),(

− 1

2m
∇2 + V (�r)

)
ψ (�r) = Eψ (�r), (12)

where V (�r) = V (r) is the scalar (nuclear) potential, given by
Eq. (11), r = |�r| is the distance from the center of the nucleus,
and m is the reduced mass of the h-nucleus system in vacuum,
with h = η, η′.

Next we solve the Klein-Gordon equation (KGE),

(−∇2 + (m + V (�r))2)φ(�r) = E2ψ (�r), (13)

where, as before, V (�r) = V (r) is the scalar (nuclear) potential,
given by Eq. (11), r = |�r| is the distance from the center of the
nucleus, and m is the reduced mass of the h-nucleus system in
vacuum, with h = η, η′. In this case the bound state energies
(E ) of the h-nucleus system are given by E = E − m, where
E is the energy eigenvalue in Eq. (13).

For the solution of Eqs. (12) and (13), we use momentum
space methods. Here these equations are first converted to
a momentum space representation via a Fourier transform,
followed by a partial wave decomposition of the Fourier-
transformed potential. Then for a given value of angular
momentum (�), the eigenvalues of the resulting equation are
found by the inverse iteration eigenvalue algorithm. We note

TABLE II. Bound state energies (E ) of the η′ meson in nucleus
of mass number A obtained by solving the Schrödinger and Klein-
Gordon equations. E is in MeV.

n� E (SE) E (KGE)

4
η′ He 1s −23.72 −22.11
12
η′ C 1s −34.79 −33.88

1p −13.63 −12.72
16
η′ 0 1s −39.47 −38.64

1p −20.81 −19.75
2s −1.88 −1.39
1d −1.76 −0.33

40
η′ Ca 1s −53.09 −52.38

1p −39.52 −38.41
1d −24.41 −23.12
2s −21.66 −20.38

48
η′ Ca 1s −53.01 −52.40

1p −41.29 −40.30
1d −27.90 −26.68
2s −24.69 −23.45

90
η′ Zr 1s −55.62 −55.20

1p −47.79 −47.05
1d −38.47 −37.42
2s −35.31 −34.19

197
η′ Au 1s −56.28 −56.03

1p −51.59 −51.12
1d −45.87 −45.15
2s −43.60 −42.80

208
η′ Pb 1s −57.90 −57.65

1p −53.26 −52.77
1d −47.60 −46.87
2s −45.38 −44.56

that at this point there is no advantage in using momentum
space methods. However, the advantage will be apparent later,
when we add an imaginary part to the nuclear potential, in
order to simulate absorption of the η and η′ mesons by nuclei.

The results obtained for the single-particle energies E for
the η and η′ are listed in Tables I and II, respectively, for
all nuclei listed in the previous section. In Table I we show
the η-nucleus bound state energies obtained by solving the
Schrödinger and Klein-Gordon equations. For each nucleus
we have computed all bound states but have listed only a few
of them (up to four). However, we note that the number of
bound states increases with the mass of the nucleus, such that
for the heavier nuclei we have a richer structure of bound
states. Furthermore, we note that the relativistic corrections
decrease the bound state energies for the η by approximately
2 MeV.

In Table II we show the η′-nucleus bound state energies
obtained by solving the Schrödinger and Klein-Gordon equa-
tions. As in the η case, for each nucleus we have listed up to
four bound states. We see that compared to the η meson, for
the η′ we have a richer structure of bound states due to the
fact that the η′ is heavier. Finally, we note that the relativistic
corrections are smaller for the η′ meson, by approximately 1
MeV, due to its larger mass. Thus from Tables I and II we
conclude that the η and η′ are expected to form mesic nuclei
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TABLE III. Bound state energies (E ) and full widths (�) of η meson in nucleus of mass number A obtained by solving the Schrödinger for
various values of γ .

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

n� E � E � E � E �

4
ηHe 1s −13.24 0 −12.97 9.81 −12.21 19.86 −9.45 41.45
12
η C 1s −27.03 0 −26.92 11.77 −26.60 23.64 −25.44 47.97

1p −1.75 0 −1.33 6.05 N N N N
16
η O 1s −32.60 0 −32.51 12.84 −32.27 25.77 −31.39 52.09

1p −8.04 0 −7.80 8.99 −7.12 18.30 −4.84 38.46
40
η Ca 1s −48.71 0 −48.66 15.86 −48.52 31.76 −48.00 63.84

1p −29.31 0 −29.20 13.83 −28.88 27.78 −27.75 56.30
1d −8.73 0 −8.50 10.92 −7.84 22.14 −5.64 46.09
2s −7.16 0 −6.79 9.01 −5.77 18.56 N N

48
η Ca 1s −49.34 0 −49.31 15.61 −49.19 31.25 −48.78 62.77

1p −32.22 0 −32.13 14.03 −31.88 28.15 −30.97 56.91
1d −13.31 0 −13.13 11.80 −12.63 23.81 −10.90 48.98
2s −10.34 0 −10.05 10.25 −9.26 20.91 N N

90
η Zr 1s −53.71 0 −53.69 15.77 −53.63 31.56 −53.40 63.27

1p −41.76 0 −41.71 14.95 −41.57 29.94 −41.08 60.22
1d −27.71 0 −27.62 13.85 −27.36 27.79 −26.49 56.21
2s −23.43 0 −22.28 9.68 −22.95 26.47 −21.75 53.93

197
η Au 1s −55.85 0 −55.84 15.45 −55.81 30.92 −55.69 61.91

1p −48.45 0 −48.43 15.07 −48.36 30.16 −48.13 60.47
1d −39.48 0 −39.44 14.56 −39.32 29.17 −38.91 58.62
2s −36.04 0 −35.99 14.29 −35.84 28.63 −35.31 57.66

208
η Pb 1s −57.59 0 −57.58 15.87 −57.55 31.76 −57.44 63.58

1p −50.27 0 −50.25 15.49 −50.18 30.99 −49.95 62.14
1d −41.40 0 −41.36 14.99 −41.25 30.01 −40.85 60.30
2s −38.03 0 −37.98 14.72 −37.83 29.50 −37.32 59.37

with all the nuclei considered. However, this is not a definite
conclusion, since so far we have not taken into account the
absorption of these mesons by nuclei.

V. SINGLE-PARTICLE ENERGIES AND ABSORPTION
WIDTHS FOR THE η AND η′ IN NUCLEI.

In order to make our results more realistic, we now add an
important feature of the meson-nucleus interaction that was
neglected in Ref. [34] for the η′, namely, meson absorption
in nuclei, which requires a complex potential. We follow
Refs. [33,34] and construct this potential phenomenologically
by adding an imaginary part WhA(r) to the η and η′ scalar
potentials discussed in the previous section, given in Eq. (11),
as follows:

VhA(r) = �mh
(
ρA

B (r)
) + iWhA(r), (14)

where WhA(r) is related to the absorption of the meson h in the
nuclear medium and is given by

WhA(r) = − 1
2�hA(r), (15)

�hA(r) = −γ�mh
(
ρA

B (r)
) + �vac

h . (16)

Here �vac
h is the meson decay width in vacuum (�vac

η = 1.31
keV and �vac

η′ = 0.188 MeV [40]), and γ is a phenomenolog-
ical parameter used to simulate the strength of the absorption
of the meson in the nuclear medium.

Next we calculate the bound state energies and widths for
the η- and η′-mesic nuclei using the Schrödinger and Klein-
Gordon equations with the complex potential, Eq. (14), for
several values of the parameter γ , which cover the estimated
widths of the η and η′ mesons in the nuclear medium quoted
in the Introduction section.

For the moment we ignore �vac
h ; however, since it is very

small it will not contribute much. In Tables III and IV we show
the results for the bound state energies (E ) and full widths (�)
of the η-mesic nuclei of mass number A, obtained by solving
the Schrödinger and Klein-Gordon equations, respectively, for
various values of the strength of the imaginary part of the
potential γ = 0.0, 0.25, 0.5, 1.0. The bound state energies
and full widths are obtained from the complex energy eigen-
value E as E = E − i�/2 for the Schrödinger equation and
as E = E + m − i�/2 for the Klein-Gordon equation. In
Tables V and VI we present the corresponding results for the
η′ meson. Note that the results for γ = 0, for both the η and
η′ mesons, correspond to the results given in Tables I and II,
which we have already discussed in the previous section.

We now discuss the results obtained when the imagi-
nary part of the potential is included, columns with γ =
0.25, 0.5 and γ = 1.0 in Tables III–VI. The following con-
clusions, obtained from Tables III–VI, apply both to the
η- and η′-mesic nuclei. For now we will only discuss the
ground states, since all mesic nuclei have at least one bound
state.
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TABLE IV. Bound state energies (E ) and full widths (�) of η meson in nucleus of mass number A obtained by solving the Klein-Gordon
equation for various values of γ .

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

n� E � E � E � E �

4
ηHe 1s −10.99 0 −10.79 8.21 −10.20 16.65 −8.13 34.94
12
η C 1s −25.25 0 −25.16 10.86 −24.91 21.82 −24.02 44.29

1p −0.87 0 −0.43 4.97 N N N N
16
η O 1s −30.78 0 −30.72 12.00 −30.53 24.07 −29.86 48.67

1p −6.47 0 −6.26 7.84 −5.67 15.99 −3.77 33.80
40
η Ca 1s −46.93 0 −46.89 15.12 −46.79 30.28 −46.43 60.87

1p −26.93 0 −26.85 12.67 −26.61 25.44 −25.77 51.59
1d −6.67 0 −6.47 9.48 −5.91 19.27 −4.15 40.31
2s −5.43 0 −5.09 7.51 −4.18 15.59 N N

48
η Ca 1s −47.78 0 −47.75 14.98 −47.66 30.00 −47.38 60.25

1p −29.97 0 −29.90 12.99 −29.71 26.06 −29.04 52.71
1d −11.08 0 −10.93 10.45 −10.51 21.10 −9.15 43.52
2s −8.7 0 −8.11 8.83 −7.42 18.06 N N

90
η Zr 1s −52.56 0 −52.54 15.34 −52.50 30.71 −52.34 61.56

1p −39.85 0 −39.81 14.17 −39.71 28.40 −39.36 57.11
1d −25.32 0 −25.25 12.74 −25.06 25.57 −24.40 51.75
2s −21.04 0 −20.94 11.95 −20.65 24.04 −19.70 49.03

197
η Au 1s −55.12 0 −55.11 15.20 −55.09 30.41 −55.01 60.89

1p −47.13 0 −47.11 14.58 −47.06 29.19 −46.90 58.53
1d −37.60 0 −37.58 13.83 −37.49 27.69 −37.20 55.67
2s −34.01 0 −33.97 13.45 −33.86 26.96 −33.47 54.31

208
η Pb 1s −56.85 0 −56.84 15.61 −56.82 31.24 −56.75 62.55

1p −48.92 0 −48.90 14.99 −48.86 30.01 −48.70 60.17
1d −39.81 0 −39.45 14.24 −39.37 28.51 −39.09 57.29
2s −35.95 0 −35.91 13.87 −35.80 27.80 −35.43 55.96

Adding an absorptive part of the potential changes the
situation appreciably. The effects are larger the larger γ is
for both the nonrelativistic and relativistic cases. Clearly,
the imaginary part of the potential is repulsive, being more
repulsive for γ = 1. Whether or not the bound states can
be observed experimentally is sensitive to the value of the
parameter γ , since � increases with increasing γ . Further-
more, since the so-called dispersive effect of the absorptive
potential is repulsive, the binding energies for all nuclei de-
crease with γ . However, they decrease very little. Even for
the largest value of γ , there is at least one bound state.
We have found similar results for the φ meson in a pre-
vious paper [36]. Note that the width of the ground state
increases with γ for all nuclei, as expected, since a larger γ

means that the strength of the imaginary part of the potential
is larger.

η- and η′-mesic bound states have been studied by several
authors in a variety of approaches, such as the QMC model
[9,22], chiral coupled channels [23], the Nambu–Jona-Lasinio
model [24–26], and linear σ model [27,28], and chiral unitary
approach using a microscopic many-body theory [29,30], as
well as other more formal approaches [31,32]. It is interesting
to compare our results with those of Refs. [29,30], where both
real and imaginary parts of the potential have been evaluated
from the η self-energy in nuclei in chiral unitary approach. For
the nuclei for which the comparison is possible (12

η C, 40
η Ca,

and 208
η Pb), we see that our bound state energies are more than

twice theirs (see Table 1 Ref. [29]) when we compare with
their results obtained using an energy-dependent potential;
however, the situation improves to our favor when we com-
pare with their results obtained using an energy-independent
potential. The fact that our results compare better with those
of Ref. [29] seems to indicate that we can improve our re-
sults, and reduce the amount of binding energy, by taking
into account the energy and momentum dependence of the η

(and η′) self-energy. The main goal of the present work is to
improve the previous results by adding an imaginary part to
the potential in order to assess the feasibility of observation of
the η- and η′-mesic nuclei predicted by our approach. In any
case, it is possible that our results give overbinding. This may
be based on the results from Ref. [50], where no clear 4

ηHe
bound states are found. The analysis in Ref. [50] is carried
by analyzing the data on the cross section for the dd → η4He
reaction close to threshold. However, the present approach is
based on the mean-field approach, and then the results for
lighter nuclei may not be appropriate for 4

ηHe. In fact, the
nucleon density distribution for 4He is not calculated here,
which is the basis to calculate the 4

ηHe potential. Furthermore,
in the case when the width of the η (imaginary part of the po-
tential) is indeed large in reality, the conclusion drawn based
on the experimental data that they found no bound η-nucleus
states may be changed. That is why we have addressed the
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TABLE V. Bound state energies (E ) and full widths (�) of η′ meson in nucleus of mass number A obtained by solving the Schrödinger
equation for various values of γ .

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

n� E � E � E � E �

4
η′ He 1s −23.72 0 −23.55 12.27 −23.06 24.70 −21.29 50.50
12
η′ C 1s −34.79 0 −34.72 12.70 −34.52 25.47 −33.78 51.37

1p −13.63 0 −13.47 9.62 −13.00 19.41 −11.35 39.95
16
η′ 0 1s −39.47 0 −39.42 13.40 −39.27 26.86 −38.74 54.04

1p −20.81 0 −20.69 11.31 −20.35 22.73 −19.16 46.28
2s −1.88 0 −1.33 5.22 N N N N
1d −1.76 0 −1.43 7.89 −0.35 13.61 N N

40
η′ Ca 1s −53.09 0 −53.06 15.87 −52.98 31.76 −52.66 63.71

1p −39.52 0 −39.45 14.65 −39.27 29.35 −38.62 59.11
1d −24.41 0 −24.30 13.10 −23.98 26.31 −22.85 53.40
2s −21.66 0 −21.51 12.40 −21.09 24.96 −19.64 51.01

48
η′ Ca 1s −53.01 0 −52.99 15.5 −52.92 31.05 −52.67 62.25

1p −41.29 0 −41.24 14.58 −41.10 29.20 −40.58 58.73
1d −27.90 0 −27.81 13.38 −27.56 26.85 −26.67 54.32
2s −24.69 0 −24.57 12.81 −24.24 25.74 −23.09 52.33

90
η′ Zr 1s −55.62 0 −55.61 15.45 −55.57 30.92 −55.44 61.92

1p −47.79 0 −47.77 14.98 −47.69 29.98 −47.42 60.13
1d −38.47 0 −38.42 14.37 −38.29 28.78 −37.82 57.88
2s −35.31 0 −35.25 14.07 −35.08 28.21 −34.49 56.84

197
η′ Au 1s −56.28 0 −56.28 15.03 −56.26 30.06 −56.20 60.15

1p −51.59 0 −51.58 14.80 −51.54 29.61 −51.41 59.31
1d −45.87 0 −45.85 14.52 −45.79 29.06 −45.57 58.26
2s −43.60 0 −43.57 14.39 −43.50 28.80 −43.02 58.09

208
η′ Pb 1s −57.90 0 −57.90 15.42 −57.88 30.84 −57.81 61.73

1p −53.26 0 −53.24 15.19 −53.21 30.40 −53.08 60.88
1d −47.60 0 −47.57 14.91 −47.51 29.84 −47.29 59.83
2s −45.38 0 −45.35 14.78 −45.27 29.59 −45.01 59.36

calculation with a wider range of the imaginary part of the
potential.

VI. SUMMARY AND CONCLUSIONS

We have updated the mass shift of the η and η′ mesons
in symmetric nuclear matter using the most up to date mix-
ing angle, θP = −11.3◦, within the quark-meson coupling
model. Using these mass shift as input, we have calculated,
in the local density approximation, the real part of the scalar
nuclear potential for the η and η′ mesons for various nu-
clei, covering a wide range of nuclear masses. The nuclear
density distributions for all nuclei, except the lightest one,
were computed using the quark-meson coupling model self-
consistently. We found that these potentials are attractive
in all cases. Then we calculated the bound state energies
for the η- and η′-mesic nuclei for several nuclei by solv-
ing the Schrödinger and Klein-Gordon equations. We found
that by neglecting meson absorption by nuclei, these mesons
should form mesic nuclei with all the nuclei considered. Even
though this is an important step, it ignores the absorption of
these mesons by nuclei. To remedy this, we have added, in
a phenomenological way, an imaginary part to the η- and
η′-nucleus potentials with wider ranges and again solved
the Schrödiger and Klein-Gordon equations with complex

potentials. Our results show that the η and η′ mesons are
expected to form mesic nuclei with all the nuclei consid-
ered. The main feature of forming bound states with nuclei
is not changed by the introduction of imaginary parts of the
potentials, though the feasibility for experiment is certainly
influenced. Namely, the signal for the formation of the η- and
η′-mesic nuclei may be difficult to identify experimentally,
given the similarity between the real and imaginary parts
(widths) of the bound state energies. Furthermore, our results
depend on the strength of the imaginary part of the meson-
nucleus potential, as expected. Thus, in order to quantify
this uncertainty and the sensitivity of our results to its value,
we have analyzed three values of strength for the imaginary
part of the meson-nucleus potential. Therefore the feasibility
of observation of the η- and η′-mesic nuclei needs further
investigation.
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TABLE VI. Bound state energies (E ) and full widths (�) of η′ meson in nucleus of mass number A obtained by solving the Klein-Gordon
equation for various values of γ .

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

n� E � E � E � E �

4
η′ He 1s −22.11 0 −21.96 11.37 −21.55 22.89 −20.06 46.83
12
η′ C 1s −33.88 0 −33.82 12.30 −33.64 24.66 −33.00 49.73

1p −12.72 0 −12.57 9.06 −12.15 18.29 −10.67 37.68
16
η′ O 1s −38.64 0 −38.59 13.06 −38.46 26.17 −38.00 52.65

1p −19.75 0 −19.65 10.76 −19.34 21.64 −18.28 44.07
2s −1.39 0 −0.84 4.48 N N N N
1d −0.33 0 −0.69 7.20 N N N N

40
η′ Ca 1s −52.38 0 −52.35 15.59 −52.28 31.22 −52.00 62.61

1p −38.41 0 −38.35 14.18 −38.19 28.41 −37.63 57.22
1d −23.12 0 −23.02 12.46 −22.74 25.03 −21.75 50.81
2s −20.38 0 −20.25 11.72 −19.87 23.60 −18.58 48.25

48
η′ Ca 1s −52.40 0 −52.38 15.29 −52.32 30.60 −52.11 61.35

1p −40.30 0 −40.26 14.18 −40.13 28.40 −39.68 57.12
1d −26.68 0 −26.59 12.82 −26.37 25.72 −25.58 52.02
2s −23.45 0 −23.34 12.19 −23.04 24.51 −22.01 49.85

90
η′ Zr 1s −55.20 0 −55.19 15.31 −55.16 30.63 −55.04 61.35

1p −47.05 0 −47.02 14.70 −46.96 29.43 −46.72 59.04
1d −37.42 0 −37.38 13.96 −37.27 27.96 −36.86 56.22
2s −34.19 0 −34.14 13.61 −33.99 27.29 −33.47 54.98

197
η′ Au 1s −56.03 0 −56.03 14.94 −56.01 29.89 −55.96 59.83

1p −51.12 0 −51.10 14.64 −51.07 29.30 −50.96 58.67
1d −45.15 0 −45.14 14.27 −45.08 28.56 −44.89 57.26
2s −42.80 0 −42.78 14.10 −42.71 28.22 −42.47 56.63

208
η′ Pb 1s −57.65 0 −57.64 15.34 −57.63 30.68 −57.57 61.40

1p −52.77 0 −52.76 15.03 −52.73 30.07 −52.62 60.23
1d −46.87 0 −46.85 14.66 −46.80 29.33 −46.61 58.80
2s −44.56 0 −44.54 14.49 −44.47 29.00 −44.24 58.19
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