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Heavy quark diffusion and radiation are discussed in an intermediate-momentum regime where finite mass
effects can be significant. Diffusion processes are described in the Fokker-Planck approximation for soft
momentum transfer, while radiative ones are taken into account by nearly collinear gluon emission from a single
scattering in the Boltzmann equation. There are also radiative corrections to the transverse momentum diffusion
coefficient, which are O(g2) suppressed more than the leading-order diffusion coefficient but logarithmically
enhanced. Numerical results show that the heavy quark distribution function depends on the energy loss mecha-
nism so that the medium modifications by diffusion and radiation are distinguishable. The nuclear modification
factor is estimated by employing the heavy quark diffusion coefficient which is constrained by lattice quantum
chromodynamics data. The suppression factor exhibits a transition from diffusion at low momentum to radiation
at high momentum. The significance of the radiative effects at intermediate momentum depends on the diffusion
coefficient and the running coupling constant.
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I. INTRODUCTION

Heavy quarks are important probes for high-temperature
quantum chromodynamics (QCD) matter created in rela-
tivistic heavy-ion collisions, as they are mostly produced at
an early stage and conserved during the evolution. Slowly
moving heavy quarks experience a Brownian motion in
quark-gluon plasmas, and gluon-bremsstrahlung can affect
the high-momentum spectra. Medium modifications of heavy
quark production can be described by the collisional and
radiative energy loss. Heavy quark transport and the related
energy loss have been thoroughly investigated by various
models (for recent review, see Refs. [1–3]). Many of the
transport models treat medium-induced gluon emission as an
additional contribution to heavy quark diffusion or analo-
gously to jet quenching with multiple scatterings. Previously,
a recoil force term due to gluon radiation has been introduced
in the Langevin equation for Brownian motion [4], and the
radiative energy loss has been estimated independently of
the collisional energy loss [5,6]. In these studies, it is not
easy to distinguish two energy-loss effects and to find out
which mechanism is more influential, depending on momen-
tum. This work introduces a heavy-quark transport approach
that allows a different treatment of gluon-bremsstrahlung
from diffusion while describing two mechanisms consis-
tently with a single transport parameter. Concentrating on
an intermediate-momentum regime where heavy mass effects
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can be significant, the transition between diffusion and radia-
tion from a single scattering is investigated.

The interaction between heavy quarks and dynamic
thermal media is characterized by transport coefficients. Es-
pecially, the heavy quark diffusion coefficient depending on
momentum and temperature is important because it controls
the rate of equilibration in high-temperature QCD plasmas.
The leading-order momentum diffusion coefficient has been
calculated by hard-thermal-loop (HTL) perturbation theory
[7–9], and its O(g) correction has been obtained in the soft
sector [10]. For a realistic value of the strong coupling con-
stant, the classical correction is so large that nonperturbative
determination is required. Similar to the jet transport parame-
ter q̂, there are also quantum corrections which are suppressed
by O(g2) but double-logarithmically enhanced [11,12]. Re-
cently, a Bayesian analysis and transport model comparison
have been performed to determine the heavy quark transport
coefficients from phenomenological studies [13–15]. While
most models are able to describe experimental data with some
adjustment of parameters, the extracted diffusion coefficients
vary due to the large differences between models.

The distribution function of heavy quarks can be described
by the Boltzmann equation(

∂

∂t
+ v · ∂

∂x

)
f (p) = Ccol[ f ] + Crad[ f ], (1)

where the collision terms correspond to elastic scattering and
gluon emission for the collisional and radiative energy loss,
respectively. In a leading-log approximation the first term can
be formulated as a Fokker-Planck operator, while the second
term is radiative corrections to the collision kernel responsible
for diffusion. For heavy quarks with intermediate momentum,
the transport equation can be formulated only in terms of the
momentum diffusion coefficient which can be constrained by
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lattice QCD computations. With this single transport param-
eter, two types of energy loss are treated consistently and the
relative importance of each mechanism can be studied in the
transition region.

The outline of the paper is as follows. Section II presents
a brief review of the leading-log heavy quark diffusion
with a Fokker-Planck equation. Then, the radiative effects,
nearly collinear gluon-emission and radiative corrections to
the transverse momentum diffusion coefficient, are discussed
in Sec. III. Section IV presents the numerical results for the
medium modifications of the heavy quark spectrum. Em-
ploying the heavy quark diffusion coefficient constrained by
lattice QCD data and the running coupling constant, the nu-
clear modification factors of heavy quarks are estimated for
a Bjorken expansion. Finally, a summary is given in Sec. V.
The details on gluon emission are provided in the Appendix.

II. HEAVY QUARK DIFFUSION

This section begins with a brief review on the collisional
energy loss of heavy quarks in a relatively low-momentum
regime [7–9,16,17]. Traversing quark-gluon plasmas, heavy
quarks with m, p � T undergo diffusion by elastic scattering.
For spacelike soft-gluon exchange, the leading collision term
in Eq. (1) can be approximated as a Fokker-Planck operator,

Ccol[ f ] = ∂

∂ pi
[η(p)pi f (p)] + 1

2

∂2

∂ pi∂ pj
[κ i j (p) f (p)], (2)

where η(p) is the drag coefficient and κ i j (p) = κL(p) p̂i p̂ j +
κT (p)(δi j − p̂i p̂ j ) is the momentum diffusion tensor.

For a heavy quark moving in the z direction, the
longitudinal and transverse momentum diffusion coefficients
are defined as

κL(p) =
∫

d3q
d�(q)

d3q
q2

z ,

κT (p) = 1

2

∫
d3q

d�(q)

d3q
q2

T , (3)

where q is the soft momentum transfer. Because the heavy
quark mass is larger than a typical parton momentum of
O(T ), the dominant contribution comes from t-channel gluon
exchange. In the Coulomb gauge, the collision rate is given by

C(q) ≡ (2π )3 d�(q)

d3q

= π

2
g2CF m2

D

∫
dω δ(ω − q · v)

T

q

×
[

2

|q2 + 	L(Q)|2 + (q2 − ω2)(q2v2 − ω2)

q4|q2 − ω2 + 	T (Q)|2
]
,

(4)

where the interaction rate can be expressed in terms of
the imaginary part of the heavy quark self-energy [7].
Taking account of heavy quark interactions with both
gluons and light quarks, the Debye screening mass is

m2
D = 2Nc, f g2

T

∫
d3k

(2π )3 n(k)[1 ± n(k)] = (Nc + Nf

2 ) g2T 2

3 and HTL

resummations are [18,19]

	L(Q) = m2
D

[
1 − ω

2q

(
ln

q + ω

q − ω
− iπ

)]
,

	T (Q) = m2
D

[
ω2

2q2
+ ω(q2 − ω2)

4q3

(
ln

q + ω

q − ω
− iπ

)]
. (5)

In a leading-log approximation [9]

κL(p) = κ0
3

2

[
E2

p2
− E (E2 − p2)

2p3
ln

E + p

E − p

]
,

κT (p) = κ0
3

2

[
3

2
− E2

2p2
+ (E2 − p2)2

4E p3
ln

E + p

E − p

]
, (6)

where κ0 ≡ κL(p = 0) = κT (p = 0) = g4CF T 3

18π
(Nc + Nf

2 )[ln
T

mD
+ O(1)].
As the heavy quark distribution must approach the ther-

mal equilibrium, f (p) ∝ e−Ep/T , the drag coefficient and
the longitudinal diffusion coefficient are related by η(p) =
κL(p)/(2T E ) to leading order in T/E . At this order, the col-
lisional energy loss of heavy quarks, − dE

dz = pη(p), is also
proportional to the longitudinal diffusion coefficient.

III. RADIATIVE EFFECTS

The collisional energy loss by diffusion is dominant for
low-momentum heavy quarks, whereas the medium-induced
gluon emission starts to contribute as the heavy quark mo-
mentum increases. Unlike quasiparticle dynamics where both
collisional and radiative processes contribute at leading order
[20], gluon emission off slow heavy quarks is O(g2) sup-
pressed more than elastic scatterings at weak coupling. While
there is O(1/g2) enhancement for light partons with soft gluon
exchange and collinear gluon emission [21,22], radiation from
heavy quarks depends on their momentum extent because
the heavy quark mass cannot be ignored in an intermediate-
momentum regime. At higher orders, diffusion and radiation
are not clearly distinguished [23]. It will be observed that
a part of radiative effects will contribute to the transverse
momentum diffusion coefficient.

The radiative energy loss of ultrarelativistic partons, known
as jet quenching, has been extensively studied using different
formalisms: the path-integral formulation, a Schrödinger-like
equation, opacity and high-twist expansions, and a summa-
tion of ladder diagrams [24–28]. Gluon emission from light
partons takes some time (called the formation time), t f ∼
1/(g2T ) which is of the same order as the mean free path. In
that case, one needs to sum multiple scatterings which reduce
the emission rate due to the coherence (LPM) effect [29,30].
The radiative energy loss of heavy quarks has been evaluated
within the frameworks of high-twist and opacity expansions
[5,31–34]. This work will follow a diagrammatic approach
of Ref. [22] to evaluate gluon emission from heavy quarks
with p � m.

For energetic heavy quarks, soft collisions induce collinear
gluon-bremsstrahlung. Figure 1 shows diagrams for the radia-
tive contributions [35]. The radiative energy loss is dominated
by hard gluon emission (k ∼ T ), even though the energy of
gluon is still much smaller than that of heavy quark (k � Ep).
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FIG. 1. Gluon radiation off heavy quarks interacting with soft classical fields. Thick solid lines denote heavy quarks, thick and thin wiggly

lines are hard (K ∼ T ) and soft (Q ∼ gT ) gluons, respectively, and crosses are for thermal scattering centers.

In the collinear limit, the emitted gluon has transverse mo-
mentum, kT ∼ gT . The radiative process is then factorized
into elastic scattering and the gluon emission factor allowing
enhancement so that radiation can be as important as elastic
scattering.

The energy change in the radiation process is the inverse
formation time

1

t f
= δE = Ep + k0 − Ep+k � k2

T + m2x2 + m2
g

2k(1 − x)
, (7)

where x = k/Ep+k and m2
g = m2

D/2 is the thermal mass of
the emitted gluon. The initial transverse momentum of heavy
quark has been chosen to be zero, pT + kT = 0. If the heavy
quark momentum is so large that mx ∼ gT , then one needs to
consider multiple soft scatterings as light partons. On the other
hand, radiation rarely occurs from heavy quarks with p � m
if mx ∼ T . To smoothly interpolate between the two limits,
only the gT � mx � T case will be considered. Then the
formation time is shorter than the mean free path, allowing for
a discussion only on gluon emission from a single scattering.

Gluon emission from quark-gluon plasmas has been com-
puted by summing multiple scatterings during the emission
process [22,28,36]. Without the LPM effect, the radiative cor-
rections to the collision kernel and the transport coefficient
q̂ have been evaluated for ultrarelativistic partons [11,12,37],
but not for heavy quarks with finite mass effects. Adopting a
similar approach to q̂ in a single scattering, the heavy quark
case will be considered in this work. In this way, heavy
quark diffusion and radiation can be consistently calculated
by using the transverse momentum diffusion coefficient in an
intermediate-momentum regime.

The gluon emission rate is given by [38]

d�(Ep, k)

dk
= g2CF

8πk3
[1 + nB(k)][1 − nF (Ep−k)]

(1 − x)2 + 1

(1 − x)2

×
∫

d2 pT

(2π )2
pT · Re F (pT ), (8)

where �(Ep, k) is the rate for a heavy quark with momen-
tum p to emit a gluon with energy k, nB(k) and nF (Ep−k)
are the Bose-Einstein and Fermi-Dirac thermal distributions,
respectively, and F (pT ) is the solution of a linear integral
equation which sums ladder diagrams. For a single scattering
(see Appendix),

Re F (pT ) = 2

δE (pT )

∫
d3q

(2π )3
C(q)

×
[

pT

δE (pT )
− pT + qT

δE (pT + qT )

]
, (9)

where C(q) is the collision kernel in Eq. (4). Taking the real
processes [39] it is assumed that the emitted gluon has a
larger transverse momentum than the soft momentum of gluon
exchange, pT � qT

1:∫
d2 pT

(2π )2
pT · Re F (pT )

=
∫

d2 pT

(2π )2

∫
d3q

(2π )3
C(q)

[
pT

δE (pT )
− pT + qT

δE (pT + qT )

]2

� 8κT k2(1 − x)2
∫

d2 pT

(2π )2

1(
p2

T + m2x2 + m2
g

)2 , (10)

where the definition of the transverse momentum diffusion
coefficient, Eq. (3), has been used. Except for employing the
collision kernel responsible for heavy quark diffusion instead
of a static Debye-screened potential or the same kernel of light
partons in a dynamical medium [41], this corresponds to the
incoherent limit of the N = 1 opacity expansion [5,32,33].

In the Boltzmann equation (1), the radiation term is given
by [28,38]

Crad[ f ] ∼
∫

dk

[
f (p + k)

d�(Ep+k, k)

dk
− f (p)

d�(Ep, k)

dk

]
,

(11)

where p + k � (p + k) p̂ in the eikonal approximation. k < 0
corresponds to gluon absorption which is required for detailed
balance. Heavy quark radiation is different from light partons
in that gluon emission is suppressed at smaller angles than
m/E [42]. This dead-cone effect can be observed if m2x2 is
larger than the other terms in the denominator of Eq. (10).
In the region gT � mx � T , the radiation term can be larger
than O(g6) but smaller than O(g4) of the ultrarelativistic limit.
If the energy carried by an emitted gluon is soft (k ∼ gT ),
the first term in Eq. (11) can be expanded, contributing to the
longitudinal diffusion at next-to-leading order O(g5) [23].

The collision kernel C(kT ) is the rate for heavy quark to
acquire a transverse momentum kT . After gluon emission in
Fig. 1, radiative corrections arise:

δC(kT ) = g2CF κT

π

∫
dk

k
[(1 − x)2 + 1]

1(
k2

T + m2x2 + m2
g

)2 ,

(12)

1The approximations and power-counting used in this section are
similar to those for semicollinear emission [23,39,40] or soft-
collinear effective theory [34].
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which has been obtained in the same approximation as
Eq. (10). Then the radiative correction to the transverse mo-
mentum diffusion coefficient is

δκT (p) = 1

2

∫
d2kT

(2π )2
k2

T δC(kT )[1 + nB(k)]. (13)

Using the kinematic boundaries, kT,max ∼ k, kmax ∼ p, and
kmin ∼ T ,

δκT (p) ∼ g2κT ln
E

m
ln

p

T
. (14)

In comparison to the leading-order coefficient κT , δκT is
O(g2) suppressed but logarithmically enhanced in the high-
momentum limit. This is analogous to quantum corrections
to the transverse momentum broadening coefficient [11,12],
except for the different phase space boundaries and the heavy
quark mass regulating the collinear singularity. The impor-
tance of the factor [1 + nB(k)] in Eq. (13) has been discussed
in Ref. [37]: it is needed to account for Bose enhancement for
k � T , connecting to O(g) classical corrections for soft-gluon
emission. A numerical estimate for this potentially large cor-
rection is given in Fig. 3(a) in the next section. The correction
increases with the heavy quark momentum and becomes com-
parable to the leading-order coefficient at high momentum.

The final form of the radiation term is given by

Crad[ f ]

=
∫

dk

[
f ((p + k) p̂)

d�(E(p+k)p̂, k)

dk
− f (p)

d�(Ep, k)

dk

]

+ 1

2
∇2

pT
[δκT (p) f (p)]. (15)

Because the emission rate in Eq. (11) can be as small as O(g6)
at low momentum, the radiative correction (δκT term) to the
eikonal approximation has been included.

IV. NUMERICAL ANALYSIS

The heavy quark Boltzmann equation has been formulated
with diffusion and radiation in Eqs. (2) and (15), respec-
tively. Using the leading-log momentum dependence, Eq. (6),
the two collision terms involve only one parameter, the
static momentum diffusion coefficient, κL,T (p = 0) ≡ κ0 =
2T 2/Ds (Ds is the spatial diffusion coefficient at p = 0). Since
the perturbative expansion poorly converges at a realistic
value of the strong coupling constant [10], κ0 from lattice
QCD data will be used so that nonperturbative effects can
be absorbed in this transport coefficient. Employing κ0 in
this way amounts to effectively changing the coupling con-
stant and the thermal masses of light partons in the collision
kernel, Eq. (4).

Figure 2 shows how the b quark distribution with an initial
δ function evolves in a static medium, under the influence
of two different types of energy loss. It is noteworthy that
how the distributions are spread out with time depends on the
energy loss mechanism. The diffusion process is characterized
by Gaussian fluctuations, whereas the radiative one develops
non-Gaussian distributions. It has been discussed that there
are significant differences between Langevin and Boltzmann

FIG. 2. The probability distribution of b quarks with initial mo-
mentum p0 = 25 GeV in a static medium at T = 300 MeV, using
m = 4.5 GeV, (2πT )Ds = 6, and αs = 0.3 for gluon emission. From
right to left, t = 5, 10, and 15 fm.

approach for heavy quark diffusion unless the ratio m/T is
large: the Langevin (Fokker-Planck) approach is a good ap-
proximation for bottom quark diffusion [43]. In this work, the
radiation term of Eq. (11) is not expanded for soft gluon emis-
sion, so it is not a diffusion operator. This difference between
diffusion and radiation might allow the medium modifications
by two mechanisms to be qualitatively distinguishable from
each other.

The transport coefficients and their dependence on mo-
mentum and temperature are crucial to analyze experimental
data. Figure 3 shows the momentum and temperature depen-
dence of the transport coefficients employed in this work.
As the momentum of heavy quark increases, the momen-
tum diffusion coefficient and energy loss increase. At the
leading-log order, the momentum dependence of the longitu-
dinal and transverse diffusion coefficients is modest, shown
as the solid and dashed lines, respectively. As mentioned
in the previous section, δκT (p) (the radiative correction to
κT ) also grows with momentum and becomes consider-
able at high momentum, especially for a strong coupling
constant αs ∼ 0.3.

The temperature dependence of (2πT )Ds comes from run-
ning of the coupling constant.2 An infrared-finite effective
running coupling has been developed and employed for the
spacelike momentum transfer [47,48]. Replacing the coupling
constant in the t-channel amplitude by the running coupling
and using the one-loop result,

αs(Q
2) = 12π

(11Nc − 2Nf ) ln
(
Q2/�2

QCD

) , (16)

at the scale Q2 ∼ t (�QCD ≈ 200 MeV), resummations and
nonperturbative effects can be implemented [47–49]. This

2The running coupling constant is related to nonperturbative effects
in heavy quark diffusion. These effects have also been considered in
the T -matrix approach [44] and using a rather strong coupling with
large quasiparticle masses near Tc [45,46].
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FIG. 3. (a) The momentum dependence of the heavy quark transport coefficients. The light and dark shaded regions represent the
momentum-dependent δκT (p) using fixed and running coupling constants, respectively. The upper (lower) lines of the shaded regions
correspond to T = 157(475) MeV. (b) The temperature dependence of (2πT )Ds.

work follows Ref. [50] to consider the dependence on a wide
range of t scales, from O(m2

D) up to O(ET ). Then κ0 ∝
αs(ET )αs(m2

D) T 3, where mD is self-consistently determined
by [51]

ln

(
m2

D

�2
QCD

)
= Nc(1 + Nf /6)

11Nc − 2Nf

(
4πT

mD

)2

. (17)

As the temperature decreases, the running coupling be-
comes stronger near Tc where nonperturbative effects enter.
For temperature and momentum considered in this work,
αs ∼ 0.23–0.68 which is of the same order as the effective
coupling from Ref. [48]. While the coupling constant de-
creases with increasing temperature, (2πT )Ds = 4πT 3/κ0 ∝
[αs(ET )αs(m2

D)]−1 increases by a factor of ∼2.5 in Fig. 3(b),
aligning closely with the lattice QCD data from Refs. [52–54].
Although the degree of increase might vary with a different
choice of effective coupling, the temperature dependence is
expected to be qualitatively consistent with the current study.
For the radiation process, the running coupling constant is
determined at the scale Q2 = (k2

T + m2x2 + m2
g )/x [55].

The nuclear modification factor of heavy mesons is an
important observable to measure the thermal medium effects
in heavy-ion collisions. It is affected by the initial produc-
tion of heavy quarks, medium evolution, and hadronization
as well as heavy quark interactions in quark-gluon plasmas.
This work focuses on the energy loss effects in quark-gluon
plasmas, especially the qualitative difference between two
energy loss mechanisms. To isolate significant uncertainties
related to medium expansion and hadronization, a simple
model is employed. The initial spectrum of b quarks is
given by the differential cross section of B meson produc-
tion measured in pp collisions [56], fit to the following
form:

dN

pT d pT
∝ 1(

p2
T + �2

)α , (18)

where � = 6.07 GeV and α = 2.85. Then the plasma evolu-
tion is described by a Bjorken expansion, T (t ) = T0(t0/t )1/3

[57] with t0 = 0.6 fm and T0 = 475 MeV [58] until Tc = 157
MeV [59]. These initial conditions depend on centrality and
collision energy, but the variations of the values have little
impact on the qualitative analysis of the momentum spectrum.
After solving for the heavy quark distribution, the ratio of
the final spectrum to the initial one is used to estimate the
suppression factor

RAA(pT ) =
dN
d pT

∣∣∣
t=t f

dN
d pT

∣∣∣
t=t0

. (19)

Figure 4 shows the nuclear modification factor for b quarks.
The solid lines are the results using the momentum-dependent
diffusion coefficients and the running coupling constant, while
the dashed lines are the results with constant diffusion co-
efficient and coupling constant. At p = 0 and T = Tc, the
diffusion coefficient is fixed, (2πTc)Ds(Tc) = 3–6, closely
aligning with the lattice QCD data from Refs. [52–54]. The
value of αs directly affects the suppression by the radiative
energy loss: the stronger the coupling, the smaller the RAA

factor. As expected from Fig. 2, the collisional and radiative
effects exhibit distinct momentum behaviors. The RAA by the
radiative energy loss consistently decreases with momentum,
while the RAA by the collisional energy loss decreases at low
momentum but increases at intermediate momentum. Thus,
as the heavy quark momentum rises, the dominant energy
loss shifts from collisional to radiative. It is noteworthy that
the momentum at which this transition occurs depends on
the transport coefficients and their dependence on momen-
tum and temperature. In the current numerical analysis, the
transition takes place (and radiation becomes effective) at
higher momentum when κL,T increases with momentum and
αs decreases with energy and temperature, compared to when
they are constant.

While the momentum-dependence of Eq. (6) is valid to
leading logarithm in T/mD, higher-order terms can influence
the flatness of the suppression factor. To estimate this effect,
if a 30% increase in the diffusion coefficients’ growth rate
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FIG. 4. The nuclear modification factor RAA for b quarks. (a) The solid lines show the results using the momentum-dependent κL,T and
running αs, with (2πTc )Ds(Tc ) = 6 fixed at p = 0 and T = Tc. The dashed lines show the results with constant κL,T and αs. (b) The upper and
lower bounds of the shaded region correspond to (2πTc )Ds(Tc ) = 6 and 3, respectively.

with respect to momentum is assumed, the RAA factor with
(2πTc)Ds(Tc) = 6 would be reduced by at most 20% at high
momentum, flattening RAA. Despite the stronger momentum-
dependence, it would still be within the shaded region in
Fig. 4(b) due to the large uncertainties of Ds. The qualita-
tive behavior discussed in the previous paragraph remains
consistent because the momentum-dependence enters both
diffusion and radiation simultaneously. This phenomenolog-
ical study estimates the suppression factor with the leading
momentum-dependence of the diffusion coefficients, allowing
for the implicit inclusion of higher-order effects through the
nonperturbative lattice QCD data and the running coupling
constant.

The qualitative distinction between diffusion and radiation
in the momentum spectra might be useful to identify the
relevant energy loss process.3 The radiative effect makes the
nuclear modification factor flatter than the suppression en-
tirely by the collisional one, as seen in Fig. 4(a). Although it is
premature to compare the numerical results with experimental
data, the suppression factor calculated with (2πTc)Ds(Tc) =
3–6 is comparable with the RAA factor of B mesons [56,62].
A Bjorken expansion has been employed in this work, while
(3 + 1)-dimensional expansion provides the time evolution
of the spatial distribution of temperature and collective flow
velocity. The energy loss of the heavy quark will be influenced
by a modified profile of quark-gluon plasmas, determined by
different temperature, lifetime, and expansion rate of (3 +
1)-dimensional evolution. However, similar medium modi-
fications, averaged over position, are expected through the
adjustment of Ds. In future work, I plan to perform a more
quantitative analysis with realistic hydrodynamic evolution
and hadronic effects.

It should be mentioned that the valid momentum range,
where gluon emission from a single scattering is applicable,
is not clear. In a high-momentum regime, the emission rate

3To discriminate between the collisional and radiative energy loss
mechanisms, angular correlations of heavy quark pairs have also
been studied [60,61].

must be computed in multiple soft scatterings. Although
gluon emission is more involved than photon emission
(because gluons carry color) [28], the LPM effect on the
photon emission rate for k � 2T is less than 30% [36]. If this
suppression is included in the radiation term, the RAA factor is
expected to increase slightly with momentum, approximately
∼10% at most. However, the momentum dependence of the
heavy quark spectrum does not change significantly. The
radiative contribution is still expected to be distinguishable
from the diffusion effects in an intermediate-momentum
regime.

Compared to bottom quarks, charm quarks have 3 times
smaller mass, thus the energy loss is expected to be
larger. Although the heavy quark conditions and approx-
imations assumed in this work may be only marginally
satisfied for charm quarks, this formulation has been ap-
plied to demonstrate the impact of the heavy quark mass
(see Fig. 5). Charm quarks are more suppressed by elas-
tic scattering and gluon-bremsstrahlung than bottom quarks,
while the RAA factor depends similarly on momentum and
temperature through the transport coefficients. The transi-
tion between diffusion and radiation occurs at relatively
lower momentum, and thus the radiative effects become
more significant to determine the intermediate-momentum
spectrum.

V. SUMMARY

In this work, the heavy-quark Boltzmann equation has
been formulated with diffusion and radiation from a single
scattering in an intermediate-momentum regime. A part of
the radiative effects has been shown to contribute to quantum
corrections to the transverse momentum diffusion coefficient,
which are O(g2) suppressed than the leading-order diffusion
coefficient but logarithmically enhanced in the high-energy
limit. Employing the same collision kernel consistently for
both processes, this formulation has only a single transport
parameter, the static diffusion coefficient which can be
constrained by nonperturbative determination. Although this
approach is based on perturbation, the running coupling
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FIG. 5. The estimated RAA factor for c quarks with m = 1.5 GeV and the initial spectrum given by the differential cross section of D
meson [63].

constant and the diffusion coefficient given by lattice QCD
data allow for nonperturbative effects at low momentum and
temperature.

The momentum dependence of the heavy quark spectrum
and the suppression factor, determined by the two types of
heavy quark energy loss, has been investigated. For nearly
collinear gluon emission from a single scattering, the medium
modifications by radiation are found to be distinguishable
from those by diffusion so that the relevant energy loss
mechanism can be identified. The numerical results indi-
cate that, at low and high momentum, the RAA factor is
primarily influenced by the collisional and radiative energy
loss, respectively. Meanwhile, the importance of the radia-
tive effects at intermediate momentum is determined by the
momentum-dependent diffusion coefficient and the running
coupling constant.

This work has concentrated on the qualitative features of
the heavy quark momentum spectra in quark-gluon plasmas.
Eventually to describe the experimental data of heavy mesons,
it is necessary to consider other effects such as hadronization,
finite-size medium, viscous corrections in the hydrodynamic
expansion [64–66], and possible pre-equilibrium dynamics
[67,68]. In the same framework, it is also essential to describe
the elliptic flow induced by the spatial anisotropy of thermal
media. Although various transport models for heavy quarks
have been developed, incorporating both elastic and inelastic
scatterings [69–72], there still exist large uncertainties in an
intermediate-momentum regime. I hope that this approach
provides a way to understand the transition between diffusion
and radiation and to distinguish the radiative effects in the
heavy quark momentum spectra.
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APPENDIX: GLUON EMISSION

In the high-momentum limit, gluon emission from heavy
quarks is akin to that from light partons involving multiple
scatterings. References [22,28] provide the rigorous deriva-
tion of an integral equation which sums multiple scatterings.
In this Appendix, the same approach is used to evaluate a
single gluon exchange diagram (Fig. 6) which is relevant to
the radiative energy loss of heavy quarks. Although the emit-
ted gluon can also interact with soft background fields, the
emission rate can be simplified by assuming the real processes
with kT � qT as in Sec. III.

A heavy quark loop in ladder diagrams involves the follow-
ing frequency integral:

∫
d p0

2π

1

p0 − Ep + i�/2

1

p0 + k0 − Ep+k − i�/2

� 1

iδE + �
, (A1)

where �/2 is the heavy quark damping rate [73]. In
the ultrarelativistic limit (δE ∼ g2T ), this allows O(1/g2)
enhancement so that gluon-bremsstrahlung contributes at
leading order.

In the kinematic regime with t f � 1/(g2T ), soft gluon ex-
change is perturbation. Based on a Bethe-Salpeter equation for
the gluon vertex from either side of the diagram, Fig. 6 is
roughly expressed as the sum of the loop diagrams without

K
Q

P

P + K

FIG. 6. Gluon emission from a single scattering. P and K are
nearly collinear (kT ∼ gT ) and the gluon exchange is soft (Q ∼ gT ).
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and with a single gluon exchange,

F (pT ) = 2pT

iδE + �
+ 1

iδE + �

∫
d3q

(2π )3
C(q)F (pT + qT ),

(A2)

where pT is the transverse projection with respect
to k, and C(q) is the collision kernel of Eq. (4).
Then, multiplying both sides by iδE + � and using
� = ∫ d3q

(2π )3 C(q), the integral equation is obtained as

follows:

2pT = iδE F (pT ) +
∫

d3q
(2π )3

C(q)[F (pT ) − F (pT + qT )].

(A3)

Since δE is larger than
∫ d3q

(2π )3 C(q) ∼ g2T , it can be solved
perturbatively. The leading-order solution is pure imaginary,
F 0(pT ) = 2pT /(iδE ). Substituting this into the equation, the
next-order solution is obtained and its real part determines the
emission rate in Eqs. (8) and (9).
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