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We investigate the role of inelastic processes in the strongly interacting quark-gluon plasma (sQGP) based on
the effective dynamical quasiparticle model (DQPM). In the DQPM the nonperturbative properties of the sQGP
at finite temperature T and baryon chemical potential μB are described in terms of strongly interacting off-shell
partons (quarks and gluons) with dynamically generated spectral functions whose properties are adjusted to
reproduce the lattice QCD equation of state for the quark-gluon plasma in thermodynamic equilibrium. For
the first time the massive gluon radiation processes from the off-shell quark-quark (q + q) and quark-gluon
(q + g) scatterings are calculated explicitly within leading-order Feynman diagrams with effective propagators
and vertices from the DQPM without any further approximations. We present the results for the energy
and temperature dependencies of the total and differential radiative cross sections and compare them to the
corresponding elastic cross sections. We show that our results reproduce the perturbative QCD calculations in
the limit of zero masses and widths of quasiparticles. Also we study the μB dependence of the inelastic cross
sections. Moreover, we present estimates for the transition rate and relaxation time of radiative versus elastic
scatterings in the sQGP.
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I. INTRODUCTION

Heavy-ion collisions provide a unique possibility to ex-
plore the structure of the QCD phase diagram and study the
properties of the quark-gluon plasma (QGP) under extreme
conditions. Experimental observations [1–4] suggest that the
matter created in central heavy-ion collisions shows the prop-
erties of a strongly coupled liquid [5,6] rather than a weakly
coupled gas of quark and gluons as expected initially. The
theoretical description of such a strongly interacting QGP is
a challenging task since perturbative methods of QCD do not
work in the vicinity of the critical temperature Tc where the
strong-coupling constant is large [7]. Moreover, a solution
of QCD on the lattice (lQCD) can provide presently only
a limited knowledge about the phase diagram at moderate
baryon μB (or quark μq = μB/3) chemical potential where
μB � 3μq.

To overcome these difficulties and obtain information
about the degrees of freedom of the strongly interacting QGP
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(sQGP) and their properties, effective models are applied
such as quasiparticle models (QPMs) [8–11]. One of the
prominent quasiparticle models is the QCD-inspired effective
field-theoretical dynamical quasiparticle model (DQPM) in-
troduced in Ref. [12] and worked out in Refs. [13–17] and
others. The main difference and advantage of the DQPM
with respect to other QPMs is that it is by construction a
two-particle irreducible (2PI) model while the other quasi-
particle models are one-particle irreducible in nature. The
DQPM is based on a propagator representation with effective
(anti)quarks and gluons for which properties are defined by
complex self-energies. Thus, in addition to the temperature
(and μB in DQPM) dependence of quasiparticle masses—as
in other effective QPMs—the DQPM contains the information
about their interactions in the sQGP via dynamically gener-
ated widths, i.e., the imaginary part of self-energies, which
also depend on temperature T (and μB). Consequently, the
DQPM quasiparticles are off-shell broad states with dynam-
ically generated spectral functions whose properties (masses
and widths) are adjusted by fitting the DQPM entropy density
to the lQCD data at zero μB [13,14]. This avoids an introduc-
tion of a Debye mass in the propagator for the regularization
of infrared divergences when calculating cross sections as
well as an extra bag constant when computing the thermo-
dynamic properties of the QGP.

The effective off-shell strongly interacting partonic
quasiparticles of the DQPM allow for a microscopic
interpretation of the lattice QCD results in the T,μB plane for
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thermodynamic quantities—such as entropy density,
pressure, and energy density—as well as for transport
coefficients which measure the interactions of the QGP
degrees of freedom in thermodynamic equilibrium. The
transport coefficients are evaluated by computing the off-shell
partonic elastic interaction cross sections based on the
leading-order scattering Feynman diagrams with effective
propagators and vertices and depend on T,μB, the invariant
energy of the colliding partons,

√
s, as well as the scattering

angle [16]. The DQPM results for the shear and bulk viscosity,
electric conductivity, magnetic susceptibility, as well as the
full diffusion matrix show a good agreement with existing
lQCD results as well as with a Bayesian analysis based
on the hydrodynamic description of the heavy-ion data
[16,18–22]. We note that the DQPM quasiparticles have been
incorporated in the parton-hadron-string dymanics (PHSD)
approach, based on Kadanoff-Baym off-shell dynamics, for
the description of the partonic phase and hadronization (cf.
Refs. [23–25]), which has led to a successful description of a
large variety of experimental data.

Recently, in Ref. [26] the DQPM was applied for studying
the elastic interactions of leading jet partons in the sQGP and
for the calculation of the jet transport coefficients, i.e., the
transverse momentum transfer squared per unit length q̂ as
well as the energy loss per unit length �E = dE/dx. How-
ever, for a realistic description of jet attenuation in heavy-ion
collisions, in addition to elastic scattering, the gluon radiation
processes have to be accounted for, for which contribution
grows with increasing energy of jet partons [27,28]. The role
of radiative processes for jet suppression has been extensively
studied by a variety of groups (cf. Ref. [29] and references
therein). Moreover, the radiative processes are also important
for an understanding of the energy loss of heavy quarks in
heavy-ion collisions: while at low and intermediate pT the
elastic processes are dominant; at high pT the gluon radiation
can be sizable [30].

For the case of the thermalized strongly interacting QGP—
as realized in the DQPM—one expects that the inelastic
processes of the gluon radiation with large thermal masses
from quark-quark (q + q) and quark-gluon (q + g) scatter-
ings (q + q → q + q + g and q + g → q + g + g) should be
strongly suppressed relative to the elastic scattering since the
average collision energy of thermal partons is low and not suf-
ficient for the emission of heavy gluons. Consequently, in the
sQGP—consisting of thermal quasiparticles—such radiative
processes are expected to be even more suppressed relative to
the perturbative QCD (pQCD) plasma due to the large mass of
the emitted gluons and final off-shell partons. However, such
an expectation has to be quantified, which is a motivation for
this study.

Thus, the goal of this study is to extend the DQPM to radia-
tive processes for the q + q and q + g scatterings, to calculate
the inelastic q + q → q + q + g and q + g → q + g + g cross
sections, to estimate the inelastic rate relative to the elastic
one, and to find the energy and temperature regimes where
radiative processes become visible or even dominant in the
strongly interacting QGP. The main difference from previous
studies is that now we avoid any kind of approximations (on
the gluon energy, transverse momentum transfer, etc.) and cal-

culate all possible 2 → 3 diagrams explicitly. This approach
will allow us to explore the entire radiative processes from
massive partons with spectral functions and study different
limits and applications.

We recall that the study of radiative processes in QCD has
a long history. Explicit analytical expressions for the 2 → 3
amplitudes in the case of massless pQCD quarks were de-
rived in Refs. [31,32]. However, the actual calculations of
cross sections for radiative processes in pQCD with massless
quarks and gluons require to regulate an infrared divergence of
the amplitudes realized by the introduction of a Debye mass
(which is a model parameter) in propagators. Moreover, big
efforts were related to account for the Landau-Pomeranchuk-
Migdal (LPM) effect [33,34], which suppresses the soft gluon
radiation [35–37]. In recent years, there has been a renewed
focus on improving the accuracy of analytical results. It in-
cludes efforts to go beyond the limitations of soft-emissions
approximations, as highlighted in Refs. [38,39]. Additionally,
there has been significant progress in the resummation of mul-
tiple scatterings, a topic extensively reviewed and discussed in
recent studies [40–42].

To simplify the calculations, different approximations are
used. A commonly used approximation to the leading-order
pQCD matrix element for partonic 2 → 3 processes is a
formula derived by Gunion and Bertsch (GB) in 1981 [43].
The original GB approximation is strictly valid at midrapid-
ity and implies that the radiated gluon and the momentum
transfer of the process are soft and all particles are mass-
less. In Refs. [44–46] efforts are made to go beyond the soft
GB approximation while still obtaining a relatively compact
form. In Ref. [47] the GB approximation was extended to
be valid in the entire region of rapidity and in Ref. [48] the
latter was generalized to the case of heavy quarks. These
approximations have been widely used when solving transport
problems, for example, via rate equations or via microscopic
transport approaches, most notably the study of heavy quark
and jet suppression within the microscopic transport model
Boltzmann approach to multi-arton scatterings (BAMPS)
[47,49,50].

The influence of radiative processes on jet attenuation be-
yond pQCD has been studied in the framework of finite tem-
perature field theory in the hard thermal loop (HTL) approx-
imation [27,51–54], in nonperturbative calculations within
electrostatic quantum chromodynamic (EQCD) [55,56] and
in anti–de Sitter/conformal field theory (AdS/CFT) models
[57,58], which show the importance of nonperturbative effects
for an understanding of the transverse jet momentum broad-
ening and jet quenching [59–63].

The emission of massless and massive gluons by heavy
quark scattering with massless quarks and gluons from the
QGP medium has been studied within scalar pQCD in
Refs. [64–66]. It has been shown that the emission rate de-
creases with increasing gluon mass.

Recently, in Ref. [67] the soft gluon approximation (SGA)
has been applied to evaluate the massive gluon emission from
the nonperturbative sQGP medium described by the DQPM.
The SGA simplifies the calculations, making the scattering
amplitude factorizable into the elastic scattering and the emis-
sion of a soft gluon. In the present study, we depart from
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this approximation, which makes our results applicable for
the emission of gluons of any energy and angular direction.
However, we mention (without showing explicitly) that the
SGA qualitatively agrees with our exact results for gluon
radiation cross sections in the range of validity of the SGA.

The paper is organized as follows: We start with the In-
troduction in Sec. I and we recall the basis of the DQPM
model in Sec. II. In Sec. III we present the framework for
the calculation of radiative processes from quark-quark and
quark-gluon scattering in the DQPM. In Sec. IV we continue
with the results for the inelastic and elastic total and differen-
tial cross sections as a function of temperature and scattering
energy, transition rates, and relaxation times for quarks and
gluons in the sQGP. We finish the paper with a summary in
Sec. V. Moreover, the details of our calculations for the cross
sections are presented in the Appendixes.

II. DYNAMICAL QUASIPARTICLE MODEL

We start with a brief reminder of the basis of the DQPM
and refer the reader to Ref. [22] for a more detailed description
of the latest version of the DQPM.

The dynamical quasiparticle model (DQPM) [12–16,22]
is an effective model which describes the QGP in terms of
strongly interacting quarks and gluons. This model is based
on fitting the properties of these particles in order to reproduce
the results of lattice QCD calculations in thermal equilibrium
and at vanishing chemical potential.

The quasiparticles in the DQPM are characterized by the
following properties:

(i) “Dressed” propagators, i.e., single-particle (two-
point) Green’s functions, have the form

GR
j (ω, p) = 1

ω2 − p2 − M2
j + 2iγ jω

(1)

for quarks, antiquarks, and gluons ( j = q, q̄, g), using
ω = p0 for energy, the widths γ j , and the masses Mj .

(ii) The model uses complex self-energies for gluons,
� = M2

g − 2iωγg, and for (anti)quarks, �q = M2
q −

2iωγq, where the real part of the self-energies is as-
sociated with dynamically generated thermal masses,
while the imaginary part provides information about
the lifetime and reaction rates of the particles.

The spectral functions in the DQPM are no longer
δ functions, but have a finite width γ j [24]:

ρ j (ω, p) = γ j

Ẽ j

(
1

(ω − Ẽ j )2 + γ 2
j

− 1

(ω + Ẽ j )2 + γ 2
j

)

≡ 4ωγ j(
ω2 − �p2 − M2

j

)2 + 4γ 2
j ω

2
. (2)

Here, Ẽ2
j (p) = p2 + M2

j − γ 2
j . The spectral function

is antisymmetric in ω and normalized as∫ ∞

−∞

dω

2π
ω ρ j (ω, p) =

∫ ∞

0
dω

ω

π
ρ j (ω, p) = 1. (3)

(iii) A model ansatz is used for the masses Mj (T, μq ) and
widths γ j (T, μq ) as functions of the temperature T
and the quark chemical potential μq.

With the quasiparticle properties (or propagators) fixed as
described above, one can evaluate thermodynamic quantities
such as the entropy density s(T, μB), the pressure P(T, μB),
and energy density ε(T, μB) in a straightforward manner by
starting with the entropy density and number density in the
propagator representation from Baym [8,68].

By comparison of the entropy density—computed within
the DQPM framework—to the lQCD data, one can fix the
few parameters used in the ansatz for quasiparticle masses and
widths.

A. Quasiparticle properties

The following ansatz is used in the DQPM for the defi-
nition of the quasiparticle properties (masses and widths) as
functions of T and μq.

(a) The dynamical quasiparticle pole masses are given
by the HTL thermal mass in the asymptotic high-
momentum regime, i.e., for gluons by [24,69]

M2
g (T, μq ) = g2(T, μq )

6

×
⎛
⎝(

Nc + 1

2
Nf

)
T 2 + Nc

2

∑
q

μ2
q

π2

⎞
⎠,

(4)

and for quarks (antiquarks) by

M2
q(q̄)(T, μq ) = N2

c − 1

8Nc
g2(T, μq )

(
T 2 + μ2

q

π2

)
, (5)

where Nc (= 3) stands for the number of colors
and Nf (= 3) denotes the number of flavors. Equa-
tion (5) determines masses for the (u, d) quarks; the
strange quark has a larger bare mass for controlling
the strangeness ratio in the QGP. Empirically, we
find Ms(T, μB) = Mu/d (T, μB) + �M, where �M �
30 MeV, which has been fixed once in comparison to
experimental data [16].

(b) The effective quarks, antiquarks, and gluons in the
DQPM acquire sizable widths γ j , which are taken in
the form [24]

γ j (T, μB) = 1

3
Cj

g2(T, μB)T

8π
ln

(
2cm

g2(T, μB)
+ 1

)
.

(6)

Here cm = 14.4 is related to a magnetic cutoff, which
is an additional parameter of the DQPM, and Cq =
N2

c −1
2Nc

= 4/3 and Cg = Nc = 3 are the QCD color
factors for quarks and for gluons, respectively. We
also assume that all (anti)quarks have the same
width.

(c) As follows from Eqs. (5) and (6), the masses and
widths depend on the coupling constant (squared),
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FIG. 1. Running coupling constant αs as a function of T/Tc for
μB = 0. The black solid line corresponds to the DQPM running
coupling defined by Eq. (8), and the gray dashed line indicates a
constant value of 0.3. The lattice results for quenched QCD, Nf = 0
(blue circles), are taken from Ref. [73], for Nf = 2 (orange inverted
triangles) from Ref. [74], and for Nf = 2 + 1 (red triangles) from
Ref. [75].

g2 = 4παs, which defines the strength of the
interaction. This parameter is a critical quantity that
determines all the microscopic properties and trans-
port coefficients of the DQPM, including the thermal
masses and widths.

In the DQPM, the value of g2 is extracted from lQCD by
utilizing a parametrization method introduced in Ref. [70],
where it has been shown that for a given value of g2, the ratio
s(T, g2)/T 3 is almost constant for different temperatures, i.e.,
∂

∂T (s(T, g2)/T 3) = 0. Therefore, the entropy density s and the
dimensionless equation of state in the DQPM is a function
of the effective coupling only, i.e., s(T, g2)/sSB(T ) = f (g2),
where sQCD

SB = 19/9π2T 3 is the Stefan-Boltzmann entropy
density. Thus, by inverting the f (g2) function, the coupling
constant g2 can be directly obtained from the parametrization
of lQCD data for the entropy density s(T, μB = 0) at zero
baryon chemical potential:

g2(T, μB = 0) = d
((

s(T, 0)/sQCD
SB

)e − 1
) f

. (7)

Here d = 169.934, e = −0.178434, and f = 1.14631 are the
dimensionless parameters obtained by adjusting the quasipar-
ticle entropy density s(T, μB = 0) to the lQCD data provided
by the BMW Collaboration [71,72].

Figure 1 displays the running coupling constant αs for
μB = 0 as a function of T/Tc, represented by the black
solid line in accordance with Eq. (7). The lattice re-
sults for quenched QCD, Nf = 0 (blue circles), are taken
from Ref. [73], for Nf = 2 (orange inverted triangles) from
Ref. [74], and for Nf = 2 + 1 (red triangles) from Ref. [75].
The fit obtained from the entropy density for the DQPM αs

shows a significant increase approaching Tc comparable to the
predictions from lQCD.

It is important to note that the value of the coupling con-
stant obtained by lQCD (i.e., lQCD “data” in Fig. 1) depends

FIG. 2. The effective quark (upper plot) and gluon (lower plot)
masses M and widths γ [from the parametrizations in Eqs. (5), (4),
and (6)] as a function of the temperature T for different μB. The
vertical dashed lines correspond to the DQPM μB-dependent critical
temperature Tc(μB ).

on the definition of αs extracted from the static potential
[73,75]. Moreover, the DQPM αs accounts for nonperturbative
effects which make it larger compared to the analytical two-
or one-loop running constant [76] approaching low tempera-
tures. The gray dashed line in the figure represents a constant
value of αs = 0.3 frequently used in perturbative QCD mod-
els, particularly in the BAMPS calculations.

The extension of the coupling constant to finite baryon
chemical potential μB is realized using a scaling hypothesis
[23], which works up to μB ≈ 500 MeV. It assumes that
g2 is a function of the ratio of the effective temperature

T ∗ =
√

T 2 + μ2
q/π

2 and the μB-dependent critical tempera-

ture Tc(μB) as

g2(T/Tc, μB) = g2

(
T ∗

Tc(μB)
, μB = 0

)
, (8)

with Tc(μB) = Tc

√
1 − αμ2

B, where Tc is the critical tempera-
ture at vanishing chemical potential (≈ 0.158 GeV) and α �
0.974 GeV−2 [15]. This extension of the coupling constant
for finite μB increases the μB dependence of pole masses and
widths, especially in the vicinity of Tc [77].

The actual pole masses of quarks, Mq, and gluons, Mg, as
well as their widths, γq and γg, are depicted in Fig. 2 as a
function of T for different baryon chemical potentials μB = 0,
0.2, 0.4, and 0.6 GeV. As seen from the figure, the masses
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grow with T and decrease with increasing μB and move to the
low T following the μB-dependent critical temperature Tc(μB)
(depicted as dashed vertical lines). The widths of quarks and
gluons increase with T and show only a weak μB dependence.
For μB = 0 the DQPM gives Mq = 2

3 Mg, γq = 4
9γg.

Having the quasiparticle properties, dressed propagators,
and coupling constant as given by the DQPM, one can evalu-
ate the scattering amplitudes as well as the cross sections and
the transport coefficients of quarks and gluons in the QGP
as a function of the temperature and the chemical potential
[16,78].

B. Matrix elements in the DQPM

In order to calculate the matrix elements corresponding to
a scattering of DQPM partons, the scalar propagator has to
be replaced by the following propagators—with full Lorentz
structure—to describe a massive vector gluon and massive
(spin-1/2) fermion with a finite width [78]:

= −iδab

gμν − qμqν/M2
g

q2 − M2
g + 2iγgq0

, (9)

= iδij
/q + Mq

q2 − M2
q + 2iγqq0

, (10)

where q is the 4-momentum of the exchanged particle. The
δ functions ensure that the exchanged quark or gluon is con-
nected with other parts of the diagram with the same color
(a, b for the gluon and i, j for the quark); i.e., color and spin
during the propagation is conserved.

In the DQPM, only transverse gluons are included in the
calculation of thermodynamic quantities, in that the contri-
bution of hard longitudinal gluons is found to be negligible
[8,79]. The details on the summation over gluon polarization
for massive gluons are given in Appendix A. We note that we
use the covariant gauge for the evaluation of cross sections.

For the calculation of elastic quark-quark and quark-gluon
scatterings we refer the reader to Refs. [16,22,26].

III. GLUON RADIATION PROCESSES IN THE DQPM

Now we step to the calculation of the inelastic processes for
gluon radiation from thermal quark-quark (q + q) and quark-
gluon (q + g) scatterings: q + q → q + q + g and q + g →
q + g + g within leading-order Feynman diagrams with effec-
tive propagators and vertices from the DQPM as specified in
Sec. II B. We note that here and further on when noting reac-
tions with “quark” we also imply the corresponding reactions
for antiquarks (if not specified explicitly).

A. Matrix elements for 2 → 3 reactions

The inelastic scattering is accounted for by the leading-
order Feynman diagrams for 2 → 3 processes considering
t , u, and s channels. All diagrams are calculated explicitly
without assumptions, accounting for all possible interferences
between different channels.

FIG. 3. Feynman diagrams for the t channel of the q + q → q +
q + g scattering.

All processes are computed for the “on-shell” case, when
the masses of final partons as well as the radiative gluon are
taken at the pole position of their spectral functions since “off-
shell” calculations including the integration over their spectral
functions are much more computationally expensive. We note
that on-shell elastic cross sections differ from off-shell ones
by less than 20% [26].

1. Gluon radiation from quark + quark scattering

We start with gluon radiation from quark + quark
scattering, q + q → q + q + g. The corresponding Feynman
diagrams for t channels are presented in Fig. 3. Here pa, pb

and p1, p2 stand for the 4-momenta of initial and final quarks,
respectively, while p3 corresponds to the 4-momentum of the
emitted gluon.

Denoting

�μν (p) =
[
−i

gμν − (pμ pν )/M2
g

p2 − M2
g + 2iγgωp

]

× (gluon propagator),

�(p) =
[

i
/p + Mq

p2 − M2
q + 2iγqωp

]

× (quark propagator),

V ν,a
ik = ( − igγ νT a

ik

)
(quark-gluon vertex),

�abc,μντ (p1, p2, p3) = −gf abcCμντ (p1, p2, p3)

× (three gluon vertex), (11)

where μ, ν stand for the Lorentz indices, i, k = 1, . . . , 3 for
the quark color indices and a, c, b = 1, . . . , 8 for the gluon
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color indices, one can write the invariant amplitudes iMi = iMi(qiqk → q jqlgb)—corresponding to the Feynman diagrams in
Fig. 3—as

iM1 = ūl (p2)V ν,a
lk uk (pb)�μν (pb − p2)ū j (p1)ε∗

τ (p3)V τ,b
jm �(p1 + p3)V μ,a

mi ui(pa),

iM2 = ū j (p1)V μ,a
ji ui(pa)�μν (pa − p1)ūl (p2)ε∗

τ (p3)V τ,b
lm �(p2 + p3)V ν,a

mk uk (pb),

iM3 = ūl (p2)V ν,a
lk uk (pb)�μν (pb − p2)ū j (p1)V μ,a

jm �(pa − p3)ε∗
τ (p3)V τ,b

mi ui(pa),

iM4 = ū j (p1)V μ,a
ji ui(pa)�μν (pa − p1)ūl (p2)V ν,a

lm �(pb − p3)ε∗
τ (p3)V τ,b

mk uk (pb),

iM5 = ū j (p1)V μ,a
ji ui(pa) ūl (p2)V λ,c

lk uk (pb)�μν (pa − p1)�λσ (pb − p2)ε∗
τ (p3)�abc,σ τν (pb − p2,−p3, p2 − pb + p3). (12)

The invariant amplitude squared—averaged over initial
states of spin and color and summed over final states—is

|M̄q+q′→q+q′+g|2

= 1

N2
c

∑
color

1

(2sq + 1)(2sq′ + 1)

×
∑
spin

|M1 + M2 + M3 + M4 + M5|2, (13)

where q′ denotes a quark with a possible different flavor than
the q quark.

There are 5 × 5 = 25 possible combinations of multiplica-
tions, which, in turn, can be reduced to 15 using symmetry
relations: |M̄i j | = |M̄ ji|, where |M̄i j | ∼ M∗

i Mj [cf. Eq. (13)].
An explicit expression for the squared amplitude cannot be
written in a compact form and therefore the analysis of this
expression can only be performed numerically. In this study
the final analytical expression was evaluated using the Feyn-
Calc package [80,81].

In general, the q + q reaction implies different channels
depending on the flavors of the interacting quarks. The only

channel that is common for all q + q reactions is the t channel.
The u channel is relevant only for quarks with the same flavor,
and even though the angular distribution for this reaction is
different, the integrated cross section is of the same value as
for the quarks with different flavors. The s channel is relevant
for the q + q̄ reaction and for the 2 → 3 reaction is expected
to be strongly suppressed for any value of

√
s. Therefore, in

this study, we consider only the t channel for q + q reactions,
noting that the corrections given by the other channels are
negligible.

2. Gluon radiation from quark + gluon scattering

We continue with gluon radiation from quark + gluon
scattering, q + g → q + g + g. Contrary to q + q reactions,
q + g reactions incorporate all t , u, and s channels regardless
of the quark flavor. However, we will show explicitly that, as
in the case of the q + q reaction, the t channel plays the dom-
inant role in the q + g reactions, while contributions from the
other channels could as well be omitted. The corresponding
Feynman diagrams for t , u, s channels are presented in Fig. 4.

For the t channel of the q + g reaction the matrix ampli-
tudes (according to the numeration in the upper two rows in
Fig. 4) read as

iM1 = ū(p1)V μ,d
kn �(p1 + p3, mq )V λ, f

ni u(pa)�be f ,σ τν (pb − p2,−pb, p2)�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb),

iM2 = ū(p1)V σ, f
kn �(p1 + p2 − pb, mq )V μ,d

ni u(pa)�be f ,λτν (pb − p2,−pb, p2)�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb),

iM3 = ū(p1)V λ, f
ki u(pa)�b f n,νμξ (−p2,−p3, p2 + p3)�deh,σ τρ (−pb + p2 + p3, pb,−p2 − p3)

× �ρξ (p2 − pb)�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb),

iM4 = ū(p1)V λ, f
ki u(pa)�e f h,τμρ (−pb, p3, pb − p3)�bdh,νσξ (p2, pb − p2 − p3,−pb + p3)

× �ρξ (p2 − pb)�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb),

iM5 = ū(p1)V λ, f
ki u(pa)�df h,σμξ (−pb + p2 + p3,−p3,−p2 + pb)�beh,ντρ (−p2, pb,−pb + p2)

× �ρξ (p2 − pb)�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb),

iM6 = ū(p1)V λ, f
ki u(pa)� f bde

μνστ�λσ (p2 − pb)ε∗
μ(p3)ε∗

ν (p2)ετ (pb). (14)

We omit showing explicitly the expressions for u and s channels, noting that they can be expressed in a similar way.
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FIG. 4. Feynman diagrams for t channels (upper six diagrams), u channels (lower left five diagrams), and s channels (lower right five
diagrams) for the q + g → q + g + g process.

B. Cross section for 2 → 3 reactions

The cross section for a 2 → 3 process (a + b → 1 + 2 +
3) is given by

σ2→3 = 1

F

∫
d3 p1

(2π )32E1

∫
d3 p2

(2π )32E2

∫
d3 p3

(2π )32E3

× (2π )4δ(4)(pa + pb − p1 − p2 − p3)|M̄2→3|2,
(15)

where the flux is F = 4pC
√

s with pC denoting the initial 3-
momentum in the center-of-mass (c.m.) frame.

This integration implies, in general, a nine-dimensional
integration. However, it is numerically more efficient to

analytically integrate out the δ function to end up with a
five-dimensional integration. The further choice of indepen-
dent phase space variables depends on the observables we
are interested in. The first possible choice to perform the
integration is to consider the 2 → 3 reaction as a sum (2 →
2) + (1 → 2) of processes by introducing the intermediate
“state” px = p2 + p3 (or px = p1 + p2). In this case, the set
of independent variables can be chosen as {mx, θ, ϕ, ξ, ψ},
where {θ, ϕ} are polar and azimuthal angles between �p1 and
�px (or �p3 and �px) in the c.m. frame, {ξ, ψ} are polar and
azimuthal angles of �p2 and �p3 (or �p1 and �p2) in the px rest
frame, and mx = √

p2
x. The integration over ϕ can be done

analytically due to the symmetry of the system giving the final
expression for the total cross section (see Appendix B 1 for
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details):

σ2→3 = 1

8(2π )5
√

sF

∫ 1

0
d cos θ

∫ 1

0
d cos ξ

∫ 2π

0
dψ

×
∫ √

s−m1(
√

s−m3 )

m2+m3(m1+m2 )
dmx px,C p2,X |M̄2→3|2. (16)

This choice of variables allows to investigate the angular dis-
tribution of the inelastic cross section, in particular dσ/d cos θ

with θ being the scattering angle of p1 (leading quark) or p3

(emitted gluon) in the c.m. frame. Also this set of variables
is convenient when one wants to implement the cross sec-
tions into transport simulations.

The second choice of variables (in the c.m. frame) implies
switching to “GB coordinates,” which were used by Gunion
and Bertsch in Ref. [43] and in the BAMPS study [47],
(qt , kt , y, ϕ), where qt is the transverse momentum transfer,
kt is the transverse momentum of the emitted gluon, y is the
rapidity of the emitted gluon, and ϕ is the angle between
kt and qt . In these variables the 2 → 3 cross section can be
expressed as

σ2→3 = 1

128π4F

∫ p2
C

0
dq2

t

∫ p2
C

0
dk2

t

∫ ymax

ymin

dy
∫ π

0
dϕ

× |M̄2→3|2
∑ (

∂F
∂y1

∣∣∣∣
F=0

)−1

, (17)

where y1 denotes the rapidity of particle 1 and ϕ is the angle
between �qt and �kt . The available phase space limits the rapid-

ity to ymax / min = ±arccosh(
√

p2
C+m2

3

m3,t
). The function F comes

from the transformation of the δ function (see Appendix B 2).
We have numerically checked that both Eqs. (16) and (17)

give the same results.

IV. RESULTS

We proceed with showing the results from numerical calcu-
lations of cross sections for radiative processes q + q → q +
q + g and q + g → q + g + g. We note that all calculations
here and below are done for μB = 0. If not stated otherwise,
all parton masses and widths are chosen to be thermal DQPM
masses and widths [16], which depend on temperature and μB.
The parton masses are taken at the pole position of the spectral
functions (cf. Fig. 2), i.e.,

ma = mb = m1 = m2 = Mq = MDQPM
q (T, μB),

m3 = Mg = MDQPM
g (T, μB),

γq = γ DQPM
q (T, μB),

γg = γ DQPM
g (T, μB). (18)

We mention that when indicating the processes q + q → q +
q and q + q → q + q + g we imply the reactions of light
quarks of different flavors, too. The same convention holds
for the scatterings including antiquarks.

FIG. 5. Squared scattering amplitude (scaled by g6) for the q +
q → q + q + g process for

√
s = 5 GeV as a function of the trans-

verse momentum of the emitted gluon kt in the case of the full
DQPM (calculated with pole masses Mq, Mg) for T = 2Tc (blue line),
pQCD result from Ref. [31] (orange line), and DQPM in the massless
limit (black dotted line). The dashed green and red lines display the
DQPM amplitudes calculated with reduced pole masses of quarks
and gluons Mq/n and Mg/n, n = 2, 4.

A. pQCD limit of the DQPM

We start with showing explicitly that the DQPM ampli-
tudes reproduce the pQCD amplitudes [31,32] in the “pQCD”
limit of massless partons with zero widths.

Figure 5 shows the squared amplitude for the inelastic
squared amplitude (scaled by g6) for the q + q → q + q + g
process as a function of the transverse momentum of the
emitted gluon kt in the case of the full DQPM (blue line),
pQCD result from Ref. [31] (orange line), and DQPM in the
massless limit (black dotted line). The quantity |Mqq|2/g6 is
computed for qt = 0.4 GeV, y = 0, and ϕ = 0.

The convergence of the “massless DQPM” and “pQCD”
results illustrates the correspondence between the pQCD
model and the DQPM in the massless limit as it follows from
the form of the quark [Eq. (10)] and gluon [Eq. (9)] propaga-
tors. One can also see that the pQCD amplitude diverges in the
infrared (kt → 0) and collinear (�kt = �qt ) limits, which makes
it impossible to calculate the integrated cross section without
introducing the corresponding cutoffs. The result from the full
DQPM model calculated with the pole masses of quarks and
gluons (blue line) shows the absence of these divergencies
and therefore allows for the calculation of the integrated cross
section. The dashed green and red lines display the DQPM
amplitudes calculated with reduced masses of quarks and glu-
ons Mq/n and Mg/n, n = 2, 4. One can see that the reduction
of the DQPM masses leads to an enhancement of the DQPM
amplitudes that approach the pQCD limit.

B. Angular distributions

Figure 6 shows the inelastic differential cross sections for
q + q → q + q + g scattering for light quarks of different
flavor for T = 2Tc as a function of the angle θq between the
outgoing quark after emission of the gluon relative to the colli-
sion axis in the c.m. frame for different collision energies

√
s.
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FIG. 6. Inelastic differential cross sections for q + q → q + q +
g scattering for light quarks of different flavor for T = 2Tc in the
c.m. frame as a function of the angle θq between the initial and final
momentum of the quark. The different lines correspond to different
collision energies

√
s from 3 to 10 GeV (see legend).

As one can see the angular distribution becomes steeper with
increasing collision energy; thus for high-energy scatterings a
forward scattering to small angles dominates.

Figure 7 shows the inelastic differential cross sections for
q + q → q + q + g processes for T = 2Tc as a function of the
angle θg between the momentum of the emitted gluon relative
to the collision axis in the c.m. frame for different collision en-
ergies

√
s. All lines are symmetric with respect to the angle θg,

meaning that forward and backward directions for the emitted
gluon are equal. At the same time, the distribution shows a
rapid growth of the cross section for small θg with increasing
energy

√
s indicating that small angles are dominant for the

gluons as well as for the quarks.

C. Transverse momentum distributions, comparison
of DQPM and BAMPS

Figure 8 shows the differential cross section dσ/dkt as
a function of transverse momentum of the emitted gluon kt

FIG. 7. Inelastic differential cross sections for q + q → q + q +
g processes for T = 2Tc as a function of the angle θg between the
momentum of the emitted gluon relative to the collision axis in
the c.m. frame. The different lines correspond to different collision
energies

√
s from 3 to 10 (see legend).

FIG. 8. Differential cross section dσ/dkt as a function of kt

(upper plot) and dσ/dqt as a function of qt (lower plot) for the
q + q → q + q + g scattering of light quarks of different flavors
calculated within the DQPM (blue lines) and BAMPS model (orange
lines) [47].

(upper plot) and dσ/dqt (lower plot) versus transverse mo-
mentum transfer qt (lower plot), respectively, for the q + q →
q + q + g process for light quarks of different flavors calcu-
lated with the DQPM (solid blue lines) matrix elements.

We compare the DQPM transverse momentum distribu-
tions in kt and qt to the distributions calculated based on
the pQCD BAMPS model (orange lines) for the improved
Gunion-Bertsch description following Ref. [47]. We recall
that in the BAMPS model [47] the strong-coupling constant
is fixed as αs = 0.3; the exchange parton has a Debye mass
in the case of a gluon, m2

D = 8αs
π

(Nc + Nf )T 2, while the scat-
tered partons are assumed to be massless. The squared matrix
element [47] is taken as

∣∣Mqq→qqg

∣∣2 = 32

3
g6 s2(

q2
t + m2

D

)2 (1 − x̄)2

×
[

kt

k2
t + m2

D

+ qt − kt

(qt − kt )2 + m2
D

]2

, (19)

where qt , kt are the 2-vectors of the transverse momentum of
the quark and emitted gluon, respectively. Here the quantity x
characterizes the fraction of the light cone momentum carried
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FIG. 9. Contributions of the squared amplitudes |M̄ii| (i.e., non-
interference terms, shown by the dashed lines of different colors;
see the legend) to the total q + q → q + q + g cross section with
inclusion of all interference terms (solid black line) as a function of
the collision energy

√
s at T = 1.2Tc.

away by the radiated gluon. It can be related to the rapidity of
the emitted gluon by x = kt√

s
ey. In Eq. (19) the kt → 0 diver-

gence (as well as qt → 0 divergence) of the pQCD amplitude
is regularized by an extra Debye mass—also for the emitted
gluon—which leads to the final cross section.

As seen from Fig. 8 the DQPM distributions are enhanced
at low kt and qt momenta compared to the BAMPS results,
which show broader distributions. Since we selected for the
comparison a large T = 0.4 GeV where the DQPM αs(T ) ≈
0.3 (cf. Fig. 1), i.e., similar to αs = 0.3 in BAMPS, the main
differences between the DQPM and BAMPS results can be
related to the thermal masses in the DQPM versus the zero
masses of partons in pQCD and the different propagators.

D. Channel decomposition for the total cross sections

We move on to present the DQPM results for the energy
and temperature dependence of the total inelastic cross sec-
tions. However, first we investigate which channels and which
diagrams play a dominant role for the gluon radiation from
q + q and q + g scattering.

In Fig. 9 we show the contributions of noninterference
terms corresponding to the squared amplitude |M̄ii| [where
the amplitudes Mi are defined by Eq. (12) and shown by the
diagrams 1–5 in Fig. 3] (dashed lines of different colors) to
the total q + q → q + q + g cross section (solid black line)
calculated including all interference terms as a function of the
collision energy

√
s calculated at T = 1.2Tc. Here we used the

full gluon polarization (cf. Appendix A).
One can see that the dominant contribution comes from

the term |M̄55| corresponding to the squared amplitude of
diagram 5 in Fig. 3 with the emission of a gluon from the
gluon exchange line. It is larger than the contribution of
each of the other diagrams 1–4 at all

√
s. Diagrams 1, 2, 3,

and 4 contribute equally; i.e., |M̄11| = |M̄22| = |M̄33| = |M̄44|.
As follows from Fig. 9 the total cross section (solid black
line)—calculated including all terms and their interference—
is smaller than the |M̄55| term due to destructive interference.

FIG. 10. The contribution to the DQPM inelastic total cross sec-
tions for the q + g → q + g + g process at T = 1.2Tc from the t
channel (blue line), u channel (orange line), s channel (green line),
and from all channels (black line).

Figure 10 illustrates the contribution to the DQPM inelastic
total cross sections for the q + g → q + g + g process from
different interaction channels: t channel (blue line), u channel
(orange line), s channel (green line), and from all channels
(black line). As it is seen from the figure, the contributions
from the u and s channels are almost two orders of magnitude
lower than for the t channel and do not give a significant
contribution to the cross section for the entire energy region.
Thus we neglect the contributions from the u and s channels
in the further calculations (similar to the q + q → q + q + g
process).

E. Total inelastic cross section versus
√

s and T

1. q + q → q + q + g process

In Fig. 11 we present the DQPM results for the total
cross sections for gluon radiation from q + q → q + q + g
processes (solid lines) as a function of the collision en-
ergy

√
s at different temperatures T = 1.2Tc (blue), T = 3Tc

FIG. 11. Total inelastic q + q → q + q + g cross sections (solid
lines) as a function of the collision energy

√
s at different tem-

peratures T = 1.2Tc (blue), T = 3Tc (orange), and T = 6Tc (green)
in comparison to the elastic q + q → q + q cross sections (dashed
lines).
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FIG. 12. Total inelastic q + q → q + q + g cross sections (solid
lines) as a function of temperature T at different collision energies√

s = 2 GeV (blue),
√

s = 5 GeV (orange), and
√

s = 9 GeV (green)
in comparison to the elastic q + q → q + q cross sections (dashed
lines).

(orange), and T = 6Tc (green). The inelastic cross sections are
compared to the elastic q + q → q + q cross sections (dashed
lines) at the same T . Both processes are calculated for on-shell
partons where their masses are taken as the pole masses of the
spectral functions at a given temperature T . In Fig. 12 the total
inelastic cross sections (solid lines) are shown as a function
of temperature T at the different collision energies

√
s = 2

GeV (blue),
√

s = 5 GeV (orange), and
√

s = 9 GeV (green)
in comparison to the elastic cross sections (dashed lines).

As one can see from the figures, both elastic and inelas-
tic cross sections increase monotonically with energy and
decrease with temperature. However, the form of these depen-
dencies is rather different. For low energies the inelastic cross
section is suppressed for the entire range of temperatures. At
the same time for high temperatures the inelastic cross sec-
tion is also suppressed for the range of energies up to 15 GeV.
However, in the low-temperature regime the inelastic cross
section can become significant. For example, for T = 1.2Tc

the inelastic cross section is of the same order as the elastic
one already at

√
s ≈ 3.5 GeV and T = 3Tc at

√
s ≈ 12 GeV.

The reason for such a behavior of the inelastic cross sec-
tion lies in the form of the scattering amplitudes, which for the
inelastic reactions [Eqs. (12)] are proportional to the coupling
cubed (|M̄2→3|2 ∝ α3

s ), while for the elastic reaction the am-
plitudes are proportional to the coupling squared (|M̄2→2|2 ∝
α2

s ). Since in the DQPM the coupling constant is temperature
dependent, αs(T ) = g2(T )/(4π ), and it grows above 1 in the
vicinity of the critical temperature (cf. Fig. 1), it leads to
a rapid increase of the inelastic amplitude as the tempera-
ture decreases. Thus, the relative contribution of elastic and
inelastic cross sections depends strongly on the temperature
dependence of the coupling constant, αs(T ). However, if αs is
taken as a fixed constant below 1, e.g., αs = 0.3 as in many
pQCD calculations or effective models, the inelastic cross
sections are suppressed.

This is demonstrated in Fig. 13, which shows the total
inelastic (solid lines) and elastic (dashed lines) cross sec-
tions scaled by g4(T ) and g6(T ), respectively. One can see a

FIG. 13. Total inelastic (solid lines) and elastic (dashed lines)
cross sections scaled by g4 and g6, respectively, versus the invariant
energy

√
s.

strong suppression of inelastic cross sections at low
√

s com-
pared to elastic ones since the energy is not sufficient to emit
a heavy thermal gluon. While 2 → 3 cross sections grow with
increasing energy, they are below the elastic 2 → 2 cross sec-
tions by about of factor of 10 even at

√
s = 15 GeV for all T .

We note that the estimated averaged temperature of the
QGP created in central Au + Au collisions at

√
s = 200 GeV

at RHIC is on a level of 1.5Tc and that in central Pb + Pb
collisions at

√
s = 2.76 TeV at LHC is about 2Tc. For these

temperatures the mean values of
√

s of colliding partons (for
the DQPM) are less than 2 GeV, which according to the
above figures implies that the processes of gluon radiation
by thermal partons are expected to be negligible. However,
these processes may play an important role in the case of jets
(fast light partons or heavy quarks) as they can have a very
large momentum (above 10 GeV/c) and therefore produce
collisions with significant values of

√
s.

2. q + g → q + g + g process

Figure 14 shows the total inelastic cross sections for
q + g → q + g + g reactions—calculated by summing the di-
agrams in Fig. 4 according to the amplitudes (14)—as a
function of the collision energy

√
s for different medium

temperatures T = 1.2Tc, 3Tc, and 6Tc (upper plot) and as a
function of T for different

√
s = 2, 5, and 9 GeV (lower plot).

The q + g → q + g + g cross sections are compared to the
q + q → q + q + g cross section scaled by a factor of 9/4.
The ratio for the q + q and q + g cross sections reaches the
expected pQCD color factor limit 4/9 [31] at high energies.
At low energies the inelastic q + g cross sections are smaller
than the q + q ones due to the different thresholds for q +
q and q + g reactions, i.e.,

√
sq+q

th = 2mq + mg <
√

sq+g
th =

mq + 2mg, since the calculations are carried out for the pole
masses of initial partons and the pole gluon mass is larger than
the pole quark mass.

F. μB dependence of the gluon radiative cross sections

Figure 15 shows the total inelastic q + q → q + q + g
cross section as a function of the baryon chemical potential
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FIG. 14. Comparison of the total inelastic cross sections of the
q + g → q + g + g reaction with the inelastic q + q → q + q + g
reaction (scaled by a factor of 9/4) as a function of the collision
energy

√
s for different temperatures T = 1.2Tc, 3Tc, and 6Tc (upper

plot) and as a function of the temperature for different collision
energies

√
s = 2, 5, and 9 GeV (lower plot).

μB for T = 2Tc at different collision energies
√

s = 2 GeV
(blue),

√
s = 5 GeV (orange), and

√
s = 9 GeV (green). One

can see that the μB dependence of the cross section σqq is
not strong; however, it is nontrivial and changes with T and√

s. We note that in the DQPM the quark and gluon masses
as well as αs decrease with increasing μB [16,22]. At low
temperature, T = 1.2Tc, the cross section σqq increases for√

s = 2 GeV due to the lowering of the threshold
√

sq+q
th =

mq + mq + mg for gluon production in the 2 → 3 reaction
which increases the open phase space. With increasing energy
(
√

s = 5, 9 GeV) the threshold effect does not play a role
anymore since the open phase space is large anyhow and
the cross section decreases with increasing μB partially due
to the reduction of αs(μB). Similarly, at T = 2Tc the cross
section (which substantially decreases with T ; cf. Fig. 12)
decreases with increasing μB.

G. Interaction rates and relaxation times

The thermal interaction rate and relaxation time of the
on-shell and off-shell partons within the DQPM have been
studied in Refs. [16,22] by accounting for the elastic q + q

FIG. 15. Total inelastic q + q → q + q + g cross section as a
function of the baryon chemical potential μB for T = 1.2Tc (upper
plot) and T = 2Tc (lower plot) at different collision energies

√
s = 2

GeV (blue),
√

s = 5 GeV (orange), and
√

s = 9 GeV (green) for
Tc = 0.158 GeV.

and q + g reactions. Here we investigate the contribution of
gluon radiative reactions to the interaction rate and relaxation
time. We note that in this study we consider the on-shell case
for elastic and inelastic scattering—since we concentrate on
the relative contributions of these reactions—to reduce the
numerical complexity of the full off-shell calculations for
2 → 3 processes. However, we point out that the off-shell
elastic rate evaluated earlier in Refs. [16,22] is smaller than
the on-shell rate here due to the averaging over the spectral
functions of final partons.

We recall that the interaction rate for the corresponding on-
shell partons (i.e., taken at their pole masses) is given by

�inel
j (p j, T, μq ) = 1

2Ej

∑
i=q,q̄,g

∫
d3 pi

(2π )32Ei
di fi

∫
d3 p1

(2π )32E1

×
∫

d3 p2

(2π )32E2

∫
d3 p3

(2π )32E3

× (1 ± f1)(1 ± f2)(1 ± f3) |M̄ |2

× (2π )4δ(4)(p j + pi − p1 − p2 − p3),
(20)
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FIG. 16. On-shell interaction rate � of a light quark (upper plot)
and a gluon (lower plot) as a function of the temperature T for μq =
0 for elastic (blue lines) and for inelastic (orange lines) processes.

where di is the degeneracy factor for spin and color [2Nc

for quarks and 2(N2
c − 1) for gluons], fi = fi(Ei, T, μq ) are

the Fermi distribution functions for quarks, and fi = fi(Ei, T )
are the Bose distribution functions for gluons. Here vrel =
F/(4EjEi ) with F being the flux of the incident particles.
The Pauli-blocking (−) and Bose-enhancement (+) factors
account for the available density of final states.

To evaluate the average width of the parton j, we finally
have to average its interaction rate (20) over its momentum
distribution,

�inel
j (T, μq ) = d j

n j (T, μq )

∫
d3 p j

(2π )3
f j (Ej, T, μq )� j

× (p j, T, μq ), (21)

with the on-shell density of partons j at T and μq given by

n j (T, μq ) = d j

∫
d3 p

(2π )3
f j (Ej, T, μq ). (22)

Figure 16 illustrates the on-shell interaction rate of a light
quark (upper plot) and for the gluon (lower plot) as a func-
tion of the temperature for elastic (blue line) and inelastic
(orange line) processes. Here, similar to Refs. [16,22], for
the elastic light quark scattering (e.g., u + u) we account
for the contributions of all the possible interaction channels

FIG. 17. Distribution of on-shell u-quark scatterings as a func-
tion of the invariant energy

√
s for different temperatures at μq =

0. The vertical dashed lines correspond to the mean
√

s for each
temperature.

such as uu → uu, uū → uū, uū → dd̄ , uū → ss̄, ud → ud ,
ud̄ → ud̄ , us → us, us̄ → us̄, and ug → ug. For the inelastic
scatterings we account for the same channels as for elastic
(with an additional emitted gluon in the final state); however,
we omit the contributions from the annihilation processes
such as uū → dd̄ and uū → ss̄ and assume identical contri-
butions from all uq → uq processes for the reason described
in Sec. III A 1.

For the gluon elastic scatterings the following reactions
are considered (similar to Refs. [16,22]): gu → gu, gū → gū,
gd → gd , dd̄ → gd̄ , gs → gs, gs̄ → gs̄, and gg → gg. For the
inelastic scatterings, we account for the same channels (with
an additional emitted gluon in the final state). We note that the
gg → ggg channel has been evaluated using the relation σgg =
9
4σgq. We note that the evaluated on-shell interaction rate here
is the same as in previous DQPM studies in Refs. [16,22].

As follows from Fig. 16, the inelastic rates of thermal light
quarks and gluons are strongly suppressed at all temperatures
compared to the elastic rates in the QGP medium of quarks
and gluons with thermal masses.

For a better understanding of this result we present in
Fig. 17 the distribution of on-shell u-quark scatterings (assum-
ing the scattering probability to be equal to 1) as a function of
the invariant energy

√
s for different temperatures at μB = 0.

The vertical dashed lines correspond to the mean
√

s for each
temperature T . The sharp threshold is due to the large pole
masses of scattered quarks (cf. Fig. 2). We note that in the off-
shell case—as considered in Refs. [16,22]—the distribution
dN/d

√
s goes to zero by accounting for all possible masses of

the initial quarks according to their spectral functions.
As seen from Fig. 17, the dN/d

√
s distribution of scattered

quasiparticles favors low values of
√

s due to the Fermi-Dirac
distribution function f j (Ej, T, μq ) which suppresses colli-
sions at large

√
s in the thermal QCD medium. Thus, only

the low-
√

s region of elastic and inelastic cross sections dom-
inantly contributes to the interaction rates �. As follows from
Fig. 12, at all achievable

√
s (cf. Fig. 17) the inelastic cross

sections are much smaller than the elastic ones at all T which
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FIG. 18. Relaxation time τ of a light quark (upper plot) and
gluon (lower plot) as a function of the temperature T for μq = 0 eval-
uated by the average parton interaction rate for elastic contribution
only (blue lines) and for the sum of elastic and inelastic contributions
(orange lines).

leads to smaller inelastic rates compared to the elastic rates
at all T . Thus, the contribution of radiative processes—the
emission of massive thermal gluons by collisions of massive
partons—-is negligible for the thermal properties of the sQGP
within the quasiparticle picture. The situation will change
when considering the collisions of fast jet quarks with the
thermal medium since the available

√
s is large in this case

(cf. Fig. 11); thus the radiative contribution becomes impor-
tant [82].

The interaction rate can be directly related to the relaxation
time τ = h̄c/� which is shown in Fig. 18. There τ for a light
quark (upper plot) and gluon (lower plot) is presented as a
function of the temperature T evaluated by the average parton
interaction rate for elastic contributions only (blue line) and
for the sum of elastic and inelastic contributions (orange line)
from Fig. 16. One can see that by accounting for inelastic
processes the relaxation time of thermal sQGP partons is only
slightly shortened. As discussed above this is related to the
fact that the thermal radiation of heavy gluons from q + q
and q + g scattering is suppressed compared to their elastic
scattering.

Since the inelastic reactions only slightly contribute to
the relaxation times of quarks and gluons, the DQPM

transport coefficients of the thermal sQGP—such as the
specific shear and bulk viscosities η/s and ζ/s, electric con-
ductivity σQ/T , as well as the diffusion coefficient matrix—
evaluated for the elastic reactions within the relaxation time
approximation (RTA) [16,17,21] will change insignificantly.
Only in the high-temperature region are transport coefficients
from the RTA including the inelastic contributions expected
to be smaller when compared to previous estimates that solely
considered elastic ones.

V. SUMMARY

We have studied the inelastic versus elastic scatterings in
the sQGP based on the effective DQPM, which describes the
nonperturbative nature of the sQGP at finite temperature T
and baryon chemical potential μB in terms of off-shell quarks
and gluons with properties (masses and widths) adjusted in
order to reproduce the lQCD equation of state (EOS) for the
QGP in thermodynamic equilibrium. We stress that, contrary
to the pQCD-based models with massless weakly interacting
quarks and gluons, the concept of massive strongly interacting
quasiparticles in the DQPM allows not only to reproduce the
lQCD EOS at zero and finite μB, but to explore QCD in the
nonperturbative regime of the (T, μB) phase diagram where
lQCD results are not yet available; however, this region is rel-
evant for heavy-ion physics. While in previous DQPM studies
we focused on elastic scatterings of quasiparticles (which are
assumed to be dominant in the quasiparticle picture due to the
large thermal masses) by evaluating the Born-type scattering
diagrams with effective propagators and vertices, here we
extend our study to the evaluation of inelastic processes with
the goal to quantify explicitly the relative contribution of the
emission of massive gluons from scatterings of thermal quarks
and gluons to the thermal properties of the QGP.

We summarize our study as follows.

(1) We have calculated the thermal gluon radiation pro-
cesses from the massive quark-quark (q + q → q +
q + g) and quark-gluon (q + g → q + g + g) scatter-
ings (similar for the scatterings including antiquarks)
by evaluating explicitly the leading-order Feynman di-
agrams for 2 → 3 processes with effective propagators
and vertices from the DQPM for the first time without
any further approximations and simplifications. The
calculations of 2 → 3 cross sections have been per-
formed for the “on-shell” case, where the masses of
scattered initial as well as final partons, including the
emitted gluon, have been taken at their pole masses,
thus omitting the integrations over the spectral func-
tions of final partons as for the off-shell calculation of
elastic scattering in earlier DQPM studies [16,22].

(2) We have shown that for q + q and q + g radiative
cross sections the t channel is the dominant chan-
nel compared to u and s channels. Moreover, a
large contribution to the q + q → q + q + g cross sec-
tions stems from diagram 5 in Fig. 3 with the emission
of a gluon from the gluon exchange lines; this contri-
bution is larger than from each of the other diagrams
1–4 (they give about equal contributions) at all

√
s.
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However, the total cross section is smaller than the
sum of the squared amplitudes and even the squared
amplitude of diagram 5 due to a strong destructive in-
terference between different amplitudes, which shows
the importance of an explicit evaluation of all diagrams
without approximations.

(3) We have found that the DQPM radiative cross sec-
tions for q + q and q + g reactions scale with a factor
4/9 at high collision energies

√
s, in line with the

pQCD calculations. However, at low
√

s the cross
sections for q + g → q + g + g reactions are smaller
than for q + q → q + q + g reactions due to the larger
threshold (i.e., the pole mass of thermal gluons is
larger than the pole mass of quarks).

(4) We have proven that the DQPM results for 2 → 3 pro-
cesses reproduce the pQCD calculations in the limit of
zero masses and widths of quasiparticles in the DQPM.
In particular, we have shown the identity of the DQPM
and pQCD amplitudes [31,32] in the “pQCD” limit.

(5) Moreover, we have compared our results for the an-
gular distributions of the emitted gluons and final
scattered quarks from q + q → q + q + g processes to
the pQCD-based BAMPS model calculations and have
found a qualitative agreement. The quantitative dif-
ferences between the DQPM and the pQCD BAMPS
results can be attributed to the following reasons:
(i) the thermal masses of scattered quarks and emit-
ted gluons in the DQPM versus zero mass partons
in BAMPS; (ii) differences in the propagators—the
necessity to introduce a Debye mass (i.e., an extra
parameter in the model) to regularize the infrared di-
vergence in the gluon pQCD propagator while the
“resummed” DQPM propagator has no divergence due
to the self-consistent dynamical widths of the 2PI ap-
proach; and (iii) different strong-coupling constant αs

used in the calculations—while the pQCD calcula-
tions assume a small αs (e.g. in our study αs = 0.3),
independent of temperature, the DQPM calculations
involve T -dependent αs(T ) which grows above 1 for
T → Tc in line with the lQCD data (cf. Fig. 1).

(6) We have calculated the energy and temperature de-
pendencies of the total and differential radiative cross
sections for the thermal quark-quark and quark-gluon
scatterings and compared them to the corresponding
elastic cross sections. We have found that the elastic
cross sections dominate the radiative ones at low-

√
s

energies for T � 2TC ; however, at low T → Tc the
radiative cross sections become larger. The reason is
related to the fact that the inelastic cross sections are
proportional to the coupling cubed (σ2→3 ∝ α3

s (T ))
while elastic ones are proportional to the coupling
squared (σ2→2 ∝ α2

s (T )).
(7) We have studied the μB dependence of the radiative

cross sections and found a relatively weak dependence
on μB: at larger

√
s, where the phase space is open

sufficiently, the total cross sections decrease with in-
creasing μB.

(8) We have estimated the interaction rate � and re-
laxation time τ of quarks and gluons in the sQGP

versus the temperature T . We have found that the
transition rate defined by elastic scattering strongly
dominates the inelastic transition rate. Thus, the re-
laxation time τ calculated within the elastic plus
inelastic transition rates � is only slightly shorter
than that with elastic � only. It implies that the
radiative processes—with the emission of massive
gluons—are strongly suppressed in the nonperturba-
tive sQGP medium within the dynamical quasiparticle
model.

We mention that our study of thermal radiative processes
can be extended for the investigation of jet (highly energetic
partons) attenuation in the sQGP and jet transport properties.
This work is in progress [82].
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APPENDIX A: GLUON POLARIZATION

In the case of a massive gluon, the sum over polarizations
is given by ∑

pol.

(εi )μ(ε�
i )μ′ = −gμμ′ + (ki )μ(ki )μ′

(Mi)2
g

, (A1)

where in addition to the first “simple” term—as for massless
gluons—there is the second term which is over proportional
to the gluon thermal mass.

When calculating the cross sections for gluon radiation, we
have found that the first term gives the dominant contribution
such that the total cross section calculated including both
terms differs only very little from those calculated with the
first term only. This is illustrated in Fig. 19 which shows the
total q + q → q + q + g cross section as a function of the
collision energy for the “full” (blue line) and “simple” (orange
line) gluon polarization. The comparison shows that the sec-
ond term in the gluon polarization sum (A1) gives an almost
negligible contribution to the cross section and therefore can
be omitted in all further calculations.

APPENDIX B: DETAILS ON THE CALCULATION OF THE
CROSS SECTION

The differential cross section for a 2 → 3 process for on-
shell particles (a + b → 1 + 2 + 3) is given by

dσ2→3 = |M̄|2
F

d�3, (B1)
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FIG. 19. Total q + q → q + q + g cross section at T = 1.2Tc as
a function of the collision energy for the “full” (blue line) and
“simple” (orange line) gluon polarizations.

where d�3 denotes the three-body Lorentz invariant phase-
space for on-shell particles:

d�3 = (2π )4 d3 p1

(2π )32E1

d3 p2

(2π )32E2

d3 p3

(2π )32E3
δ4

× (pa + pb − p1 − p2 − p3). (B2)

Note that, in general, the total cross section is not only a
function of the system energy but also a function of all parton
masses and widths, i.e.,

σ2→3 = σ2→3(s, ma, mb, m1, m2, m3, Mq, Mg, γq, γg). (B3)

Obtaining this total cross section implies, in general, a
nine-dimensional integration, where four integrations can be
done analytically using the properties of the δ function. There
are several ways to perform this integration depending on the
choice of integration variables.

1. Variant 1

The first way to perform the integration over the δ function
is to consider a 2 → 3 reaction as (2 → 2) + (1 → 2) by
introducing the intermediate state px (Fig. 20), where

px = p2 + p3, p2
x = m2

x , m2 + m3 < mx <
√

s − m1.

(B4)
Employing for p3 the general relation∫

d3 p

2E
=

∫
d4 p δ(p2 − m2) θ (E ), (B5)

FIG. 20. Schematic view of a 2 → 3 reaction.

this stems from the property of the δ function,

δ( f (x)) =
∑

i

1

| f ′(xi )|δ(x − xi ), (B6)

where xi are the roots of f (x). Then after substituting

1 =
∫

d4 pxδ
4(px − p2 − p3) (B7)

into Eq. (B2) and integrating over p3, we obtain

d�3 = (2π )−5 d3 p1

2E1

d3 p2

2E2
d4 px δ

(
(px − p2)2 − m2

3

)
× δ4(pa + pb − p1 − px ). (B8)

Introducing the same procedure for p1 we arrive at

d�3 = (2π )−5 d3 p2

2E2
d4 px δ

(
(pa + pb − px )2 − m2

1

)
× δ

(
(px − p2)2 − m2

3

)
. (B9)

In the c.m. frame we now can simplify an expression inside
the first δ function:

(pa + pb − px )2 = (pa + pb)2 − 2(pa + pb)px + p2
x

= s − 2
√

sEC
x + m2

x , (B10)

where the upper index C denotes the c.m. frame. Having in
mind that

d4 p = d3 pdE = p2d pd�dE = dm2 p

2
dEd�, (B11)

we now can write

d4 pxδ
(
(pa + pb − px )2 − m2

1

)
= d p2

x

pC
x

2
dEC

x d�C
x δ

(
s − 2

√
sEC

x + m2
x − m2

1

)
= pC

x

2

dmxd�C
x

2
√

s
dEC

x δ
(
EC

x − EC
x0

)
. (B12)

For the second δ function in the rest frame of (2 + 3), we have

(px − p2) = p2
x − 2px p2 + p2

2 = m2
x − 2mX

x EX
2 + m2

2,

(B13)
where the upper index X denotes the rest frame of (2 + 3).
Substituting this into Eq. (B9) we have

d3 p2

2E2
δ
(
(px − px )2 − m2

3

)

= pX
2

2
dEX

2 d�X
2 δ

(
p2

x − 2EX
x EX

2 + m2
2 − m2

3

)
= px

2

2

d�X
2

2EX
x

dEX
2 δ

(
EX

2 − EX
20

)
. (B14)

Integrating over the δ functions, we end up with

d�3 = (2π )−5

(
pX

2

4EX
x

d�X
2

)(
pC

x

4
√

s
d�C

x

)
dm2

x , (B15)

and the expression for the differential cross section now reads

dσ2→3 = |M̄2→3|2
F

(2π )−5

(
pX

2

4EX
x

d�X
2

)(
pC

x

4
√

s
d�C

x

)
dm2

x .

(B16)
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Noting

d�C
x = d cos θdϕ, d�X

2 = d cos ξdψ, EX
x = mx,

(B17)
we can now express the final integral for the total cross
section:

σ2→3 = 1

8(2π )5
√

sF

∫ 1

0
d cos θ

∫ 2π

0
dϕ

∫ 1

0
d cos ξ

∫ 2π

0
dψ

×
∫ √

s−m1

m2+m3

dmx pC
x pX

2 |M̄2→3|2. (B18)

The integration over the polar angle (of pC
x ) can be done

analytically, giving a factor of 2π . In order to obtain |M̄|2
one needs to reconstruct a full set of 4-momenta according
to θ , ϕ, ξ , ψ , mx. Since pX

2 and pC
x are expressed in different

systems, one should perform the Lorentz transformation on
one chosen system. For example, one can define the following
set of momenta:

/pC
a = (

Ea, 0, 0, pC
a

)
, pC

a = λ(
√

s, ma, mb)/(2
√

s),

/pC
b = (

Eb, 0, 0,−pC
a

)
,

/pC
1 = (

E1, pC
x sin θ cos ϕ, pC

x sin θ sin ϕ, pC
x cos θ

)
,

pC
x = λ(

√
s, m1, mx )/(2

√
s),

/pC
x = (Ex,−�p1),

/pX
2 = (

EX
2 , pX

2 sin ξ cos ψ, pX
2 sin ξ sin ψ, pX

2 cos ξ
)
,

pX
2 = λ(mx, m2, m3)/(2mx ),

/pX
3 = (

EX
3 ,−�pX

2

)
,

/pC
2 = L−�vx

(
pX

2

)
,

/pC
3 = L−�vx

(
pX

3

)
, (B19)

where L�v (p) denotes a Lorentz transformation of the 4-vector
p with the velocity �v and

λ(a, b, c) =
√

(a2 − (b + c)2)(a2 − (b − c)2), �v = �px/Ex.

(B20)

2. Variant 2

To properly compare DQPM results with the well-known
Gunion-Bertsch approximation, we should express the in-
tegration in terms of another set of variables such as
(qt , kt , y, φ), where qt is the transverse momentum transfer,
kt is the transverse momentum of the emitted gluon, y is the
rapidity of the emitted gluon, and φ is the angle between kt

and qt . For a given particle with 4-momentum (E , px, py, pz )
we can express the components in terms of transverse mo-
mentum, rapidity, and azimuthal angle using the following
relation:

(E , px, py, pz ) = (mt cosh y, pt cos ϕ, pt sin ϕ, mt sinh y),

mt =
√

m2 + p2
t . (B21)

The scalar product of two 4-vectors is expressed now as

pi p j = mi,t m j,t (cosh yi cosh y2 − sinh y1 sinh y2)
− pi,t p j,t cos ϕ. (B22)

Starting again from the definition of the phase space from
Eq. (B2) and integration over p2 using relations (B5) and (B6)
we obtain

d�3 = 1

128π5

d3 p1

E1

d3 p3

E3
δ
(
(pa + pb − p1 − p3)2 − m2

2

)
.

(B23)
Denoting the argument of the δ function F = (pa + pb −
p1 − p3)2 − m2

2 we have

F = ((pa + pb) − (p1 + p3))2 − m2
2 = (pa + pb)2 − 2(pa + pb)(p1 + p3) + (p1 + p3)2 − m2

2

= s − 2(Ea + Eb)(E1 + E3) + 2( �pa + �pb)( �p1 + �p3) + m2
1 + m2

3 + 2p1 p3 − m2
2. (B24)

In the c.m. frame �pa + �pb = 0 and Ea + Eb = √
s, so the above expression can be simplified to

F = s − 2
√

s(E1 + E3) + m2
1 + m2

3 + 2p1 p3 − m2
2. (B25)

Now we are going to express it in terms of new variables:

F = s − 2
√

s(m1,t cosh y1 + m3,t cosh y3) + 2m1,t m3,t (cosh y1 cosh y3 − sinh y1 sinh y3)

+ 2p1,t p3,t cos ϕ + m2
1 + m2

3 − m2
2 = s − 2

√
s
(√

p2
1,t + m2

1 + p2
1,z + E3

)
+ 2E3

√
p2

1,t + m2
1 + p2

1,z − 2p1,z p3,z + 2p1,t p3,t cos ϕ + m2
1 + m2

3 − m2
2. (B26)

The derivative of F reads
∂F

∂y1
= −2

√
s(m1,t sinh y1) + 2m1,t m3,t (sinh y1 cosh y3 − cosh y1 sinh y3)

= −2
[

p1,z(
√

s − m3,t cosh y3) +
√

p2
1,t + m2

1 + p2
1,zm3,t sinh y3

]
. (B27)
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The solutions for F = 0 are

p1,z = −b ± √
b2 − 4ac

2a
, (B28)

with

a = (
√

s − E3)2 − p2
3,z,

b = p3,z η,

c = (
√

s − E3)2
(
p2

1,t + m2
1

) − 1

4
η2,

η = s − 2
√

sE3 + 2p1,t p3,t cos ϕ + m2
1 + m2

3 − m2
2. (B29)

The solutions have to satisfy the additional constraint

s − √
sE3 + 2p1,t p3,t cos ϕ − 2p1,z p3,z + m2

1 + m2
3 − m2

2

� 0. (B30)

By performing the analytical integration over the δ function,
we obtain the final expression for the phase space,

d�3 = 1

128π4
d p2

1,t d p2
3,t dydϕ

∑ (
∂F

∂y1

∣∣∣∣
F=0

)−1

, (B31)

and the total cross section reads

σ2→3 = 1

128π4F

∫ pC

0
d p2

1,t

∫ pC

0
d p2

3,t

∫ ymax

ymin

dy

×
∫ π

0
dϕ|M̄2→3|2

∑ (
∂F

∂y1

∣∣∣∣
F=0

)−1

, (B32)

where pC = λ(
√

s, m1, m2)/(2
√

s) and ymax / min =
± arccosh(

√
p2

C+m2
3

m3,t
).
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