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Correlations of conserved quantities at finite baryon density
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Correlations involving the seven conserved quantities, namely energy, baryon number, electric charge,
strangeness, and the three components of momentum, give rise to correlations in heavy-ion collisions. Through
the utilization of a simple one-dimensional hydrodynamic model, we calculate the evolution of the entire
7 × 7 matrix of correlations as a function of relative spatial rapidity. This comprehensive analysis accounts
for finite baryon density, which results in off-diagonal correlations between the charge-related quantities and
the energy-momentum quantities. These correlations in coordinate space are subsequently transformed into
correlations in momentum space using statistical weighting. The entire matrix of correlations is revealed to
be highly sensitive to the equation of state, viscosity, and diffusivity.
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I. INTRODUCTION

The properties of QCD matter have been a major focus of
the nuclear physics community [1,2]. Nucleus-nucleus (A+A)
collisions provide the majority of experimental information
about the bulk properties of the matter reflected in its phase
diagram. Particularly, the existence phase transitions (PTs)
related to the change of hadronic to quark and gluon degrees
of freedom have become a focal point of the field. Recently,
the properties of cold and dense nuclear matter reached in
low-energy collisions has become increasingly relevant in the
context of binary neutron star mergers. Observations related to
the radii of neutron stars point to a remarkably stiff equation of
state for baryon densities reaching a few times nuclear satura-
tion density, with the speed of sound possibly exceeding half
the speed of light [3–15]. Fluctuation and correlation observ-
ables have always played a prominent role in representing the
bulk properties of matter, particularly near phase transitions or
near critical points [16–19]. Even for featureless equations of
state fluctuations represent fundamental physical quantities.
For example, the speed of sound can be expressed in terms of
fluctuation observables [20].

Unfortunately, the matter created in A-A collisions evolves
and disassociates in a short time. The ephemeral nature of
the produced matter impedes the opportunity for longer-range
correlations to equilibrate. Thus, in the context of heavy-ion
collisions, the dynamical evolution of correlations must be
understood, whereas in a macroscopic system with infinite
time to equilibrate, the charge within any finite volume fluctu-
ates, in heavy-ion collisions one needs to carefully specify the
volume over which the fluctuation is being considered. For

*Corresponding author: savchuk@frib.msu.edu

conserved charges, there is zero fluctuation in the limit that
one considers the entire collision volume.

To understand correlations and fluctuations from a dy-
namic perspective, one must understand how correlations
are seeded, and how they spread with time. For conserved
charges, such as baryon or electric charge, this is typically
quantified through charge balance correlations [21,22]. In co-
ordinate space such correlations can be expressed as

C(�r1, �r2, t ) = 〈[ρ(�r1, t ) − ρ̄(�r1, t )][ρ(�r2, t ) − ρ̄(�r2, t )]〉.
(1)

If the correlations appear equilibrated at short relative dis-
tance, then one can divide the correlation into two pieces,

C(�r1, �r2, t ) = χ (�r1)δ(�r1 − �r2) + CB(�r1, �r2, t ). (2)

Here the delta function is not meant literally but only to
represent some function of short range that integrates to unity.
If a system is equilibrated, and if those correlations are not
longer-range, then the strength of the local correlation is set
by the charge susceptibility, which is a fundamental bulk prop-
erty of the matter. The second term, the balancing correlation,
would spread over the entire available volume if given the
opportunity. However, its spread is constrained by the amount
of time elapsed since the correlations were seeded. The inte-
grated strength of the balancing correlation must reflect the
fact that for the entire volume, charge does not fluctuate, and∫

d3r CB( �R, �R + �r, t ) = −χ ( �R, t ). (3)

If the system has translational invariance, then the �R depen-
dence can be ignored. At the end of the collision, one can
measure the balancing correlation, i.e., it is the correlations of
all particles with those besides themselves. At high energy,
where the average charge densities are near zero, CB(�r, t )
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typically spreads diffusively. Local charge conservation de-
mands that the source function for the balance correlations, in
the matter frame, is given by

S( �R, t ) = −(∂t + ∇ · �v)χ ( �R, t ). (4)

Thus, if one measures the correlations at latter times, and
if one understands how charges diffuse with time, then one
can infer the source function for the correlations. One can
then infer not only the susceptibility at a specific time but the
evolution of the susceptibility over time. Hydrodynamic cal-
culations provide temperatures, flow velocities and densities
as a function of time. This then provides the susceptibilities,
which are functions of density and temperature, as a function
of time, which then determines the source functions for CB,
and if one were to know the diffusivity, then one can then cal-
culate the evolution of CB. Indeed, such calculations have been
performed, overlaid on a three-dimensional hydrodynamic
background, using the equation of state, charge susceptibility,
and diffusivity from lattice calculations [23–26].

In heavy-ion collisions, measurement is confined to record-
ing the momenta of final-state particles. Fortunately, collisions
are highly explosive, and the large flows provide the means
to map correlations in relative velocity to those in coordinate
space, albeit with some smearing due to mainly thermal mo-
tion. The corresponding correlations in relative velocity have
been measured and are known as charge-balance functions.
Such analyses, which can be binned by any measure of the
relative velocity, such as the relative momentum or relative
azimuthal angle, have proven remarkably adept at constrain-
ing both the evolution of the charge susceptibilities as a
function of time, and the diffusivity of QCD matter. Remark-
ably, the analyses support the notion that matter chemically
equilibrates early in the collision, and that baryon number,
strangeness, and electric charge diffuse at rates calculated in
lattice simulations [27].

The first goal of this paper is to understand how the above
paradigm can be extended to include other conserved quan-
tities, i.e., energy and momentum. The second goal is to
understand how at nonzero average charge density, which is
increasingly the case for lower-energy collisions, energy and
momentum correlations mix with those indexed by charge.
Although the first goal was considered in Ref. [24], the effects
of nonzero density were ignored. One can define a 7 × 7
susceptibility matrix involving energy, three components of
momentum, and the three charges, baryon number, electric
charge, and strangeness. That matrix has cross terms be-
tween energy and the three charge densities. For example,
the fluctuation between energy and baryon density, 〈δEδB〉,
is nonzero if there is a finite net baryon density. To make mat-
ters more complicated, energy and momentum correlations
do not spread diffusively but due to viscous hydrodynamics.
Energy and momentum correlations then mix through the
hydrodynamic evolution equations, regardless of whether the
net baryon density is zero. The next goal is to show how
correlations involving energy and momentum in coordinate
space can be projected onto final-state hadrons at the decou-
pling by providing a thermal sampling of particles, with each
particle accompanied by an additional weight factor. Finally,
as a fourth goal, we wish to see how the corresponding 7 × 7

matrix of correlation functions might be sensitive to variations
of the equation of state.

The model to be applied here is simple, longitudinally
boost-invariant hydrodynamics without transverse flow. Here-
after, this will be referred to as the Bjorken limit [28]. The
neglect of transverse flow is not warranted, at any energy,
and boost invariance is poorly justified at lower energies.
However, this simple picture should be sufficient for under-
standing the issues mentioned above. Correlations involving
energy and momentum are likely to be strongly affected by
inhomogeneities of the initial state, and by jets. Even crude
estimates of the strength of correlations due to local charge,
energy, or momentum conservation are valuable in that one
can then ascertain whether further, more realistic, modeling
is warranted or if such correlations are so small that they are
overwhelmed by the competing effects related to the initial
state and jets.

The next section of the paper focuses on the underlying
theory. It presents the generalized 7 × 7 susceptibilities, and
the expressions for then evolving the 7 × 7 matrix of balanc-
ing correlations. The evolution is based on small perturbations
of the uniform hydrodynamic background, which spread both
diffusively and hydrodynamically. Green’s functions are pur-
sued as a means by which to evolve the correlations from the
sources. Expressions for the evolution on the simple boost-
invariant background are presented. The final subsection of
the theory section shows how one can project the spatial
correlations onto a simulation of outgoing particles, which can
then be used to calculate how such spatial correlations might
drive the asymptotic final-state correlations measured in mo-
mentum space. The final-state correlations can be binned by
any measure of relative momentum, such as relative rapidity
or azimuthal angle, and might be indexed by such quantities
as transverse energy, transverse momentum, or charge.

In Sec. III, after showing an illustrative example of Green’s
functions, final-state correlations are presented for three dif-
ferent equations of state. Correlations are presented both in
coordinate space, as a function of relative spatial rapidity, and
momentum space as a function of relative rapidity. Implica-
tions of the results are then summarized in Sec. IV.

II. THEORETICAL FOUNDATION

This section consists of three parts. First, the connection
between the 7 × 7 susceptibilities and the correlation func-
tions are elucidated. The source function, which is driven by
the evolution of the susceptibility, is connected to the final-
state correlation through Green’s functions which describe the
response of the medium to small perturbations of the seven
quantities. The following subsection shows how Green’s func-
tions are calculated on the background of a boost-invariant
hydrodynamics description lacking transverse flow. Finally, a
method is presented for projecting the correlations onto the
momenta of particles in a hadron gas.

A. General theory of conservation-driven correlations

Susceptibilities are related to fluctuations, as calculated in
the grand canonical ensemble. In general, one can weight a
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partition function according to any conserved quantity,

Z = Tr exp{−βiQi}. (5)

Here Lagrange multipliers, βi, are associated with each con-
served quantity Qi. The seven quantities, Qi, are E , Px, Py, Pz,
B, Q, and S, the energy, momenta, baryon number, electric
charge, and strangeness. For some large volume �, one can
define fluctuations as

1

�
〈δQiδQj〉 = 1

�

∂2

∂βi∂β j
ln(Z ). (6)

The Lagrange multiplier related to the energy is the inverse
temperature, whereas for the three charges they are −μi/T ,
where μi is the chemical potential and T is the temperature.
For the momenta, the Lagrange multipliers can be related to
ui/T , where ui are the flow velocities. Here the term suscep-
tibilities is used in a most general sense. The usual, but not
always, definition of charge susceptibilities is to define them
as the derivative of the charge densities with respect to the
chemical potentials. That definition differs from what is used
here by a factor of T . In the usage here, all the “susceptibili-
ties” correspond to the fluctuations without additional factors,

χi j = 1

�
〈δQiδQj〉. (7)

For the energy, the susceptibility, 〈δEδE〉/�, is T 2 multiplied
by the specific heat. The 3 × 3 subset of χi j that refer to
baryon number, electric charge, and strangeness are the usual
charge fluctuations. At finite number baryon density, the cor-
relations between the energy and the three charges becomes
nonzero. These cross terms have not been considered as ex-
tensively as correlations involving only the three charges or
only the energy. Finally, one can have correlations involving
the three-momentum components. These have no cross terms,
and at equilibrium

1

�
〈δPiδPj〉 = (P + ε)T δi j . (8)

In equilibrium, the correlations integrate to the susceptibil-
ities. If ρi are the corresponding densities, then

Ci j (�ri, �r j ) = 〈δρi(�ri )δρ j (�r j )〉
= χi jδ(�ri − �r j ). (9)

In a heavy-ion collision, all the quantities are conserved, so
for any operator A,

〈AδQj〉 = 0,∫
d3r j〈Aδρ j (�r j )〉 = 0, (10)

and for any conserved density,∫
d3r′ Ci j (�r, �r′) = 0. (11)

The correlation can be divided into a local, equilibrated, part
and a balancing part,

Ci j (�ri, �r j ) = χi jδ(�ri − �r j ) + CB,i j (�ri − �r j ),∫
d3r jCB,i j (�ri − �r j ) = −χi j (�ri ). (12)

If the local part were not equilibrated, then the equivalence
would still hold true, but in that case χi j would not be given
by the equilibrated susceptibility. Instead, it might be some
dynamic quantity that would relax toward the equilibrated
value.

As the system cools into a gaseous state, correlations be-
tween particles disappear. In that limit, the equilibrated local
correlation is only that within a single particle, and the sus-
ceptibilities become

χi j = 1

�

∑
a∈�

QaiQa j, (13)

where Qai is the charge of type i on particle a. In terms of the
phase-space density,

χi j (�r) = 1

(2π )3

∑
h

∫
d3 p fh( �p, �r)Qi(h, �p)Qj (h, �p),

(14)

where the sum extends over hadron species. For example, if i
refers to the momentum component px, then Qi( �p) = px and
if i refers to strangeness, then Qi is simply the strangeness
of species h. Thus, at decoupling, the balancing correlation,
CB,i j , covers all correlations between different particles, as-
suming the matter is a noninteracting gas at the time of
decoupling.

In the absence of a source function 〈δρi(x1)δρ j (x2)〉
evolves as 〈δρi(x1)〉〈δρ j (x2)〉 with each δρ behaving indepen-
dently in terms of the space-time coordinates x1 and x2. To
satisfy the sum rule, one can then express the correlation as〈

δ jμi (x1)δ jνj (x2)
〉

=
∫

d4X Gμμ′
ii′ (X, x1)Gνν ′

j j′ (X, x2)uμ′ (X )Si′ j′ (X )uν ′ (X ).

(15)

Here the formalism has been expressed with the charge den-
sity replaced by the four-current. This enables one to project
the correlations through a hypersurface that is not neces-
sarily at constant Euclidean time. For baryon, electric, and
strangeness currents, the quantities jμi are simply the usual
three charge currents. The energy and momentum current
densities are elements of the stress-energy tensor, T 0μ and
T kμ, respectively, where k denotes the kth component of the
momentum density. The Green’s functions satisfy the normal-
ization conditions,∫

d�μGμμ′
ii′ (X, x)uμ′ (X ) = δii′ , (16)

where x refers to the space-time point along the hypersurface
where the matter disassociates and d�μ is the differential
volume in the reference frame where the disassociation is
locally simultaneous. The extent of this hyper surface is fully
in the absolute future relative to X , and the integral covers the
entire hyper volume. If one defines a step function, such that
inside the hyper volume the value is unity, and outside it is
zero, then the differential volume element can be defined as

d�μ = d4y ∂μ�(C(y)), (17)
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where C(y) is positive outside the surface and negative inside.
For example, defining C(y) = T0 − T , defines a hypersurface
separating the regions with temperature above and below T0.
In this study, where a simple Bjorken expansion is considered,
spacelike hypersurfaces, like one would see with evaporation
from a surface, are not encountered.

The source functions are given by the rate of change of the
susceptibilities. If the collective velocity is noted by uμ(x),
then

Si j (X ) = [u · ∂ + (∂ · u)]χi j (X ). (18)

In a small hydrodynamic volume δV , the rate of change of
the volume is δV ∂ · u, and the source function is (1/δV )(u ·
∂ )(δV χi j ). Thus, if χi j falls inversely with the volume, then
there is no source. This would happen for baryon, electric,
and strange charges for the isentropic expansion of a nonin-
teracting gas. If entropy is conserved, then one can identify
the source function with

Si j (x) ≈ s(u · ∂ )
χi j

s
, (19)

where s is the entropy density, with this becoming exact for
isentropic expansions. For nonzero charge densities, one can
similarly replace s with the baryon, electric, or strange densi-
ties, although this would neglect charge diffusion.

The principal challenge in calculating correlations is in
finding the Green’s functions. At each point in space-time,
X , one considers a small perturbation of each of the seven
quantities. One then writes equations of motion for the per-
turbation. These equations mix the various quantities, i.e.,
Gμ

ii′ (X, x) is diagonal for times x0 immediately following X0

but off-diagonal components ensue thereafter. If the average
charge densities were all zero, then the Green’s functions
for energy and momentum do not mix with those for baryon
number, electric charge, or strangeness. The Green’s functions
for charge then simply require solving the diffusion equa-
tion for an initial charge perturbation at X . If the diffusivity
matrix is diagonal, as one would expect for an idealized quark-
gluon plasma, then the charge evolutions would not mix the
three charges if the were expressed in the u, d, s basis. For
the energy and momentum perturbations, one must address
the evolution with hydrodynamics. Hydrodynamics mixes
the energy and momentum components, and if the average
charge densities are nonzero, as is the case for lower-energy
heavy-ion collisions, then the Green’s function also develops
off-diagonal components between the energy or momentum
and charge components.

B. Hydrodynamic response

The Green’s function represents the response of the
medium to a small localized fluctuation. In this study, this is
calculated by assigning a small perturbation of charge type i
to a specfic point in space-time. The perturbation integrates
to unity but is treated in the linear approximation. Its spatial
extent is set to a small, but nonzero, value. In the limit that
the extent is zero, the initial perturbation would be a delta
function, but that would preclude evolution equations involv-
ing spatial derivatives. Here we first review the treatment of
linearized hydrodynamic fluctuations.

The stress-energy tensor of a viscous fluid in the Landau
frame is represented as follows [29]:

T μν = [ε + P(ε, ρB, ρQ, ρS )]uμuν − gμνP + T μν
η . (20)

In this equation, ε and ρ denote energy and particle densi-
ties, respectively. In this study, the shear contribution T μν

η is
assigned according to the Navier-Stokes equation,

T μν
η = −ηs

(∇μuν + ∇νuμ − 2
3�μν∂ · u

)
, (21)

where ηs is the shear viscosity coefficient, �μν = uμuν − gμν

acts as a projector eliminating the collective velocity uμ, and
the covariant derivative ∇μ = �μν∂ν represents the spatial
derivatives in the frame of the fluid. If the charge number is
allowed to diffuse, then the charge current can be expressed as

jμi = ρiu
μ − Di j�

μν∂νρ j . (22)

In this equation, D represents the diffusion matrix. The hy-
drodynamic equations are equivalent to energy-momentum
conservation:

∂νT μν = 0, ∂ν jν = 0. (23)

Assuming that the solution for ρ(t, �r), ε(t, �r), and uμ(t, �r)
can be expanded into a series around the given solution, with
respect to the perturbations δρ, δε, and δuμ, our focus will
mainly be on δT μν , which is linear in these perturbations.
These perturbations should adhere to the following equations:

∂νδ jν = 0, (24)

∂νδT μν = 0. (25)

To generate the Green’s function, one considers a small
very localized perturbation at space-time point X that evolves
over time. One can assign a small Gaussian perturbation. If
the initial perturbation is at space-time point x, then

δ jμi′ (X ) = 1

(2πσ 2)3/2
e−|Y 2|/2σ 2

,

Y μ = X μ − (u · X )uμ. (26)

Here Y is the same as X but with the temporal component, as
defined in the fluid frame, projected away. The width σ should
be chosen as small as possible while still enabling differentia-
tion. In the limit of σ → 0 the initial perturbation becomes a
delta function in coordinate space. For the initial perturbation,
one then solves for the perturbation at a space-time point with
time x, and the Green’s function is

Gμ(X, x)ii′ = δ jμi (x). (27)

Given the existence of dissipation, all solutions should
asymptotically approach a uniform solution. This is par-
ticularly relevant for thermodynamic fluctuations in baryon
number, momentum, or energy. Following the theoretical
framework outlined in Ref. [24], we aim to investigate the
correlations of conserved charges at freeze-out, specifically
examining the impact of nondiagonal susceptibilities in the
presence of finite baryon density.
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C. Bjorken expansion as a background

To most simply illustrate how correlations evolve dur-
ing the hydrodynamic stage of strongly interacting matter, a
boost-invariant Bjorken solution is chosen as the background
hydrodynamic model. In this case, the evolution is simplified
by transforming the time t and longitudinal space-coordinate
z to what is known as the proper time τ and the spatial
rapidty, η:

t = τ cosh η, z = τ sinh η. (28)

Energy and B, Q, S density is uniform through the system and
its time evolution is given by:

∂τ ε = −ε + P

τ
+ 4ηs

3τ 2
, (29)

ρ = ρ0
τ0

τ
, (30)

where τ0, ρ0 represents the starting time and density. The four
velocity is

u0 = cosh η, uz = sinh η. (31)

The system of linear response equations is given by:

∂τ δε = − 1

τ
δ(ε+ P)− ∂η

ε+ P − 8ηs

3τ

τ
δuη,

(32)

∂τ

(
ε + P − 4ηs

3τ

)
δuη = −2

τ

(
ε + P − 4ηs

3τ

)
δuη

− ∂εP
∂ηδε

τ
− ∂ρP

∂ηδρ

τ

+ 4ηs∂
2
η δuη

3τ 2
, (33)

∂τ δρ = −δρ

τ
+ ρ + D∂τρ

τ
∂ηδuη

+ D

τ 2
∂2
η δρ, (34)

∂τ

(
ε + P − 2ηs

3τ

)
δux,y = − 1

τ

(
ε + P − 2ηs

3τ

)
δux,y

+ ηs∂
2
η δux,y

τ 2
, (35)

where δuη = δuz

u0 is introduced in order to have boost-invariant
system of equations (uniform in η). These equations describe
the hydrodynamic response to some perturbation given by
the stochastic current jε, �j �P, jB, jQ, jS . This system also con-
serves laboratory frame energy and momentum:

∂t T
tt + ∂zT

tz =
(

∂τ + 1

τ

)
(cosh ηT tt − sinh η T tz )

+ 1

τ
∂η(− sinh η T tt + cosh η T tz ) = 0,

∂t T
tz + ∂zT

zz =
(

∂τ + 1

τ

)
(cosh ηT tz − sinh η T zz )

+ 1

τ
∂η(− sinh η T tz + cosh η T zz ) = 0,

(36)

Furthermore, ρτ and ρη are defined as follows:

ρτ = cosh ηδT tt − sinh η δT tz

= δε cosh η +
(

ε + P − 4

3τ
ηs

)
δuη sinh η,

ρη = cosh ηδT tz − sinh η δT zz

= δε sinh η +
(

ε + P − 2

3τ
ηs

)
δuη cosh η. (37)

Together with ρB, ρQ, ρS , they satisfy the conservation law:∫
τdηρ(τ, η) = const. (38)

In what follows:

δPη =
(

ε + P − 4ηs

3τ

)
δuη,

δPx,y =
(

ε + P − 2ηs

3τ

)
δux,y, (39)

will be called longitudinal and x, y momentum, respectively.
Using Green’s functions of Eqs. (32)–(35), correlators can be
expressed as follows:

cAB =
∫

dτ jτ jdη jGAA‘ (η1 − η j, τ1, τ j )GBB‘

×(η2 − η j, τ2, τ j )

(
∂τ j + 1

τ j

)
χAB(τ j ), (40)

where A, B can be any of the following:
δE , δPη, δPx,y, δB, δQ, δS. The term cAB in Eq. (40) does
not encompass the portion of correlation that should exist
in the equilibrated hydrodynamic medium right from the
start. This initial correlation can take on any form but is
nevertheless bound by the overall conservation of charge, as
outlined in Eqs. (10). In the subsequent discussion, we will
exclude this initial correlation and discuss it as a distinct
element that can be independently studied.

D. Projecting correlations onto final-state hadrons

The previous subsections describe how one might find
the correlations 〈δ jμi (x)δ jνk (x′)〉, which are functions of
space-time. These correlations must then be projected onto
final-state particles. Techniques for this have been applied
for purely charge fluctuations [30,31], but for this problem
we need to extend those ideas to include correlations involv-
ing momentum and energy. As was done with the case with
charges, the techniques will be based on the Cooper-Frye
equation, where emission from the hypersurface element for
uncorrelated particles from a small hypersurface element δ�μ

is given by

δdNh = (p · δ�)
d3 p

Ep
fh( �p, x), (41)

where fh( �p, x) is the phase-space density of hadrons of type
h and momentum �p at space-time point x, with x being at
the hypersurface element. An efficient algorithm for gener-
ating particles consistent with a thermal phase-space density,
including viscous corrections, is described in Ref. [32]. The
approach here will be to first integrate over each source point

024910-5



OLEH SAVCHUK AND SCOTT PRATT PHYSICAL REVIEW C 109, 024910 (2024)

X . For each point X , one then generates completely uncor-
related pairs of hadrons. The two hadrons are uncorrelated
with the source point X and are uncorrelated with one another.
The correlation function in momentum space is constructed
by incrementing the correlation functions by a correlation
weight.

To calculate the weight, one can consider a small amount
of energy, momentum, and charge, δQi, that passes through
a hypersurface element. For a thermal distribution, the phase-
space density is altered by modifying the Lagrange multipliers
associated with each conserved quantity,

fh( �p, x) = f (0)
h ( �p, x) exp(−δβiqi(h, �p)). (42)

Here i refers to the seven generalized charges of the particle
of species h and given energy and momentum, as described
at the beginning of this section. The quantity qi(h, �p) are the
seven generalized charges of a single hadron. The seven com-
ponents of δβ are determined by fixing the seven quantities,
δQi, which are the charges passing through the hypersurface
volume V ,

δQi =
∑

h

∫
d3 p

(2π )3Ep
(p · d�)qi(h, �p)δ fh( �p, x)

= −
∑
h, j

∫
d3 p

(2π )3Ep
(p · d�)qi(h, �p)q j (h, �p) f (0)

h ( �p, x)

× δβ j . (43)

If the frame of hypersurface dissolution is the fluid frame, we
can identify p · d�/Ep as a volume V , and the right-hand side
can be identified with the susceptibilities, then

δQi = −V χi jδβ j,

δβi = −χ−1
i j δQj/V = −χ−1

i j δρ j . (44)

Inserting this into Eq. (42), one then has the alteration of the
phase-space density,

δ fh( �p, x) = f (0)
h

[−qi(h, �p)χ−1
i j (x)δρ j

]
. (45)

Everything in the square brackets can be considered as a
weight due to the additional generalized charge density δρ j .

For each differential space-time volume of the source, one
can then generate two independent particles according to the
phases-space densities at the hypersurface, f (0)( �p, x). One
then assigns a weight to the pair,

w( �p1, x1, �p2, x2)

=
∫

d4X qi(h1, �p1)χ−1
i j (x1)d�1,μGμμ′

j′ j (X, x1)uμ′ (X )

× S j′k′ (X )uν ′ (X )Gνν ′
k′m(X, x2)χ−1

mn (x2)d�2,νqn(h2, �p2).

(46)

One must decide whether to perform the integral over d4X
with Monte Carlo methods. For the case considered in the
next section, one can exploit the symmetries, that the source
function depends only on the proper time τ and that the
Green’s functions depend on the relative rapidities, to simplify
the integral. But if these approaches were to be applied more
generally, then the integral above would require a much more
nuanced approach.

One advantage of this approach is that weighted pairs are
generated by Monte Carlo, so it is straightforward to incorpo-
rate the effects of decays. Hadronic decays can be simulated
with the same weight from the parents being assigned to the
daughter particles. All the pairs of daughters, with one daugh-
ter chosen from each parent, would be assigned the same
weight as the parental pair. It is also rather straightforward to
consider a variety of binnings of the correlation. For example,
if one were to calculate correlations in transverse energy as a
function of relative pseudorapidity, then one would increment
the bin with that relative pseudorapidity by the weight multi-
plied by the product of the two transverse energies.

III. RESULTS

A. Equations of state

As an equation of state (EoS), we have used the free-energy
model for a hadronic mixture (details can be found in the
Appendix). The background charges were fixed to reproduce
Q/B = 0.4, as in heavy lead or gold nuclei, and S = 0. All
trajectories start at ε = 3 GeV fm−3 and evolve for 10 fm/c.
The final temperature falls within 150 ± 2 MeV. The initial
baryon density was chosen at 8n0, where n0 = 0.16 fm−3

represents normal nuclear density, and the viscosity lies in
the range of (6 − 8) s

4π
, as expected for the hadronic medium.

This keeps the temperature of the medium below 190 MeV,
within the range where hadronic type of the equation of state
and transport can be hypothetically feasible. The stage after
freeze-out (usually temperatures below 150–160 MeV) can-
not be described by hydrodynamic models and tackled with
hadronic afterburners [33,34]. The diffusion coefficient D was
chosen to be lower than the values predicted from lattice
QCD at vanishing baryon charge, aligning more with hadronic
phase simulations, with D = 1

8π
T . However, in principle, the

nondiagonal diffusion matrix should be applied to charges, as
diffusion predicted from different kinetic models is strongly
influenced by particle mass [35]. Electric charge is expected to
be carried mainly by light mesons, and baryon charge by heav-
ier particles. Strangeness is interesting as it includes heavy
mesons and baryons, and it is thus correlated with baryon
number. Therefore, one might expect a strong sensitivity of
the diffusive properties to the hadronic composition of the
medium.

Using the formalism in Appendix B, two equations of state
were constructed using simple parametric forms for the den-
sity dependence of the free energy. The two interactions were
not meant to be particularly realistic, but were constructed
to provide the means to compare the difference between a
soft and stiff equation state. With that goal in mind, the
equations of state were constructed to be represent the outer
limit of expectations, rather than to represent some sort of best
guess. The free-energy densities were chosen to depend only
on baryon density ρB, and to have the form

fint =
∑

n=1,2

An
[
y1/3

n − 1
]
,

yn = 1 +
(

ρB − ρ0

ρn

)3

. (47)
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FIG. 1. The speed of sound is displayed for a noninteracting
(ideal) hadron resonance gas and a hadronic fluid with two illus-
trative cases for interactions. The equation of state that includes
interactions can be either stiffer (Hard-EoS) or softer (Soft-EoS)
compared to the noninteracting one (ideal HRG).

Here ρ0 was set to the break up density so that the equa-
tion of state, including fluctuations, would return to those of
a noninteracting hadron gas at that point. The parameters A1,
A2, ρ1, and ρ2 were then adjusted to set the stiffness of the
equation of state in various density ranges. For both the stiff
and soft equations of state, ρ1 and ρ2 were set to 0.2 and
0.5 fm−3, respectively. For the stiff equation of state the stiff-
ness parameters were set to A1 = 0.05, A2 = 0.1 GeV fm3,
and for the soft equation of state A1 = −0.02, A2 = 0.01 GeV
fm3. The soft equation of state has a phase transition with
a critical point at T = 100 MeV at a density near 2ρs. This
rather extreme example should should help bracket the range
of fluctuations one might wish to consider.

The initial baryon density was chosen so that the initial
baryon density was eight times nuclear saturation density,
ρs = 0.16 fm−3, which because the baryon density fell as 1/τ

always yielded the same final baryon density, ρ0 = (8/11)ρs,
regardless of the equation of state. The initial temperature, Ti

was adjusted for each equation of state, and for each choice
of viscosity, so that the final temperature, Tf , was 150 MeV.
By construction, the speed of sound matches that of a non-
interacting hadronic mixture at and below ρ0. In Fig. 1 the
speed of sound is displayed for the three equations of state.
For the noninteracting case the speed of sound stays fairly
steady, with c2

s ≈ 0.14. For the stiff equation of state the max-
imum speed of sound for the evolutions considered here was
approximately, c2

s,max ≈ 0.24, while for the soft equation of
state the speed of sound dropped to c2

s,min ≈ 0.11.
Susceptibilities of a few selected conserved charges can be

observed in Fig. 2. Susceptibilities are multiplied by τ as the
volume of a hydrodynamic cell increases proportionally to τ

in the Bjorken model. Thus, in this case, the source functions
are precisely the rates at which the curves in Fig. 2 rise or

FIG. 2. The susceptibilities of energy-energy (a), energy-baryon
density (b), baryon-baryon densities (c), and momentum-momentum
(d) are shown for the three equations of state that were considered.
The difference between different EoS is reflected in the susceptibili-
ties of conserved charges.

fall. The susceptibilities involving energy or baryon number
all have strong peaks or valleys for the same conditions when
the speed of sound has a maximum or minimum.

Rather remarkably, the momentum-momentum suscepti-
bility (multiplied by τ ), (P + ε)T τ , is relatively featureless
and is thus rather insensitive to the equation of state. This
probably owes itself to the fact that the interaction is a func-
tion of baryon density, and is of course an energy, but does not
much alter the momenta of particles. It would be interesting
to understand whether a different class of interaction, e.g., one
that alters the degrees of freedom, might manifest itself by
providing more structure for this case. Even if the flatness of
momentum-momentum susceptibility results in little source
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function, there would still be a contribution from the initial
thermalization, τ < 1 fm/c. The correlation of the transverse
components, e.g., 〈δPxδPx〉, is expected to spread diffusively
[24,36], with the shear viscosity playing the role of the diffu-
sion constant. Thus, the correlations of transverse momentum
might be less sensitive to phase structure but more sensitive
to the viscosity. Equations of state featuring a critical point
have an adjacent mixed phase on the phase diagram (ρ, T ).
For the soft equation of state shown here, phase separation
can ensue, but the critical temperature is 100 MeV, and the
density-temperature trajectories are well above the critical
point and therefore outside the mixed-phase region.

Within the mixed phase, or coexistence, region, suscepti-
bilities are undefined, i.e., fluctuations no longer scale linearly
with volume [37,38]. One might then anticipate the occur-
rence of nucleation or cavitation, representing the dynamic
formation of a new phase. This process unfolds relatively
slowly and challenges the application of traditional equilib-
rium thermodynamics methods like Maxwell constructions.
In such cases, a metastable state can be contemplated, cor-
responding to the gradual growth of nucleation or cavitation
[39,40]. Within the spinodal region, mechanical instability
triggers a phenomenon known as spinodal decomposition,
where two phases rapidly segregate. Ideally, this can be
incorporated into our analysis by integrating the appropri-
ate hydrodynamic background. Specifically, the inclusion of
surface tension and energy terms in hydrodynamics can pro-
vide an accurate description of the mixed phase (for further
insights, see Ref. [41]). The approach here would then cer-
tainly not apply if the density-temperature trajectory were to
pass through the coexistence region of the phase diagram.
Nevertheless, it is worth noting that substantial structure in
susceptibilities are expected, even if merely passes the vicinity
of the phase transition region.

In equilibrated systems correlation lengths diverge near the
critical point [42]. In that limit the finite lifetime of the colli-
sion prevents the system having equilibrium. The assumption
here that the short-range correlations can be assigned the
strength of the equilibrium susceptibility would then need
to be adjusted. In principle, the current approach could be
modified to account for this by treating that strength as a
dynamic quantity. Nonequilibrium considerations of the local
correlations and the accompanying hydrodynamic response
are intriguing, but they will not be considered in this study.

B. Green’s functions

In order to obtain a solution, a set of Green’s functions for
point sources in (τ, η) must be generated. Taking advantage
of the boost invariance of the Bjorken flow, we consider only
(τ, 0) and derive a solution for a source at any η using Lorentz
transformations. Green‘s functions were computed by assign-
ing initial condition at τstart in some charge X :

GXX (τ = τstart, η) = 1√
2πσ 2

η τ
exp

{
− η2

2σ 2
η

}
, (48)

as ση → 0, GXX (τ = τstart, η) → δ(η)
τ

approaches solution for
point source (Green‘s function by definition). Using very

small but finite sigma regularizes our system by regularizing
high-momentum modes. Figure 3 depict the response to a
Gaussian source with σ 2

η = 0.01 and τstart = 1 fm/c at τ =
11 fm/c. It is noticeable that a perturbation in one charge
leads to a response in another. This can be comprehended
from the expressions, Eqs. (32)–(35). Equation (34), in its
second term, describes the convection of background charge
by a perturbation of velocity. This effectively couples the
response in charges to the response in energy momentum.
Equations (32) and (33) are influenced by the response to
charge fluctuations through the dependence on the equation of
state P(ε, ρB, ρQ, ρS ).

One expects two forms of response: two sound wave modes
linear in wave number and one quadratic mode that corre-
sponds to dissipation. Sound waves propagate at the adiabatic
speed of sound of the medium and correspond to the long-
range part of correlations. Parts that are due to dissipative
processes in the medium are relatively localized and extend
over approximately one to two units of space-time rapidity.
This is on the order of the thermal spread of momentum
rapidity for matter at freeze-out. Therefore, it is interesting to
observe to what extent the signal of hydrodynamic evolution
will survive particlization.

C. Correlations

Three equations of state are compared here: the ideal
hadron resonance gas (iHRG) and interacting hadron flu-
ids, with one being harder and the other softer than the
iHRG. Fluctuations involving energy, longitudinal momen-
tum, baryon density, electric charge, and strange number
densities are separated from those involving transverse
momentum, as correlations between them vanish. The longitu-
dinal hydrodynamic correlations are presented in Fig. 4, and
they display noticeable sensitivity to the chosen equation of
state.

Electric and strange charges (s), (y) are only weakly influ-
enced by the baryon mean-field used. However, some effects
are observable around �η ≈ 0. In this case, a harder equa-
tion of state produces a stronger peak, whereas a softer
equation of state suppresses the peak in a small region. These
differences disappear at the tails of the correlations. This
effect is more pronounced in the strange charge compared
to the electric charge. This can be attributed to the transition
from a medium that includes a large number of strange and
charged mesons at high temperatures to a medium dominated
by cold baryons at freeze-out. Baryons, being more sensitive
to the equation of state, contribute to the central part of the
correlation function, while the tails are created much earlier
in the collision. The cross-correlation between electric charge
(Q) and strange charge (S) exhibits a similar behavior (t)
and (s), but here the peak structure changes from a single
maximum for an ideal gas to two peaks for the Hard-EoS or a
much stronger peak for the Soft-EoS.

The baryon charge (m) exhibits more pronounced features.
In particular, the value at the peak, �η = 0, changes from
negative to positive when transitioning from the iHRG to the
Soft-EoS to the Hard-EoS. Interactions also amplify both the
maximal and minimal values of the correlation function. This
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FIG. 3. Green’s functions, denoted as GY X (τsource = 1 fm/c, τ = 11 fm/c, �η), represent the response to a perturbation in X , initiated at
1 fm/c at η = 0 and observed in Y at �η. Panels (a)–(d) display GY X for Y = E , Pη, Px , and B, respectively. For each Y , each panel shows the
nonzero Green’s functions for the quantities described in the legends. These functions are computed for the soft version of the equation of state,
and further details can be found in the accompanying text. Cross-correlations between different conserved charges are considered, including
longitudinal energy-momentum, baryon, and electric charges. To enhance visibility, some of the functions were scaled by large factors.

can be understood from Fig. 2, where the rates of change
of τχ (τ ) are much higher for the equation of state with in-
teractions and sometimes have a different sign compared to
the iHRG. The spread of the correlation here is around one
unit in space-time rapidity. Correlations of the baryon charge
with electric or strangeness experience similar effects from
interactions (r), (w), (n), and (o).

The longitudinal momentum correlation 〈δPηδPη〉 (g) for
the iHRG is much narrower compared to the interacting ver-
sion. It is evident that, in this case, the correlation spreads

further for a hard equation of state (higher speed of sound)
and less for the soft equation of state (smaller speed of
sound). The momentum correlation with other charges ap-
pears to be proportional to the rate at which susceptibility
changes.

Energy correlations (a) have a width of about half a unit
of rapidity. The value at the peak changes sign for the hard
and ideal hadronic medium, for the 〈δEδE〉 correlation. It is
worth noting that the transport coefficients corresponding to
viscosity for different equations of state are almost identical. It
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FIG. 4. The matrix of two-point correlations for energy, longitudinal momentum, and baryon, electric, and strange charges is presented
as a function of space-time rapidity distance at the freeze-out time τ = 11 fm/c. The considered equations of state include the ideal hadron
resonance gas (in blue), hard hadronic fluid (in orange), and soft hadronic fluid (in green). Transverse fluctuations of the system are decoupled
from other observables and can be found in a separate plot. Nch is charged particle multiplicity per unit of η as predicted from statistical
hadronization at T = 150 MeV with transverse area S = 100 fm2.

seems that the sound wave part of energy gets suppressed and
transferred into momentum. It is interesting to see how this
transformation manifests in the correlations at particlization.

Balancing correlation of the transverse momentum,
Fig. 5(a), is weakly influenced by the equation of state. It is
noteworthy that in this case, the correlations spread quite far,
covering nearly five units of rapidity. The Hard-EoS has the
largest width, while the Soft-EoS has the smallest.

D. Freeze-out

The final form of the balancing part, computed for all
charged particles at freeze-out, is depicted in Figs. 6 and 5
for E , Pη, B, Q, S, Px, and Py, respectively.

Before particlization, the Px and Py correlations exhibit a
strong positive peak at mid-rapidity with negative dips around
it, Fig. 5(a). However, after particlization, the value at the
peak is suppressed, while the dips are enhanced, Fig. 5(b).
The differences between the equations of state become more
pronounced, especially in the case of the Hard-EoS, where the
width is much larger than in the other two cases.

In (η, φ) coordinates, correlations in transverse momentum
have undergone experimental investigation, serving as a sen-
sitive probe for viscosity. One notable feature that has been
observed is the “Ridge” in rapidity. Correlations in transverse
momenta are influenced by various physical phenomena, in
addition to momentum conservation. These include resonance
and cluster decays, radial flow effects, anisotropic flow ef-
fects, initial state fluctuations, and modified jet fragmentation
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FIG. 5. Balancing part for the correlations of transverse momentum Px,y as function of space-time (left) or momentum (right) rapidity
differences. As predicted from hydrodynamic evolution with thermal sources before (left) and after particle creation (right). Nch is charged
particle multiplicity per unit of η as predicted from statistical hadronization at T = 150 MeV with transverse area S = 100 fm2.

[43,44]. All of these effects, with the exception of jets, can
be incorporated into the (3D+1) hydrodynamic modeling of
the system. Jets are formed early in the collision and are not
typically part of the collective motion. However, jets interact
with the bulk of the QCD medium, serving as sources of
additional correlation. Therefore, it is important to understand
the extent to which jets contribute to the pt correlation. As
evidenced by the comparison of our results with data, the
hydrodynamic history and balancing correlation should ac-
count for a significant portion of the total correlation. The
investigation of bulk-jet interaction is indeed an intriguing and
important topic.

While the other correlations are not as wide as the trans-
verse momentum correlation, the width of the balancing parts
increases to two units of rapidity. This is primarily attributed
to the thermal spread of particles in momentum rapidity,
denoted as y = η + δy, with δy having values concentrated
around the range of [−0.5, 0.5]. This smearing effect blurs
the features and results in much smoother correlation.

The balancing parts for strange and electric charges mostly
preserve their features, differing at midrapidity but converging
towards the tails. They exhibit a simple unimodal structure
where a stronger hydrodynamic response leads to the gen-
eration of more balancing correlation. Since we have only
considered balancing correlation created during the hydrody-
namic stage, the normalization appears to be proportional to
the difference in susceptibilities at τ = 1 and τ = 11 fm/c,
which, as can be inferred from Fig. 2, is larger for the Hard-
EoS. This difference is notably more significant for the baryon
charge. The minima surrounding the peak in this case become
less pronounced when compared to the correlation before
freeze-out. In the case of the iHRG, the balancing part seems
to remain almost constant around 0, completely losing any
rapidity dependence that was present before.

When longitudinal momentum becomes involved, the cor-
relation vanishes. This is a consequence translation invariance

in η. If other than periodic boundary conditions were used,
then that would not be true anymore. If one were to consider a
system that is not exactly transnational invariant, then Green’s
functions would become functions of both rapidities (source
and response) and not just their difference.

For energy, the width is now comparable to that of electric
or strange charges, and it is even larger than the width of
the baryon charge. Additionally, it appears that a hard equa-
tion of state becomes much more spread compared to the other
equations of state considered. This phenomenon reflects the
presence of hydrodynamic modes in response to the initial
perturbation.

IV. CONCLUSIONS

Here the entire 7 × 7 matrix of correlations or conserved
quantities was considered as a function of the measure of
separation along the beam axis. For correlations in coordinate
space, correlations were binned as a function of relative spa-
tial rapidity, �η, whereas for the final-state correlations, the
momentum rapidity difference �y was chosen. An extremely
simple model was used here. Boost invariance was assumed,
which is a poor choice at lower beam energies, and trans-
verse flow was ignored, which is a poor assumption at any
energy. The equations of state applied were also not partic-
ularly physical. The correlations are seeded by the evolution
of the susceptibilities and evolve according to viscous hydro-
dynamics and diffusion. At a fixed breakup time, correlations
were projected onto those of free-streaming hadrons and their
decay products, ignoring any additional contributions from
the hadron phase aside from those from decays. For example,
baryon annihilation is ignored here. Only thermal correlations
were considered, which ignore those from the initial state.
Initial state correlations can be driven by jets or minijets or any
local energy-density fluctuations due to the stopping mecha-
nism. Though the integrated strength of such correlations is
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FIG. 6. The matrix of two-point correlations for energy, longitudinal momentum, and baryon, electric, and strange charges is presented as
a function of momentum rapidity at the freeze-out time τ = 11 fm/c, computed after sampling all charged particles. The equations of state
considered include the ideal hadron resonance gas (in blue), interacting hadronic fluid (in orange), and a fluid with a phase transition (in
green). It is important to note that transverse fluctuations of the system do not affect the longitudinal observables, and momentum fluctuations
completely cancel out. Nch is charged particle multiplicity per unit of η as predicted from statistical hadronization at T = 150 MeV with
transverse area S = 100 fm2.

also constrained by conservation laws, their initial structure is
not well understood and might well be much stronger than the
thermally driven correlations discussed here.

Nonetheless, these calculations were sufficient to illustrate
the potential of such correlations to constrain the equation of
state and to answer some basic questions. Given that overcom-
ing the shortcomings enumerated in the previous paragraphs
requires a substantial commitment from both the theory
and experimental communities, this study should, hopefully,
clarify whether such a significant investment might be worth-
while. Here we summarize the insights gained and the lessons
learned from this study.

(1) It is possible to consistently model the entire matrix
of correlations. This requires simultaneous considera-

tion of all seven conserved quantities. Because boost
invariance was assumed, and transverse momentum
was ignored, the calculations here were greatly sim-
plified, but the paradigm presented here is certainly
extendable to more realistic cases. More realistic cal-
culations would first require careful consideration of
the algorithms to handle the additional dimensionality,
and adding transverse flow would then allow the cor-
relations involving Px and Py to mix with the other five
quantities.

(2) All the correlations were significantly sensitive to the
equation of state and transport coefficients, and such
correlations survived the particlization of being pro-
jected from the hydrodynamic stage to free-streaming,
but decaying, hadrons. Correlations often had
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nontrivial structures, and the widths in rapidity
were �1 unit of rapidity. Correlations from the initial
state, which were ignored here, should have structures
characterized by �1 unit of rapidity, because of the
greater time they have to spread.

The strength of thermal correlations for central
collisions was found to be significant, similar in
magnitude to those seen experimentally in pt − pt cor-
relations [45] or correlations often referred to as the
“Ridge” [46]. Thus, the thermally sourced correlations
considered here are not overwhelmed by those of the
initial state. Given their narrower structure, there is
hope they might somewhat separable from those of the
initial state, but indications are that this would require
significant modeling and analysis both experimentally
and theoretically.

(3) Such correlations are highly intertwined, especially
at lower beam energy where the net baryon density
significantly differs from zero. At the highest energies,
charge-charge correlations do not mix with those in-
volving energy and momentum. For collisions studied
at the SPS at CERN, or for the Beam-Energy-Scan at
RHIC, correlations appear between charges, such as
baryon number, and energy. Energy and momentum
correlations then mix from hydrodynamics. Thus, it is
crucial to simultaneously consider the entire matrix of
correlations, which would include such quantities as
the correlation between baryon number and transverse
energy.

(4) Calculating correlations given the equation of state,
transport coefficients, and initial state effects already
represents a significant challenge. Performing the in-
verse calculation, where one constrains or infers the
equation of state from measurements, is even more
daunting. Given the current uncertainties in the initial
state, especially for lower beam energies, pursuing this
class of correlations at the current time is probably
premature for lower beam energies. However, once all
the modeling elements are in place and better under-
stood, these correlations have the potential to provide
tremendous insight into the evolution of bulk proper-
ties of matter throughout a heavy-ion collision. These
correlations should have especially penetrating insight
into any phase transitions.
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APPENDIX A: SUM RULES

The correlation functions in this study, along with the
Green’s functions are all constrained by energy, momentum,
and charge conservation. These constraints were rather easily
expressed in Euclidean space, but in Bjorken coordinates they
are more subtle. Energy and momentum transform into one
another, because Bjorken coordinates involve Lorentz boosts,
so the simple sum rules, such as the correlations integrating to

the susceptibilities, need to be restated. This is the goal of this
Appendix.

In Bjorken coordinates the proper time τ and the spatial
rapidity, η replace the Euclidean coordinates of time t and the
longitudinal position z through the transformation,

τ ≡
√

t2 − z2, η ≡ tanh−1(z/t ). (A1)

The collective velocity is vz = tanh η. For boost-invariant sys-
tems, all local thermodynamic quantities depend only on τ ,
including the criteria for decoupling. Thus, it makes sense
to focus on correlations at fixed τ . At fixed τ correlations,
〈δA(η1)δB(η2)〉 depend only on the relative rapidity, assum-
ing that A or B refer to the energy, momentum, and charge
densities expressed in the local Bjorken frame. The local
Bjorken frame involves boosting with velocity tanh η from the
laboratory frame. In the absence of fluctuations this frame is
the same as the local fluid frame, though the fluid frame will
differ slightly once the perturbations are considered. The goal
for this section is to express the sum rules for the correlations,
defined in the local rest frames, in terms of integrals over
relative spatial rapidity, �η.

1. Constraints for correlation functions

First, we consider correlations involving the energy and the
longitudinal momentum densities. For any operator A(η = 0),∫

dη〈δρE (η)A(0)〉 = 0,∫
dη〈δMz(η)A(0)〉 = 0 (A2)

due to energy and momentum conservation, and δρE and δMz

are the changes to the energy and momentum per some slice
of spatial rapidity and the energy and momenta are defined in
the laboratory frame. One can write δρE and δMz in terms of
δε and δM̃z, which are the energy and momentum densities in
the local Bjorken frame,

δρE = δε cosh η + δM̃z sinh η,

δMz = δM̃z cosh η + δε sinh η. (A3)

One can define a four-vector, δMμ = T μνd�μ, where d�

is a hypervolume element. In the local Bjorken frame, for a
cross-sectional area A, d�μ = A(τdη, 0, 0, 0), and in the lab-
oratory frame d�μ = A(τdη cosh η, 0, 0, τdη sinh η). Given
that the break hypersurface element, d�μ, is defined by con-
stant τ , the differential four-momentum in the Bjorken frame
is δM̃μ = (δε, 0, 0, δM̃z ).

Energy and momentum conservation thus give the follow-
ing constraints:∫

dη〈[δε(η) cosh η + δM̃z(η) sinh η]δε(0)〉 = 0,∫
dη〈[δε(η) cosh η + δM̃z(η) sinh η]δM̃z(0)〉 = 0,∫

dη〈[δM̃z(η) cosh η + δε(η) sinh η]δε(0)〉 = 0,∫
dη〈[δM̃z cosh η + δε(η) sinh η]δM̃z(0)〉 = 0. (A4)
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Next we define correlations, Cab(η), in such a way that they
ignore zero-range correlations and assume the zero-range cor-
relations (particles with themselves mostly) are defined by the
susceptibilities.

〈δε(η)δε(0)〉 = CEE (η) + χEEδ(η),

〈δε(η)δM̃z(0)〉 = CEP(η),

〈δM̃z(η)δε(0)〉 = CPE (η),

〈δM̃z(η)δM̃z(0)〉 = CPP(η) + χPPδ(η). (A5)

The susceptibility CEE is the specific heat (multiplied by T 2)
and CPP = (P + ε)T . From inserting these definitions into
Eqs. (A4),∫

dη[CEE (η) cosh(η) + CPE (η) sinh(η)] = −AτχEE ,∫
dη[CPP(η) cosh(η) + CEP(η) sinh(η)] = −AτχPP.

(A6)

The functions CEE and CPP are even functions in η and CPE

and CEP are odd functions, with CPE (η) = −CEP(η). These
correlations were defined in terms of operators at positions
η and zero, but all the correlations Cab(η1, η2) are functions
of η1 − η2 only, and thus the η dependence above can be
replaced with the relative spatial rapidity, �η.

Subtracting the two expressions in Eq. (A6) from one an-
other provides a particularly useful expression, as it ultimately
leads to expressions for the transverse energy,∫

dη[CEE (η) cosh η + CPE (η) sinh η − CEP(η) sinh η

−CPP(η) cosh η] = (−χEE + χPP )Aτ. (A7)

At large times, when the particles are free streaming, the ra-
pidity and spatial rapidity become equal. The right-hand side
of Eq. (A7), which represents the local correlation of a particle
with itself simply becomes the density of tracks per rapidity
multiplied by the average E2

t per track. The left-hand corre-
lations involving the δM̃z all vanish because, asymptotically,
the particles have no longitudinal momentum as the rapidity y
approaches η. The only correlation remaining is thus the one
involving the transverse energies, and∫

dy 〈δρt (y)δρt (0)〉 cosh η = −dN

dy

〈
E2

t

〉
. (A8)

Here ρt (y) is the transverse energy per rapidity, and the aver-
aging, 〈. . . 〉, ignores the correlation of a particle with itself.

One might ask how the other combination, CEE + CPP,
might constrain the final state. Summing the two expressions,∫

dη[CEE (η) + CPP(η)] cosh η = (−χEE − χPP )Aτ.

(A9)

However, once the particles rapidity approach their spatial
rapidities, one ends up with the same constraint. This is not
to say there exists only one useful constraint. Both constraints
provide stringent tests of a correlation calculation.

Constraints for correlations involving the transverse mo-
mentum components, or the baryon, electric, and strangeness
charge densities are easier to derive because the boost from the
Euclidean coordinates to Bjorken coordinates does not affect
Px, Py or the charge densities. The constraints are then∫

dη〈δM̃x(η)δM̃x(0)〉 =
∫

dηδM̃yδM̃y

= −Aτ (P + ε)T 2, (A10)∫
dη〈δρi(η)δρ j (0)〉 = −Aτχi j,∫

dη〈δρi(η)δε(0) = 0. (A11)

Due to odd reflection symmetries,∫
dη〈δMz(η)δA(0)〉 = 0 (A12)

for any A = ε, ρi, Mx, or My. Finally, because transverse ex-
pansion is neglected, there are no cross terms involving Mx or
My, and∫

dη〈δMx(η)δA(0)〉 =
∫

dη〈δMy(η)δA(0)〉 = 0 (A13)

for any A unless A = Mx or My for the two expectations above.

2. Constraints for Green’s functions due to conservation laws

If one has energy density (energy per spatial rapidity), δε,
at time τ0, then the resulting energy, momentum, and charge
conservation can be expressed in terms of Green’s functions,

δε(τ, η) =
∫

dη0GEE (τ, τ0,�η = η − η0)δε(τ0, η0),

δM̃z(τ, η) =
∫

dη0GPE (τ, τ0,�η = η − η0)δε(τ0, η0),

δρ̃(τ, η) =
∫

dη0GQE (τ, τ0,�η = η − η0)δε(τ0, η0).

(A14)

Considering the case where δε(τ0, η0) is a delta function at
η0 = 0,

δε(τ0, ε) = δEtotδ(η0), (A15)

the total energy is Etot, which along with momentum and
charge must then be conserved. The energy, momentum, and
charge in the laboratory frame are defined as

Etot =
∫

dη[δε(η, τ ) cosh η + δM̃z(η, τ ) sinh η],

Pztot = 0 =
∫

dη[δM̃z(η, τ ) cosh η + δε(η, τ ) sinh η],

Qtot = 0 =
∫

dηδρE (η, τ ). (A16)

The momentum and energy expressions above can be derived
by starting with writing the energy and momentum in terms of
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the stress-energy tensor,

δMμ =
∫

δTμνd�ν, (A17)

where d�ν is the differential hyper volume, ∼τdη, in the local
Bjorken frame. In that frame δT00 = δε/τ and T0z = δM̃z/τ .
Boosting the resulting energy-momentum four-vector to the
laboratory frame adds the factors, cosh η and sinh η.

Energy, momentum, and charge conservation the require
the following constraints on the Green’s functions:∫

dη[GEE (τ, τ0, η) cosh η + GPE (τ, τ0, η) sinh η] = 1,∫
dη[GPE (τ, τ0, η) cosh η + GEE (τ, τ0, η) sinh η] = 0,∫

η GQE (τ, τ0, η) = 0.

(A18)

Similarly, one can consider initial fluctuations in the mo-
mentum density. The resulting constraints are∫

dη[GPP(τ, τ0, η) cosh η + GEP(τ, τ0, η) sinh η] = 1,∫
dη[GEP(τ, τ0, η) cosh η + GPP(τ, τ0, η) sinh η] = 0,∫

dη GQP(τ, τ0, η) = 0.

(A19)

For the charge, ∫
dη GQQ(τ, τ0, η) = 1,∫

dη[GEQ(τ, τ0, η) cosh η + GPQ(τ, τ0, η) sinh η] = 0,∫
dη[GPQ(τ, τ0, η) cosh η + GEQ(τ, τ0, η) sinh η] = 0.

(A20)

Equations (A18), (A19), and (A20) represent the constraints
on Green’s functions due to conservation laws.

Finally, the transverse momentum components are also
conserved. Given that, in the Bjorken limit with no transverse
expansion, they do not mix with the other components, and
that they are invariant to longitudinal boosts, the constraints
are simple,∫

dη GPxPx (τ, τ0, η) =
∫

dη GPyPy (τ, τ0, η) = 1. (A21)

APPENDIX B: INCORPORATING INTERACTIONS INTO
THE EQUATION OF STATE AND FLUCTUATIONS

The equations of state in this study use the hadron gas
as a base and then add contributions to interactions. For a
given equation of state the calculations require knowledge
of all fluctuations. For hydrodynamic calculations the input
variables are the energy density and the three charge densities,

i.e., thermodynamics in the microcanonical ensemble. How-
ever, the pressure, and especially the fluctuations, are most
clearly defined in the grand-canonical ensemble. Further, the
interaction terms used here are functions of the density and
temperature, i.e., the canonical ensemble.

1. Fluctuations in the grand-canonical ensemble

For a free gas, one can relatively easily program the pres-
sure and fluctuations in terms of the temperature and chemical
potentials. The grand-canonical partition function is

ZGC = PV

T
=

∑
h

(2Sh + 1)
V

(2π )3

∫
d3 p e−(Ep−μh )/T

=
∑

h

(2Sh + 1)m2
hTeμh/T K2(mh/T ), (B1)

where mh, Sh, and μh are the mass, spin, and chemical poten-
tial for a hadron species h. The energy density and fluctuations
can then readily be obtained by taking derivatives of the
grand-canonical partition function. If one wants such quan-
tities in terms of the energy and charge densities, then one
can first find the temperature and chemical potentials from
the energy and charge densities through a Newton’s method.
Once one knows the chemical potentials the fluctuations can
be found quickly.

Susceptibilities and fluctuations are more conveniently de-
fined in terms of T and μ/T , which is defined here as μ̃a =
μa/T . First, the charge fluctuations are

χab ≡ 1

V
〈δQaδQb〉 = ∂ρa

∂μ̃b
. (B2)

Energy-energy and energy-charge fluctuations are

χEQa ≡ 1

V
〈δEδQa〉

= ∂ε

∂μ̃a
= T 2 ∂ρa

∂T
,

χEE ≡ 1

V
〈δEδE〉

= T 2 ∂ε

∂T
. (B3)

2. Fluctuations in the canonical ensemble

Adding interactions complicates the procedure. Inter-
actions are most easily expressed in terms of density,
which suggests using the canonical partition function. The
Helmholtz free-energy density, which is simply related to the
partition function is convenient when adding interaction terms
as functions of the charge density ρ and the temperature T .
However, expressing the fluctuations requires some care.

In terms of the canonical partition function the Helmholtz
free-energy density is

f (ρ, T ) = 1

V
(E − T S) = −T

V
ln ZC . (B4)
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The differential free-energy density is, after using the iden-
tity δV/V = −δρ/ρ,

δ f = δρ

ρ
f + 1

V
(−SδT − PδV )

= δρ

ρ
f − sδT + Pδρ

ρ

= μδρ − sδT . (B5)

The last relation used the identity,

s = βε + P/T − μρ/T . (B6)

Reading off the last expression,

s = − ∂ f

∂T
, μ = ∂ f

∂ρ
, (B7)

where f is assumed to be a function of ρ and T . Using the
definition of f ,

ε = f + T s = f + T
∂ f

∂T
= −T 2 ∂

∂T

(
f

T

)
. (B8)

Using Eq. (B6) one can write the pressure,

P = − f + μρ. (B9)

Summarizing, to this point we have the basic thermodynamic
quantities in terms of f (T, ρ):

ε = −T 2 ∂

∂T

(
f

T

)
, s = − ∂ f

∂T
,

μ = ∂ f

∂ρ
, P = − f + μρ. (B10)

a. Charge susceptibilities in the canonical ensemble

To see how to express such quantities in the canonical
ensemble, one may consider the matrix

Mab ≡ ∂μ̃a

∂ρb
. (B11)

The matrix is simply the inverse of χab,

δρa = χabδμ̃b, δμ̃a = Mabδρb. (B12)

If the lower expression is multiplied by the inverse of M, then

δρa = M−1
ab δμ̃b. (B13)

Thus, one can see that

M = χ−1, χ = M−1. (B14)

Thus, to get the charge fluctuations, which were defined in the
grand-canonical ensemble, from a formulation based on the
f (T, ρ), one can proceed via

μ̃a = 1

T

∂ f

∂ρa
,

χ−1
ab = 1

T

∂2 f

∂ρa∂ρb
. (B15)

The charge fluctuation is then found by inverting χ−1.

b. The specific heat and energy-charge fluctuation
in the canonical ensemble

One can also find the fluctuation of the energy density, at
fixed μ̃, in terms of f (T, ρ),

δε = ∂ε

∂ρa
δρa + ∂ε

∂T

∣∣∣∣
fixed ρ

δT,

δμ̃a = ∂μ̃a

∂ρb
δρb + ∂μ̃a

∂T

∣∣∣∣
fixed ρ

δT = 0,

δρa = −
(

∂μ̃

∂ρ

)−1

ab

∂μ̃b

∂T

∣∣∣∣
fixed ρ

δT, = −χab
∂μ̃b

∂T
δT,

δε = δT

{
− ∂ε

∂ρa
χab

∂μ̃b

∂T

∣∣∣∣
fixed ρ

+ ∂ε

∂T

∣∣∣∣
fixed ρ

}
. (B16)

This yields

χEE = ∂ε

∂T

∣∣∣∣
fixed ρ

− ∂ε

∂ρa
χab

∂μ̃b

∂T

∣∣∣∣
fixed ρ

. (B17)

Here, even if one is calculationg a contribution from a subset
of the free energy, e.g., that due to interactions, χab is the total
charge susceptibility.

Next, one can calculate χEQ. We do similar steps above,
except set δT = 0,

δε = ∂ε

∂ρa
δρa,

δρa = χabδμ̃b,

δμa = χ−1
ab δρb, χEQ = ∂ε

∂μ̃a
= ∂ε

∂ρb
χba. (B18)

Again, even if one is calculating the contribution to some
subset of the free energy, χab in Eq. (B19) must refer to the
total charge susceptibility.

3. Adding contributions from the noninteracting
gas and from interactions

Because the interaction energy is mainly a function of the
density, it is natural to express the Helmholtz free energy as
two separate contributions, which then add together. The first
contribution to the free energy, that from the noninteracting
gas, can be calculated by beginning with the grand-canonical
ensemble. The contribution from interactions, can then be
added. For non-momentum-dependent interactions one ex-
pects the free-energy density due to interactions to depend
only on the density, not the temperature, though the derivation
here does not assume that. We then express how the charge
susceptibilites can then be generated from the Helmholtz
free-energy density. It should be emphasized that stating that
the interaction contribution to f (ρ, T ) adds as separate term
is crucial to this derivation. One could have stated that the
interactions provided a separate term to the pressure, with
both terms evaluated at the same chemical potential. But that
represents a different physical assumption that seems more
difficult to motivate given that it is more natural to assume
that the interaction contributes as a function of the densities,
not as a function of the chemical potentials. For example,
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if one added an additional noninteracting species, then the
chemical potentials would change, but the densities of the
interacting particles would not. For mean-field interactions,
one might expect that the energy, E , changes with density,
mostly independent of temperature and that the entropy is
unaffected. That implies that F = E − T S would be altered
by adding some function of the density. Further, one may wish
to understand the susceptibilities in the mixed-phase region,
i.e., densities at which the grand-canonical ensemble gives
undefined fluctuations.

For our aims, we need to have thermodynamic quantities
as a function of density, not chemical potential. Going from
one to the other is not particularly difficult, unless one has
an unstable mixed-phase region. If one wishes to model the
dynamics of such a phase, then it is imperative to work with
quantities which are functions of density. Further, the interac-
tion energy is more straightforward to describe as an addition
to the free-energy density, because it is more often more easily
understood as a function of density. For that reason one might
think it reasonable to express the free-energy density as

f (ρ, T ) = ffree(�ρ, T ) + fint (�ρ, T ). (B19)

In fact, if the interaction is purely density dependent, i.e.,
independent of the momenta of the underlying particles, then
fint (ρ, T ) is simply the potential energy density, and is inde-
pendent of temperature.

Given the definition in Eq. (B38), one can immediately see
that

μ̃tot (�ρ, T ) = μ̃free(�ρ, T ) + μ̃int (�ρ, T ),

Ptot (�ρ, T ) = Pfree(�ρ, T ) + Pint (�ρ, T ),

εtot (�ρ, T ) = εfree(�ρ, T ) + εint (�ρ, T ). (B20)

Note that this definition of Pint differs from one where the total
pressure is defined by separating out the two contributions
at the same chemical potential. The latter choice would be
natural if one were working in the grand-canonical ensemble,
in terms of �̃μ, rather than in terms of the density.

Thus, give the choice of Eq. (B38) one can see that

∂2 ftot

∂ρa∂ρb
= ∂2 ffree

∂ρa∂ρb
+ ∂2 fint

∂ρa∂ρb
,

χ−1
tot = χ−1

free + χ−1
int . (B21)

This if one wants the charge susceptibility of the entire sys-
tem, then one should calculate χ−1 for both pieces, add them
together, then take the inverse of the matrix,

χ = (
χ−1

free + χ−1
int

)−1
. (B22)

The susceptibilities which include energy can also be found
in terms of density-dependent (rather that μ̃-dependent func-
tions). Beginning by expressing the grand partition function in
terms of T and μ̃, one can write the energy charge fluctuation,

ζa ≡ 1

V T
〈δEδQa〉 = 1

T

∂ε

∂ ˜̃μa
= T

∂ρa

∂T
. (B23)

One can then write this as

ζa = 1

T

∂ε

∂ρb

∂ρb

∂μ̃a
= 1

T
χab

∂ε

∂ρb
. (B24)

Rewriting the specific heat requires remembering that
derivatives with respect to temperature require noting whether
�̃μ or �ρ are being held constant. First, we define the specific
heat so that it corresponds to the energy fluctuation in the
grand-canonical ensemble,

ξ ≡ 1

T 2V
〈δEδE〉 = ∂ε

∂T

∣∣∣∣ �̃μ
. (B25)

Next, one can determine how �̃μ must be changing in order to
maintain constant density,

δρa = 0 = ∂ρa

∂T

∣∣∣∣ �̃μ
+ ∂ρa

∂μ̃b
δμ̃b,

δμ̃a = −χ−1
ab

∂ρa

∂T

∣∣∣∣ �̃μ
. (B26)

This then gives

δε = ∂ε

∂T

∣∣∣∣ �̃μ
+ ∂ε

∂μ̃a
δμ̃a

∂ε

∂T

∣∣∣∣
�ρ

= ∂ε

∂T

∣∣∣∣ �̃μ
− ∂ρa

∂T
|�̃μχ−1

ab

∂ε

∂μ̃b

= ∂ε

∂T

∣∣∣∣ �̃μ
− ζaχ

−1
ab ζb. (B27)

For our calculation, we have two components, that of a
noninteracting gas plus an interaction. The thermodynamics
of the noninteractiong gas are most easily expressed in terms
of chemical potentials, whereas the interaction term is most
easily expressed in terms of densities. To add quantities to-
gether, we assume that the net free energy is the sum of the
free energy of a gas and the interaction part,

f = f (gas) + f (int). (B28)

This then implies that

ε = ε (gas) + ε (int),

μ̃a = μ̃(gas)
a + μ̃

(int)
b ,

χ−1 = χ−1(gas) + χ−1(int),

∂ε

∂T

∣∣∣∣
�ρ

= ∂ε (gas)

∂T

∣∣∣∣
�ρ
+ ∂ε (int)

∂T

∣∣∣∣
�ρ
. (B29)

Note that the chemical potentials of the two parts add (they
are not the same) and that the densities are the same.

The order of operations for adding the two contributions
are as follows:

(1) Calculate all quantities for the gas in the grand-
canonical ensemble. This includes ε (gas), ζ

(gas)
a , and

χ (gas). Also take the inverse of χ (gas) to get χ−1(gas).
Also calculate

∂ε (gas)

∂ρa
= 1

T
χ

−1(gas)
ab ζ

(gas)
b ,

∂ε (gas)

∂T

∣∣∣∣
�ρ

= ∂ε (gas)

∂T

∣∣∣∣ �̃μ
− ζ (gas)

a χ
−1(gas)
ab ζ

(gas)
b . (B30)
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(2) Calculate the quantities for the interaction contribu-
tion:

ε (int) = −T 2 ∂

∂T
( f (int)/T ),

μ̃(int)
a = 1

T

∂ f (int)

∂ρa
,

χ
−1(int)
ab = ∂μ̃(int)

a

∂ρb
, (B31)

along with ∂ε (gas)/∂ρa and ∂ε (gas)/∂T |�ρ .
(3) Add contribution from gas and interactions to get com-

bined quantities,

ε = ε (gas) + ε (int),

P = P(gas) + P(int),

μ̃a = μ̃(gas)
a + μ̃(int)

a ,

χ−1
ab = χ

−1(gas)
ab + χ

−1(int)
ab ,

∂ε

∂ρa
= ∂ε (gas)

∂ρa
+ ∂ε (int)

∂ρa
,

∂ε

∂T

∣∣∣∣
�ρ

= ∂ε (gas)

∂T

∣∣∣∣
�ρ
+ ∂ε (int)

∂T

∣∣∣∣
�ρ
. (B32)

Now, from all the combined quantities, one can calcu-
late all the net susceptibilities,

χab = (χ−1)−1
ab ,

ζa = 1

T
χab

∂ε

∂ρb
,

ξ = ∂ε

∂T

∣∣∣∣
�ρ
+ ζaχ

−1
ab ζb. (B33)

4. The speed of sound

When taking partial derivatives, assume functions are of T
and μ̃a ≡ μa/T ,

c2
s = ∂P

∂ε

∣∣∣∣
s/ρ

,

δP = ∂P

∂T
δT + ∂P

∂μ̃a
δμ̃a,

= P + ε

T
δT + ρaT δμ̃a,

δε = ∂ε

∂T
δT + ∂ε

∂μ̃a
δμ̃a,

δρa = ∂ρa

∂T
δT + ∂ρa

∂μ̃b
δμ̃b

= ∂ρa

∂T
δT + χabδμ̃b,

δs = ∂s

∂T
δT + ∂s

∂μ̃a
δμ̃a,

s2δ
(ρa

s

)
= sδρa − ρaδs = 0,

0 = s
∂ρa

∂T
δT + sχabδμ̃b − ρb

∂s

∂T
δT − ρa

∂s

∂μ̃b
δμ̃b,

δμ̃a = Ma
δT

T
,

Ma = T

(
sχ−ρ

∂s

∂μ̃

)−1

ab

(
ρb

∂s

∂T
−s

∂ρb

∂T

)
. (B34)

By substituting for δμ̃ in the expressions for δP and δε, then
taking the ratio δP/δε, the factors of δT drop out and

c2
s = (P + ε)/T + ρaMa

∂ε
∂T + ∂ε

∂μ̃a
Ma/T

. (B35)

Next, substitute to replace derivative of s, with derivatives of
ε or ρ, so that all derivatives in the Eq. (B35) are related to
fluctuations.

∂P

∂T
= P + ε

T
,

∂s

∂T
= ∂

∂T

(
P + ε − μ̃aρaT

T

)

= 1

T

(
P + ε

T
+ ∂ε

∂T
− T μ̃a

∂ρa

∂T
− μ̃aρa

)
− s

T

= 1

T

∂ε

∂T
− μ̃a

∂ρa

∂T
,

∂s

∂μ̃a
= 1

T

∂

∂μ̃a
(P + ε − μ̃bρbT ),

= 1

T

(
ρaT + ∂ε

∂μ̃a
− ρaT − μ̃bT

∂ρ̃b

∂μ̃a

)

= 1

T

(
∂ε

∂μ̃a
− μ̃bT

∂ρb

∂μ̃a

)

Ma = A−1
ab

(
ρb

∂ε

∂T
− ρbT μ̃c

∂ρc

∂T
− T s

∂ρb

∂T

)
,

Aab = sχab − ρa

(
1

T

∂ε

∂μ̃b
− μ̃c

∂ρc

∂μ̃b

)

= sχab − ρa

T

∂ε

∂μ̃b
+ ρaχbcμ̃c. (B36)

Now, let us summarize the results for the speed of sound using
the following definitions for the susceptibilities,

ξ ≡ ∂ε

∂T
= 1

T 2V
〈δEδE〉,

ζa ≡ 1

T

∂ε

∂μ̃a
= T

∂ρa

∂T
= 1

TV
〈δEδQa〉,

χab ≡ ∂ρa

∂μ̃b
= 1

V
〈δQaδQb〉,

Fp = P + ε

T
= 1

T 2v
〈δPxδPx〉, (B37)

where Px is a x component of the momentum.
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This gives

c2
s = (P + ε)/T + ρaMa

ξ + ζaMa
,

Ma = A−1
ab [(ξ − μ̃cζc)ρb − sζb],

Aab = sχab − ρaζb. (B38)

5. Derivatives at fixed energy density

Stepping away from the topic of fluctuations, hydro-
dynamic codes often require taking derivatives of various
thermodynamic quantities with respect to density at fixed tem-
perature. Here we summarize the relations that were required
here. First, we review derivative of the pressure,

∂P

∂ρa

∣∣∣∣
T

= ∂P

∂μ̃b

∂μ̃b

∂ρa

= χ−1
ab ρbT,

∂ε

∂ρa

∣∣∣∣
T

= χ−1
ab

∂ε

∂μ̃b

= χ−1
ab ζbT = 0,

δP|ρ =
[

∂P

∂T

∣∣∣∣
μ̃

− ∂P

∂μ̃a

∣∣∣∣
μ̃

1

T
χ−1

ab ζb

]
δT,

∂P

∂T

∣∣∣∣
ρ

= P + ε

T
− ρaχ

−1
ab ζb. (B39)

Similarly, derivatives of ε are

∂ε

∂T

∣∣∣∣
ρ

= ∂ε

∂T

∣∣∣∣
μ̃

− ∂ε

∂μ̃a

1

T
χ−1

ab ζb

= ξ − ζaχ
−1
ab ζb. (B40)

Next, we need to find derivatives of P and ε with respect to T
at fixed density,

δP = ∂P

∂T
δT + ∂P

∂μ̃a
δμ̃a,

δρa = ∂ρ

∂T
δT + ∂ρa

∂μ̃b
δμ̃b = 0

= 1

T
ζaδT + χabδμ̃b. (B41)

Now, to find ∂P/∂ρa|ε ,

δP = ∂P

∂ρa

∣∣∣∣
T

δρa + ∂P

∂T

∣∣∣∣
ρ

δT,

δε = ∂ε

∂ρa

∣∣∣∣
T

δρa + ∂ε

∂T

∣∣∣∣
ρ

δT = 0

δP = ∂P

∂ρa

∣∣∣∣
T

δρa − δρa

∂ε/∂T |ρ
∂P

∂T

∣∣∣∣
ρ

∂ε

∂ρa

∣∣∣∣
T

,

∂P

∂ρa

∣∣∣∣
ε

= ∂P

∂ρa

∣∣∣∣
T

− 1

ξ

∂P

∂T

∣∣∣∣
ρ

∂ε

∂ρa

∣∣∣∣
T

. (B42)

Finally, to find ∂P/∂ε at fixed density, one can apply
Eqs. (B39) and (B40),

∂P

∂ε

∣∣∣∣
ρ

=
∂P
∂T

∣∣
ρ

∂ε
∂T

∣∣
ρ

. (B43)

6. Algorithmic design

The code used in this study has simple routines that calcu-
late the free-particle contributions to �ρ, P, ε, and χ in terms
of �μ and T . An optimized Newton’s method routine is used to
find �μ in terms of �ρ and T . This results in an easily accessible
routine that gives all the thermodyanmic quantities in terms of
�ρ and T . One can invert χ to find the free-energy contribution
to χ−1. This thus provides Pfree, εfree, �μfree, and χ−1

free.
Next, one calls a function that provides the free energy,

plus all its derivatives with respect to �ρ. This provides the
interaction contributions, fint, Pint , εint, �μint , and χ−1

int . If one
has an analytic form for fint (�ρ, T ), then it is usually simple
to find all the interaction contributions by taking derivatives
of fint with respect to temperature and densities. Finally, one
finds the thermodynamic quantities of the entire system by
simply adding the two pieces according to the steps outlined
earlier.

[1] W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion
collisions: The big picture, and the big questions, Annu. Rev.
Nucl. Part. Sci. 68, 339 (2018).

[2] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu,
Mapping the phases of quantum chromodynamics with beam
energy scan, Phys. Rep. 853, 1 (2020).

[3] T. Dietrich, M. W. Coughlin, P. T. H. Pang, M. Bulla, J. Heinzel,
L. Issa, I. Tews, and S. Antier, Multimessenger constraints
on the neutron-star equation of state and the hubble constant,
Science 370, 1450 (2020).

[4] S. Beloin, S. Han, A. W. Steiner, and K. Odbadrakh, Simultane-
ous fitting of neutron star structure and cooling data, Phys. Rev.
C 100, 055801 (2019).

[5] E. R. Most, L. J. Papenfort, V. Dexheimer, M. Hanauske, and H.
Stoecker, On the deconfinement phase transition in neutron-star
mergers, Eur. Phys. J. A 56, 59 (2020).

[6] L. R. Weih, M. Hanauske, and L. Rezzolla, Postmerger
gravitational-wave signatures of phase transitions in binary
mergers, Phys. Rev. Lett. 124, 171103 (2020).

[7] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-Bielich,
New constraints on radii and tidal dformabilities of nutron sars
from GW170817, Phys. Rev. Lett. 120, 261103 (2018).

[8] I. Legred, K. Chatziioannou, R. Essick, S. Han, and P. Landry,
Impact of the PSR J0740 + 6620 radius constraint on the
properties of high-density matter, Phys. Rev. D 104, 063003
(2021).

[9] C. Drischler, S. Han, J. M. Lattimer, M. Prakash, S. Reddy, and
T. Zhao, Limiting masses and radii of neutron stars and their
implications, Phys. Rev. C 103, 045808 (2021).

[10] S. Huth, P. T. H. Pang, I. Tews, T. Dietrich, A. L. Fèvre,
A. Schwenk, W. Trautmann, K. Agarwal, M. Bulla, M. W.
Coughlin, and C. V. D. Broeck, Constraining neutron-star

024910-19

https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1016/j.physrep.2020.01.005
https://doi.org/10.1126/science.abb4317
https://doi.org/10.1103/PhysRevC.100.055801
https://doi.org/10.1140/epja/s10050-020-00073-4
https://doi.org/10.1103/PhysRevLett.124.171103
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1103/PhysRevD.104.063003
https://doi.org/10.1103/PhysRevC.103.045808


OLEH SAVCHUK AND SCOTT PRATT PHYSICAL REVIEW C 109, 024910 (2024)

matter with microscopic and macroscopic collisions, Nature
(Lond.) 606, 276 (2022).

[11] D. Neill, R. Preston, W. G. Newton, and D. Tsang, Constraining
the nuclear symmetry energy with multimessenger resonant
shattering flares, Phys. Rev. Lett. 130, 112701 (2023).

[12] A. Sorensen et al., Dense nuclear matter equation of state
from heavy-ion collisions, Prog. Part. Nucl. Phys. 134, 104080
(2024).

[13] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,
Constraints on neutron star radii based on chiral effective field
theory interactions, Phys. Rev. Lett. 105, 161102 (2010).

[14] S. Gandolfi, J. Carlson, and S. Reddy, Maximum mass and
radius of neutron stars, and the nuclear symmetry energy, Phys.
Rev. C 85, 032801(R) (2012).

[15] C. Drischler, V. Somà, and A. Schwenk, Microscopic calcula-
tions and energy expansions for neutron-rich matter, Phys. Rev.
C 89, 025806 (2014).

[16] J. Steinheimer and J. Randrup, Spinodal amplification of den-
sity fluctuations in fluid-dynamical simulations of relativistic
nuclear collisions, Phys. Rev. Lett. 109, 212301 (2012).

[17] J. Steinheimer and J. Randrup, Spinodal density enhancements
in simulations of relativistic nuclear collisions, Phys. Rev. C 87,
054903 (2013).

[18] O. Savchuk, R. V. Poberezhnyuk, A. Motornenko, J.
Steinheimer, M. I. Gorenstein, and V. Vovchenko, Phase tran-
sition amplification of proton number fluctuations in nuclear
collisions from a transport model approach, Phys. Rev. C 107,
024913 (2023).

[19] V. Vovchenko, O. Savchuk, R. V. Poberezhnyuk, M. I.
Gorenstein, and V. Koch, Connecting fluctuation measurements
in heavy-ion collisions with the grand-canonical susceptibili-
ties, Phys. Lett. B 811, 135868 (2020).

[20] A. Sorensen, D. Oliinychenko, L. McLerran, and V. Koch, Mea-
suring the speed of sound using cumulants of Baryon number,
Acta Phys. Pol. B: Proc. Suppl. 16, 1 (2023).

[21] B. Ling, T. Springer, and M. Stephanov, Hydrodynamics of
charge fluctuations and balance functions, Phys. Rev. C 89,
064901 (2014).

[22] S. A. Bass, P. Danielewicz, and S. Pratt, Clocking hadronization
in relativistic heavy ion collisions with balance functions, Phys.
Rev. Lett. 85, 2689 (2000).

[23] S. Pratt, W. P. McCormack, and C. Ratti, Production of charge
in heavy ion collisions, Phys. Rev. C 92, 064905 (2015).

[24] S. Pratt and C. Young, Relating measurable correlations in
heavy ion collisions to bulk properties of equilibrated QCD
matter, Phys. Rev. C 95, 054901 (2017).

[25] S. Pratt and C. Plumberg, Evolving charge correlations in a hy-
brid model with both hydrodynamics and hadronic Boltzmann
descriptions, Phys. Rev. C 99, 044916 (2019).

[26] S. Pratt and C. Plumberg, Charge balance functions for heavy-
ion collisions at energies available at the CERN Large Hadron
Collider, Phys. Rev. C 104, 014906 (2021).

[27] G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and J.-I.
Skullerud, Electrical conductivity and charge diffusion in ther-
mal QCD from the lattice, J. High Energy Phys. 02 (2015) 186.

[28] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions:
The central rapidity region, Phys. Rev. D 27, 140 (1983).

[29] P. Romatschke, New developments in relativistic viscous hydro-
dynamics, Int. J. Mod. Phys. E 19, 1 (2010).

[30] S. Pratt, J. Kim, and C. Plumberg, Evolution of charge fluctua-
tions and correlations in the hydrodynamic stage of heavy ion
collisions, Phys. Rev. C 98, 014904 (2018).

[31] M. Pradeep, K. Rajagopal, M. Stephanov, and Y. Yin, Freezing
out fluctuations in Hydro+ near the QCD critical point, Phys.
Rev. D 106, 036017 (2022).

[32] S. Pratt and G. Torrieri, Coupling relativistic viscous hydro-
dynamics to Boltzmann descriptions, Phys. Rev. C 82, 044901
(2010).

[33] D. Oliinychenko and C. Shen, Resonance production in Pb ±
Pb collisions at 5.02 TeV, EPJ Web Conf. 259, 10008 (2022).

[34] J. Steinheimer, J. Aichelin, and M. Bleicher, Nonthermal p/π
ratio at LHC as a consequence of hadronic final state interac-
tions, Phys. Rev. Lett. 110, 042501 (2013).

[35] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and
H. Niemi, Diffusion processes involving multiple conserved
charges: A study from kinetic theory and implications to the
fluid-dynamical modeling of heavy ion collisions, Phys. Rev. D
101, 076007 (2020).

[36] S. Pratt, S. Schlichting, and S. Gavin, Effects of momentum
conservation and flow on angular correlations at RHIC, Phys.
Rev. C 84, 024909 (2011).

[37] V. A. Kuznietsov, O. Savchuk, M. I. Gorenstein, V. Koch, and
V. Vovchenko, Critical point particle number fluctuations from
molecular dynamics, Phys. Rev. C 105, 044903 (2022).

[38] R. V. Poberezhnyuk, O. Savchuk, M. I. Gorenstein, V.
Vovchenko, K. Taradiy, V. V. Begun, L. Satarov, J. Steinheimer,
and H. Stoecker, Critical point fluctuations: Finite size and
global charge conservation effects, Phys. Rev. C 102, 024908
(2020).

[39] V. A. Kuznietsov, O. Savchuk, R. V. Poberezhnyuk, V.
Vovchenko, M. I. Gorenstein, and H. Stoecker, Molecular dy-
namics analysis of particle number fluctuations in the mixed
phase of a first-order phase transition, Phys. Rev. C 107, 055206
(2023).

[40] A. Sorensen and V. Koch, Phase transitions and critical behav-
ior in hadronic transport with a relativistic density functional
equation of state, Phys. Rev. C 104, 034904 (2021).

[41] S. Pratt, Consistent implementation of non-zero-range terms
into hydrodynamics, Phys. Rev. C 96, 044903 (2017).

[42] S. Mukherjee, R. Venugopalan, and Y. Yin, Real-time evolution
of non-gaussian cumulants in the QCD critical regime, Phys.
Rev. C 92, 034912 (2015).
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