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Background: In the production of hot quark gluon plasma in high-energy heavy-ion collisions, the charmonium
binding in the deconfined interior is prevented by color screening. The formation of deconfining plasma was
found as a signature of reduction of the charmonium (a bound state of charm and anticharm quark) production. A
significant amount of charm suppression has been observed in heavy-ion collisions (p-A) in various experimental
investigations. Some of the issues are still not clear in this area of research, such as the study of hadronic
properties in dense nuclear matter, the deconfinement phase transition from hadronic to quark gluon matter,
etc. We follow up on the recently published work of Jamal et al. [M. Y. Jamal, I. Nilima, V. Chandra, and
V. K. Agotiya, Phys. Rev. D 97, 094033 (2018)]; in this work the authors calculated the properties of quarkonia
[i.e., potential, binding energy, and dissociation temperature (using thermal width criteria)] in the presence of
temperature and anisotropy.
Purpose: To investigate the properties of quarkonia, namely, potential, binding energy, mass spectra, dissociation
temperature (using thermal width and thermal energy criteria), and thermodynamical properties of quark gluon
plasma (i.e., pressure, energy density, and speed of sound) in the presence of baryonic chemical potential (μb)
and anisotropy (ξ ).
Methods: The properties of quarkonia and the thermodynamical properties of quark gluon plasma (QGP) are
calculated by using the quasiparticle approach with μb in hot quantum chromodynamics medium. The medium
modified form of heavy-quark potential at finite values of μb and ξ is considered. The calculations have been
done by considering the real and imaginary parts of the potential with a static gluon propagator. The real part of
the potential has been used in solving the Schrödinger equation to obtain the binding energy of quarkonia, and
the imaginary part gives rise to the thermal width of heavy quarkonia.
Results: The binding energy and the dissociation temperature of S states of charmonia and bottomonia for n = 1
and n = 2 (radial quantum number) and the mass spectra of 1S states of quarkonia with the effects of μb and ξ

were calculated. The thermodynamical properties of QGP using the parameters ξ and μb were also determined.
It was noticed that, with an increase in the value of μb, the values of the associated properties of quarkonia
decrease. On the other hand, by increasing the value of ξ , the values of the properties of quarkonia increase.
The extracted values of mass spectra and the variation of thermodynamical properties of QGP are also compared
with the recently published theoretical and experimental data and a reasonable agreement between these values
is observed.
Conclusions: We have studied the properties of quarkonium state (i.e., 1S and 2S-states) and the thermodynam-
ical properties of QGP with μb and ξ in hot and dense quantum chromodynamics medium. Finally with this, we
may conclude that the obtained result (mention in result section) might be helpful for enhancing studies of the
highly dense object (because Compressed Baryonic Matter experiment at the Facility for Anti-proton and ion
Research in exploring QGP at higher baryon densities).
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I. INTRODUCTION

Experiments using various particle accelerators, viz., the
Relativistic Heavy-Ion Collider (RHIC) at Brookhaven Na-
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tional Laboratory (BNL), USA, and the CERN Large Hadron
Collider (LHC), Switzerland, have inferred that quark gluon
plasma (QGP) behaves like a perfect fluid instead of a non-
interacting gas of quasipartons and quasigluons due to its
collective nature [1–3]. Several signatures of QGP have been
identified so far but suppression of the quark-antiquark pair
is one of the most important or confirming signals of QGP
formation during noncentral collision of heavy ions [4,5].
Matsui and Satz [6] were the first to study the dissociation of
quarkonia, particularly that of charmonia (J/ψ), by employ-
ing color screening in a deconfined state. Both experimental
and theoretical studies exploring the properties of QGP are
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under way, and a few essential refinements in the study of
QGP have been observed during the past few decades [6–8].
It is well known that a quarkonium is bound together by
static gluons and acts as an independent degree of freedom
[9–12]. Light hadrons were emitted during the transition of
a quarkonium from one state to another state while passing
through the QGP medium [13]. Various authors [13–15] have
studied the features of quantum chromodynamics (QCD), a
strong theory of interaction, at a high-temperature scale. Stud-
ies like Refs. [16–18] are dedicated to quarkonium production
in a color evaporation model or a color-singlet model. The
suppression of QGP through coalescence or the recombi-
nation of partons can be found in Refs. [19,20]. Due to
the small velocity or large mass of heavy quarks compared
to QCD scale parameters, a nonrelativistic approach was
preferably used to study QGP properties [21–23]. In this ap-
proach, a nonrelativistic potential is employed that possesses
two fundamental features, i.e., asymptotic freedom and color
confinement of the QCD. Studies (both theoretical and exper-
imental) exist in the literature [24–30] that are focused on
the properties (including dissociation temperature), produc-
tion, and suppression of QGP. The dissociation temperature
of states has been investigated by using a quasiparticle ap-
proach in the presence of the momentum anisotropy collision
[31]. Several other studies [28–30,32–34] have included the
anisotropic effect to explore QGP.

The key idea in the present work is to include the effect
of the baryonic chemical potential along with the anisotropic
one in the hot QGP medium using an effective fugacity quasi-
particle model. The effect of the momentum space has been
incorporated through the distribution function, the details of
which can be found in Refs. [9,35,36]. The gluon propagator
and the dielectric permittivity were modified in the presence
of anisotropy (ξ ). The effect of the chemical potential has been
introduced through quasiparticle Debye mass [37,38]. In the
present work, the potential has been modified accordingly.
From the real part of the potential, so formed, the binding
energies of charmonia and bottomonia were obtained at dif-
ferent values of anisotropy [11,39–43]. The thermal width of
QGP has been derived from the imaginary part of the poten-
tial [11,39–43]. In previous studies, such as Refs. [44–47],
the authors have calculated the dissociation temperature by
using the criterion of thermal width. This idea inspired us
to study the binding energy and the thermal width of QGP
particularly at high baryon density (baryonic chemical po-
tential). The effects of the baryonic chemical potential and
anisotropy significantly revise the values of the dissociation
temperature. The thermodynamical behavior of QGP in the
presence of μb and ξ has also been studied. Various thermo-
dynamical quantities of QGP such as pressure, energy density,
and speed of sound have been studied. These quantities
played a vital role in studying the suppression of QGP, which
is regarded as the most prominent signal for the existence
of QGP.

The present paper is organized as follows. A brief dis-
cussion about the theoretical framework used in the present
work is provided in Sec. II. In Sec. III, the calculations and
results obtained are presented, and finally, the summary and
conclusions of the present work are given in Sec. IV.

II. THEORETICAL FRAMEWORKS USED
IN THE PRESENT WORK

A. Study of quasiparticle Debye mass with baryonic
chemical potential and temperature

Unlike quantum electrodynamics, the Debye mass (mD) in
the case of QCD is nonperturbative and gauge invariant. The
leading-order Debye mass in QCD coupling at high temper-
atures has been known for a long time and is perturbative in
nature. Rebhan et al. [48] have defined the Debye mass by
seeing the pole of the static propagator that is relevant, instead
of the time-time component of the gluon self-energy, and have
obtained a Debye mass that is gauge independent. This is due
to the fact that the pole of self-energy does not depend on the
choice of the gauge. The Debye mass was calculated for QGP
at a high temperature next to leading order in QCD coupling
from the correlation of two Polyakov loops by Braaten and
Nieta [49]; this result agrees with the Hard Thermal Loop
(HTL) result [48]. It was pointed out by Arnold and Zhai
[50] that the physics of the confined magnetic charge has to
be known in order to understand the contribution of O(g2T )
to the Debye mass in QCD; it was also pointed out by them
that the Debye mass as a pole of the gluon propagator no
longer holds true. Importantly in lattice QCD, the definition
of the Debye mass itself encounters difficulty due to the fact
that unlike QED the electric field correlators are not gauge
invariant in QCD. The proposal of this problem is based on
effective theories obtained by dimensional reduction [51], the
spatial correlation function of gauge-invariant meson energy,
and the behavior of color-singlet free energies [52]. Burnier
and Rothkopf [53] have attempted to define a gauge-invariant
mass from a complex static in-medium heavy-quark potential
obtained from lattice QCD. Several attempts have been made
to capture all the interaction effects present in the hot QCD
equation of state (EoS) in terms of noninteracting quasipar-
tons (quasigluons and quasiquarks). These quasipartons are
the excitations of the interacting quarks and gluons and there
are several models that describe the quasipartons, such as the
effective mass model [54,55], the effective mass model with a
Polyakov loop [56], models based on Polyakov-loop-extended
Nambu-Jona-Lasinio model (PNJL) and Nambu-Jona-Lasinio
model (NJL) [57], and the effective fugacity model [58,59].
In QCD the quasiparticle model is a phenomenological model
that is widely used to describe the nonlinear behavior of QGP
near the phase transition point. In this model, a system of
interacting massless quarks and gluons can be described as an
ideal gas of massive noninteracting quasiparticles. The mass
of the quasiparticle is dependent on the temperature, which
rises due to the interaction of gluons and quarks with the
surrounding medium. The quasiparticle retains the quantum
number of the quarks and gluons [60]. In our calculation, we
used the Debye mass (mD) for the full QCD case [32], which
is given by

m2
D(T )

g2(T )T 2
=

[(
Nc

3
× 6PolyLog[2, zg]

π2

)

+
(

N̂ f

6
× −12PolyLog[2,−zq]

π2

)]
(1)
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and

N̂ f =
(

Nf + 3

π2

∑ μ2
b

9T 2

)
. (2)

Here, g(T ) is the temperature-dependent two-loop running
coupling constant, Nc = 3 [SU(3)], Nf is the number of fla-
vors, the function PolyLog[2, z] has the form PolyLog[2, z] =∑∞

k=1
zk

k2 , zg is the quasigluon effective fugacity, and zq is the
quasiquark effective fugacity. These distribution functions are
isotropic in nature,

fg,q = zg,q exp(−βp)

[1 ± zg,q exp(−βp)]
, (3)

where g stands for quasigluons and q for quasiquarks. These
fugacities should not be confused with any conservation laws
(number conservation) and have merely been introduced to
encode all the interaction effects at high-temperature QCD.
Both zg and zq have a very complicated temperature depen-
dence and asymptotically reach the ideal value unity [59]. The
temperature-dependent zg and zq fits well into the following
form,

zg,q = aq,g exp

(
−bg,q

x2
− cg,q

x4
− dg,q

x6

)
(4)

(here, x = T/Tc and a, b, c, and d are fitting parameters)
for both EoS1 and EoS2. EoS1 is the O(g5) hot QCD EoS
[50] and EoS2 is the O[g6 ln(1/g)] hot QCD EoS [51] in
the quasiparticle description [58,59], respectively. Now, the
final expressions of the full QCD case or the quasiparticle
Debye mass in terms of the baryonic chemical potential and
the temperature [37,38] can be written as

m2
D(T, μb)

T 2
=

({
Nc

3
Q2

g

}
+

{[
Nf

6
+ 1

2π2

(
μ2

b

9T 2

)]
Q2

q

})
,

(5)

where μb is the baryonic chemical potential, and Qg and Qq

are the effective charges given by the following equations:

Q2
g = g2(T )

6PolyLog[2, zg]

π2
,

Q2
q = g2(T )

−12PolyLog[2,−zq]

π2
. (6)

In our analysis, the temperature- and baryonic-chemical-
potential-dependent quasiparticle Debye mass [i.e.,
mD(T, μb) ≡ mD or m2

D(T, μb) ≡ m2
D] has been employed to

deduce the binding energy, the mass spectra, the dissociation
temperature of the quarkonia states, and the thermodynamical
properties of QGP.

B. Modification of the Cornell potential using Fourier
transform (FT)

The velocity of the heavy-quark mass in the bound state is
small because of the large quark mass (m = mc,b � �QCD),
and the binding effects in quarkonia at the value of zero
temperature can be understood in terms of nonrelativistic po-
tential models [61]. At zero temperature, the vacuum potential
(the Cornell potential) is given as

V(r) = −α

r
+ σ r, (7)

where σ and α denote the string tension and the two-loop
coupling constant, respectively. Because the one-dimensional
vacuum potential defined by Eq. (7) is valid at zero temper-
ature, to study the QGP at finite temperature, modification
of the Cornell potential is required and this is done by using
Fourier transform (FT). The medium modification enters into
this heavy-quark potential V (k) via FT [62] as below:

Ṽ (k) = V̄(k)

ε(k)
, (8)

where k is the Fourier conjugate of the interquark distance (r)
and the dielectric permittivity [ε(k)] is obtained by the static
limit of the longitudinal part of the gluon self-energy [63,64]
as

ε(k) ≡
(

1 + m2
D(T, μb)

k2

)
, (9)

where m2
D(T, μb) is the notation of the quasiparticle or the

full QCD Debye mass with the dependency of the baryonic
chemical potential and the temperature defined by Eq. (5).
V(k) is the FT of the Cornell potential in Eq. (8). Obtaining
the FT of Eq. (7), the Cornell potential, is not an easy job.
Therefore, we consider r as distribution. Then the FT of the
Coulombic part is straightforward to compute. The FT of the
linear part σ r exp(−γ r) is

FT[σ r exp(−γ r)] = − iσ

k
√

2π

(
2

(γ − ik)3
− 2

(γ + ik)3

)
.

(10)

At γ = 0, we find the FT of σ r is

FT(σ r) = − 4σ

k4
√

2π
. (11)

The medium correction to the potential after applying the
inverse FT reads as

V (r) =
∫

d3k
(2π )3/2

(eik·r − 1)Ṽ (k). (12)

The FT of the Cornell potential is

V̄(k) = −
√

2

π

(
α

k2
+ 2

σ

k4

)
. (13)

Now substituting Eqs. (9) and (13) in Eq. (8), and employing
the inverse FT, we get the medium modified form of the
potential [58,62,63,65] depending upon distance (r) as below:

V (r, T, μb) =
(

2σ

m2
D(T, μb)

− α

)
exp[−mD(T, μb)r]

r

− 2σ

m2
D(T, μb)r

+ 2σ

mD(T, μb)
− αmD(T, μb).

(14)

It is also noticeable that in a hot QCD medium, the expression
of the potential is not the same as the lattice parametrized
heavy-quark free energy in the deconfined phase (which is
basically a screened Coulomb, more details can be found in
Ref. [66]). As emphasized by Dixit [67], a one-dimensional
FT of the Cornell potential in the medium yields a form
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similar to that used in the lattice QCD to study the quarkonium
properties, which assumes a one-dimensional color flux tube
structure. Because the flux tube structure may expand in more
dimensions [66], it is better to consider the three-dimensional
form of the medium-modified form of the Cornell potential,
which we have done in this work.

C. Quark-antiquark potential in the anisotropic medium using
the baryonic chemical potential

The spatial anisotropy (ξ ) in noncentral heavy-ion colli-
sions is generated at the early stages of QGP. As the system
evolves with time, different pressure gradients are produced in
different directions, which maps the spatial anisotropy to the
momentum anisotropy. The anisotropy in this paper is intro-
duced at the particle phase-space distribution level. Applying
the method used in Refs. [36,39,68], the distribution function
of anisotropy is obtained from the isotropic one by stretching
and squeezing it in one of the directions in the momentum
space as

f (p) → fξ (p) = Cξ f [
√

p2 + ξ (p · n̂)2], (15)

where f (p) represents the isotropic distribution function as
in Refs. [35,59], and n̂ is the unit vector in the momentum
anisotropy direction [for example, in squeezing (ξ > 0 or
oblate case) and in stretching (−1 < ξ < 0 or prolate case)
in the n̂ direction], whereas ξ denotes the anisotropy of the
medium. Various EoS effects enter through the Debye screen-
ing mass (mD). To make the Debye mass similar in both
isotropic (ξ = 0) and anisotropic (ξ �= 0) [36] media, we use
the normalization constant Cξ as follows:

Cξ =
⎧⎨
⎩

√|ξ |
tanh−1 √|ξ | if − 1 � ξ < 0,

√
ξ

tan−1
√

ξ
if ξ � 0.

(16)

If the limit of ξ is small, then we have

Cξ =
{

1 − ξ

3 + O
(
ξ

3
2
)

if − 1 � ξ < 0,

1 + ξ

3 + O
(
ξ

3
2
)

if ξ � 0.
(17)

In the presence of dissipative anisotropic hot QCD
medium, we have modified the potential after considering
the assumption given in Refs. [69–71]. The method to obtain
the in-medium modification of the heavy-quark potential with
the dielectric permittivity ε(k) has already been discussed in
detail in Sec. II B. When modifying the potential, the fore-
most thing is to calculate the dielectric permittivity ε(k). To
estimate the dielectric permittivity, there are two approaches:
(i) with the help of gluon self-energy at finite-temperature
QCD [72,73], and (ii) by the application of the semiclassical
transport theory [39,74,75]. By exploiting either of these two
methods, one can find the gluon self-energy tensor (�μν ) and
then the static gluon propagator represents inelastic scattering
of an off-shell gluon to a thermal gluon:


μν (ω, k) = k2gμν − kμkν + �μν (ω, k), (18)

where ω is the frequency, and the gluon self-energy ten-
sor is symmetric and transverse in nature, i.e., �μν (ω, k) =

�νμ(ω, k) and follows Ward’s identity:

�μν (ω, k) = g2
∫

d3 p

(2π )3
uμ ∂ f (p)

∂ pβ

[
gνβ − uνkβ

uk + iε

]
. (19)

The term μμ = (1 + k
|k| ) is a lightlike vector defining the

propagation of plasma particles in space-time and in quantum
chromodynamics plasma, whereas f (p) is denoted as the arbi-
trary particle distribution function. In the Fourier space, gluon
propagators with the real and imaginary parts of the potential
obtained from the dielectric tensor of the temporal component,
thus, become

ε−1(k) = − lim
ω→0

k2
00(ω, k), (20)

where 
00 represents the static limit of the 00 components
of the gluon propagators in the Coulomb gauge. After per-
forming the calculation (shown in the Appendix), we have
calculated the real and imaginary parts of the temporal compo-
nent of the propagator in the static limit using the quasiparticle
Debye mass. The temporal component of the real part of the
retarded propagator in the Fourier space, which is required to
obtain the real part of the potential in the static limit [45], is
given as

Re
[

00

R(A)

]
(ω = 0, k) = − 1

k2 + m2
D(T, μb)

− ξ

{
1

3
[
k2 + m2

D(T, μb)
]−m2

D(T, μb)(3 cos 2θn − 1)

6
[
k2 + m2

D(T, μb)
]2

}
.

(21)

Similarly, the imaginary part can be derived from the imag-
inary part of the temporal component of the symmetric
propagator [45], in the static limit, as follows:

Im
[

00

S

]
(ω = 0, k) + πT m2

D

k
(
k2 + m2

D

)2

= πT m2
Dξ

[
−1

3k
(
k2 + m2

D

)2 + 3 sin2 θn

4k
(
k2 + m2

D

)2

− 2m2
D(3 sin2 θn − 1)

3k
(
k2 + m2

D

)3

]
, (22)

where

cos(θn) = cos(θr ) cos(θpr ) + sin(θr ) sin(θpr ) cos(φpr ). (23)

In the above expression, θn represents the angle between the
particle momentum (p) and the direction of anisotropy, θr de-
notes the angle between r and n. φpr and θpr are the azimuthal
angle and the polar angle. Next, to modify the real part of the
potential, ε(k) can be obtained using Eqs. (21) and (20) as

ε−1(k) = k2

k2 + m2
D(T, μb)

+ k2ξ

×
{

1

3
[
k2 + m2

D(T, μb)
]

− m2
D(T, μb)(3 cos 2θn − 1)

6
[
k2 + m2

D(T, μb)
]2

}
. (24)
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Similarly for the imaginary part, ε(k) can be obtained by employing Eq. (22) in Eq. (20) as

ε−1(k) = πT m2
D

[
k2

k
(
k2 + m2

D

)2 − ξk2

(
−1

3k
(
k2 + m2

D

)2 + 3 sin2 θn

4k
(
k2 + m2

D

)2 − 2m2
D[3 sin2(θn) − 1]

3k
(
k2 + m2

D

)3

)]
. (25)

The real and imaginary parts of the interquark potential can be obtained in the static limit using ε−1(k), [35]. Using Eq. (24) in
Eq. (12), we can write the real part of the potential as

Re[V (r, θr, ξ , T, μb)] =
∫

d3k
(2π )3/2

(eik·r − 1)

(
−

√
2

π

α

k2
− 4σ√

2πk4

)[
k2

k2 + m2
D

+ k2ξ

(
1

3
(
k2 + m2

D

) − m2
D(3 cos 2θn − 1)

6
(
k2 + m2

D

)2

)]
,

(26)

where s = rmD(T, μb), and after considering the limit s � 1, the solution to the above integral yields

Re[V (r, θr, ξ , T, μb)] = sσ

mD

(
1 + ξ

3

)
− αmD

s

{
1 + s2

2
+ ξ

[
1

3
+ s2

16

(
1

3
+ cos(2θr )

)]}
. (27)

The imaginary potential using Eq. (25) in Eq. (12) is

Im[V (r, θr, ξ , T, μb)] = πT m2
D(T, μb)

∫
d3k

(2π )3/2
(eik·r − 1)

(
−

√
2

π

α

k2
− 4σ√

2πk4

)(
k

[k2 + m2
D(T, μb)]2

)

− πT m2
D(T, μb)ξ

∫
d3k

(2π )3/2
(eik·r − 1)

×
(

−
√

2

π

α

k2
− 4σ√

2πk4

)(
−k

3[k2 + m2
D(T, μb)]2

+ 3k sin2 θn

4[k2 + m2
D(T, μb)]2

− 2m2
D(T, μb)k(3 sin2 θn − 1)

[k2 + m2
D(T, μb)]2

)
. (28)

Up to the leading logarithmic order, the imaginary potential
is

Im[V (r, θr, T, μb, ξ )]

= αs2T

3

{
ξ

60
(7 − 9 cos 2θr ) − 1

}
log

1

s

+ s4σT

m2
D(T, μb)

{
ξ

35

(
1

9
− 1

4
cos 2θr

)
− 1

30

}
log

1

s
.

(29)

Figures 1 and 2 show the variation of the real and imagi-
nary potential with distance (r) at a constant temperature of
T = 300 MeV. Figures 1(a) and 2(a) show the real and imag-
inary parts of the potential for different anisotropic cases:
prolate ξ = −0.3, oblate ξ = 0.3, and isotropic ξ = 0 at μb =
300 MeV and θ = 0◦ (parallel case) and θ = 90◦ (perpendic-
ular case). An increase in the real potential is observed as one
goes from the prolate case to the oblate case. The imaginary
potential decreases from the prolate case to the oblate case
in the parallel case but increases for the perpendicular case.
Figures 1(b) and 2(b) represent the same variation for real and
imaginary potentials at constant ξ = 0.3 for different values
of μb = 300, 1000, and 2000 MeV. It was observed that the
real potential increases with r for different baryonic chemical
potentials, and the imaginary potential shows a decreasing
pattern. In short, potentials (real and imaginary) have higher

values for perpendicular cases [Figs. 1(b) and 2(b)]. This
indicates that anisotropy and the baryonic chemical potential
have a significant effect on complex valued potentials.

III. CALCULATIONS AND RESULTS

A. Binding energy (B.E.) of the different quarkonium S states

Now using Refs. [43,45,76], the binding energies of
heavy-quarkonium states in the anisotropic medium can
be obtained by solving the Schrödinger equation with the
first-order perturbation in the anisotropy parameter (ξ ). The
expression of the real part of the binding energy is as
follows:

Re[B.E.] = mQσ 2

m4
D(T, μb)n2

+ αmD(T, μb)

+ ξ

3

(
mQσ 2

m4
D(T, μb)n2

+ αmD(T, μb)

+ 2mQσ 2

m4
D(T, μb)n2

)
, (30)

Where n = 1 and n = 2 correspond to the ground and first
excited states of the heavy quarkonia, respectively. It should
be noted here that the above expression of the binding en-
ergy [Eq. (30)] is applicable only for J/ψ , ϒ , � ′, and ϒ ′.
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FIG. 1. Variation of the real potential with distance (r in Fermi) at different values of anisotropy (a) and at different values of the baryonic
chemical potential (b) in both the parallel case and the perpendicular case.

Figures 3 and 4 show variation of the binding energy of
J/ψ , ϒ , ψ ′, and ϒ ′ with T/Tc at different values of the
baryonic chemical potential (μb) (i.e., μb = 200, 1000, and
2000 MeV) and at a constant value of anisotropy (ξ ) (i.e.,
ξ = 0.3). From Figures 3 and 4 it can be deduced that the
binding energy of J/ψ , ϒ , ψ ′, and ϒ ′ decreases if the value
of μb is increased. Figures 5 and 6 show variation of the
binding energy of J/ψ , ϒ , ψ ′, and ϒ ′ with T/Tc at different
values of anisotropy (ξ ) (i.e., ξ = 0.3, 0, and −0.3) and at
a constant value of μb (i.e., μb = 1000 MeV). Figures 5
and 6 show that the binding energy of J/ψ , ϒ , ψ ′, and ϒ ′

increases if the value of ξ is increased. It is noticed from the
present calculations that the binding energy has higher values
as one moves from the prolate case (ξ < 0) to the oblate
case (ξ > 0). In an anisotropic medium, the binding energy
of the QQ̄ pair gets stronger with an increase in anisotropy.
This is due to the fact that the variation of the binding en-
ergy increases if we go from the prolate case to the oblate
case, and hence quarkonium states are strongly bound with
anisotropy. With the help of binding energy expression we
have also calculates the mass spectra of quarkonium state
shown by the Figs. 7 and 8.
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FIG. 2. Variation of the imaginary potential with distance (r in Fermi) at different values of anisotropy (a) and at different values of the
baryonic chemical potential (b) in both the parallel case and the perpendicular case.

024905-6



DISSOCIATION AND THERMODYNAMICAL PROPERTIES … PHYSICAL REVIEW C 109, 024905 (2024)

FIG. 3. Variation of the binding energy of J/ψ (a) and ϒ (b) with T/Tc at different values of the baryonic chemical potential (μb) when
the value of ξ is fixed.

B. Dissociation of quarkonium states in the presence
of ξ and the baryonic chemical potential

The dissociation temperature for real binding energies can
be obtained by using the thermal energy effect. According to
Refs. [46,77], it is not necessary to have zero binding energy
for dissolution of the quarkonium states. When the binding
energy (B.E. � T ) of the quarkonium state is weakly bonded,

the quarkonium state dissociates by means of thermal fluc-
tuations. The quarkonium state is also said to be dissociated
when 2B.E. < �(T ), where �(T ) is the thermal width of
the respective quarkonium states. When the binding energy
of charmonium and bottomonium states at a particular value
of temperature becomes smaller or equal to the value of the
mean thermal energy, the state is said to be dissociated and
this can be estimated by using the expressions B.E. = TD (for

FIG. 4. Variation of the binding energy of ψ ′ (a) and ϒ ′ (b) with T/Tc at different values of the baryonic chemical potential (μb) where the
value of ξ is fixed.
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FIG. 5. Variation of the binding energy of J/ψ (a) and ϒ (b) with T/Tc at different values of anisotropy (ξ ) and when the value of μb is
fixed.

the upper bound of quarkonium dissociation) and B.E. = 3TD

(for the lower bound of quarkonium dissociation), as can be
found in Ref. [78] and references therein, and is written as
follows:

B.E.(J/ψ,ϒ,ψ ′,ϒ ′ )

= mQσ 2

m4
D(T, μb)n2

+ αmD(T, μb)

+ ξ

3

(
mQσ 2

m4
D(T, μb)n2

+ αmD(T, μb) + 2mQσ 2

m4
D(T, μb)n2

)

=
{

TD : for upper bound,

3TD : for lower bound.
(31)

Further, we have calculated the dissociation tempera-
ture by using two criteria: first by using the mean thermal

FIG. 6. Variation of the binding energy of ψ ′ (a) and ϒ ′ (b) with T/Tc at different values of anisotropy (ξ ) where the value of μb is fixed.
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FIG. 7. Variation of mass spectra of J/ψ (a) and ϒ (b) with T/Tc at different values of anisotropy (ξ ) when the value of μb is fixed.

energy and second by using the thermal width. The dissoci-
ation temperatures of quarkonium states by using the mean
thermal energy effect criteria are listed in Tables I–IV for
both lower and upper bounds. In general, the dissociation
temperature decreases with an increase in the values of μb

(i.e., μb = 200, 1000, and 2000 MeV) and increases with an
increase in the values of ξ (i.e., ξ = −0.3, 0, and 0.3).

C. Thermal width of S states of quarkonium

As already mentioned in Sec. II(c), the quarkonium poten-
tial has both real and imaginary parts. The real part gives rise

to the binding energy as discussed earlier, whereas the thermal
width comes from the imaginary part of the potential. The
thermal width is now employed to calculate the dissociation
point by exploiting twice the real binding energy with the
thermal width of the quarkonium states. Thus, the thermal
width can be obtained as

�(T ) = −
∫

d3r |�(r)|2Im V (r), (32)

where �(r) is the Coulombic-type wave function. The
Coulombic wave functions for J/ψ , ϒ , ψ ′, and ϒ ′ are given

(a) (b)

FIG. 8. Variation of mass spectra of J/ψ (a) and ϒ (b) with T/Tc at different values of anisotropy (ξ ) where the value of μb is fixed.
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TABLE I. Lower bound of dissociation for ξ = 0.3 at Tc =
197 MeV. Temperatures are given in units of Tc.

Dissociation by thermal energy effect criteria

States μb = 200 MeV μb = 1000 MeV μb = 2000 MeV

J/ψ 1.6497 1.6243 1.5736
ϒ 2.0558 2.0050 1.8908
ϒ ′ 1.6143 1.5931 1.5285

as

�1S (r) = 1√
πa3

0

e
−r
a0 ,

�2S (r) = 1

4
√

2πa3
0

(
2 − r

a0

)
e

−r
2a0 , (33)

where a0 = 2/(mQα) represents the Bohr radius of the
quarkonium system. Now by using Eq. (33), we have

�1S/2S (T ) = m2
DTr2 log

(
1

rmD

) ∫
d3r|�1s/2s(r)|2

×
{

α

3

[
ξ

60
(7 − 9 cos 2θr ) − 1

]}

+ m2
DTr2 log

(
1

rmD

) ∫
d3r|�1s/2s(r)|2

×
{

σ r2

[
ξ

35

(
1

9
− 1

4
cos 2θr

)
− 1

30

]}
. (34)

The thermal width for the 1S state can be obtained by solving
the above equation as follows:

�1S (T ) − m2
DT (ξ − 6)

90α4m4
Q

× [
5(12γ − 25)α3m2

Q + 9(20γ − 49)σ
]

= m2
DT (ξ − 6)

90α4m4
Q

[
60

(
α3m2

Q + 3σ
)

log

(
αMQ

mD

)]
. (35)

Thus, the dissociation width for the 1S state up to the lead-
ing logarithmic order of the imaginary potential following

TABLE II. Upper bound of dissociation for ξ = 0.3 at Tc = 197
MeV. Temperatures are in units of Tc.

Dissociation by thermal energy effect criteria

States μb = 200 MeV μb = 1000 MeV μb = 2000 MeV

J/ψ 2.0812 2.0304 1.9162
ϒ 2.6142 2.5253 2.3350
ϒ ′ 2.0431 1.9162 1.7893

TABLE III. Lower bound of dissociation for μb = 1000 MeV at
Tc = 197 MeV. Temperatures are in units of Tc.

Dissociation by thermal energy effect criteria

States ξ = −0.3 ξ = 0 ξ = 0.3

J/ψ 1.4593 1.5482 1.6243
ϒ 1.7766 1.9035 2.0050
ϒ ′ 1.4086 1.5355 1.5931

Ref. [45] would be of the form

�1S (T )

m2
D log

( mD
αmQ

) = T

(
4

αm2
Q

+ 12σ

α4m4
Q

)(
1 − ξ

6

)
. (36)

Similarly for the 2S state, using the wave function for the 2S
state, we have

�2S (T )

= T (ξ − 6)

45α2m2
Q

m2
D

(
35(12γ − 31)α + 72(160γ − 447)σ

α2m2
Q

)

+ T (ξ − 6)

45α2m2
Q

m2
D

{
60

(
7α + 192σ

α2m2
Q

)
log

αmQ

2mD

}
. (37)

The leading logarithmic order for the 2S state is given as

�2S (T )

log
( 2mD

αmQ

) = 8m2
DT

α4m4
Q

(
1 − ξ

6

)(
7α3m2

Q + 192σ
)
. (38)

The dissociation temperatures of different quarkonium
states obtained by exploiting the thermal width and twice the
real binding energy are shown in the Fig. 9 (for J/ψ), Fig. 10
(for ϒ), and Fig. 11 (for ϒ ′). The dissociation temperatures
obtained from the intersection point of twice the real binding
energy and the thermal width for different states at different
values of anisotropy (ξ ) and the baryonic chemical potential
are listed in Tables V and VI. There were no dissociation
temperatures found for ψ ′ due to its small mass value and
hence it decays earlier than the ground state.

D. Mass spectra of quarkonium states in the presence
of anisotropy and the baryonic chemical potential

The mass spectra of 1S and 2S states of charmonium and
bottomonium in the anisotropic medium can be calculated by

TABLE IV. Upper bound of dissociation for μb = 1000 MeV at
Tc = 197 MeV. Temperatures are in units of Tc.

Dissociation by thermal energy effect criteria

States ξ = −0.3 ξ = 0 ξ = 0.3

J/ψ 1.7766 1.9162 2.0304
ϒ 2.2081 2.3730 2.5253
ϒ ′ 1.7893 1.8821 1.9162
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TABLE V. Dissociation for μb = 1000 MeV at Tc = 197 MeV.
Temperatures are in units of Tc.

Dissociation by thermal width criteria

States ξ = −0.3 ξ = 0 ξ = 0.3

J/ψ 1.3879 1.4202 1.4467
ϒ 2.8232 2.8857 2.9409
ϒ ′ 1.5644 1.5788 1.5909

using the following condition:

M = 2mQ + B.E . (39)

Hence, we have

mass spectra of quarkonium states

= 2mQ+
[

mQσ 2

m4
Dn2

+αmD + ξ

3

(
mQσ 2

m4
Dn2

+ αmD + 2mQσ 2

m4
Dn2

)]
,

(40)

where mQ is the mass of heavy quarkonia.
Figures 7 and 8 show the variation of mass spectra of J/ψ

[panel (a)] and ϒ [panel (b)] with T/Tc at different values
of baryonic chemical potential (μb) (i.e., μb = 200, 1000,
and 2000 MeV) (in Fig. 7) and at different values of ξ (i.e.,
ξ = −0.3, 0, and 0.3) (in Fig. 8). From Figs. 7 and 8 it can
be observed that the values of mass spectra of J/ψ and ϒ

decrease if we increase the value of μb and increase if we
increase the value of ξ . In Tables VII and VIII, we have
calculated the values of mass spectra. Table VII shows that the
values of mass spectra decrease with increases in μb. Further
from Table VIII, it can be seen that the values of mass spectra
increase with ξ . We have also compared the results of mass
spectra at different values of μb (in Table VII) and at different

TABLE VI. Dissociation for ξ = 0.3 at Tc = 197 MeV. Temper-
atures are in units of Tc.

Dissociation by thermal width criteria

States μb = 200 MeV μb = 1000 MeV μb = 2000 MeV

J/ψ 1.4618 1.4467 1.4082
ϒ 3.0775 2.9385 2.6794
ϒ ′ 1.6127 1.5913 1.5379

values of ξ (in Table VIII) with the previously published
theoretical [38] and experimental [79] results. The presently
calculated values of mass spectra are found to be in agreement
with the experimental and theoretical values reported earlier
[38,79].

E. Thermodynamical properties of quark matter with the
anisotropic parameter (ξ) obtained using EoSs of QGP

The EoSs played an invaluable role in understanding the
behavior of QGP that is produced in relativistic nucleus-
nucleus collisions. EoSs are very sensitive to matter and are
important to verify and investigate the suppression of quarko-
nia [80,81]. The expansion of QGP is highly sensitive to
EoSs via the speed of sound, and it investigates the sensitivity
of quarkonium suppression to the EoS [80,81]. Bannur [83]
created an EoS for a strongly coupled QGP by appropriate
modification of strongly coupled plasma in QED by inte-
grating the running coupling constant and making suitable
adjustments to account for color and flavor degree of freedom
and found a pretty good fit to the lattice findings. Now, we
have gone through the EoSs, which are stated as a function of

(a) (b)

FIG. 9. Variation of 2B.E. and � of J/ψ with T/Tc at different values of μb (a) and at different values of ξ (b).
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TABLE VII. Mass spectra of ground state of quarkonium at ξ = 0. Mass spectra are in units of GeV.

For mJ/ψ = 1.5 GeV and mϒ = 4.5 GeV

States μb = 200 MeV μb = 1000 MeV μb = 2000 MeV Theoretical result [38] Experimental result [79]

J/ψ 3.520 3.480 3.391 3.060 3.096
ϒ 10.32 10.18 9.909 9.200 9.460

the plasma parameter [84], briefly:

εQED − nT μex(�) = 3

2
nT . (41)

The first term represents the ideal contribution, and the devia-
tion from the ideal EoS is as follows:

μex(�)(1 + 3 × 103�5.7)

= μAbe
ex (�) + 3 × 103�5.7μOCP

ex (�), (42)

where μAbe
ex is

μAbe
ex + 3�3

[
3

8
ln(3�) + γ

2
− 1

3

]
= −

√
3

2
�

3
2 , (43)

where the term μAbe
ex is determined for the plasma component

and is valid for all � < 180 [85], and the term μOCP
ex is

μOCP
ex − (0.220 703�− 1

4 − 0.86097)

= −0.898 004� + 0.967 86�
1
4 . (44)

For strongly coupled plasma, in QCD it was assumed that
the hadron exists for T < Tc and goes to QGP for T > Tc. At
T > Tc, it is the strongly interacting plasma of quarks, gluons,
and no hadrons, because it is assumed that the interaction of
confinement due to the QCD vacuum has been melted [83] at
T = Tc. Hence, only the Coulomb interaction is present in the
deconfined plasma phase. So, the plasma parameter, which is
the ratio of the particle average potential energy to the particle
average kinetic energy, is assumed to be weak, � � 1, and is
given by

� ≡ 〈PE〉
〈KE〉 = Re[V (r, T )]

T
. (45)

Finally, the EoS has been obtained by using the potential
Eq. (8) in the plasma parameter after the inclusion of quantum
and relativistic effects as

εs

nT
= [3 + μex(�)], (46)

where μex remains the same as in Eq. (42). The scaled energy
density is now expressed in terms of the ideal contribution:

e(�) ≡ εs

εSB
= 1 + 1

3
μex(�), (47)

εSB ≡ (16 + 21Nf /2)π2T 4/30. (48)

Here, Nf denotes the number of quark and gluon flavors. For
the MS approach, we now use two-loop-level QCD running
coupling constants [86]:

g2(T ) ≈ 2b0 ln
μ̄

�MS

(
1 + b1

2b2
0

ln
(
2 ln μ̄

�MS

)
ln μ̄

�MS

)−1

, (49)

where b0 = 33−2Nf

48π2 and b1 = 153−19Nf

384π4 . In the case of the MS
scheme, �MS and μ̄ are considered as the renormalization
scale and the scale parameter, respectively,

μ̄ exp(γE + c) = �MS(T ),

�MS(T ) exp(γE + c) = 4π�T . (50)

Here, γE = 0.577 2156 and c = Nc−4Nf ln 4
22Nc−Nf

, which is a constant
depending on colors and flavors. There are various uncer-
tainties in the formula for the running coupling constant,
which are connected with the scale parameter and the renor-
malization scale MS. This problem has been superseded by
using Brodsky-Lepage-Mackenzie criterium [87]. MS was
permitted to fluctuate between πT and 4πT [88]. For our
motivation, we chose MS near to the center value 2πTc [77]
for Nf = 0 and near to Tc for both Nf = 2 and Nf = 3 flavors.

When the factor b1

2b2
0

ln(2 ln μ̄

�MS
)

ln μ̄

�MS

is 
1, then the expression is

reduced as used in Ref. [83], ignoring the higher-order terms
of the preceding component. However, this option does not
hold true for the temperature ranges employed in the compu-
tation, resulting in a coupling mistake that ultimately causes
the difference in findings between our model and the Bannur
model [83]. First, we have computed the energy density εs(T )
using Eq. (47) and the thermodynamic relation

εs + P = T
d p

dT
. (51)

TABLE VIII. Mass spectra of ground state of quarkonium at μb = 1000 MeV. Mass spectra are in units of GeV.

For mJ/ψ = 1.5 GeV and mϒ = 4.5 GeV

States ξ = −0.3 ξ = 0 ξ = 0.3 Theoretical result [38] Experimental result [79]

J/ψ 3.361 3.480 3.597 3.060 3.096
ϒ 9.864 10.18 10.53 9.200 9.460
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(a) (b)

FIG. 10. Variation of 2B.E. and � of ϒ with T/Tc at different values of μb (a) and at different values of ξ (b).

Further, the pressure was calculated as

P

T 4
=

(
P0

T0
+ 3a f

∫ T

T0

dττ 2e(�(τ ))
)/

T 3. (52)

Here, P0 denotes the pressure at some temperature T0 and a f =
(16 + 21

2 Nf )π2

90 T 4. Thus, the speed of sound can be evaluated
once we have pressure (P) and the energy density (εs) in hand
and is given as

c2
s dεs = dP. (53)

All the above thermodynamical properties are potential
dependent, and the potential is Debye mass dependent. In that
case, we attack the problem by trading off the dependence
on the baryonic chemical potential (μb), the anisotropy (ξ ),
and the temperature to a dependence on these thermodynamic
properties of matter. The thermodynamical properties of quark
matter (i.e., pressure, energy density, and speed of sound) play
a curious role in the study of QGP and also provide useful in-
formation about the strange quark matter. The thermodynamic
behavior of QCD matter at high temperature or above critical

(a) (b)

FIG. 11. Variation of 2B.E. and � of ϒ ′ with T/Tc at different values of μb (a) and at different values of ξ (b).

024905-13



SOLANKI, LAL, SHARMA, AND AGOTIYA PHYSICAL REVIEW C 109, 024905 (2024)

(a) (b)

FIG. 12. (a) Variation of P/T 4 with T/Tc for EoS1 at Nf = 3 QGP. The potential is in the parallel condition (θ = 0 degree). (b) Inner view
of the minimum separation of panel (a). The black line with circles represents the results obtained from Nilima and Agotiya’s EoS [82] and
the red line with diamonds represents the results obtained from Solanki et al.’s EoS [38].

temperature is currently being studied by lattice QCD [89,90].
In Fig. 12 we have plotted the variation of pressure (P/T 4)
with temperature (T/Tc) using EoS1 for Nf = 3 QGP along
with Nilima and Agotiya’s EoS [82] and Solanki et al.’s EoS
[38]. Now, the energy density εs, the speed of sound (C2

s ), and
so forth can be derived since we have obtained the pressure.
In Fig. 13, we have plotted the energy density (εs/T 4) with
the temperature (T/Tc) using EoS1 for Nf = 3 QGP along
with Nilima and Agotiya’s EoSs [82] and Solanki et al.’s EoSs
[38]. In Fig. 14, we have plotted the speed of sound (C2

s ) with

temperature (T/Tc) using EoS1 for Nf = 3 QGP along with
Nilima and Agotiya’s EoSs [82] and Solanki et al.’s EoSs
[38]. Our results of these thermodynamical properties of quark
matter are approximately matched with the results of Nilima
and Agotiya’s EoSs [82] and Solanki et al.’s EoSs [38] with
the anisotropy parameter. The effect of anisotropy was also
observed in these thermodynamical properties of quark matter
as shown in Figs. 12–14. If we increase the value of anisotropy
(ξ = 0 to 0.3), then the variation of P/T 4, εs/T 4, and C2

s also
increases slightly respectively [the panels (b) of Figs. 12–14

(a) (b)

FIG. 13. (a) Variation of εs/T 4 with T/Tc for EoS1 at Nf = 3 QGP. The potential is in the parallel condition (θ = 0 degree). (b) Inner view
of the minimum separation of panel (a). The black line with circles represents the results obtained from Nilima and Agotiya’s EoS [82] and
the red line with diamonds represents the results obtained from Solanki et al.’s EoS [38].
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(a) (b)

FIG. 14. (a) Variation of C2
s with T/Tc for EoS1 at Nf = 3 QGP. The potential is in the parallel condition (θ = 0 degree). (b) Inner view

of the minimum separation of panel (a). The black line with a circle represents the results obtained from Nilima and Agotiya’s EoS [82] and
the red line with diamonds represents the results obtained from Solanki et al.’s EoS [38].

show the minimum separation of the panels (a)]. Figure 15
shows the variation of P/T 4 with temperature (T/Tc) [panel
(a)], εs/T 4 with temperature (T/Tc) [panel (b)] using EoS1
at Nf = 3, and C2

s with temperature (T/Tc) [panel (c)] using
EoS1 at Nf = 0, and Fig. 15 also shows the lattice QCD
results [82,83]. Because the lattice QCD (LQCD) results are
available for only pure gauge, comparison [in Fig. 15] has
been made for the abovementioned value of flavor Nf only.
Our flavored results match approximately well with the LQCD
results at ξ = 0 and μb = 0. The main features are the sharp
rise of the curves of P/T 4, εs/T 4, and C2

s around the value
of critical temperature and then a linear curve to the ideal
value. We have calculated these thermodynamical properties
[i.e., P/T 4, εs/T 4, and C2

s ] to determine the hydrodynamical
expansion of quark gluon plasma, and in the future we will
extend our work to calculate the suppression of quarkonia in

nuclear collisions, taking into account the effect of anisotropy
and the baryonic chemical potential.

IV. SUMMARY AND CONCLUSIONS

The present work is devoted to the study of the effect of the
baryonic chemical potential (μb) on quarkonium properties
in an anisotropic medium, by considering complex potentials
having both a perturbative nature and a nonperturbative na-
ture, using the quasiparticle Debye mass. It is known that
anisotropy arises in primary stages as the system expands af-
ter the ultrarelativistic heavy ion-collision (URHIC) process.
Under the condition ξ = 0, the string term (σ ) of the Cornell
potential makes the potential more attractive. This leads to the
fact that respective quarkonium states become more bound
in comparison to the case when the Coulombic term of the

(a) (b) (c)

FIG. 15. Variation of P/T 4 with T/Tc (a), εs/T 4 with T/Tc (b) for EoS1 at Nf = 3, and C2
s with T/Tc (c) for EoS1 at Nf = 0 QGP. The

potential is in the parallel condition (θ = 0 degree). The black line with circles represents the lattice QCD results (for pure gauge) obtained
from Ref. [82] and the blue line with diamonds represents our EoS at ξ = 0 and μb = 0.
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potential is modified alone. In this work, we have considered
the values of anisotropy for three cases, viz., prolate (ξ =
−0.3), isotropic (ξ = 0), and oblate (ξ = 0.3), with a fixed
value of the critical temperature of Tc = 197 MeV.

We have reconsidered the medium-modified form of the
heavy-quark potential at finite values of μb and ξ . This has
been done by considering the real and imaginary parts of
the potential with a static gluon propagator, which in turn
gives the real and imaginary parts of the dielectric permit-
tivity with the anisotropic parameter. We considered μb and
the temperature-dependent quasiparticle Debye mass in the
study of the dissociation pattern of quarkonia. The real part
of the potential has been used for solving the Schrödinger
equation to obtain the binding energy of quarkonia, and
the imaginary part gives rise to the thermal width of heavy
quarkonia. It was observed that the binding energy decreases
and the thermal width increases with increasing the values
of μb. However, the binding energy tends to get higher with
increasing the value of ξ . In conclusion, the dissociation
temperature of heavy quarkonia decreases with the baryonic
chemical potential and increases with anisotropy as shown in
Tables I–VI. The values of mass spectra were also calculated
and it was noticed that, if we increase the values of μb, then
the values of the mass spectra decrease, but if we increase the
value of ξ , then the values of the mass spectra also increase.
We also extend this work to calculate the thermodynamical
properties of QGP with ξ and μb. These EoSs are important to
study the suppression phenomena in the presence of ξ and μb.
We have also extended this work, after calculating the thermo-
dynamical properties of QGP (i.e., pressure, energy density,
and speed of sound) using ξ and μb, mainly for the calculation
of nucleus-nucleus suppression with the effect of anisotropy
and the baryonic chemical potential. It was observed that, if
we increase the values of ξ from 0 to 0.3, the variation of the
pressure, the energy density, and the speed of sound with T/Tc

increases a little bit.
In the future, we will extend this work to calculate the

survival property of different quarkonium states in the pres-
ence of ξ and μb at different states of energy density (

√
sNN ).

This survival probability will be calculated with respect to
anisotropy, the baryonic chemical potential, the transverse
momentum, centrality, and rapidity, which is the key point to
quantify various properties of the medium produced during
heavy-ion collisions at the LHC and the RHIC. The results
of this work might be helpful for expanding the studies of
highly dense objects like neutron stars. Because the Com-
pressed Baryonic Matter (CBM) experiment at the Facility
for Antiproton and Ion Research (FAIR) is exploring QGP
at higher baryon densities, this type of theoretical study may
contribute to our understanding of the physics of highly dense
bodies with high baryon densities.

APPENDIX: CALCULATIONS FOR THE REAL
AND IMAGINARY PARTS OF THE TEMPORAL

COMPONENT OF THE PROPAGATOR

An advantageous representation of propagators in a real-
time formalism is the Keldysh representation where the
four-components of the matrix form are in linear combi-
nation; among these four-components of the matrix, three-

components are independent, giving the relation for advanced
(A), retarded (R) and symmetric (F ) propagators, respectively,

D0
R = D0

11 − D0
12, D0

A = D0
11 − D0

21, D0
F = D0

11 − D0
22.

(A1)

In the distribution function, only F components are involved
and they are particularly useful for the HTL diagrams. Similar
relations for the self-energies are

�R = �11 + �12, �A = �11 + �21, �F = �11 + �22.

(A2)

Resuming the Dyson-Schwinger equation, the R, A, and F
propagators can be written as

DR,A = D0
R,A + D0

R,A�R,ADR,A (A3)

and

DF = D0
F + D0

R�RDF + D0
F �ADA + D0

R�F DA. (A4)

Now place the F propagator D0
F (P) in terms of the R and A

propagators, then the resummed F propagators are

DF (P) = (1 + 2 fB)sgn(p0)[DR(P) − DA(P)]

+ DR(P){�F (P) − (1 + 2 fB)sgn(p0)

× [�R(P) − �A(P)]}DA(P). (A5)

For the calculation of the static potential in the ξ = 0
medium, only the temporal (L) component of the propagator
is required, so the R and A propagators in the form of the
simplest Coulomb gauge are

DL
R,A(iso) = DL(0)

R,A + DL(0)
R,A �L

R,A(iso)D
L
R,A(iso). (A6)

Now, we first enhance the self-energy and propagators around
the ξ = 0 limit and withhold only the linear term:

D = Diso + ξDaniso, � = �iso + ξ�aniso (A7)

The L component of the R and A propagators in the presence
of small ξ becomes

DL
R,A(aniso) = DL(0)

R,A �L
R,A(aniso)D

L
R,A(iso)

+ DL(0)
R,A �L

R,A(iso)D
L
R,A(aniso), (A8)

whereas the notations for the difference of self-energies and
the propagators can be obtained [11,46]. For the solution of
the propagators, now we calculate the gluon self-energy for
the gluon and quark loops [11] with external and internal
momenta, respectively, with Q = K − P:

�μν (P) = − i

2
Nf g2

∫
d4K

(2π )4
tr[γ μS(Q)γ νS(K )], (A9)

and the R self-energy is

�
μν
R (P) = − i

2
Nf g2

∫
d4K

(2π )4
{tr[γ μS11(Q)γ νS11(K )]

− tr[γ μS21(Q)γ νS12(K )]}. (A10)
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In the limit of massless quarks, the longitudinal part of the
self-energy is

�L
R(P)

−iNf g2
∫

d4K
(2π )4 (q0k0 + q · k)

= [
̃F (Q)
̃R(K ) + 
̃A(Q)
̃F (K )]

+ [
̃A(Q)
̃A(K ) + 
̃R(Q)
̃R(K )]. (A11)

In the weak-coupling limit, the external momentum is much
lower than the internal momentum, so the R self-energy in the
HTL approximation simplifies to [11]

�L
R(P) = 4πNf g2

(2π )4

∫
kdk

∫
d� fF (k)

1 − (k̂.p̂)2(
k̂ · p̂ + p0+iε

p

)2 .

(A12)

After elaborating the distribution function, in a weakly
anisotropic (ξ is not equal to 0) medium, the R quark self-
energy becomes

�L
R(P) = g2

(2π )2
Nf

1∑
i=0

∫ ∞

0
k�(i)(k)dk

∫ 1

−1
�(i)(s)ds,

(A13)

with

�(0)(k) = nF (k), (A14)

�(1)(k) = −ξn2
F (k)

kek/T

2T
, (A15)

�(0)(s) = 1 − s2(
s + p0+iε

p

)2 , (A16)

and

�(1)(s) = cos2 θp
s2(1 − s2)(
s + p0+iε

p

)2 + sin2 θp

2

(1 − s2)2(
s + p0+iε

p

)2 .

(A17)

Here, the angle θp is defined as the angle between n and
p and s = k̂ · p̂. After spoiling into anisotropic pieces, the
anisotropic and ξ = 0 (isotropic) terms become

�L
R(aniso)(P) = Nf

g2T 2

6

(
1

6
+ cos 2θp

2

)
,

+ �L
R(iso)(P)

(
cos 2θp − p2

0

2p2
(1+3 cos 2θp)

)
,

(A18)

and

�L
R(iso)(P) = Nf

g2T 2

6

(
p0

2p
ln

p0 + p ± iε

p0 − p ± iε
− 1

)
. (A19)

Thus, the gluon self-energy found both imaginary and real
parts, which are accountable for Landau damping and Debye
screening, respectively, which are usually obtained from the
R and advanced self-energy and later are obtained from the F
self-energy alone.
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