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The ratio of shear viscosity to entropy density shows a valley-shaped pattern well-known in the community of
heavy-ion physics. Diffusion coefficients of heavy quark and meson show a similar structure, and both sketches
have become quite popular in the community. Present work has attempted a finite magnetic field extension of
the diffusion coefficients of heavy quark and meson. Using Einstein’s diffusion relation, we calculated heavy
quark and heavy meson diffusion by the ratio of conductivity to susceptibility in the kinetic theory framework
of relaxation time approximation. The relaxation time of heavy quark and meson are tuned from the knowledge
of earlier works on spatial diffusion estimations, and then we have extended the framework for a finite magnetic
field, where our outcomes have revealed two aspects—anisotropic and quantum aspects of diffusion with future
possibilities of phenomenological signature.
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I. INTRODUCTION

During the collision of two nuclei at relativistic energies,
a hot and dense state of matter known as quark gluon plasma
(QGP) [1] is expected to form. Heavy quarks, namely charm
(c) and bottom (b) quarks, are considered one of the fine
probes of QGP because their masses (M ) are significantly
larger than the QCD energy scale (�QCD) where �QCD ≈
200 MeV and the temperature T at which QGP is created.
Unlike the light quarks, they do not thermalize quickly and
witness the entire evolution of the fireball. One of the most
important observable to study the QGP is transverse momen-
tum suppression (RAA) of heavy quarks, which leads us to the
drag and diffusion coefficient [2–4]. Currently, it is estimated
that a very strong magnetic field is created at very early stage
of heavy-ion collisions [5,6] where the estimated values of
the magnetic field created at RHIC and LHC is of the order of
1018 to 1019 Gauss [7]. Strong magnetic fields are known to
influence relativistic fluids when eB � �2

QCD and some pro-
nounced effects connected with QGP phenomenology, such as
flow [8], chiral magnetic effect [9], jet quenching coefficient
q̂ [10], diffusion coefficients of charm quarks [11–13] have
been observed. The present work focuses on the diffusion
phenomenology of heavy quarks and meson into QGP and
hadronic matter at a finite magnetic field.
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The influence of magnetic field on charmonium studied
through holographic QCD [14] is one of the initial attempts to
study the dynamics of heavy quarks in an anisotropic medium,
where the influence of background magnetic field on the melt-
ing of J/ψ has been studied. As an extension of this work, the
transport properties of J/ψ vector mesons and heavy quarks,
particularly spatial diffusion and quark number susceptibility,
have been studied as a function of temperature and magnetic
field in the framework of holographic QCD model in Ref. [15]
by the help of soft wall model which is a simpler version of
holographic QCD. Their results show that spatial diffusion
splits into two components, viz. longitudinal and transverse,
relative to the direction of the magnetic field. The origin of
anisotropy in Ref. [15] is due to the magnetic field, which
does not affect the longitudinal component but affects the
transverse component of spatial diffusion. Previously, these
anisotropic factors carrying a magnetic field dependence are
present in transport coefficients of QGP in background mag-
netic field [16–45], particularly in conductivity [16–31]. To
understand this connection with the results of holographic
QCD, it is to be noted that diffusion in condensed matter
physics can be expressed as a ratio of conductivity and suscep-
tibility [46], whose connection for the relativistic case of QGP
can be made through Kubo formula [47]. In this work, we
have employed this idea to understand the behavior of spatial
diffusion in magnetic fields. In the presence of a magnetic
field, the anisotropic factors appearing in conductivity match
those of diffusion, which have been obtained via holographic
QCD in Ref. [15]. With their temperature and magnetic field
dependence, these anisotropic factors govern the diffusive
dynamics of charm quarks and D+ mesons in a magnetized
medium.

In the absence of magnetic field, we can find a long list of
Refs. [48–53] which have estimated spatial and momentum
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diffusion of heavy quark through QGP via different method-
ologies like dynamical quasiparticle model (DQPM) [48],
T -matrix approach [49–51], quasiparticle model (QPM) [52],
lattice quantum chromodynamics (LQCD) [53]. Along with
the QGP phase, spatial and momentum diffusion of D [54–58]
meson, B [59,60] meson and �c [61,62] baryon, which lie
in the hadronic phase, have also be studied. Collection of
hadronic [54–58] and quark [48,49,51–53,63] temperature
domain estimations of normalized spatial diffusion for D+
meson have unfolded an interesting u-shape or valley-shape
pattern. It was first pointed out in 2011 by Ref. [58], and
later it became well popular in community [2,3,57]. A similar
pattern was first pointed out in 2006 by Ref. [64] for normal-
ized shear viscosity or shear viscosity to entropy density ratio
by combining pQCD and ChPT results. Later, this pattern
was verified by different effective QCD model calculations
[65–69]. A finite magnetic field extension for normalized
shear viscosity or shear viscosity to entropy density ratio has
been explored by recent Refs. [12,16,19,29,32,37–40], which
are probably seeking further research (by using alternative
model estimations) for getting converged conclusion. In this
regard, the finite magnetic field extension of normalized spa-
tial diffusion for D+ meson has not been explored explicitly.
Only Ref. [15] has provided a holographic estimation of heavy
quark diffusion at the finite magnetic field, and Ref. [11] have
provided its leading order QCD estimation and pointed out
its possible phenomenological impact. The present work is
aimed to explore the finite magnetic field extension of a U-
shape or valley-shape pattern of normalized spatial diffusion.
With the help of the kinetic theory framework of heavy quark
conductivity and diffusion, we have first attempted to calibrate
our estimation with the existing Refs. [48,49,51–53,63] for
quark temperature and Refs. [54–58] for hadronic temperature
domains by tuning charm quark and D+ meson relaxation
time. Then we have done its finite magnetic field extension,
where the cyclotron timescale will add with relaxation time
via the Boltzmann equation, and we get an effective relaxation
time.

This paper is organized as follows. In Sec. II A, we provide
the Kubo formula and the relaxation time approximation ex-
pressions of conductivity, susceptibility, and spatial diffusion
in the absence of a magnetic field. In Sec. II B, we have stud-
ied spatial diffusion in the presence of a background magnetic
field. In Sec. III, we have numerically analyzed the results of
our work for the isotropic case (B = 0) and anisotropic case
(B �= 0) as a function of temperature and magnetic field for
D+ mesons and charm quarks. Finally, a summary and conclu-
sions with an outlook for future research have been presented
in Sec. IV. In the end, we provide the details of the calculation
of conductivity in a magnetic field, spatial diffusion, and the
Kubo formula for spatial diffusion in Appendixes A and B.

Throughout the paper we have used the metric convention
gμν = diag(1,−1,−1,−1) and h̄, kB, c = 1.

II. FORMALISM

In this section we will quickly address the formalism for
spatial diffusion, whose detailed calculations are given in the
Appendix. The section is further divided into two subsections

for the framework in absence and presence of magnetic field,
respectively.

A. Heavy quark diffusion at B = 0

We know that spatial diffusion D of charm quark and its
corresponding conductivity σ and susceptibility χ are inter-
connected as [46,70]

D = σ

χ
. (2.1)

For quantum field theoretical structure [47] the spatial diffu-
sion coefficient can be defined through Kubo relation

D = 1

3χ
lim

q0→0+

ρ ii(q0, �0)

q0
, (2.2)

where

ρ ii(q0, �q) = Im i
∫

d4xeiq·x〈Ji(x)Ji(0)
〉
β

is the two-point spectral function of heavy quark currents
Ji(x), q0 is the energy, and 〈Ô〉β is the ensemble average of
operators (say Ô) in thermal field theory. In accordance with
Kubo formalism, Eq. (2.2) translates to the Kubo formula for
diffusion which is given by Eq. (2.1), where we have sub-

stituted the expression, σ = 1
3 lim

ω→0+

ρ ii(ω, �0)

ω
, where σ is the

heavy quark conductivity. For the calculation of heavy quark
diffusion coefficient one requires the expressions of heavy
quark conductivity and heavy quark susceptibility, which can
be calculated from two formalisms viz. Kubo formalism and
RTA formalism. In the absence of background magnetic field,
the expression of heavy quark conductivity (any other charge
conductivity) obtained via Kubo and RTA formalism is the
same, while in the presence of magnetic field they can be dif-
ferent, e.g., for conductivity; see Refs. [17,31]. The expression
of heavy quark conductivity (see Appendix A) in the absence
of magnetic field obtained from RTA is given by

σ = gβ

3

∫
d3k

(2π )3

�k2

ω2
k

τc f0
(
1 − f0

)
, (2.3)

and the expression of susceptibility (see Appendix B) is given
by

χ = gβ
∫

d3k

(2π )3
f0(1 − f0), (2.4)

where β = T −1 and T is the temperature, ω =
√

�k2 + m2

is the energy, m is the heavy quark mass, f0 is the Fermi-
Dirac (FD) distribution function given by f0 = [eβ(ω−μc ) +
1]

−1
, μc is the charm chemical potential, τc is the heavy

quark relaxation time and g is charm quark degeneracy fac-
tor. Below quark-hadron transition temperature, we have to
consider heavy meson, i.e., D+ in place of heavy quark. So,
in Eqs. (2.3) and (2.4), mass of c quark will be replaced by
D+ meson mass, degeneracy factor g = 6 of c quark will be
replaced by degeneracy factor g = 1 of D+ meson and FD
distribution will be modified to Bose-Einstein (BE) distri-
bution function. Hence, for D+ meson, we have to use the
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expressions

σ = β

3

∫
d3k

(2π )3

�k2

ω2
k

τc f0(1 + f0) (2.5)

and

χ = β

∫
d3k

(2π )3
f0(1 + f0). (2.6)

B. Heavy quark diffusion at B �= 0

Let us consider a background magnetic field �B = B k̂ point-
ing in the z-direction. In absence of magnetic field, we can
express any conductivity tensor as σi j = σδi j , while in pres-
ence of magnetic field, we can get an anisotropic conductivity
tensor [18,23] (see Appendix A),

σi j = σ0 δi j − σ1 εi jkbk + σ2 bib j, (2.7)

where bi is a unit vector along the magnetic field, εi jk is
the Levi-Civita symbol and spatial component of all Lorentz
indices (i, j, k) can vary as x, y, z. The nonzero components of
anisotropic conductivity tensor have interconnected relation
and can be identified as [18,23]

perpendicular/Transversecomponent : σxx = σyy = σ0 = σ⊥,

Hallcomponent : σxy = −σyx = σ1 = σ×,

parallel/Longitudinalcomponent : σzz = σ0 + σ2 = σ‖. (2.8)

According to Einstein’s relation [46], the spatial diffusion
coefficient (Di j ) can be expressed as a ratio of conductivity
(σi j ) and susceptibility (χ ) of the medium. These quantities
become anisotropic in the presence of magnetic field thus
taking a 3 × 3 matrix structure given by

Di j = σi j

χ
. (2.9)

Following RTA approach the longitudinal and transverse com-
ponents of conductivity for c quark and D+ meson are given
by [18,23] (see Appendix A)

σzz = σ‖ = gβ

3

∫
d3k

(2π )3

k2

ω2
k

τc f0[1 ∓ f0], (2.10)

σxx = σyy = σ⊥ = gβ

3

∫
d3k

(2π )3

k2

ω2
k

τc

1 + τ 2
c

τ 2
B

f0[1 ∓ f0],

(2.11)

and the susceptibility are given by

χ = gβ
∫

d3k

(2π )3
f0(1 ∓ f0), (2.12)

where g = 6, FD distribution will be taken for c quark and
g = 1, BE distribution will be taken for D+ meson Here,
τB = ω

qB with q = 2e
3 for c quark and q = e for D+ meson

are their respective inverse of cyclotron frequency. Here, σzz

(or σ‖) is the longitudinal component of conductivity, i.e.,
parallel to the magnetic field and σxx (or σ⊥) is the transverse
component of conductivity which have been derived via RTA
in Appendix A. The absence of Landau quantization of ener-
gies in RTA expressions prompts us to call them as classical

results. However, on applying Landau quantization of energies
and quantizing the phase space part of the momentum integral
which has been shown in Appendix A, the expressions of
Eqs. (2.10) and (2.12) for c quark are given by

σ
QM
⊥ = 3

T

∞∑
l=0

(2 − δl,0)
qB

2π

∫ +∞

−∞

dkz

2π

lqB

ω2
l

τ⊥ f0(1 − f0),

(2.13)

σ
QM
‖ = 3

T

∞∑
l=0

(2 − δl,0)
qB

2π

∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τ ‖ f0(1 − f0),

(2.14)

χQM = 3β

∞∑
l=0

(2 − δl,0)
qB

2π

∫ +∞

−∞

dkz

2π
f0(1 − f0), (2.15)

where the superscript QM denotes the calculations or expres-
sions where Landau quantization is taken into account, l is
the Landau level index, τ ‖ = τc is the relaxation time for
the longitudinal component, τ⊥ = τc

1+ τ2
c

τ2
B

is the relaxation time

for the transverse component, τc is the relaxation time in the
absence of magnetic field and ωl = √

k2
z + m2 + 2lqB is the

Landau quantized energy with q = 2
3 e for c quark.

Corresponding expressions for D+ meson are given by

σ
QM
⊥ = 1

T

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π

(l + 1/2)qB

ω2
l

τ⊥ f0(1 + f0),

(2.16)

σ
QM
‖ = 1

T

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τ ‖ f0(1 + f0), (2.17)

χQM = β

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π
f0(1 + f0), (2.18)

where ωl = √
k2

z + m2 + (2l + 1)qB is the Landau quantized
energy with q = e for D+ meson.

III. RESULTS AND DISCUSSIONS

In this section, we have investigated the results of our work
on spatial diffusion in the presence and absence of a back-
ground magnetic field for exploring the impact of a magnetic
field on the spatial diffusion of heavy quarks and mesons. The
results for the diffusion have been calculated from the ratio of
conductivity to susceptibility in the RTA and QM formalism.
The results of RTA in Eqs. (2.10), (2.11), and (2.12) do not
carry the information of Landau quantization, whereas the
quantum theoretical results of Eqs. (2.14), (2.16), and (2.15)
carry the contribution of all Landau levels.

The similarity of QM results with RTA results is reflected
in the structure of the anisotropic factors, which carry the
information of cyclotron frequency (τ−1

B = ω
eB ), where ω is

quantized for QM results. In temperatures ranging from 0.2 to
0.4 GeV, charm quarks are the dominant particles contributing
to diffusion, whereas between 0.1 and 0.18 GeV, D+ mesons
are the particles contributing to diffusion. Since our focal
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FIG. 1. (a) Relaxation time parameterized as τc(T ) by fitting the results, obtained by Ghosh et al. [54] (Black solid line), He et al. [56]
(blue solid line), and Tolos et al. [55] (red solid line). (b) Their estimated spatial diffusion coefficient (D) for D+ mesons and charm quark
diffusion coefficient, obtained by Refs. [48,53,63], which can be mapped by tuning τc = 6–9 fm.

interest is to see the modification in heavy quark/meson con-
ductivity and diffusion due to a finite magnetic field, we will
first tune our results with the existing results for B = 0; then,
we will see their modification based on their finite magnetic
field expressions. We have plotted the dimensionless quantity
2πT D versus T in Fig. 1(b), where 2πT stands for the thermal
wavelength. In Fig. 1(b) for the hadronic temperature domain,
we have included the data points, obtained by Ghosh et al.
[54] (circles), He et al. [56] (blue diamonds), Tolos et al.
[55] (stars). Using RTA Eqs. (2.1), (2.3), and (2.4), we have
fitted 2πT D of Refs. [54–56] by tuning τc(T ), which has
been shown in Fig. 1(a). Then, for the quark temperature,
we have included LQCD data of Banerjee et al. [53] (red
diamonds), DQPM estimation of Berrehra et al. [48] (red solid
line) and potential model of Rapp et al. [63] (black solid line)
in Fig. 1(b). The reader may find many more alternative model
estimations in the quark temperature domain; however, we
aim to get a rough range of spatial diffusion coefficients and
tune our heavy quark relaxation time accordingly. These non-
pQCD model estimations are quite smaller than pQCD values
[71] and in favor of experimental data [2,3]. By considering
constant τc = 6–9 fm, we can crudely cover the non-pQCD
temperature domain T = 0.2–0.4 GeV.

After tuning the order of magnitude and qualitative T -
dependence of spatial diffusion, we proceed with their finite
magnetic field extension, which is the main aim of this
work. We should note that spatial diffusion is the ratio of
heavy quark/meson conductivity and susceptibility, where
conductivity is affected by a background magnetic field tak-
ing a multi-component structure, but susceptibility remains
unaffected. Anisotropy in conductivity is induced through
the relaxation times in conductivities and spatial diffusions,
i.e., the longitudinal/parallel relaxation time τ ‖

c = τc and

the transverse/perpendicular relaxation time τ⊥
c = τc/(1 +

τ 2
c e2B2

ω2 ), where τc is the relaxation time in the absence of
magnetic field. A similar anisotropic factor is present in the
spatial diffusion in a magnetic field, which has been obtained

in AdS/CFT [15] given by

D‖ = T

γ m
and D⊥ = D‖

1 + q2B2

m2γ 2

,

where D‖ and D⊥ are the longitudinal and transverse compo-
nents of spatial diffusion, q is the charge, m is the mass and γ

plays the role of τ−1
c of heavy quarks in the AdS/CFT frame-

work. The origin of these anisotropic factors is connected to
the action of Lorentz force on the charged particles along the
longitudinal and transverse directions of the magnetic field.
The detailed plots and discussions on these two components
are discussed one by one in the next two subsections.

A. Longitudinal components

In this subsection, we will first discuss the
longitudinal/parallel component of conductivity and then
diffusion by using their RTA and QM expressions. In between
the RTA and QM results of conductivity and diffusion, results
of heavy quark/meson susceptibility are also discussed.

Let us first discuss σ‖/T versus T , eB plots, given in Figs. 2
and 3, respectively. For parallel component, RTA expression
(2.14) in the presence of a magnetic field is the same with
zero magnetic field expression in Eq. (2.3). In Figs. 2(a)
and 2(b) we have plotted σ‖/T versus T for D+ mesons
and charm quarks at eB = 0.01 GeV2 and eB = 0.02 GeV2,
respectively. We have chosen the magnetic field values from
the phenomenological point of view [7], where an initial
strong magnetic field around 0.2 GeV2 is expected to fall
rapidly, and one may expect eB = 0.02 GeV2 for QGP phase
and eB = 0.01 GeV2 for hadronic phase near the transition
temperature. For the results of the hadronic zone we have
taken the parameterized relaxation time of the results of He
et al. [56], τc(T )He = 45.274 + 69996.2 × e−43.9531 T GeV−1

(= 8.9 + 13789.2 × e−43.9531 T fm), where T is in GeV. For
quark phase, we have considered constant relaxation time
τc = 9 fm, which approximately fits data of Rapp et al. [63].
Now we focus on the results of classical (RTA) and quantum
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FIG. 2. Normalized values of longitudinal conductivity σ‖/T
plotted as a function of T for RTA and QM results for (a) D+

mesons at eB = 0.01 GeV2 and (b) charm quarks at eB = 0.02 GeV2.
Relative percentage changes of σ‖ of QM results with respect to RTA
results for (c) D+ mesons and (d) charm quarks. Here, Deviation
(%) = RTA−QM

RTA × 100.

theoretical (QM) expressions in Figs. 2(a) and 2(b) where the
RTA results are shown by the blue solid curves and the QM
results are shown by the red dashed curves. In the lower panel
of Fig. 2, i.e., in Figs. 2(c) and 2(d) we have plotted Deviation
% = (σRTA−σQM )

σRTA
× 100, which qualitatively shows the relative

change of conductivity for the QM case with respect to the
RTA case. The QM results become different from RTA re-
sults due to Landau quantization, and we notice the quantum
enhancement for charm quark (Fermion) and quantum sup-
pression for D+ meson (Boson), which are decreasing with
temperature. The facts may be connected with the Landau

level sum of BE/FD distribution functions f0 = 1/[eβωl ± 1]
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FIG. 3. Normalized values of longitudinal conductivity σ‖/T
plotted as a function of eB for RTA and QM results for (a) D+

mesons at T = 0.15 GeV and (b) charm quarks at T = 0.4 GeV.
Relative percentage changes of σ‖ of QM results with respect to RTA
results for (c) D+ mesons and (d) charm quarks. Here, Deviation
(%) = RTA−QM

RTA × 100.
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FIG. 4. Plot of susceptibility scaled by 1/T 2 shown by χ/T 2 vs
T (a) for D+ mesons at eB = 0.01 GeV2 and (b) for charm quarks
at eB = 0.02 GeV2. Relative percentage changes of χ/T 2 of QM
results with respect to RTA results for (c) D+ mesons and (d) charm
quarks. Here, Deviation (%) = RTA−QM

RTA × 100.

with their corresponding quantized energy ωl , which ulti-
mately give the nontrivial results of suppression/enhancement
for D+ meson (Boson)/charm quark (Fermion) due to their
corresponding Landau quantization effect. Reader may notice
that positive and negative deviation % values correspond to
quantum suppression and enhancement mechanism.

To understand the behavior of conductivity with a magnetic
field, we plotted σ‖/T with eB in Fig. 3. The results for D+
mesons have been shown in Fig. 3(a), and that for the charm
quarks have been shown in Fig. 3(b), where magnetic field
ranges are kept eB = 0–0.02 GeV2 and eB = 0.02–0.1 GeV2,
respectively, based on phenomenological expectation. The
classical (RTA) results are straight lines, indicating that the
magnetic field does not affect the RTA results of the longitu-
dinal component of conductivity. This behavior is attributed
to the fact that Lorentz force does not work in the direction of
the magnetic field. Contrary to the classical results, the QM
results show a variation in the magnetic field because of the
Landau quantization effect. In the lower panel, we have shown
the plots of deviation (%) for D+ mesons and charm quarks in
Figs. 3(c) and 3(d), which shows the relative change of QM
results with respect to classical results. From Figs. 3(c) and
3(d), we see that the quantum enhancement of c quark and
quantum suppression of D+ meson in conductivity increases
with the magnetic field. By fusing the results of Figs. 2(c),
2(d) and Figs. 3(c), 3(d) we can say that quantum effects
become dominant in low T and high eB zone, which is a very
well known fact [16–18].

Next, let us go for a discussion on heavy quark/meson
number susceptibility, given in Eq. (2.12), which is found
to be independent of the magnetic field when we don’t con-
sider Landau quantization. Through phase space quantization,
Eq. (2.12) can be rewritten as Eq. (2.15), which we call the
QM version of susceptibility, which carries the dependence of
magnetic field. To study the dependence of susceptibility on T
and B, we have plotted χ/T 2 versus T, eB in Figs. 4 and 5. In
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FIG. 5. Plot of susceptibility scaled by 1/T 2 shown by χ/T 2 vs
eB (a) for D+ mesons T = 0.15 and (b) charm quark at T = 0.4 GeV.
Relative percentage changes of χ/T 2 of QM results with respect
to RTA results for (c) D+ mesons at T = 0.15 GeV and (d) charm
quarks at T = 0.4 GeV. Here, Deviation (%) = RTA−QM

RTA × 100.

Figs. 4(a) and 4(b), the blue solid curves are the RTA results,
and the red dashed curves are the QM results of susceptibility
for D+ mesons and charm quarks, respectively. In the lower
panel, i.e., Figs. 4(c) and 4(d), we have shown the relative
changes of χ/T 2 with respect to RTA results where we see
that for D+ mesons QM results show a slight suppression
whereas for charm quarks there is a slight enhancement as
compared to the RTA results. As the temperature increases,
the difference decreases initially and then increases for D+
meson, and it increases for charm quark in the entire T range,
similar to the case of conductivity. We have then shown the
variation of susceptibility with magnetic field in Figs. 5(a)
and 5(b) for D+ mesons and charm quarks at T = 0.15 and
0.4 GeV, respectively. Here, we find that the RTA results of
susceptibility, shown by solid blue lines, do not vary with
the magnetic field. In contrast, the QM results shown by red
dashed lines show a change, deviating away from RTA results
as the magnetic field increases. The relative changes of χ for
QM results with respect to RTA are plotted in Figs. 5(c) and
5(d), where we see that QM results are suppressed for D+
mesons and enhanced for charm quarks with magnetic field as
compared to the RTA results.

Now, we discuss the behavior of the longitudinal compo-
nent of spatial diffusion D‖ with T and B. The behavior of
spatial diffusion (normalized by 2πT ) with temperature has
been plotted as 2πT D‖ versus T, eB in Figs. 6 and 7. The
dependence of spatial diffusion on the temperature for D+
mesons and charm quarks has been shown in Figs. 6(a) and
6(b) at eB = 0.01 GeV2 and eB = 0.02 GeV2. RTA results of
longitudinal diffusion will be the same as diffusion without
magnetic field results. So we will get the decreasing diffusion
in the hadronic temperature domain and increasing diffusion
in the quark temperature domain with a minimum around
transition temperature, as pointed out by Ref. [58]. We have
also compared the results of diffusion for classical and QM
expressions, which are given by solid blue curves and red
dashed lines in Figs. 6(a) and 6(b). Here we see that although

0.1 0.12 0.14 0.16 0.18

7

14

21

28

2π
T

 D
|| RTA

QM

0.2 0.25 0.3 0.35 0.4

7

14

21

28

0.1 0.12 0.14 0.16 0.18
T (GeV)

-0.004

-0.002

0

D
ev

ia
tio

n 
(%

)

0.2 0.25 0.3 0.35 0.4
T (GeV)

0.2

0.4

0.6

(a) (b)

(c) (d)

D+ Meson, eB = 0.01 GeV2 Charm quark, eB = 0.02 GeV2

FIG. 6. Normalized values of longitudinal diffusion D‖ scaled by
2πT plotted as a function of T for RTA and QM results for (a) D+

mesons eB = 0.01 GeV2 and (b) charm quarks at eB = 0.02 GeV2.
Relative percentage changes of D‖ of QM results with respect to RTA
results for (c) D+ mesons and (d) charm quarks. Here, Deviation
(%) = RTA−QM

RTA × 100.

the classical and QM curves are very close to each other, their
differences are evident as displayed in Figs. 6(c) and 6(d)
where we plotted deviation % = (DRTA−DQM )

DRTA
× 100. For the

D+ mesons, there is a small suppression of QM results, and for
the charm quarks, there is a small enhancement of diffusion
compared to RTA results, similar to longitudinal conductivity.
Next, we have plotted longitudinal diffusion with magnetic
field in Fig. 7. The behavior of longitudinal diffusion in
the magnetic field is similar to the behavior of longitudinal
conductivity. Collecting deviation % of longitudinal diffusion
from Figs. 6(c), 6(d) and Figs. 7(c), 7(d) we can again find the
dominance of quantum aspects in low T and high eB zone.

0.005 0.01 0.015 0.02

8.9088

8.9089

8.909

2π
T

 D
||

RTA
QM

0.02 0.04 0.06 0.08 0.1
20.15

20.16

20.17

20.18

0.005 0.01 0.015 0.02
eB (GeV2)

0

0.001

0.002

0.003

D
ev

ia
tio

n 
(%

)

0.02 0.04 0.06 0.08 0.1
eB (GeV2)

-0.15

-0.1

-0.05

0

(a) (b)

)d()c(

D+ Meson, T = 0.15 GeV Charm quark, T = 0.4 GeV
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2πT plotted as a function of eB for RTA and QM results for (a) D+

mesons at T = 0.15 GeV and (b) charm quarks at T = 0.4 GeV.
Relative percentage changes of D‖ of QM results with respect to
RTA results for (c) D+ mesons and (d) charm quarks. Here, Deviation
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FIG. 8. Normalized values of transverse heavy quark conduc-
tivity σ⊥/T plotted as a function of T for RTA and QM results
for (a) D+ mesons at eB = 0.01 GeV2 and (b) charm quarks at
eB = 0.02 GeV2. Relative percentage changes of σ⊥ of QM results
with respect to RTA results (black solid line) and that of RTA with
respect to σ‖ at B = 0 (green dashed line) for (c) D+ mesons and
(d) charm quarks.

B. Transverse components

Let us now discuss the results of transverse components
of transport coefficients with temperature and magnetic field.
As mentioned before, to understand the diffusion behavior,
we must first study conductivity as a reference. Transverse
conductivity (σ⊥) has been studied as a function of temper-
ature and magnetic field in Figs. 8 and 9 by plotting the
dimensionless quantity σ⊥/T . The behavior of σ⊥ with tem-
perature for D+ mesons and charm quarks has been shown in
Figs. 8(a) and 8(b) at eB = 0.01 GeV2 and eB = 0.02 GeV2.
Solid green curves stand for without magnetic field (B = 0)
results, blue solid curves are the B-dependent RTA results,
and the red dash curves present B-dependent QM results.
For the perpendicular component, we have shown two de-

viations. One is defined as (σB=0−σ⊥
RTA )

σB=0
× 100 and another is

defined as
(σ⊥

RTA−σ⊥
QM )

σ⊥
RTA

× 100, represented by green dash and

black solid lines, respectively, in Figs. 8(c) and 8(d). Positive
deviation values indicate that the perpendicular component of
conductivity will be reduced at a finite magnetic field from its
values at B = 0. This fact is also connected with the standard
anisotropic nature of transport coefficients in the presence
of a magnetic field, where its perpendicular component be-
comes smaller than its parallel component [16–18]. This is
because the transverse/perpendicular relaxation time τ⊥

c =
τc/(1 + τ 2

c e2B2

ω2 ) become smaller than longitudinal/parallel re-
laxation time τ ‖

c = τc. If we zoom in the Figs. 8(c) and 8(d),
then we notice from Fig. 8(c) that the RTA results are more
suppressed as compared to QM results with respect to B = 0
results for D+ mesons and an opposite trend is observed for
charm quarks in Fig. 8(d). The reason can be analyzed as
follows. Longitudinal and transverse components have two
different integrands integrated over the (Landau) quantized
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FIG. 9. Normalized values of transverse heavy quark conductiv-
ity σ⊥/T plotted as a function of eB for RTA and QM results, (a) D+

mesons at T = 0.15 GeV and (b) charm quarks at T = 0.4 GeV.
Relative percentage changes of σ⊥ of QM results with respect to RTA
results (black solid line) and that of RTA with respect to σ‖ at B = 0
(green dashed line) for (c) D+ mesons and (d) charm quarks.

phase space. As an outcome of the integration, we are getting
two different directional results with respect to those without
Landau quantization or RTA results. One is larger, and another
becomes smaller with respect to RTA results, and accordingly,
quantum enhancement in D+ meson and suppression in c
quark are found.

Next, in Figs. 9(a) and 9(b), we have plotted σ⊥/T
against eB axis, which shows a decreasing pattern due to the

anisotropic term 1/(1 + τ 2
c e2B2

ω2 ). Difference between without
and with magnetic field results (green dash line) and between
QM and RTA results (black solid line) are also shown in
Figs. 9(c) and 9(d). We observe in Figs. 9(c) and 9(d) that

due to the anisotropic term 1/(1 + τ 2
c e2B2

ω2 ), perpendicular com-
ponent of RTA results become quite smaller with respect to
its parallel component or without-magnetic field results. This
difference between parallel and perpendicular components
will create an anisotropy in heavy quark/meson conductivity
tensor as well as the other quantities, such as diffusion and
relaxation time. In the magnetic field regime, the deviation
between parallel and perpendicular components can go be-
yond 50% within the hadronic and quark temperature. We
also observe in Figs. 9(c) and 9(d) that QM results dominate
over RTA results for D+ mesons, but an opposite effect is
observed for charm quarks. Figs. 8(c), 8(d) and Figs. 9(c), 9(d)
collectively reveal that the deviation between RTA and QM
curves decreases with temperature and increase with magnetic
field for both D+ mesons and charm quarks. It again reflects
the dominance of the quantum effect, the low T and high eB
domain.

Next, let us examine the transverse diffusion component
(D⊥) and the behavior with temperature and magnetic field.
To understand the difference with respect to isotropic case
results, we have included the plots of B = 0 in Figs. 10(a) and
10(b) shown by green solid lines. The RTA and QM results
at eB = 0.01 GeV2 for D+ meson and eB = 0.01 GeV2 for
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FIG. 10. Normalized values of transverse diffusion D⊥ scaled by
2πT plotted as a function of T for RTA and QM results, (a) D+

mesons at eB = 0.01 GeV2 and (b) charm quarks at eB = 0.02 GeV2.
Relative percentage changes of D⊥ of QM results with respect to
RTA results (black solid line), and that of RTA results with respect to
D‖ at eB = 0 (green dashed line) for (c) D+ mesons and (d) charm
quarks.

charm quark have been shown by blue solid and red dashed
lines. Clearly, from Fig. 10(a) for the D+ mesons, we see
that the B = 0 results show a decreasing behavior whereas
the B �= 0 results exhibit an opposite behavior. For the charm
quarks in Fig. 10(b), both the B = 0 and B �= 0 results show
an increasing behavior with temperature. In Figs. 10(c) and

10(d), we have plotted (DB=0−D⊥
RTA )

DB=0
× 100 (green dash line)

and
(D⊥

RTA−D⊥
QM )

D⊥
RTA

× 100 (black solid line) against T axis. The

behavior of transverse diffusion with a magnetic field is shown
in Fig. 11. Green straight lines show the isotropic or B = 0
results, the RTA results and QM results at T = 0.1 GeV and
T = 0.2 GeV for D+ mesons and charm quarks are shown by
blue solid and red dashed lines, respectively, in Figs. 11(a) and

11(b). In Figs. 11(c) and 11(d) we have plotted (DB=0−D⊥
RTA )

DB=0
×

100 (green dash line) and
(D⊥

RTA−D⊥
QM )

D⊥
RTA

× 100 (black solid line)

along the B-axis. Difference between blue (RTA) and red
(QM) curves in Figs. 10(c), 10(d) and Fig. 11(c), 11(d) in-
creases as T decreases and eB increases, which is again
supporting the quantum effect dominance in low T and high
eB zone.

In the end, if we focus only on the spatial diffusion curve
as a function of temperature, then we notice that our expected
2πT D versus T curve is modified in the presence of the
magnetic field. In the absence of a magnetic field, 2πT D
is expected to decrease in the hadronic temperature domain
and increase in the quark temperature domain. This trend
remains similar for the longitudinal component of diffusion
in the presence of a magnetic field with slight suppression
for D+ mesons and enhancement for charm quarks due to
Landau quantization. However, for the transverse component,
this trend changes because of anisotropic factors.
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FIG. 11. Normalized values of transverse diffusion D⊥ scaled by
2πT plotted as a function of eB for RTA and QM results for (a) D+

mesons at T = 0.15 GeV and (b) charm quarks at T = 0.4 GeV.
Relative percentage changes of D‖ of QM results with respect to RTA
results, and that of RTA results with respect to D‖ at eB = 0 (green
dashed line) for (c) D+ mesons and (d) charm quarks.

Let us analyze our estimations from a phenomenologi-
cal point of view. Our RTA-based theoretical calculations
are enabled to provide T -, B-dependent profile of conduc-
tivity, diffusion, and relaxation time components for heavy
quark/meson. For phenomenological understanding, one
should go with the detailed bulk evolution of RHIC or LHC
matter, which may be the scope of separate research work.
The reader should also have to accept the band of uncertainty
for time evolution of T and B during that phenomenological
investigation. One may assume an approximated phenomeno-
logical evolution picture is described as follows. Based on the
Refs. [5–7], initial magnetic field of RHIC or LHC matter
may be considered as eB ≈ 5–10m2

π ≈ 0.1–0.2 GeV2, which
is rapidly decreased to eB ≈ 0.5–1m2

π ≈ 0.01–0.02 GeV2

within τ = 0.2 fm time interval. Now, according to the
simplified cooling law of expanding QGP, T 3 ∝ 1

τ
, we can

roughly consider T = 0.500–0.400–0.200–0.110 GeV at τ =
0.1–0.2–1.5–9.4 fm. So, phenomenological B(τ ) and T (τ )
profiles suggest concentrating only on small evolution parts
of eB(τ ≈ 0.1–0.2 fm ) ≈ 0.1–0.02 GeV2 and T (τ ≈ 0.1–0.2
fm ) ≈ 0.500–0.400 GeV, during which an anisotropic nature
of heavy quark conductivity or diffusion will be produced.
One may safely consider eB = 0 for hadronic temperature do-
main T (τ ≈ 2.5–9.4 fm ) ≈ 0.170–0.110 GeV, during which
the isotropic nature of heavy quark conductivity or diffusion
will be maintained. This detailed evolution may or may not
affect the phenomenological observable like nuclear suppres-
sion factor, elliptic flow, etc. Our predicted 10–20% reduction
of 2πT D due to the magnetic field within T = 160 MeV to
T = 400 MeV may be compatible with the recent Bayesian
analyses [72], after one considers the error band of such
studies.
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IV. SUMMARY AND CONCLUSION

We have first built a relaxation time approximation (RTA)
framework for heavy quark and heavy meson conductivity
calculations, where their relaxation times are tuned from the
knowledge of earlier works on their spatial diffusion esti-
mations. According to Einstein’s diffusion relation, heavy
quark and meson conductivity equal the corresponding spa-
tial diffusion times susceptibility. After tuning our estimation
in the absence of a magnetic field, we have extended the
RTA framework at a finite magnetic field, where parallel
and perpendicular components of diffusion and conductivity
components for heavy quark and meson are introduced in the
picture.

In summary, if we denote without magnetic field RTA
results as RTA(B = 0), finite magnetic field RTA results as
RTA(B �= 0), and finite magnetic field RTA with the inclusion
of Landau quantization as QM(B �= 0), then our outcomes can
be addressed in bullet points as follows:

(a) For susceptibility, longitudinal conductivity, and longi-
tudinal diffusion component of D+ meson, RTA(B =
0) = RTA(B �= 0) > QM(B �= 0).

(b) For susceptibility, longitudinal conductivity, and longi-
tudinal diffusion component of c quark, QM(B �= 0) >

RTA(B = 0) = RTA(B �= 0).
(c) For transverse conductivity and diffusion compo-

nent of D+ meson, RTA(B = 0) > QM(B �= 0) >

RTA(B �= 0).
(d) For transverse conductivity and diffusion component

of c quark, RTA(B = 0) > RTA(B �= 0) > QM(B �=
0).

(e) Effect of Landau quantization in all quantities—
susceptibility, conductivity, and diffusion are promi-
nent at low temperature and high magnetic field
domain.

Our results may be projected in the future for some phe-
nomenological results of heavy meson suppression, where
we can expect those anisotropic effects (phenomenological
results along parallel and perpendicular may be different)
and quantum effects. However, for the realistic case of a
time-varying magnetic field, the actual effect of this quantum
anisotropy can be unfolded after doing future research.
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APPENDIX A: HEAVY QUARK OR HEAVY MESON
CONDUCTIVITY FROM RELATIVISTIC BOLTZMANN

EQUATION

In this section we derive the heavy quark or heavy meson
conductivities in the presence of magnetic field from relativis-
tic Boltzmann equation (RBE). Let us consider a background
magnetic field �B pointing in the z direction and heavy quark

(c) or meson (D+) with charm chemical potential μc and
mass m, which can have a conduction and diffusion due to
gradient of μc. One can connect macroscopic and microscopic
definition charm quark current density owing to which the
dissipative current density Ji can be expressed as

Ji = σ i j∇ jμc = g
∫

d3k

(2π )3

pi

ω
δ f , (A1)

where σ i j is the heavy quark conductivity tensor, ∇ j is the
spatial derivative, δ f is the deviation of the distribution func-
tion f from equilibrium and g is degeneracy factor of heavy
quark or heavy meson. Considering 2 for spin degeneracy, 3
for color degeneracy, we get g = 2 × 3 = 6 for c quark while
for D+ meson, we will get g = 1 from spin degeneracy only.
To study the transport properties of this system we make use
of the relativistic Boltzmann equation (RBE), which is given
by

∂ f

∂t
+ �p

ω

∂ f

∂�x + ∂ �p
∂t

∂ f

∂ �p = I[δ f ] = −δ f

τc
. (A2)

The first term of Eq. (A2) does not contribute to the calcu-
lation of heavy quark conductivity as we have not considered
the time dependency in δ f . The second and third term survive.
The second term of the RBE is evaluated as follows. Assum-
ing ∇iT = 0 and keeping ∇iμc �= 0 we get

�p
ω

∂ f

∂�x = 1

ω

∂ f0

∂ω
�p. �∇μc. (A3)

The third term is the force term appeared due to Lorentz
force in the presence of an external magnetic field �B in the ẑ
direction, which is evaluated as

∂ �p
∂t

∂ f

∂ �p = q

( �p
ω

× �B
)

· ∂ ( f0 + δ f )

∂ �p

= q

( �p
ω

× �B
)

· �p
ω

∂ f0

∂ω
+ q

( �p
ω

× �B
)

· ∂ (δ f )

∂ �p

= 0 + 1

τB
( �p × b̂) · ∂ (δ f )

∂ �p , (A4)

where τB = ω

q| �B| and b̂ = �B
| �B| is the unit vector along the di-

rection of magnetic field. The deviated part of the distribution
function is driven by magnetic field and the gradient of charge
chemical potential. An ansatz for the change in the distribu-
tion function can be considered as

δ f = �p · �F ∂ f0

∂ω
,

where �F is a force due to magnetic field and gradient of
chemical potential. Now, Eq. (A4) becomes

∂ �p
∂t

∂ f

∂ �p = 1

τB
( �p × b̂) · �F ∂ f0

∂ω
. (A5)

We can rewrite the RBE with the help of Eqs. (A3) and (A5)
as

1

ω

∂ f0

∂ω
[ �p. �∇μc + �p.(b̂ × �F )] = − �p. �F

τc

∂ f0

∂ω
. (A6)

A general expression of �F is given by

�F = αμ̂c + βb̂ + γ (μ̂c × b̂),

024904-9



SATAPATHY, DE, DEY, AND GHOSH PHYSICAL REVIEW C 109, 024904 (2024)

where μ̂c = �∇μc

| �∇μc| is the unit vector along the gradient of

the chemical potential. By substituting the expression of �F
in Eq. (A6), canceling the common terms and retaining the
coefficients of μ̂c, b̂ and μ̂c × b̂ we get

| �∇μc|
ω

+ 1

τB
[−α(μ̂c × b̂) + γ {μ̂c − b̂(b̂.μ̂c)}]

= − 1

τc
[αμ̂c + βb̂ + γ (b̂ × μ̂c)]. (A7)

From Eq. (A7) the coefficients α, β, γ are given by

α = −τc

∣∣ �∇μc

∣∣
ω

[
1

1 + τ 2
c

τ 2
B

]
, (A8)

β = −
τc

τ 2
c

τ 2
B

∣∣ �∇μc

∣∣(b̂.μ̂c)

ω

[
1

1 + τ 2
c

τ 2
B

]
, (A9)

γ = −τ 2
c

∣∣ �∇μc

∣∣
τB ω

[
1

1 + τ 2
c

τ 2
B

]
, (A10)

where τB = ω/eB is the inverse of cyclotron frequency. By
substituting α, β, γ in δ f we get

δ f = − τc

ω
(
1 + τ 2

c

τ 2
B

)
[
δi j − τc

τB
εi jkbk + τ 2

c

τ 2
B

bib j

]∣∣ �∇μc

∣∣
i p j

∂ f0

∂ω
.

(A11)

Substituting the expression of δ f in the macroscopic expres-
sion of the dissipative current density we get

Ji = σ i j∇ jμc = g
∫

d3 p

(2π )3

pi

ω
δ f , (A12)

σ i j = 1

T

∫
d3 p

(2π )3

( �p
ω

)2
τc

1 + τ 2
c

τ 2
B

×
[
δi j − τc

τB
εi jkbk + τ 2

c

τ 2
B

bibj

]
f0(1 ∓ f0). (A13)

In the above equation, ∓ stand for c quark with g = 6 and D+
meson with g = 1, respectively.

Till now, the conductivity tensor σ i j has been derived via
RTA formalism where the classical definition of cyclotron
frequency is still present and there is no effect of Landau
quantization of energies. Taking these points into account
we call our obtained results as classical results. We can now
calculate the ‖,⊥, and × component of conductivity [19] as

σ CM
‖ = gβ

∫
d3k

(2π )3

(kz )2

ω2
τ ‖

c f0[1 ∓ f0]

= gβ

3

∫
d3k

(2π )3

(k)2

ω2
τ ‖

c f0[1 ∓ f0], (A14)

σ CM
⊥ = gβ

∫
d3k

(2π )3

(kx )2

ω2
τ⊥

c f0[1 ∓ f0]

= gβ

3

∫
d3k

(2π )3

(k)2

ω2
τ⊥

c f0[1 ∓ f0], (A15)

σ CM
× = gβ

∫
d3k

(2π )3

(kxky)

ω2
τ×

c f0[1 ∓ f0]

= gβ

3

∫
d3k

(2π )3

(k)2

ω2
τ×

c f0[1 ∓ f0], (A16)

where the superscript CM denotes the classical or RTA re-

sults and τ ‖ = τc, τ⊥ = τc

1+ τ2
c

τ2
B

, τ×
c = τ 2

c /τB

1+ τ2
c

τ2
B

, τc is the relaxation

time, and τB = ω
qB is the inverse of the cyclotron frequency.

For c quark, g = 6 and Fermi-Dirac distribution have to be
considered, whereas, for D+ meson, g = 1 and Bose-Einstein
distribution have to be taken.

One can easily check that in the limit of eB → 0, σ ‖ and
σ⊥ become same and σ ‖ is basically same as the expression
of c quark and D+ meson conductivity in absence of magnetic
field

σ = gβ

3

∫
d3k

(2π )3

(kz )2

ω2
τc f0[1 ∓ f0]. (A17)

Since energy gets quantized in the presence of magnetic
field, the RTA results for c quark can be modified to include
a summation over Landau levels by using the approximation
given by

2
∫

d3k

(2π )3
= 2

∫∫
d2k⊥
(2π )2

dkz

2π
→

∞∑
l=0

glqB

2π

∫ +∞

−∞

dkz

2π
,

where spin degeneracy factor 2 of CM expression will be
replaced by gl = 2 − δl,0 in QM expression and we have used
the approximation

k2
x ≈ kxky ≈ k2

y ≈ k2
x + k2

y

2
= lqB.

The expressions of c quark conductivity in the quantum theo-
retical expression result are given by

σ
QM
⊥ = 3

T

∞∑
l=0

gl
qB

2π

∫ +∞

−∞

dkz

2π

lB

ω2
l

τ⊥ f0(1 − f0), (A18)

σ
QM
‖ = 3

T

∞∑
l=0

gl
qB

2π

∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τ ‖ f0(1 − f0), (A19)

σ
QM
× = 3

T

∞∑
l=0

gl
qB

2π

∫ +∞

−∞

dkz

2π

lB

ω2
l

τ× f0(1 − f0), (A20)

where the superscript QM denotes quantum theoretical results
and ωl = √

k2
z + m2 + 2lqB is the Landau quantized energy

with q = 2
3 e.

Similarly D+ meson follows the bosonic Landau quantiza-
tion rules ∫

d3k

(2π )3
→

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π
,

and

k2
x ≈ kxky ≈ k2

y ≈ k2
x + k2

y

2
= (l + 1/2)qB.
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The expressions of D+ meson conductivity in the quantum
theoretical expression result are given by

σ
QM
⊥ = 1

T

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π

(l + 1/2)qB

ω2
l

τ⊥ f0(1 + f0),

(A21)

σ
QM
‖ = 1

T

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τ ‖ f0(1 + f0), (A22)

σ
QM
× = 1

T

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π

(l + 1/2)qB

ω2
l

τ× f0(1 + f0),

(A23)

where the superscript QM denotes quantum theoretical results
and ωl = √

k2
z + m2 + (2l + 1)qB is the Landau quantized

energy with q = e. Reader can find the transformation from
Pauli suppression factor ∂ f0

∂ω
= −β f0(1 − f0) to Bose en-

hancement factor ∂ f0

∂ω
= −β f0(1 + f0) for D+ meson.

APPENDIX B: QUARK NUMBER SUSCEPTIBILITY

Creation of heavy quarks in the medium at t → 0, induces
a change in chemical potential given by

μ(�x) = μ0 + δμ(�x),

where μ0 is the chemical potential at t = 0 and δμ(�x) is the
change in chemical potential. The thermal distribution at t →
0 is given by

1

eβ(E−μ(�x)) ∓ 1
= f0 + f0(1 ± f0)

δμ(�x)

T
, (B1)

where ± stands for bosons/fermions, f0 = [eβ(E−μ0(�x)) ∓ 1]
−1

is the initial thermal distribution function. From Eq. (B1) the
change in distribution function is given by

δ f = f0(1 ± f0)
δμ(�x)

T
. (B2)

For very short timescales the collisionless Boltzmann equa-
tion is given by[

∂

∂t
+ vi ∂

∂xi

]
f (�x, �p, t ) = 0, (B3)

whose solution is given by

f (�x, �p, t ) = f (�x − �vt, �p).

The fluctuations in number density is given by

δN (�x, t ) =
∫

d3 p

(2π )3
δ f (�x, �p, t ), (B4)

whose spatial Fourier transform is given by

δN (�k, t ) = 1

T

∫
d3 p

(2π )3
e−i�k.�vt f0(1 ± f0)δμ(�k),

where we have substituted the expression of δ f given by
Eq. (B2). For small timescales, we expand the exponential and
get

δN (�k, t ) =
[
χs(�k) − 1

2
t2k2χs(�k)

〈v2

3

〉]
δμ(�k),

where

χs(�k) = ∂N

∂μ0
= 1

T

∫
d3 p

(2π )3
f0(1 ± f0) and

〈
v2

3

〉
= 1

T χs(�k)

∫
d3 p

(2π )3
f0(1 ± f0)

�v2

3
, (B5)

where ± stands for bosons/fermions. For c quark (fermion)
and D+ meson, χ are given by

χ = gβ
∫

d3k

(2π )3
f0(1 ∓ f0). (B6)

On applying Landau quantization of energies and quantizing
the phase space part of the momentum integral [15], we obtain

χ = 3β

∞∑
l=0

gl qB

2π

∫ +∞

−∞

dkz

2π
f0(1 − f0) (B7)

for c quark and

χ = β

∞∑
l=0

qB

2π

∫ +∞

−∞

dkz

2π
f0(1 + f0) (B8)

for D+ meson.

[1] E. V. Shuryak, Nucl. Phys. A 750, 64 (2005).
[2] F. Prino and R. Rapp, J. Phys. G 43, 093002 (2016).
[3] R. Rapp, P. B. Gossiaux, A. Andronic, R. Averbeck,

S. Masciocchi, A. Beraudo, E. Bratkovskaya, P. Braun-
Munzinger, S. Cao, and A. Dainese et al., Nucl. Phys. A 979,
21 (2018).

[4] S. K. Das, Jan-e Alam, and P. Mohanty, Phys. Rev. C 82,
014908 (2010).

[5] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod. Phys.
A 24, 5925 (2009).

[6] A. Bzdak and V. Skokov, Phys. Lett. B 710, 171 (2012).
[7] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).
[8] S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, and

V. Greco, Phys. Lett. B 768, 260 (2017).
[9] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.

Phys. A 803, 227 (2008).
[10] D. Banerjee, S. Paul, P. Das, A. Modak, A. Budhraja, S. Ghosh,

and S. K. Prasad, Pramana J. Phys. 97, 206 (2023).
[11] K. Fukushima, K. Hattori, H. U. Yee, and Y. Yin, Phys. Rev. D

93, 074028 (2016).

024904-11

https://doi.org/10.1016/j.nuclphysa.2004.10.022
https://doi.org/10.1088/0954-3899/43/9/093002
https://doi.org/10.1016/j.nuclphysa.2018.09.002
https://doi.org/10.1103/PhysRevC.82.014908
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1155/2013/490495
https://doi.org/10.1016/j.physletb.2017.02.046
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1007/s12043-023-02683-1
https://doi.org/10.1103/PhysRevD.93.074028


SATAPATHY, DE, DEY, AND GHOSH PHYSICAL REVIEW C 109, 024904 (2024)

[12] S. I. Finazzo, R. Critelli, R. Rougemont, and J. Noronha, Phys.
Rev. D 94, 054020 (2016); 96, 019903 (2017).

[13] K. Goswami, D. Sahu, and R. Sahoo, Phys. Rev. D 107, 014003
(2023).

[14] D. Dudal and T. G. Mertens, Phys. Rev. D 91, 086002
(2015).

[15] D. Dudal and T. G. Mertens, Phys. Rev. D 97, 054035 (2018).
[16] J. Dey, S. Satapathy, P. Murmu, and S. Ghosh, Pramana 95, 125

(2021).
[17] S. Satapathy, S. Ghosh, and S. Ghosh, Phys. Rev. D 104,

056030 (2021).
[18] J. Dey, S. Samanta, S. Ghosh, and S. Satapathy, Phys. Rev. C

106, 044914 (2022).
[19] A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh, and

V. Roy, Phys. Rev. D 102, 016016 (2020).
[20] S. i. Nam, Phys. Rev. D 86, 033014 (2012).
[21] K. Hattori and D. Satow, Phys. Rev. D 94, 114032 (2016).
[22] K. Hattori, S. Li, D. Satow, and H. U. Yee, Phys. Rev. D 95,

076008 (2017).
[23] A. Harutyunyan and A. Sedrakian, Phys. Rev. C 94, 025805

(2016).
[24] B. O. Kerbikov and M. A. Andreichikov, Phys. Rev. D 91,

074010 (2015).
[25] B. Feng, Phys. Rev. D 96, 036009 (2017).
[26] K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 120, 162301

(2018).
[27] W. Li, S. Lin, and J. Mei, Phys. Rev. D 98, 114014 (2018).
[28] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 99,

094031 (2019).
[29] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 101,

034027 (2020).
[30] A. Bandyopadhyay, S. Ghosh, R. L. S. Farias, J. Dey, and G.

Krein, Phys. Rev. D 102, 114015 (2020).
[31] S. Satapathy, S. Ghosh, and S. Ghosh, Phys. Rev. D 106,

036006 (2022).
[32] S. Ghosh and S. Ghosh, Phys. Rev. D 103, 096015 (2021).
[33] S. Li and H. U. Yee, Phys. Rev. D 97, 056024 (2018).
[34] S. i. Nam and C. W. Kao, Phys. Rev. D 87, 114003 (2013).
[35] M. G. Alford, H. Nishimura, and A. Sedrakian, Phys. Rev. C

90, 055205 (2014).
[36] A. N. Tawfik, A. M. Diab, and T. M. Hussein, Int. J. Adv. Res.

Phys. Sci. 3, 4 (2016).
[37] K. Tuchin, J. Phys. G 39, 025010 (2012).
[38] S. Ghosh, P. Mohanty, B. Chatterjee, A. Mukharjee, and H.

Mishra, Phys. Rev. D 100, 034024 (2019).
[39] P. Mohanty, A. Dash, and V. Roy, Eur. Phys. J. A 55, 35

(2019).
[40] J. Dey, S. Satapathy, A. Mishra, S. Paul, and S. Ghosh, Int. J.

Mod. Phys. E 30, 2150044 (2021).
[41] K. Hattori, X. G. Huang, D. H. Rischke, and D. Satow, Phys.

Rev. D 96, 094009 (2017).
[42] X. G. Huang, M. Huang, D. H. Rischke, and A. Sedrakian, Phys.

Rev. D 81, 045015 (2010).

[43] X. G. Huang, A. Sedrakian, and D. H. Rischke, Ann. Phys. 326,
3075 (2011).

[44] N. O. Agasian, JETP Lett. 95, 171 (2012).
[45] N. O. Agasian, Phys. At. Nucl. 76, 1382 (2013).
[46] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics

In and Out of Equilibrium: And Applications to Relativistic
Nuclear Collisions (Cambridge University Press, Cambridge,
2019).

[47] M. Laine and A. Vuorinen, Basics of Thermal Field Theory,
Lecture Notes in Physics Vol. 925 (Springer, Cham, 2016).

[48] H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing,
J. M. Torres-Rincon, and E. Bratkovskaya, Phys. Rev. C 90,
051901(R) (2014).

[49] H. van Hees, M. Mannarelli, V. Greco, and R. Rapp, Phys. Rev.
Lett. 100, 192301 (2008).

[50] F. Riek and R. Rapp, Phys. Rev. C 82, 035201 (2010).
[51] S. Y. F. Liu and R. Rapp, Eur. Phys. J. A 56, 44 (2020).
[52] F. Scardina, S. K. Das, V. Minissale, S. Plumari, and V. Greco,

Phys. Rev. C 96, 044905 (2017).
[53] D. Banerjee, S. Datta, R. Gavai, and P. Majumdar, Phys. Rev. D

85, 014510 (2012).
[54] S. Ghosh, S. K. Das, S. Sarkar, and J.-e, Alam, Phys. Rev. D 84,

011503(R) (2011).
[55] L. Tolos and J. M. Torres-Rincon, Phys. Rev. D 88, 074019

(2013).
[56] M. He, R. J. Fries, and R. Rapp, Phys. Lett. B 701, 445 (2011).
[57] J. M. Torres-Rincon, G. Montaña, À. Ramos, and L. Tolos,

Phys. Rev. C 105, 025203 (2022).
[58] L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, and J. M. Torres-

Rincon, Ann. Phys. 326, 2737 (2011).
[59] S. K. Das, S. Ghosh, S. Sarkar, and J.-e. Alam, Phys. Rev. D 85,

074017 (2012).
[60] L. M. Abreu, D. Cabrera, and J. M. Torres-Rincon, Phys. Rev.

D 87, 034019 (2013).
[61] S. Ghosh, S. K. Das, V. Greco, S. Sarkar, and J.-e. Alam, Phys.

Rev. D 90, 054018 (2014).
[62] L. Tolos, J. M. Torres-Rincon, and S. K. Das, Phys. Rev. D 94,

034018 (2016).
[63] R. Rapp and H. van Hees, arXiv:0803.0901.
[64] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev.

Lett. 97, 152303 (2006).
[65] A. Abhishek, H. Mishra, and S. Ghosh, Phys. Rev. D 97, 014005

(2018).
[66] P. Singha, A. Abhishek, G. Kadam, S. Ghosh, and H. Mishra,

J. Phys. G 46, 015201 (2019).
[67] C. Sasaki and K. Redlich, Nucl. Phys. A 832, 62 (2010).
[68] P. Deb, G. P. Kadam, and H. Mishra, Phys. Rev. D 94, 094002

(2016).
[69] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906

(2011).
[70] P. Petreczky and D. Teaney, Phys. Rev. D 73, 014508 (2006)
[71] G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005).
[72] W. Ke, Y. Xu, and S. A. Bass, Phys. Rev. C 98, 064901 (2018).

024904-12

https://doi.org/10.1103/PhysRevD.94.054020
https://doi.org/10.1103/PhysRevD.96.019903
https://doi.org/10.1103/PhysRevD.107.014003
https://doi.org/10.1103/PhysRevD.91.086002
https://doi.org/10.1103/PhysRevD.97.054035
https://doi.org/10.1007/s12043-021-02148-3
https://doi.org/10.1103/PhysRevD.104.056030
https://doi.org/10.1103/PhysRevC.106.044914
https://doi.org/10.1103/PhysRevD.102.016016
https://doi.org/10.1103/PhysRevD.86.033014
https://doi.org/10.1103/PhysRevD.94.114032
https://doi.org/10.1103/PhysRevD.95.076008
https://doi.org/10.1103/PhysRevC.94.025805
https://doi.org/10.1103/PhysRevD.91.074010
https://doi.org/10.1103/PhysRevD.96.036009
https://doi.org/10.1103/PhysRevLett.120.162301
https://doi.org/10.1103/PhysRevD.98.114014
https://doi.org/10.1103/PhysRevD.99.094031
https://doi.org/10.1103/PhysRevD.101.034027
https://doi.org/10.1103/PhysRevD.102.114015
https://doi.org/10.1103/PhysRevD.106.036006
https://doi.org/10.1103/PhysRevD.103.096015
https://doi.org/10.1103/PhysRevD.97.056024
https://doi.org/10.1103/PhysRevD.87.114003
https://doi.org/10.1103/PhysRevC.90.055205
https://www.arcjournals.org/pdfs/ijarps/v3-i5/2.pdf
https://doi.org/10.1088/0954-3899/39/2/025010
https://doi.org/10.1103/PhysRevD.100.034024
https://doi.org/10.1140/epja/i2019-12705-7
https://doi.org/10.1142/S0218301321500440
https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.81.045015
https://doi.org/10.1016/j.aop.2011.08.001
https://doi.org/10.1134/S0021364012040029
https://doi.org/10.1134/S1063778813100025
https://doi.org/10.1103/PhysRevC.90.051901
https://doi.org/10.1103/PhysRevLett.100.192301
https://doi.org/10.1103/PhysRevC.82.035201
https://doi.org/10.1140/epja/s10050-020-00024-z
https://doi.org/10.1103/PhysRevC.96.044905
https://doi.org/10.1103/PhysRevD.85.014510
https://doi.org/10.1103/PhysRevD.84.011503
https://doi.org/10.1103/PhysRevD.88.074019
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1103/PhysRevC.105.025203
https://doi.org/10.1016/j.aop.2011.06.006
https://doi.org/10.1103/PhysRevD.85.074017
https://doi.org/10.1103/PhysRevD.87.034019
https://doi.org/10.1103/PhysRevD.90.054018
https://doi.org/10.1103/PhysRevD.94.034018
https://arxiv.org/abs/0803.0901
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevD.97.014005
https://doi.org/10.1088/1361-6471/aaf256
https://doi.org/10.1016/j.nuclphysa.2009.11.005
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevD.73.014508
https://doi.org/10.1103/PhysRevC.71.064904
https://doi.org/10.1103/PhysRevC.98.064901

